
Optimal Staged Self-Assembly of General Shapes∗

Cameron Chalk1, Eric Martinez2, Robert Schweller3, Luis Vega4,
Andrew Winslow5, and Tim Wylie6

1 Department of Computer Science, University of Texas – Rio Grande Valley,
Brownsville, USA
cameron.chalk01@utrgv.edu

2 Department of Computer Science, University of Texas – Rio Grande Valley,
Brownsville, USA
eric.m.martinez02@utrgv.edu

3 Department of Computer Science, University of Texas – Rio Grande Valley,
Brownsville, USA
robert.schweller@utrgv.edu

4 Department of Computer Science, University of Texas – Rio Grande Valley,
Brownsville, USA
luis.a.vega01@utrgv.edu

5 Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
awinslow@ulb.ac.be

6 Department of Computer Science, University of Texas – Rio Grande Valley,
Brownsville, USA
timothy.wylie@utrgv.edu

Abstract
We analyze the number of stages, tiles, and bins needed to construct n × n squares and scaled
shapes in the staged tile assembly model. In particular, we prove that there exists a staged system
with b bins and t tile types assembling an n×n square using O(logn−tb−t log t

b2 + log log b
log t) stages and

Ω(logn−tb−t log t
b2) are necessary for almost all n. For a shape S, we proveO(K(S)−tb−t log t

b2 + log log b
log t)

stages suffice and Ω(K(S)−tb−t log t
b2) are necessary for the assembly of a scaled version of S, where

K(S) denotes the Kolmogorov complexity of S. Similarly tight bounds are also obtained when
more powerful flexible glue functions are permitted. These are the first staged results that hold
for all choices of b and t and generalize prior results. The upper bound constructions use a new
technique for efficiently converting each both sources of system complexity, namely the tile types
and mixing graph, into a “bit string” assembly.

1998 ACM Subject Classification F.1.1. Models of Computation

Keywords and phrases Tile self-assembly, 2HAM, aTAM, DNA computing, biocomputing

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.26

1 Introduction

The staged self-assembly model is a generalization of the two-handed [1, 4, 7, 8] or hierarch-
ical [5, 12] tile self-assembly models. In tile self-assembly, system monomers are unit squares
with edge labels that collide randomly and attach permanently if abutting edge labels match
sufficiently. This simple model is an abstraction of a DNA-based molecular implementation at

∗ Research supported in part by National Science Foundation Grants CCF-1117672, CCF-1555626, and
CCF-1422152.

© Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim Wylie;
licensed under Creative Commons License CC-BY

24rd Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Optimal Staged Self-Assembly of General Shapes

the nanoscale [13, 21] and is computationally universal [21]. The staged variant is motivated
by experimental settings, where parallelism and mixing can be achieved (e.g. test tubes).
Liquid-handling robots have been used to perform complex mixing instructions in the lab [15],
similar to the mixing algorithms of staged self-assembly systems.

The staged model [8] extends the two-handed model by carrying out separate assembly
processes in multiple bins. Assembly in each bin begins with input assemblies previously
assembled in other bins. These bins are stratified into stages, and a mix graph specifies which
bins in the previous stage supply each bin with input assemblies. The output of a staged
self-assembly system is the set of assemblies produced in the bins of the final stage.

A common goal in the design of self-assembling systems is the construction of a desired
shape. Here we consider the design of efficient systems with minimal complexity for a given
shape. Three metrics exist for staged systems: the number of distinct tile types used in the
system (tile complexity), the maximum number of bins used in any stage (bin complexity),
and the number of stages (stage complexity). Efficient construction for various classes of
shapes [8, 10] and patterns [9, 22] have been considered, and further extensions and variants
of the staged self-assembly model have also been studied [1, 3, 11, 16, 17, 18].

Our results. Here we study the two classic benchmarks for the efficiency a tile self-assembly
model: the assembly of n×n squares and arbitrary shapes (with scaling permitted). Previous
works [19, 20, 2] achieved matching upper and lower (univariate) bounds on the minimum
complexity of systems that assemble these shape classes in the very first tile assembly
model [21]. Here we give nearly matching upper and lower (trivariate) bounds for assembling
these shapes in the staged model; our results are summarized in Table 1.

For a given number of tile types t and bins b, we prove that any n×n square is constructed
by a system with O(logn−t log t−tb

b2 + log log b
log t) stages and a scaled version1 of any shape S

is assembled by a system with O(K(S)−t log t−tb
b2 + log log b

log t) stages, where K(S) denotes the
Kolmogorov complexity of S with respect to some fixed universal Turing machine. We pair
these results with nearly matching lower bounds, proving that for almost all natural numbers
n2, Ω(logn−t log t−tb

b2) stages are needed to assemble an n × n square, and for all shapes S,
Ω(K(S)−t log t−tb

b2) stages are needed to assemble a scaled version of a given shape S.
We further explore the stage complexity of these shapes within the flexible glue model of

tile attachment [6] (where non-matching glue labels can have strength), and prove that n×n
squares and scaled shapes can be assembled using O(logn−t2−tb

b2 + log log b
log t) and O(K(S)−t2−tb

b2 +
log log b

log t) stages, respectively. We pair this with nearly matching lower bound stage complexities
of Ω(logn−t2−tb

b2) and Ω(K(S)−t2−tb
b2).

Our upper bounds both use a new technique to efficiently assemble bit string pads:
constant-width assemblies with an exposed sequence of glues encoding a given bit string.
This technique converts all three forms of system complexity (tile, bin, and stage) into bits
of the string with only a constant-factor loss of information. In other words, the number of
bits in the bit string pad rises linearly with the number of bits needed to specify the tile
types and mix graph of the construction.

1 The scale factor is proportional to the product of the time and space used by the fixed universal Turing
machine to encode S using K(S) bits.

2 The fraction of values for which the statement holds reaches 1 in the limit as n→∞.

C. Chalk et al. 26:3

Table 1 The main results obtained in this work: upper and lower bounds on the number of stages
of a staged self-assembly system with b bins and t tile types uniquely assembling n× n squares and
scaled shapes. K(S) denotes the Kolmogorov complexity of a shape.

Standard Glue Stage Complexity Results

Shape Upper Bound Theorem Lower Bound Theorem

n× n O(log n−t log t−tb
b2 + log log b

log t
) 11 Ω(log n−t log t−tb

b2) 12

Scaled shapes O(K(S)−t log t−tb

b2 + log log b
log t

) 13 Ω(K(S)−t log t−tb

b2) 14

Flexible Glue Stage Complexity Results

n× n O(log n−t2−tb
b2 + log log b

log t
) 20 Ω(log n−t2−tb

b2) 21

Scaled shapes O(K(S)−t2−tb

b2 + log log b
log t

) 22 Ω(K(S)−t2−tb

b2) 23

Comparison with prior work. In providing a class of nearly optimal staged systems for
any choice of bin and tile count, our results also generalize and improve on prior results.
For instance, Theorem 11 implies construction of n× n squares using O(1) bins, O(logn

log logn)
tile types, and O(1) stages, matching a result of [2] (up to constant factors). For flexible
glues, this is improved to O(

√
logn) tile types, a result of [6]. The same theorem also yields

constructions using O(1) bins, O(1) tile types, and O(logn) stages (matching a result of [8])
or O(

√
logn) bins, O(1) tile types, and O(log log logn) stages, substantially improving over

the O(log logn) stages used in [8]. For constructing scaled shapes, Theorem 13 implies
systems using O(1) bins, O(K(S)

logK(S)) tile types, and O(1) stages, a result of [20].

2 The Staged Assembly Model

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set
Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength, denoted str(g1, g2).
Every set Σ contains a special null glue whose strength with every other glue is 0. If the
glue strengths do not obey str(g1, g2) = 0 for all g1 6= g2, then the glues are flexible. Unless
otherwise stated, we assume that glues are not flexible.

Configurations, assemblies, and shapes. A configuration is a partial function A : Z2 → T

for some set of tiles T , i.e., an arrangement of tiles on a square grid. For a configuration
A and vector ~u = 〈ux, uy〉 ∈ Z2, A + ~u denotes the configuration f ◦ A, where f(x, y) =
(x+ ux, y + uy). For two configurations A and B, B is a translation of A, written B ' A,
provided that B = A+ ~u for some vector ~u. For a configuration A, the assembly of A is the
set Ã = {B : B ' A}. The shape of an assembly Ã is {dom(A) : A ∈ Ã} where dom() is the
domain of a configuration. A shape S′ is a scaled version of shape S provided that for some
k ∈ N and D ∈ S,

⋃
(x,y)∈D

⋃
(i,j)∈{0,1,...,k−1}2(kx+ i, ky + j) ∈ S′.

Bond graphs and stability. For a configuration A, define the bond graph GA to be the
weighted grid graph in which each element of dom(A) is a vertex, and the weight of the edge
between a pair of tiles is equal to the strength of the coincident glue pair. A configuration
is τ -stable for τ ∈ N if every edge cut of GA has strength at least τ , and is τ -unstable
otherwise. Similarly, an assembly is τ -stable provided the configurations it contains are
τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there exist
A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪B = C and C̃ is τ -stable.

ESA 2016

26:4 Optimal Staged Self-Assembly of General Shapes

Two-handed assembly and bins. We define the assembly process via bins. A bin is an
ordered tuple (S, τ) where S is a set of initial assemblies and τ ∈ N is the temperature. In
this work, τ is always equal to 2. For a bin (S, τ), the set of produced assemblies P ′(S,τ) is
defined recursively as follows:
1. S ⊆ P ′(S,τ).
2. If A,B ∈ P ′(S,τ) are τ -combinable into C, then C ⊆ P ′(S,τ).
A produced assembly is terminal provided it is not τ -combinable with any other producible
assembly, and the set of all terminal assemblies of a bin (S, τ) is denoted P(S,τ). That is,
P ′(S,τ) represents the set of all possible supertiles that can assemble from the initial set S,
whereas P(S,τ) represents only the set of supertiles that cannot grow any further.

If all assemblies in P ′(S,τ) have finite size, then the assemblies in P(S,τ) are uniquely
produced by bin (S, τ). Unique production implies that every producible assembly can be
repeatedly combined with others to form an assembly in P(S,τ).

Staged assembly systems. An r-stage b-bin mix graph M is an acyclic r-partite digraph
consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the form (mi,j ,mi+1,j′)
for some i, j, j′. A staged assembly system is a 3-tuple 〈Mr,b, {T1, T2, . . . , Tb}, τ〉 where Mr,b

is an r-stage b-bin mix graph, Ti is a set of tile types, and τ ∈ N is the temperature. Given
a staged assembly system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, a corresponding bin (Ri,j , τ) is
defined as follows:
1. R1,j = Tj (this is a bin in the first stage);
2. For i ≥ 2, Ri,j =

(⋃
k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τi−1,k)

)
.

Thus, bins in stage 1 are tile sets Tj , and each bin in any subsequent stage receives an
initial set of assemblies consisting of the terminally produced assemblies from a subset of
the bins in the previous stage as dictated by the edges of the mix graph.3 The output of a
staged system is the union of the set of terminal assemblies of the bins in the final stage.4
The output of a staged system is uniquely produced provided each bin in the staged system
uniquely produces its terminal assemblies.

3 Key Lemmas

Our results rely on two key lemmas. The first is an upper bound on the information content
of a staged system that implies the lower bounds on system complexity. The second is a
formal statement of the previously mentioned bit string pad construction.

I Lemma 1. A staged system of fixed temperature τ with b bins, s stages, and t tile types can
be specified using O(t log t+ sb2 + tb) bits. Such a system with flexible glues can be specified
using O(t2 + sb2 + tb) bits.

3 The original staged model [8] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage (since O(1) extra bins could hold the individual tile types to mix at any
stage). Because systems here may have super-constant tile complexity, we restrict tiles to only be added
at the initial stage.

4 This is a slight modification of the original staged model [8] in that there is no requirement of a final
stage with a single output bin. It may be easier in general to solve problems in this variant of the model,
so we consider it for lower bound purposes. However, all of our results apply to both variants of the
model.

C. Chalk et al. 26:5

...

(a) (b)

Figure 1 (a) The decomposition of a bit string pad’s bits into those encoded by the three steps
of a staged system with t tile types and b bins. (b) An example bit string r = 10011101001 encoded
as a width-4 gap-2 11-bit string pad where the top glues correspond to the bits in r.

Proof. A staged system can be specified in four parts: the tile types, the glue function, the
mix graph, and the assignment of tile types to stage-1 bins. We separately bound the number
of bits required to specify each.

A set of t tile types has up to 4t glue types, so specifying each tile requires O(log t) bits,
and the entire tile set takes O(t log t) bits. If the system does not have flexible glues, then
the glue function can be specified in O(4t) = O(t) bits, using O(log τ) = O(1) bits per glue
type to specify the glue’s strength. If the system has flexible glues, then the glue function can
be specified using O(1) bits per pairwise glue interaction and O((4t)2) = O(t2) bits total.

The mix graph consists of bs nodes. Each pair of nodes in adjacent stages optionally share
a directed edge pointing upwards. Thus specifying these edges takes O(b2(s− 1)) = O(b2s)
bits. The assignment of tile types to stage-1 bins requires one bit per each choice of tile type
and bin, or O(tb) bits total.

Thus a staged system without flexible glues can be specified in O(t log t+ t+ b2s+ tb)
bits, and otherwise in O(t log t+ t2 + b2s+ tb) bits. J

It immediately follows from Lemma 1 that for most bit strings of length x, any staged
system with b bins and t tiles that encodes the bit string must have Ω(x−tb−t log t

b2) stages
with standard glues and Ω(x−tb−t

2

b2) stages with flexible glues.
The two main positive results of this work, efficient assembly of squares and general scaled

shapes, both rely mainly on efficient assembly of bit string pads: assemblies that expose a
sequence of north glues that encode a bit string. An example is shown in Figure 1(b). Squares
and general scaled shapes are assembled by combining a universal set of “computation” tiles
with efficiently assembled “input” bit string pads.

I Definition 2 (bit string pad). A width-k gap-f r-bit string pad is a k × (f(r − 1) + 1)
rectangular assembly with r glues from a set of two glue types {0, 1} exposed on the north
face of the rectangle at intervals of length f , starting from the leftmost north edge. Unless
otherwise specified, a bit string pad is gap-0. All remaining exposed glues on the north tile
edges have some common label f . The remaining exposed south, east, and west tile edges
have glues gS , gE , and gW . A bit string pad represents a given string of r bits if the exposed
“0” and “1” glues from left to right are equal to the given bit string.

Bit string pads are constructed by decomposing the pad into three subpads and construct-
ing each in a separate step using a different source of system complexity (see Figure 1(a)):

Step 1: Θ(tb) bits from assigning tile types to stage-1 bins (Section 4.2).
Step 2: Θ(t log t) bits from the tile types themselves as in [2, 6, 14, 20] (Section 4.3).
Step 3: Θ(x− t log t− tb) bits from the mix graph using a variant of “crazy mixing” [8]
(Section 4.4).

These subpads are then combined into the complete pad. If flexible glues are permitted,
Step 2 is modified as in [6] to achieve O(x−tb−t log t

b2 + log log b
log t) stages.

ESA 2016

26:6 Optimal Staged Self-Assembly of General Shapes

I Lemma 3. There exist constants c, d ∈ N such that, for any t, b ∈ N with t > c, b > d and bit
string S of length x, there exists a staged system with b bins, t tiles, and O(x−tb−t log t

b2 + log log b
log t)

stages that assembles a width-9 gap-Θ(log b) l-bit string pad representing S.

Proof. Let t′ = t−10
4 and b′ = b−10

4 . Using an approach similar to that in Section 4.1,
construct a length 1 × 2 log b′−15

9 + 2 filler assembly using t′ tile types and b′ bins in
O(log log b′

log t′) stages such that the assembly has glue e on its west edge (matching that of the
east side of the bit string pads) and glue w on its east edge. Next, use Lemma 5 with t′
tile types, b′ bins, and O(log log b′

log t′) stages to construct a width-9 gap-2 log b′−15
9 + 2 Θ(tb)-bit

string pad. Then use Lemma 9 with t′ tile types, b′ bins, and O(1) stages to construct a
width-3, gap-2 log b′−15

9 + 2, Θ(t log t)-bit string pad.
So far, Θ(tb) + Θ(t log t) bits have been encoded and so Θ(x− tb− t log t) bits remain.

Invoke Lemma 10 with t′ tile types, b′ bins, and O(x−tb−t log t
b2 + log log b′

log t′) stages to construct
a width-9 gap-2 log b′−15

9 + 2 Θ(x− tb− t log t)-bit string pad. In one final stage, concatenate
two bit string pads using the filler assembly and in one more stage concatenate the third.

By concatenating the length Θ(tb)-bit string pad, the length Θ(t log t)-bit string pad, and
the Θ(x− tb− t log t)-bit string pad, each separated by the 2 log b′−15

9 + 2 filler assembly, an
x-bit string pad with O(log b) spacing is constructed; use 10 additional tile types (in 10 bins)
to “fill in” the portions of the assembly with width less than 9.

The total number of tile types and bins used are 4t′ + 10 = t and 4b′ + 10 = b,
respectively, with 4t′ and 4b′ used for the three bit string pads and one connector assembly
and the remainder for filling in the pad to width 9. The total number of stages used is
O(log log b′

log t′) +O(1) +O(x−tb−t log t
b2 + log log b′

log t′) = O(log b
t + x−tb−t log t

b2). J

The additive gap between the upper and lower bounds implied by these lemmas comes
from the O(log log b

log t) additional stages used to construct some of the machinery needed to
carry out the three steps of Lemma 3.

4 Bit String Pad Construction

As mentioned, bit string pads are assembled by combining three subpads constructed via
separate and independent methods that utilize distinct sources of information complexity in
a staged self-assembly system. Each subpad encodes a number of bits roughly proportional
to the number needed to describe the corresponding portion of the staged system, i.e., an
asympotitically optimal number of bits are encoded.

4.1 Wings
The additive gap in our upper and lower bounds come from a helpful subconstruction used
in Steps 1 and 3 described here. This subconstruction assembles all 1-gapped width-2 bit
string pads of a given length in separate bins:

I Lemma 4. There exist constants c, d ∈ N such that, for any t, b ∈ N with t > c and b > d,
there is a staged self-assembly system with b bins, t tile types, and O(log log b

log t) stages that
assembles all gap-1, width-2, log(b)-bit string pads, each placed in a distinct bin.

Due to space constraints, the proof of this and some later results are omitted. We give
proof sketches instead. Let γ = b t−6

2 c and η = γ + 1. If γ ≥ 2 log(b), directly build all the
bit string pads in O(1) stages. Otherwise, repeatedly apply a constant-stage “round” that

C. Chalk et al. 26:7

1r
0r 1rf f1 0

1l
1l0l

f1
f1

f1f0

f f1 0 f1
f1

f1f00r

0l

1r

1l

1r

1l

(a)

0

1

(b)

Figure 2 (a) The attachment of extra subassemblies onto bit string pads to create left and right
wings. Each of the two size 3 subassemblies use 3 tiles to deterministically assemble the respective
L shape in their own bins. (b) The attachment of two bit strips using matching wings. Note that
the geometry attached to the sides of each wing prevent misaligned, non-matching wings to attach.

starts with all binary gadgets of a given length and yields all binary gadgets of a factor of η
longer, starting with just two bit string pads encoding the two bit strings of length 1.

Use O(1) additional tile types, bins, and stages to augment the the bit string pads
assembled by Lemma 4 into left and right wings (seen in the left and right portions of
Figure 2(a)) that attach when the underlying bit strings are identical. These wings are used
in Steps 1 and 3 to achieve ordered assembly of bit string subpads into larger bit string pads.

4.2 Step 1: encoding via initial tile-to-bin assignment
Recall that in a staged system, each of the system’s b stage-1 bins is assigned a subset of t
total tile types. Here we design an assignment that assembles a Θ(tb)-bit string subpad of the
final bit string pad using O(log log b/ log t) stages - enough to utilize the wings of Section 4.1.
The assignment yields b bins that contain assemblies encoding distinct equal-length substrings
of the Θ(tb) bits. These assemblies are then combined using wings.

I Lemma 5. There exist c, d ∈ N such that, for all t, b ∈ N with t > c and b > d and
bit string S of length Θ(tb), there is a staged self-assembly system with b bins, t tiles, and
O(log log b

log t) stages that assembles a gap-(2 log
⌊
b−15

9
⌋

+ 2) Θ(tb)-bit string pad representing S.

See Figure 3 for a sketch of the idea. Let γ and β be constant fractions of t and b,
respectively. Use γ tiles and β bins to construct all left and right log(β)-bit wings according
to Section 4.1. Also construct γ

2 constant-sized bit strip subassemblies that expose a 0 or 1
north glue and have wings attached to their right and left sides such that any γ

2 -bit string
pad can be assembled from γ

2 bit strips attached sequentially.
In each of β bins, assemble γ

2 bit strips into a distinct γ
2 -bit string subpad of the desired

pad. Combine these β subpads with wings that encode their locations in the pad, and then
combine these “wing-labeled” subpads to assemble the complete Θ(tb)-bit string pad. The
number of stages used is O(log log b

log t) (for the wings, see Lemma 4) plus O(1) (the subpads of
the desired pad).

4.3 Step 2: encoding via tile types
Here the goal is to design a collection of t tile types that encodes Θ(t log t) bits. The
solution is to utilize the base conversion approach of [2, 6, 14, 20]. In this approach, tile

ESA 2016

26:8 Optimal Staged Self-Assembly of General Shapes

10 0 0 ... 0 1 1 1 ... 11 10 2 2 3 1 10 2 2 3

...001...0 110...0

...

100...0 111...1

0 10 01 2 12 3 ... 10 ... 10 ...

110...0 100...0 111...1

02 31 11 1 2

2 1

2 1 2 1

2 1

22

2 2

0

001...0

Figure 3 The creation of γβ-bit string pads. The squares labeled 0 and 1 represent bit strips.
The dotted lines indicate tile to bin assignments before the first stage of the system; wr,i and wl,i

represent the ith right and left wings respectively.

U0=010 U1=100 U2=000

} } }

x=2
spacing

x=2
spacing

x=2
spacing

s s s s s010 100 s 000

0 01 1 10 0 00

0 1 0 1 0 0 0 0 0

Figure 4 Left: a width-2 gap-log z−1 decompression pad representing a bit string S = 010100000
in base z = 8. Right: O(z) decompression tiles interact with the north glues of the decompression
pad to combine into a width-3 bit string pad representing S in base 2.

types optimally encode integer values in a high base and then “decompressed” into a binary
representation. In total, t tile types are used to encode (in a high base) and decompress (into
a binary) Θ(t log t) bits.

I Definition 6 (decompression pad). For k, r, x ∈ N and u = 2x, a width-k, r-digit, base-u
decompression pad is a k × rx rectangular assembly with r glues from a set of u− 1 glue
types {0, 1, ..., u− 1} exposed on the north face of the rectangle at intervals of length x− 1
and starting from the leftmost northern edge. All remaining glues on the north surface have
a common type n. The remaining exposed south, east, and west tile edges have glues gS , gE ,
and gW . A decompression pad represents a given string of digits in base u if the exposed
glues from left to right, disregarding glues of type n, are equal to the given digit string in
base u.

Consider the following example, also seen in Figure 4). Let S = 010100000 (S = 240 in
base 8) be a bit string, with the goal of constructing a width-3 9-bit string pad representing S.
First, build a decompression pad representing S in base 8 by combining 3 different 3× log2(8)
blocks. Then convert the decompression pad into a bit string pad representing S using O(z)
tile types.

I Lemma 7. Given integers x ≥ 3, d ≥ 1 and z = 2x, there exists a 1-stage, 1-bin staged
self-assembly system that assembles a d-digit decompression pad of width-2 and base-z, using
at most 5d+ log z − 2 tile types.

C. Chalk et al. 26:9

...

...

...

...

...

...
Figure 5 The creation of β2-bit string pads using β wings and O(1) stages. The rectangles 0

and 1 represent bit strips that may attach wings on either side; wr,i and wl,i represent the ith right
and left wings respectively.

I Lemma 8. Given integers d ≥ 3, x ≥ 3, z = 2x, and bit string S of length d log(z), there
exists a staged self-assembly system with 1 bin, 5d+ 2z + log z − 4 tile types, and 1 stage that
assembles a width-3 d log(z)-bit string pad representing S.

I Lemma 9. There exists some constant c ∈ N such that, for any t ≥ c and bit string S
of length Θ(t log t), there exists a staged self-assembly system with 1 bin, t tile types, and 1
stage assembling a width-3 Θ(t log t)-bit string pad representing S.

Omitted additional details are needed to convert these gap-0 pads to higher-gap pads
consistent with those assembled in Section 4.4.

4.4 Step 3: encoding via mix graph

This step uses a mix graph to encode encodes a achieves the following efficient assembly:

I Lemma 10. There exist c, d ∈ N such that, for any t > c and b > d and bit string S of
length x, there is a staged self-assembly system with t bins, b tile types, and O(xb2 + log log b

log t)
stages that assembles a width-9 gap-(2 log b−15

9 + 2) x-bit string pad representing S.

An overview of the construction is shown in Figure 5. Let γ and β represent some constant
fractions of t and b respectively. Utilize γ tiles and β bins to construct all length-log2(β) left
and right wings according to Section 4.1 and denote the ith left and wings by wl,i and wr,i,
respectively. Also construct two constant-sized bit strip subassemblies that expose a 0 or 1
north glue and allow wings to be attached to their right and left sides.

In the first stage and for all 1 ≤ i ≤ β, mix wr,i and wl,i−1 with bit strip 0 into a bin
denoted b0

i . Similarly, mix wr,i and wl,i−1 with bit strip 1 into a bin denoted b1
i for a total

of 2β bins.

ESA 2016

26:10 Optimal Staged Self-Assembly of General Shapes

In the second stage, selectively mix specific 0 or 1 winged bit strips to assemble specific
β-bit string pads across β bins. Specifically, mix either b0

i or b1
i for each i across β bins for a

total of β different β-bit string pads.
In the third stage, attach wings to each of the β-bit string pads. For each of the β bins,

mix wr,i and wl,i−1 into the bins such that wr,1 is mixed with the first β bits of the desired
β2-bit string pad, wr,2 and wl,1 are mixed with the second β bits of the desired β2-bit string
pad, etc.

In the final stage, mix all β bins, each containing a β-bit string pads, into a common bin
to create β2-bit string pads. The wings ensure that the bit string pads attach in the desired
order. Repeat this process x

β2 times, each time concatenating the β2-bit string pad onto each
preceding bit string pad. In the end, a single x-bit string pad results. In total, O(log log b

log t)
stages are used to construct the wings and O(xb2) stages are used to assemble x

β2 unique β2-bit
string pads. Thus this step has total stage complexity of O(xβ2 + log log β

log t) = O(xb2 + log log b
log t).

5 Assembly of n × n Squares

Efficient assembly of n×n squares is obtained by combining bit string pads with a technique
of Rothemund and Winfree [19]. Their technique utilizes a binary counting mechanism which
constructs a length Θ(n) rectangle with Θ(logn) width. The mechanism uses O(logn) tile
types to seed the counter at a certain value, and then O(1) tile types attach in a “zig-zag”
pattern, where “zigs” copy the value from the row below and “zags” increment the the value
by 1. Once the binary counter increments to its maximum value (a string of 1), the assembly
stops growing. Two rectangles assembled this way can be combined to form a bounding box
that is then filled to form a square. We utilize the bit string pad construction of Section 4 to
efficiently assemble the seed for the binary counting mechanism, requiring only an additional
O(1) tile types and 1 stage to perform the binary counting and square filling.

I Theorem 11. There exist constants b0, t0 ∈ N such that for any b, t, n ∈ N with b ≥ b0,
t ≥ t0, there exists a staged self-assembly system with b bins, t tile types, and O(logn−t log t−tb

b2 +
log log b

log t) stages that uniquely produces an n× n square.

Proof. Let c be the (constant) number of tile types used to implement the fixed-width
“zig-zag” binary counting mechanism shown in [19]. Let t′ = t−c, b′ = b−2, and n′ = dlogne.
Let m = 2n′−1 − (n− 22)/2− n′(2 log b′ + 2). Using Lemma 3, construct two Θ(log b)-gap
dlogme-bit string pads encodingm, where each construction each uses b′ bins, t′ tile types and
O(dlogme−tb−t log t

b2 + log log b
log t) stages. Figure 6 shows the construction, including modifications

to the technique shown in [19].
On both pads, a small modification is made: the glues of the first and last bits are

made unique and the first bit’s glue strength is set to 2. This modification is necessary to
implement a fixed-width binary counting mechanism as in [19] and uses O(1) additional tile
types. Also, on the north-facing (east-facing) bit string pad, a unique strength-2 glue C2 is
placed on the south (west) face of the pad’s bottommost rightmost (topmost leftmost) tile.
This special glue is used to combine the two pads with a unique tile type.

Note that the bit string pads assembled in Section 4 have substantial spacing between
the exposed binary glues, but the counter of [19] has spacing 0. This is resolved by adding
generic tiles which transfer information horizontally. These generic tiles use cooperative
binding between a south-facing f glue (which matches the glue that spaces the bits on the
bit string pad) and west/east glues representing the information to be passed horizontally
across spacing of f glues. The tiles also expose a north-facing f glue to be used when the

C. Chalk et al. 26:11

0* 0 1 0 1*ff ff ff ff

1*
0
0*

cc
f

f

cc
f

f

c1 c
0

1

nn
f

f

nn
f

f

nn
1

1

n 1n
f

f

nn
f

f

nn
0

0

n 0n
f

f

nn
f

f

n
0*

n
A2

0

0*

x
A2
0 x

f

f

x x
f

f

x x
0

0

x 0 x
f

f

x x
f

f

x x
f

f

x x
f

f

xx
1

1

x 1 x
1

1

x 1 x
f

f

x x
f

f

x
0*

B2

x 0

10100

1*

1
B2

nn
f

f

nn
f

f

nn
1

1

n 1n
1

1

n 1 n
f

f

nn
f

f

nn
f

f

nn
f

f

nn
0

0

n 0n
f

f

nn
f

f

n
0*

n
A2

0

1*

x
C2
1 x

f

f

x x
f

f

x x
1

1

x 1 x
f

f

x x
f

f

x x
1

1

x 1 x
f

f

x x
f

f

x x
1

1

x 1 x
f

f

x x
f

f

x
1*

D2

x 1
D2

c 0
0*

c
f

f

cc
f

f

cc
f

f

cc
f

f

cc
f

f

cc
f

f

cc
f

f

cc
f

f

c 0 c
1

0

c0 c
1

0

c0 c
1

0

cc
1*
0

p

p

p

p

p

p

p

p

C2
C2s
t

t
s

C2

C2
q

p
q
p

q

s

tttttttttttt

t
s

q
...

...

Figure 6 Constructing a counter seed. The bit string pads are shown in gray. Glues with a “2”
in the string have strength-2, all other glues have strength 1.

information needs to be transferred across the spacing in the row above. Without loss of
generality, rotated versions of these tiles are used in the east-growing counter.

The stage complexity of the system is O(dlogne−tb−t log t
b2 + log log b

log t). Note that the length
of the bit string pads assembled according to Lemma 3 is dependent on b, the number of bins
used to construct the bit string pad. If b is so large that the spacing between bits causes the
width of the bit string pad to exceed n (roughly log b > n), we instead directly construct the
appropriate bit string pad with spacing 0 using O(log log b

log t) stages. J

The following lower bound is derived from Lemma 1 by observing that for almost all
n ∈ N, blognc bits are needed to represent n.

I Theorem 12. For any b, t ∈ N and almost all n ∈ N, any staged self-assembly system
which uses at most b bins and t tile types that uniquely assembles an n× n square must use
Ω(logn−t log t−tb

b2) stages.

6 Assembly of Scaled Shapes

Efficient assembly of arbitrary shapes (up to scaling) is achieved by combining bit string
pads with the shape-building scheme of Soloveichik and Winfree [20]. Their construction
uses two subsets of tile types: a varying set to encode the binary description of the target
shape and a fixed set to decode the binary description and build the shape. We replace the
first set with a bit string pad encoding the same information.

ESA 2016

26:12 Optimal Staged Self-Assembly of General Shapes

1 0 1f f f f

1 0 1f f f f

1

0

1

f

f

f

f

1

0

1

f

f

f

f

Figure 7 Construction of the modified seed block. Bit string pads are colored in gray. We
concatenate four K(S)-bit string pads representing S.

I Theorem 13. There exist constants b0, t0 ∈ N such that for any shape S of Kolmogorov
complexity K(S) and b, t ∈ N such that b ≥ b0 and t ≥ t0, there exists a staged self-assembly
system with b bins, t tile types, and O(K(S)−t log t−tb

b2 + log log b
log t) stages that uniquely produces

S at some scale factor.

Proof. Observe that the tile set described in [20] uniquely constructs the same terminal
assembly, namely a scaled version of S where each cell is replaced by a square block of cells,
when run at temperature 2 in the two-handed mixing model. It does so via a Kolmogorov-
complexity-optimal Turing machine simulation of a machine that computes a spanning tree
of the shape given a seed assembly or seed block encoding the shape. The simulation is then
run as it “fills in” the shape, beginning with the seed block. Here a similar seed block is
constructed and consists of four bit string pads, a square “core” and additional filler tiles.

Let t′ = t−c
5 where c is the (constant) number of tile types required by [20] to carry out

the simulation of a (fixed) universal Turing machine. Let b′ = b−1
5 .

Use the method of Lemma 3 to construct the modified seed block by assembling four
different K(S)-bit string pads representing a program that outputs S, each using b′ bins, t′

tile types and O(K(S)−t′ log t′−t′b′
b′2 + log log b′

log t′) stages. These four pads (each with dimensions
(2K(S) logK(S) + 2) × O(1)) are attached to the four sides of a (2K(S) logK(S) + 2) ×
(2K(S) logK(S) + 2) square constructed as in Theorem 11 using t′ tile and b′ bins in
O(log(2K(S) logK(S)+2)−t′ log t′−t′b′

b′2 + log log b′
log t′) stages. An abstract figure of the completed seed

block can be seen in Figure 7. The Turing simulation occurs in one stage by mixing the four
concatenated bit string pads into one bin which contains the fixed set of Turing-machine-
simulation tiles of [20]. The bit string pads contain spacing between the exposed binary glues,
while the simulation tile types of [20] expect adjacent glues. This is resolved by modifying the
Turing-machine-simulation tile set to include generic tiles for transferring information across
spacing, similar to the tiles of the same purpose discussed in the proof of Theorem 11. We
need at most 1 such tile for each tile in the (constant-sized) Turing-machine-simulation tile set,
for a constant increase in tile complexity. The stage complexity is 4×O(K(S)−t′ log t′−t′b′

b′2
+

log log b′
log t′) +O(log(2K(S) logK(S)+2)−t′ log t′−t′b′

b′2 + log log b′
log t′) = O(K(S)−t log t−tb

b2 + log log b
log t). J

The following theorem follows from the information-theoretic bound of Lemma 1.

C. Chalk et al. 26:13

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f
0

0'
0

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f
1

1'
1

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f
2

2'
2 ... T

2
x

1 f
T
2

x
1 f
T
2

x
1 f

(d-1)'

d-1

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f
0
0

s
0

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f
1
1

s
1

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f
2
2

s
2 ... T

2
x

1 f
T
2

x
1 f
T
2

x
1 f

s

d-1

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f 0
s'

0

start

Tile types to convert modified decompression pad
to flexible decompression pad:

s' s 0' s s 1' s s
T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

T
2

x
1 f
T
2

x
1 f
T
2

x
1 f

2'

T
21 f

T
21 f

T
21 f 00

start

T
21 f

T
21 f

T
21 f

0
00

T
21 f

T
21 f

T
21 f

0
0

T
21 f

T
21 f

T
21 f

1
1

T
21 f

T
21 f

T
21 f

2
2

T
21 f

T
21 f

T
21 f

2
22

T
21 f

T
21 f

T
21 f

2
22

T
21 f

T
21 f

T
21 f

1
11

T
21 f

T
21 f

T
21 f

1
1

xxxs' xxxs xxx0' xxx1' xxx2'xxxsxxxsxxxsxxxs
1

2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f 2
x

1 f
xxxs' xxxs xxx0' xxx1' xxx2'xxxsxxxsxxxsxxxs

modified decompression pad

flexible decompression pad

Figure 8 The templates to convert a modified decompression pad to a flexible decompression pad
using 2d+ 1 tile types, where integer d ≥ 3, on the left. Using these additional tile types, a modified
decompression pad is converted into a flexible decompression pad. A modified decompression pad
has a westmost northmost glue of s′ and every non-s glue on the north surface is a special prime
version distinct from other similar glue types. On the left, a width-2 modified decompression pad
representing the string 012 in base-8 is converted to a width-3 length-9 flexible decompression pad.

I Theorem 14. For any b, t ∈ N and shape S with Kolmogorov complexity K(S), any staged
self-assembly system which uses at most b bins and t tile types that uniquely assembles S
must use Ω(K(S)−t log t−tb

b2) stages.

7 Flexible Glues

Here, an alternate model permitting non-diagonal glue functions, also called flexible glues is
considered. By modifying Step 2 of the bit string pad construction of Section 4 to encode
Θ(t2) bits rather than Θ(t log(t)) bits in t tile types, similarly tight results are obtained for
the same problems in this more powerful model. The technique uses a modified decompression
bad, similar to the technique introduced in [6].

I Definition 15 (flexible decompression pad). A width-k length-r2 flexible decompression
pad is a k× r2 rectangular assembly with r2 north glue types from the set {start, 0, 1, . . . , r}
exposed on the north face of the rectangle. The westmost glue is “start”, the following r − 1
glues have type “0”, followed by r glues of type “1”, r glues of type “2”, and so on. The
exposed south, east, and west tile edges have glues gS , gE , and gW , respectively.

In order to build the flexible decompression pad, a modified decompression pad represent-
ing a number C = c0c1 . . . cd−1 in base 2d is needed.

I Lemma 16. Given an integer d ≥ 3, there exists a staged assembly system with 1 bin,
8d− 1 tile types, and 1 stage that assembles a width-3 length-d2 flexible decompression pad.

Proof. Start with the construction of Lemma 7 that yields a a width-2 length-d2 decom-
pression pad encoding C. Modify the tile types of this construction such that the leftmost
northmost glue is s′ and every non-s glue on the north surface is a special prime version, to
differentiate between other similar glue types. Then add 2d+ 1 tiles that modify the north
surface decompression pad to yield width-3 flexible decompression pad, as seen in Figure 8.

ESA 2016

26:14 Optimal Staged Self-Assembly of General Shapes

Tile types to decompress
flexible decompression pad:

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
b

0f
a 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
c

1f
b 1

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
a

df
... d...

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

1
b

0t
a 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

1
c

1t
b 1

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

1
a

dt
... d...

T
21 f

T
21 f

T
21 f

start T
21 f

T
21 f

T
21 f

0T
21 f

T
21 f

T
21 f

0 T
21 f

T
21 f

T
21 f

1 T
21 f

T
21 f

T
21 f

1T
21 f

T
21 f

T
21 f

1 T
21 f

T
21 f

T
21 f

2 T
21 f

T
21 f

T
21 f

2T
21 f

T
21 f

T
21 f

2

flexible decompression pad

T
21 f

T
21 f

T
21 f

start T
21 f

T
21 f

T
21 f

0T
21 f

T
21 f

T
21 f

0 T
21 f

T
21 f

T
21 f

1 T
21 f

T
21 f

T
21 f

1T
21 f

T
21 f

T
21 f

1 T
21 f

T
21 f

T
21 f

2 T
21 f

T
21 f

T
21 f

2T
21 f

T
21 f

T
21 f

2

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
1

0f
0 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

1
2

1t
1 1

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
0

2f
2 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

1
1

0t
0 1

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
2

1f
1 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
0

2f
2 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
1

0f
0 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
2

1f
1 0

T
2

x
1 f

T
2

x
1 f

T
2

x
1 f

0
0

2f
2 0

bit string pad

Figure 9 On the left, the templates for the decompression tiles needed to decompress a flexible
decompression pad for any given d ≥ 3. In the top right, an example of a length-9 flexible decompres-
sion pad. In the bottom right, the decompression tiles interact with the flexible decompression pad
and glue function to assemble a bit string pad from a flexible decompression pad, representing the
bit string “010100000”. The flexible glues form a bond of strength 2 between the glue pair (‘start’,
‘0f’), strength 1 between glues pairs (‘0’, ‘0’), (‘1’, ‘1’), (‘2’, ‘2’), (‘0’, ‘1t’), (‘0’, ‘2f’), (‘1’, ‘0t’), (‘1’,
‘1f’), (‘1’, ‘2f’), (‘2’, ‘0f’), (‘2’, ‘1f’), and (‘2’, ‘2f’), and strength 0 between all other glue pairs.

This step requires 5d+ log 2d− 2 tile types to build a modified decompression pad and 2d+ 1
tiles to convert this modified decompression pad that into a flexible decompression pad. Thus
2d+ 1 + 5d+ log 2d − 2 ≤ 8d− 1 tile types are used in total. J

I Lemma 17. Given integers d ≥ 3 and any length d2 bit string R, there exists a 1 stage, 1
bin, staged assembly system with flexible glues that assembles a width-4 gap-0 d2-bit string
pad representing R, using at most 10d− 1 tile types.

Proof. Consider a width-3, length d2 flexible decompression pad. The idea is to use 2d
tile types and flexible glues to build a width-4 gap-0 d2-bit string pad from the flexible
decompression pad (see Figure 9). Consider a sequence of d bitstrings D = D0, D1, . . . , Dd−1
with each Di = s0s1s2 . . . sd−1 such that the in-order concatenation of all bitstrings in D
equals R. Let Di,j denote the jth bit of the ith bit string of D.

The goal is to construct a glue function such that it specifies the tiles that can attached
to the top of the flexible decompression pad to be the concatenation of the bitstrings in D.
Note that the tiles that have a “0” or “1” glue as those with labels that end in “f” or “t”,
respectively. Let str(g1, g2) denote the strength between glues g1 and g2. Set the tile that
attaches to the “start” glue to be one that exposes “0” or a “1” by setting str(start, 0f) = 2
or str(start, 0t) = 2, respectively. For all Di,j , we set str(i, jf) = 0 if and only if Di,j = 0
and str(i, jt) = 1, otherwise. In addition, we set str(a, a) = 1, str(b, b) = 1, and so on.

With this, we build a width-4 gap-0 d2-bit string pad from the flexible decompression
pad. An example of this can be seen in Figure 9. Also, 8d− 1 tile types are used to build
a width-3, length d2 flexible decompression pad. An additional 2d tile types are needed to
decompress, using flexible glues, into a width-4 d2-bit string pad. So the total number of tile
types used is 10d− 1. J

C. Chalk et al. 26:15

I Lemma 18. Given t ∈ N, there exists some constant c ∈ N, such that for all cases where
t ≥ c, there exists a staged self-assembly system with t tiles which assembles any width-4
Θ(t2)-bit string pad using 1 stage, 1 bin, and flexible glues.

Proof. Given t tile types, consider how many bits can be produced using Lemma 17. Let
d = b t+1

10 c. Invoke Lemma 17 to build a width-4 d2-bit string pad with flexible glues using
10d−1 tiles. The number of bits produced is y = d2 = (b t+1

10 c)
2 = Θ(t2). Then by Lemma 17,

any width-4 (b t+1
10 c)

2-bit string pad can be build in the flexible glue model using at most
t tiles, 1 stage, and 1 bin. The smallest choice of d requires d = b t+1

10 c ≥ 3, implying t ≥ 29.
For all cases where t ≥ c we have a constant, c = 29, where this lemma holds true. J

The improvements to Lemmas 17 and 18 allow for a larger bit string pad to be built in
Step 2 when compared to standard glues, reducing stage complexity to O(log log b

log t + x−tb−t2
b2):

I Lemma 19. Given t, b ∈ N and a bit string r where x = |r|. Then, there exist some
constants c, d ∈ N, such that for all cases where t > c and b > d, there is a staged self-
assembly system using flexible glues with b bins and t tiles which assembles an x-bit string
pad representing r with width 9 and gap Θ(log b) using O(x−tb−t

2

b2 + log log b
log t) stages.

Nearly tight upper and lower bounds for square and general shape construction in the
flexible glue model are obtained by replacing the bit string construction of Lemma 3 with
Lemma 19, and applying the flexible glue lower bound of Lemma 1:

I Theorem 20. For any b, t, n ∈ N and constants cb, ct such that b ≥ cb and t ≥ ct, there
exists a staged self-assembly system using flexible glues with b bins and t tile types that
uniquely produces an n× n square using O(logn−t2−tb

b2 + log log b
log t) stages.

I Theorem 21. For any b, t ∈ N and almost all n ∈ N, any staged self-assembly system with
flexible glues which uses at most b bins and t tile types that uniquely assembles an n × n
square must use Ω(logn−t2−tb

b2) stages.

I Theorem 22. For any shape S and b, t ∈ N and constants cb, ct such that b ≥ cb and
t ≥ ct, there exists a staged self-assembly system using flexible glues with b bins and t tile
types which uniquely produces S at some scale factor using O(K(S)−t2−tb

b2 + log log b
log t) stages.

I Theorem 23. For any b, t ∈ N and shape S with Kolmogorov complexity K(S), any staged
self-assembly system with flexible glues which uses at most b bins and t tile types that uniquely
assembles S must use Ω(K(S)−t2−tb

b2) stages.

8 Conclusion

In this work, we achieved nearly optimal staged assembly of two classic benchmark shape
classes. These constructions generalize the known upper bounds of [2, 6, 8, 20] to arbitrary
choices of tile type and bin counts, as well as to the flexible glue model. The natural problem
left open is the elimination of the additive O(log log b

log t) gap between the upper and lower
bounds induced by the wings subconstruction of Section 4.1. Although this subconstruction
is the cause of an additive gap in an otherwise optimal result, it is a useful approach for
general assembly labeling and coordinated attachment and is likely useful in other staged
constructions. The constant width of our bit string pads can also potentially be exploited for
efficient construction of shapes with geometric bottlenecks, e.g., thin rectangles.

ESA 2016

26:16 Optimal Staged Self-Assembly of General Shapes

References
1 Zachary Abel, Nadia Benbernou, Mirela Damian, Erik Demaine, Martin Demaine, Robin

Flatland, Scott Kominers, and Robert Schweller. Shape replication through self-assembly
and RNAse enzymes. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2010.

2 Leonard Adleman, Qi Cheng, Ashish Goel, and Ming-Deh Huang. Running time and
program size for self-assembled squares. In Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing (STOC), pages 740–748, 2001.

3 Bahar Behsaz, Ján Maňuch, and Ladislav Stacho. Turing universality of step-wise and
stage assembly at temperature 1. In DNA Computing and Molecular Programming (DNA),
volume 7433 of LNCS, pages 1–11. Springer, 2012.

4 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert Schweller, Scott M. Summers, and Andrew Winslow. Two hands are better than
one (up to constant factors): Self-assembly in the 2HAM vs. aTAM. In Proceedings of 30th
International Symposium on Theoretical Aspects of Computer Science (STACS), volume 20
of LIPIcs, pages 172–184. Schloss Dagstuhl, 2013.

5 Ho-Lin Chen and David Doty. Parallelism and time in hierarchical self-assembly. In Pro-
ceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1163–1182, 2012.

6 Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T. Schweller,
and Pablo Moisset de Espanés. Complexities for generalized models of self-assembly. SIAM
Journal on Computing, 34:1493–1515, 2005.

7 E. D. Demaine, M. J. Patitz, T. A. Rogers, R. T. Schweller, and D. Woods. The two-
handed tile assembly model is not intrinsically universal. In Automata, Languages and
Programming (ICALP), volume 7965 of LNCS, pages 400–412. Springer, 2013.

8 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T. Schweller, and Diane L. Souvaine. Staged self-assembly: nanomanufacture of
arbitrary shapes with O(1) glues. Natural Computing, 7(3):347–370, 2008.

9 Erik D. Demaine, Sarah Eisenstat, Mashhood Ishaque, and Andrew Winslow. One-
dimensional staged self-assembly. Natural Computing, 12(2):247–258, 2013.

10 Erik D. Demaine, Sándor P. Fekete, Christian Scheffer, and Arne Schmidt. New geometric
algorithms for fully connected staged self-assembly. In DNA Computing and Molecular
Programming (DNA), volume 9211 of LNCS, pages 104–116. Springer, 2015.

11 Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Self-
assembly of arbitrary shapes using RNAse enzymes: Meeting the Kolmogorov bound with
small scale factor (extended abstract). In Proceedings of the 28th International Symposium
on Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs, pages 201–212.
Schloss Dagstuhl, 2011.

12 David Doty. Producibility in hierarchical self-assembly. In Proceedings of Unconventional
Computation and Natural Computation (UCNC) 2014, pages 142–154, 2014.

13 Constantine Evans. Crystals that Count! Physical Principles and Experimental Investiga-
tions of DNA Tile Self-Assembly. PhD thesis, Caltech, 2014.

14 David Furcy, Samuel Micka, and Scott M. Summers. Optimal program-size complexity for
self-assembly at temperature 1 in 3D. In DNA Computing and Molecular Programming
(DNA), volume 9211 of LNCS, pages 71–86. Springer, 2015.

15 Yonggang Ke, Luvena L. Ong, William M. Shih, and Peng Yin. Three-dimensional struc-
tures self-assembled from dna bricks. Science, 338(6111):1177–1183, 2012.

16 Thomas H. Labean, Sung Ha Park, Sang Jung Ahn, and John H. Reif. Stepwise DNA
self-assembly of fixed-size nanostructures. In Foundations of Nanoscience, Self-assembled
Architectures, and Devices, pages 179–181, 2005.

C. Chalk et al. 26:17

17 Ján Maňuch, Ladislav Stacho, and Christine Stoll. Step-wise tile assembly with a constant
number of tile types. Natural Computing, 11(3):535–550, 2012.

18 Matthew J. Patitz and Scott M. Summers. Identifying shapes using self-assembly. Algorith-
mica, 64:481–510, 2012.

19 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In Proceedings of the 32nd ACM Symposium on Theory of
Computing (STOC), pages 459–468, 2000.

20 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal
on Computing, 36(6):1544–1569, 2007.

21 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Caltech, 1998.
22 Andrew Winslow. Staged self-assembly and polyomino context-free grammars. Natural

Computing, 14(2):293–302, 2015.

ESA 2016

	Introduction
	The Staged Assembly Model
	Key Lemmas
	Bit String Pad Construction
	Wings
	Step 1: encoding via initial tile-to-bin assignment
	Step 2: encoding via tile types
	Step 3: encoding via mix graph

	Assembly of n x n Squares
	Assembly of Scaled Shapes
	Flexible Glues
	Conclusion

