Shortest $(A+B)$-path packing via hafnian

Hiroshi HIRAI and Hiroyuki NAMBA
Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
hirai@mist.i.u-tokyo.ac.jp
hiroyukinannba@gmail.com

November 6, 2018

Abstract

Björklund and Husfeldt developed a randomized polynomial time algorithm to solve the shortest two disjoint paths problem. Their algorithm is based on computation of permanents modulo 4 and the isolation lemma. In this paper, we consider the following generalization of the shortest two disjoint paths problem, and develop a similar algebraic algorithm. The shortest perfect $(A+B)$-path packing problem is: given an undirected graph G and two disjoint node subsets A, B with even cardinalities, find shortest $|A| / 2+|B| / 2$ disjoint paths whose ends are both in A or both in B. Besides its NP-hardness, we prove that this problem can be solved in randomized polynomial time if $|A|+|B|$ is fixed. Our algorithm basically follows the framework of Björklund and Husfeldt but uses a new technique: computation of hafnian modulo 2^{k} combined with Gallai's reduction from T-paths to matchings. We also generalize our technique for solving other path packing problems, and discuss its limitation.

Keywords: shortest disjoint paths problem, hafnian, randomized polynomial time algorithm

1 Introduction

The shortest two disjoint paths problem is: given an undirected graph $G=(V, E)$ and $s_{1}, t_{1}, s_{2}, t_{2} \in V$, find two disjoint paths, one connecting s_{1} and t_{1} and the other connecting s_{2} and t_{2}, such that the sum of their lengths is minimum. Although the length-less version, the two disjoint paths problem, is elegantly solved [12, [13, 14], no polynomial time algorithm was known for this generalization. Recently, Björklund and Husfeldt [2] obtained the first polynomial time algorithm.

Theorem 1.1 ([2]). There exists a randomized polynomial time algorithm to solve the shortest two disjoint paths problem.

Their algorithm is build on striking application of computation of permanents modulo 4 by Valiant [15] and the isolation lemma by Mulmuley-Vazirani-Vazirani 9.

In this paper, we consider a generalization of the shortest two disjoint paths problem and develop a randomized polynomial time algorithm based on a similar algebraic technique. Let us introduce our problem. For $T \subseteq V$, a T-path is a path connecting distinct nodes in T. We are given two disjoint terminal sets A and B with even cardinalities. A perfect $(A+B)$-path packing is a set \mathcal{P} of node-disjoint paths such that each path is an A-path or B-path and $|\mathcal{P}|=|A| / 2+|B| / 2$. The size of a perfect $(A+B)$-path packing is defined as the total sum of the length of each path, where the length of a path is defined as the number of edges in the path. The shortest perfect $(A+B)$-path packing problem asks to find a perfect $(A+B)$-path packing with minimum size. It will turn out that this problem is NP-hard. In the case where $|A|=|B|=2$, the problem is the shortest two disjoint paths problem above. When B is empty, the problem is the disjoint A-path problem by Gallai [4]. Our main result says that the problem is tractable, provided $|A|+|B|$ is fixed.

Theorem 1.2. There exists a randomized algorithm to solve the shortest perfect $(A+B)$ path packing problem in $O\left(f(|V|)^{|A|+|B|}\right)$ time, where f is a polynomial.

Our algorithm basically follows the framework of Björklund-Husfeldt [2] but we use a new technique: computation of hafnian modulo 2^{k}, instead of permanent modulo 4 , combined with a classical reduction technique to matching by Gallai (for T-paths) [4] and Edmonds (for odd path); see [11, Section 29.11e].

Related work Colin de Verdière-Schrijver [3] and Kobayashi-Sommer [7] gave combinatorial polynomial time algorithms for shortest disjoint paths problems in planar graphs with special terminal configurations. Karzanov [6] and Hirai-Pap [5] showed the polynomial time solvability of a shortest version of edge-disjoint T-paths problem. Yamaguchi [16] reduced the shortest disjoint \mathcal{S}-paths problem (nonzero T-paths problem in a group labeled graph, more generally) to weighted matroid matching. KobayashiToyooka [8] developed a randomized polynomial time algorithm for the shortest nonzero (s, t)-path problem in a group labeled graph; their algorithm is also based on the framework of Björklund-Husfeldt.

It is well-known that the hafnian of the adjacency matrix of a graph is equal to the number of perfect matchings. By utilizing the hafnian, Björklund [1] developed a faster algorithm to count the number of perfect matchings.

Organization The rest of this paper is organized as follows. In Section 2, we first show that hafnian modulo 2^{k} for fixed k is computable in polynomial time. This direct generalization of permanent computation modulo 2^{k} seems new and interesting in its own right. Next we present the randomized algorithm in Theorem 1.2. In Section 3, we verify the hardness of the $(A+B)$-path packing problem, and then generalize our technique for solving other path packing problems, and discuss its limitation.

2 Algorithm

In this section, we first provide an algorithm to compute hafnian modulo 2^{k}, and next present a randomized polynomial time algorithm to solve the shortest perfect $(A+B)$ path packing problem for fixed $|A|+|B|$. An undirected pair or edge $\{i, j\}$ is simply denoted by $i j$.

2.1 Computing Hafnian Modulo 2^{k}

The hafnian haf A of a $2 n \times 2 n$ symmetric matrix $A=\left(a_{i j}\right)$ is defined by

$$
\text { haf } A:=\sum_{M \in \mathcal{M}} \prod_{i j \in M} a_{i j},
$$

where \mathcal{M} is the set of all partitions of $\{1,2,3, \ldots, 2 n\}$ into n pairs.
Let $\mathcal{S}(n, N)$ denote the set of all $2 n \times 2 n$ symmetric matrices with zero diagonal each of whose element is a univariate polynomial of degree at most N. Let haf ${ }_{2^{k}} A$ denote the hafnian of A modulo 2^{k}. The main result of this subsection is the following:
Theorem 2.1. There exists a bivariate polynomial f such that for all $A \in \mathcal{S}(n, N)$, haf $_{2^{k}} A$ can be computed in $O\left(f(n, N)^{k}\right)$ time.

We prove Theorem 2.1 by the similar way to that for permanents modulo $2^{k}[15$ and that for permanents of polynomial matrices modulo $2^{k}[2, ~ 8]$. First we verify Theorem 2.1 for $k=1$. Let $\tilde{A}=\left(\tilde{a}_{i j}\right)$ be a skew-symmetric matrix obtained from A by replacing $a_{i j}$ by $-a_{i j}$ if $i>j$. Modulo 2, haf A coincides with pf \tilde{A} (Pfaffian of \tilde{A}). Hence haf ${ }_{2} A$ can be obtained in time polynomial in n and N by computing $\sqrt{\operatorname{det} \tilde{A}}(\bmod 2)$.

Next, we consider the case of $k \geq 2$. We use a formula like the Laplace expansion of determinants. Let $A[i, j]$ denote the matrix obtained from A by removing the row i, row j, column i, and column j. For distinct i, j, p, q, let $A[i, j, p, q]:=(A[i, j])[p, q]$.
Lemma 2.2. (1) haf $A=\sum_{j: j \neq i} a_{i j}$ haf $A[i, j]$.
(2) haf $A=a_{i j}$ haf $A[i, j]+\sum_{p q: p, q \notin\{i, j\}, p \neq q}\left(a_{i p} a_{j q}+a_{i q} a_{j p}\right)$ haf $A[i, j, p, q]$.

Proof. (1) For $j \neq i$, let \mathcal{M}_{j} be the set of all $M \in \mathcal{M}$ that contain $i j$. Since $\left\{\mathcal{M}_{j} \mid j \neq i\right\}$ is a partition of \mathcal{M}, we obtain

$$
\text { haf } A:=\sum_{j: j \neq i} a_{i j} \sum_{M \in \mathcal{M}_{j}} \prod_{p q \in M \backslash\{i j\}} a_{p q}=\sum_{j: j \neq i} a_{i j} \text { haf } A[i, j] .
$$

(2) By using (1) repeatedly, we obtain

$$
\begin{aligned}
\text { haf } A & =\sum_{p: p \neq i} a_{i p} \text { haf } A[i, p]=a_{i j} \text { haf } A[i, j]+\sum_{p: p \notin\{i, j\}} a_{i p} \text { haf } A[i, p] \\
& =a_{i j} \operatorname{haf} A[i, j]+\sum_{p: p \notin\{i, j\}} a_{i p} \sum_{q: q \notin\{i, j, p\}} a_{j q} \operatorname{haf} A[i, j, p, q] \\
& =a_{i j} \operatorname{haf} A[i, j]+\sum_{(p, q): p, q \notin\{i, j\}, p \neq q} a_{i p} a_{j q} \operatorname{haf} A[i, j, p, q] .
\end{aligned}
$$

Combining the terms for (p, q) and (q, p), we obtain (2).
For $A \in \mathcal{S}(n, N)$, let $A(i, j ; c)$ denote the matrix obtained from A by adding c multiple of column i to column j, adding c multiple of row i to row j, and replacing the $j j$ th element with zero. We refer to this operation as the $(i, j ; c)$-operation. Note that differences between A and $A(i, j ; c)$ occur only in row j and column j, and that $A(i, j ; c)$ also belongs to $S(n, N)$. We investigate how the hafnian changes by the $(i, j ; c)$-operation. Let $A(i \rightarrow$ j) denote the matrix obtained from A by replacing row j with row i and column j with column i.

Lemma 2.3. haf $A(i, j ; c)=$ haf $A+c$ haf $A(i \rightarrow j)$.
Proof. Let $\tilde{a}_{p q}$ denote the $p q$ th element of $A(i, j ; c)$. We use Lemma 2.2 (1) with respect to row j and column j.

$$
\begin{aligned}
& \text { haf } A(i, j ; c)=\sum_{k: k \neq j} \tilde{a}_{k j} \text { haf } A[k, j] \\
& =\sum_{k: k \neq j} a_{k j} \operatorname{haf} A[k, j]+\sum_{k: k \neq j} c a_{k i} \operatorname{haf} A[k, j] \\
& =\operatorname{haf} A+c \text { haf } A(i \rightarrow j) .
\end{aligned}
$$

Let d be a fixed positive integer. A term of a polynomial is said to be lower if its degree is at most d and higher otherwise. A polynomial f is said to be even if all coefficients of lower terms of the polynomial $f(x)$ are even. For a polynomial $f(x)$ that is not even, let $m(f(x))$ denote the lowest degree of terms with odd coefficients.

Let $A=\left(a_{i j}\right) \in \mathcal{S}(n, d)$. We are going to show that all lower terms of haf A modulo 2^{k} can be computed in time polynomial in n and d. The hafnian does not change if we exchange row i and row j, and column i and column j. Hence we exchange rows and columns of A in advance so that a_{12} is a minimizer of $m\left(a_{1 j}\right)$ in $a_{1 j}(j=2, \ldots, 2 n)$ that are not even. Next we find a polynomial c_{j} such that $c_{j} a_{12}+a_{1 j}$ is even for $j=3, \ldots 2 n$. The computation can easily be done in time polynomial in n and d [2, Section 3.2]. Using the $\left(2, j ; c_{j}\right)$-operation for $j=3, \ldots 2 n$ in order, we obtain matrices $A_{3}:=A\left(2,3 ; c_{3}\right), A_{4}:=$ $A_{3}\left(2,4 ; c_{4}\right), \ldots, A_{2 n}:=A_{2 n-1}\left(2,2 n ; c_{2 n}\right)$. Then $1 j$ elements of $A_{2 n}$ are even if $j \geq 3$. Applying Lemma 2.3 repeatedly, we obtain

$$
\operatorname{haf} A_{2 n}=\operatorname{haf} A+\sum_{j=3}^{2 n} c_{j} \operatorname{haf} A_{j-1}(2 \rightarrow j)
$$

where $A_{2}=A$. Using Lemma 2.2 (1) for $A_{2 n}=\left(b_{i j}\right)$, we obtain

$$
\begin{equation*}
\text { haf } A=b_{12} \text { haf } A_{2 n}[1,2]+\sum_{j=3}^{2 n} b_{1 j} \text { haf } A_{2 n}[1, j]-\sum_{j=3}^{2 n} c_{j} \text { haf } A_{j-1}(2 \rightarrow j) . \tag{1}
\end{equation*}
$$

Though there may be higher terms in elements of matrices in (1), we may replace these higher terms with 0 (since our goal is computing lower terms). Similarly we may replace higher terms in $b_{1 j}(j=2, \ldots, 2 n)$ with 0 . Hence all matrices in right-hand side of (1) can be regarded in $\mathcal{S}(n-1, d)$ or $\mathcal{S}(n, d)$.

Next we discuss the second and third terms of the right-hand side in detail. For the second term, we obtain $b_{1 j}$ haf $A_{2 n}[1, j]$ modulo 2^{k} from haf $A_{2 n}[1, j]$ modulo 2^{k-1} since $b_{1 j}(3 \leq j \leq 2 n)$ are even. Therefore we need to compute hafnians of $2 n-2$ polynomial matrices in $\mathcal{S}(n-1, d)$ modulo 2^{k-1}.

Next we consider the third term. For $A(i \rightarrow j)$, it holds $a_{i p}=a_{j p}, a_{i q}=a_{j q}$ and $a_{i j}=0$ (since A has zero diagonals). Hence, applying Lemma 2.2 (2) to $A(i \rightarrow j)$, we obtain the following:

$$
\text { haf } A(i \rightarrow j)=\sum_{p, q} 2 a_{i p} a_{j q} \text { haf } A[i, j, p, q] .
$$

Hence we obtain haf $A(i \rightarrow j)$ modulo 2^{k} from hafnians of $\binom{2 n-2}{2}$ matrices in $\mathcal{S}(n-2, d)$ modulo 2^{k-1}.

In this way, our algorithm recursively computes lower terms of haf A modulo 2^{k} according to (1). We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let $T(n, d, k)$ be the computational complexity of computing all lower terms of the hafnian of a matrix in $\mathcal{S}(n, d)$. From (1) and the argument after (11), it follows

$$
\begin{aligned}
T(n, d, k) \leq & T(n-1, d, k)+(2 n-2) T(n-1, d, k-1) \\
& +(2 n-2)\binom{2 n-2}{2} T(n-2, d, k-1)+\operatorname{poly}(n, d),
\end{aligned}
$$

where $\operatorname{poly}(n, d)$ is a polynomial of n and d. Since $T(n, d, k)$ is monotone increasing on n, it follows that

$$
T(n, d, k) \leq T(n-1, d, k)+4 n^{3} T(n, d, k-1)+\operatorname{poly}(n, d) .
$$

Using this inequality repeatedly, we obtain

$$
T(n, d, k) \leq 4 n^{4} T(n, d, k-1)+\operatorname{poly}(n, d)
$$

$T(n, d, 1)$ is a polynomial of n and d by the result of the case $k=1$. Hence there exists a polynomial f of n and d such that for all positive integers $k, T(n, d, k)$ is $O\left(f(n, d)^{k}\right)$.

For $A \in \mathcal{S}(n, N)$, the degree of haf A is at most $n N$. Apply the above algorithm with $d=n N$, we obtain $\operatorname{haf}_{2^{k}} A$ in $O\left(f(n, n N)^{k}\right)$ time. This completes the proof.

2.2 Perfect $(A+B)$-Path Packing via Hafnian

Let $G=(V, E)$ be a simple undirected graph and A, B disjoint node sets of even cardinalities. Let $n:=|V|$ and $m:=|E|$. We can assume that $G=(V, E)$ has no edge with both endpoints in $A \cup B$; otherwise, replace each edge by a series of two edges. We consider a general case where G has positive integer weight $w(e)$ on each edge e. We assume that the maximum value of the weight is bounded by a polynomial of n. For a path P, let $w(P)$ denote the sum of the weight of edges in P. The size of a set \mathcal{P} of vertex-disjoint paths is defined as the total sum of $w(P)$ over $P \in \mathcal{P}$, and is denoted by $w(\mathcal{P})$.

Gallai's construction From input G, A, B, we construct graph $H=\left(V_{H}, E_{H}\right)$ so that matchings in H correspond to disjoint T-paths in G (with $T=A \cup B$). This construction is due to Gallai [4]; see [11, Section 73.1]. Let $U:=V \backslash(A \cup B)$. First we add to G a copy of the subgraph of G induced by U. The copy of a node $v \in U$ is denoted by v^{\prime}. Let $U^{\prime}:=\left\{v^{\prime} \mid v \in U\right\}, V_{H}:=V \cup U^{\prime}=A \cup B \cup U \cup U^{\prime}$. Next, for each $v \in U$, add an edge $v v^{\prime}$. The set of such edges is denoted by $E_{=}$. Finally, we add edge $u v^{\prime}$ for each $u v \in E$ with $u \in A \cup B, v \in U$. The set of all edges in $A \cup B \cup U^{\prime}$ is denoted by E^{\prime}. Let $E_{H}:=E \cup E^{\prime} \cup E_{=}$. The weight w is extended to $E_{H} \rightarrow \mathbb{Z}_{\geq 0}$ by

$$
\begin{cases}w(e):=0 & \text { if } e \in E_{=}, \\ w\left(u v^{\prime}\right):=w(u v) & \text { if } u v^{\prime} \in E^{\prime}, u \in A \cup B, \\ w\left(u^{\prime} v^{\prime}\right):=w(u v) & \text { if } u^{\prime} v^{\prime} \in E^{\prime}, u^{\prime}, v^{\prime} \in U^{\prime} .\end{cases}
$$

A perfect $(A \cup B)$-path packing is a set of $|A| / 2+|B| / 2$ node-disjoint $(A \cup B)$-paths. From a perfect matching M of H, we obtain a perfect $(A \cup B)$-path packing \mathcal{P}_{M} in G as follows. For all $s \in A \cup B$, there exists a unique path $P=\left\{s, v_{1}, v_{2}, \ldots, t\right\}$ in H such that $\left(s, v_{1}\right) \in M, t \in(A \cup B) \backslash\{s\}$ and it goes through edges in M and edges in $E=$ alternately. This path in H determines an (s, t)-path in G by picking up the only nodes in $(A \cup B) \cup U$ in the same order. Gathering up these paths, we obtain a perfect $(A \cup B)$-path packing \mathcal{P}_{M} in G. Conversely, one can see that any perfect $(A \cup B)$-path packing in G is obtained in this way. The size of \mathcal{P}_{M} is at most the weight of M. They coincide if and only if all edges of M not used by \mathcal{P}_{M} belong to $E_{=}$.

Matrices S and $S^{\prime} \quad$ Next we introduce a symmetric matrix S associated with H. Let $h:=\left|V_{H}\right|$. We can assume that $V_{H}=\{1,2, \ldots, h\}$. Let $S=\left(s_{i j}\right)$ be an $h \times h$ symmetric matrix defined by

$$
s_{i j}:= \begin{cases}x^{w(i j)} & \text { if } i j \in E_{H}, \\ 0 & \text { otherwise }\end{cases}
$$

Recall that $w(i j)$ denotes the weight of the edge $i j$ in H.
For $t \in A \cup B$, let E_{t} denote the set of edges joining t and U, and let E_{t}^{\prime} denote the set of edges joining t and U^{\prime}. From the matrix S, we define a new matrix $S^{\prime}=\left(s_{i j}^{\prime}\right)$ by

$$
s_{i j}^{\prime}:= \begin{cases}-s_{i j} & \text { if } i j \in E_{t}^{\prime} \text { for some } t \in B \\ s_{i j} & \text { otherwise }\end{cases}
$$

Let $\tau:=(|A|+|B|) / 2$. For a perfect $(A+B)$-path packing \mathcal{P}, let $\theta(\mathcal{P})$ denote the number of even-length B-paths in \mathcal{P}.

Lemma 2.4.

$$
\text { haf } S^{\prime}=\sum_{\mathcal{P}}(-1)^{\theta(\mathcal{P})} 2^{\tau} x^{w(\mathcal{P})}\left(1+x f_{\mathcal{P}}(x)\right)
$$

where \mathcal{P} ranges over all perfect $(A+B)$-path packings, and $f_{\mathcal{P}}(x)$ is a polynomial.
Proof. For a matching M of H, let $s^{\prime}(M):=\prod_{i j \in M} s_{i j}^{\prime}$. By the above discussion on Gallai's construction, we obtain

$$
\begin{equation*}
\text { haf } S^{\prime}=\sum_{M} s^{\prime}(M)=\sum_{\mathcal{P}} \sum_{M: \mathcal{P}_{M}=\mathcal{P}} s^{\prime}(M), \tag{2}
\end{equation*}
$$

where M ranges over all perfect matchings in H and \mathcal{P} ranges over all perfect $(A \cup B)$ path packings in G. First we estimate $\sum_{M: \mathcal{P}_{M}=\mathcal{P}} s^{\prime}(M)$. Suppose $\mathcal{P}=\left\{P_{1}, \ldots, P_{\tau}\right\}$. For each path $P_{k}=\left(s_{k}, v_{1}, v_{2}, \ldots, v_{n_{k}}, t_{k}\right)(k=1, \ldots, \tau)$, we define two matchings $M_{k, 1}, M_{k, 2}$ in H by

$$
\begin{aligned}
& M_{k, 1}= \begin{cases}\left\{s_{k} v_{1}, v_{1}^{\prime} v_{2}^{\prime}, \ldots, v_{n_{k}-1} v_{n_{k}}, v_{n_{k}}^{\prime} t_{k}\right\} & \text { if } n_{k} \text { is odd, }, \\
\left\{s_{k} v_{1}, v_{1}^{\prime} v_{2}^{\prime}, \ldots, v_{n_{k}-1}^{\prime} v_{n_{k}}^{\prime}, v_{n_{k}} t_{k}\right\} & \text { if } n_{k} \text { is even, }\end{cases} \\
& M_{k, 2}= \begin{cases}\left\{s_{k} v_{1}^{\prime}, v_{1} v_{2}, \ldots, v_{n_{k}-1}^{\prime} v_{n_{k}}^{\prime}, v_{n_{k}} t_{k}\right\} & \text { if } n_{k} \text { is odd, } \\
\left\{s_{k} v_{1}^{\prime}, v_{1} v_{2}, \ldots, v_{n_{k}-1} v_{n_{k}}, v_{n_{k}} t_{k}\right\} & \text { if } n_{k} \text { is even. }\end{cases}
\end{aligned}
$$

Both of them have weight $w\left(P_{k}\right)$. Then a perfect matching M with $\mathcal{P}_{M}=\mathcal{P}$ can be represented as the union of $\bigcup_{k=1}^{\tau} M_{k, i_{k}}\left(i_{k} \in\{1,2\}\right)$ and a perfect matching M^{\prime} of the subgraph $H-\mathcal{P}$ of H obtained by removing vertices in $\bigcup_{k=1}^{\tau} M_{k, i_{k}}$. Then we obtain

$$
\begin{align*}
\sum_{M: \mathcal{P}_{M}=\mathcal{P}} s^{\prime}(M) & =\sum_{i_{1} \in\{1,2\}} \cdots \sum_{i_{\tau} \in\{1,2\}} \sum_{M^{\prime}} s^{\prime}\left(M_{1, i_{1}}\right) \cdots s^{\prime}\left(M_{\tau, i_{\tau}}\right) s^{\prime}\left(M^{\prime}\right) \\
& =\left(s^{\prime}\left(M_{1,1}\right)+s^{\prime}\left(M_{1,2}\right)\right) \cdots\left(s^{\prime}\left(M_{\tau, 1}\right)+s^{\prime}\left(M_{\tau, 2}\right)\right) \sum_{M^{\prime}} s^{\prime}\left(M^{\prime}\right), \tag{3}
\end{align*}
$$

where M^{\prime} ranges over all perfect matchings of $H-\mathcal{P}$.
Next we estimate $s^{\prime}\left(M_{k, 1}\right)+s^{\prime}\left(M_{k, 2}\right)$. We call an edge in E_{t}^{\prime} for $t \in B$ minus. Then $s^{\prime}\left(M_{k, j}\right)=x^{w\left(P_{k}\right)}$ if $M_{k, j}$ has an even number of minus edges, and $s^{\prime}\left(M_{k, j}\right)=-x^{w\left(P_{k}\right)}$ if $M_{k, j}$ has an odd number of minus edges. If P_{k} connects A and B, just one of $M_{k, 1}$ and $M_{k, 2}$ contains one minus edge. If P_{k} is an A-path, then neither $M_{k, 1}$ nor $M_{k, 2}$ contains one minus edge. If P_{k} is a B-path and the length of P_{k} is odd, one of $M_{k, 1}$ and $M_{k, 2}$ has two minus edges and the other has no minus edge. If P_{k} is a B-path and the length of P_{k} is even, both of $M_{k, 1}$ and $M_{k, 2}$ have one minus edge. (Recall the assumption that there is no edge joining $A \cup B$.) Hence we obtain

$$
s^{\prime}\left(M_{k, 1}\right)+s^{\prime}\left(M_{k, 2}\right)= \begin{cases}0 & \text { if } P_{k} \text { connects } A \text { and } B \tag{4}\\ -2 x^{w\left(P_{k}\right)} & \text { if } P_{k} \text { is an even-length } B \text {-path }, \\ 2 x^{w\left(P_{k}\right)} & \text { otherwise. }\end{cases}
$$

Finally we estimate $\sum_{M^{\prime}} s^{\prime}\left(M^{\prime}\right)$. The perfect matching consisting of edges in $E_{=}$has weight 0 , and other perfect matchings have weight at least 1 . Thus $\sum_{M^{\prime}} s^{\prime}\left(M^{\prime}\right)$ is represented as $1+x f(x)$ for a polynomial f. By this fact and equations (2), (3) and (4), we obtain the formula.

Unique Optimal Solution Case. We first consider the case where G has a unique shortest perfect $(A+B)$-path packing \mathcal{P}^{*}. Here w is not necessarily uniform (but is bounded by a polynomial of n). In this case, Lemma 2.4 immediately yields a desired algorithm to find \mathcal{P}^{*}. Indeed, the leading term (lowest degree term) of haf S^{\prime} is $(-1)^{\theta\left(\mathcal{P}^{*}\right)} 2^{\tau} x^{w\left(\mathcal{P}^{*}\right)}$ (by the uniqueness). In particular we can obtain the minimum degree $w\left(\mathcal{P}^{*}\right)$ by computing haf S^{\prime} modulo $2^{\tau+1}$. Observe that an edge e belongs to \mathcal{P}^{*} if and only if the degree of the leading term of haf S^{\prime} strictly increases when e is removed from G. Thus we can determine \mathcal{P}^{*} by $m+1$ computations of the hafnian of a $2 n \times 2 n$ matrix in modulo $2^{\tau+1}$. By Theorem 2.1 (with $N=$ maximum of w), this can be done in $O\left(f(n)^{|A|+|B|}\right)$ time for a polynomial f.

General Case. Suppose now that w is uniform weight, i.e., $w(e)=1$ for all e in E. We consider the general case where there may be two or more shortest perfect $(A+B)$-path packings. We construct a randomized polynomial time algorithm with the help of the isolation lemma [9]. This technique is due to [2]. We use the isolation lemma in the following form:

Lemma 2.5. Let n be a positive integer and \mathcal{F} a family of subsets of $E=\left\{e_{1}, \ldots, e_{m}\right\}$. Weight $w\left(e_{i}\right)$ is assigned to each element e_{i} of E, where $w\left(e_{i}\right)$ are chosen independently and uniformly at random from $\{2 m n, 2 m n+1, \ldots, 2 m n+2 m-1\}$. Then, with probability greater than $1 / 2$, there exists a unique set $F \in \mathcal{F}$ of minimum weight $w(F):=\sum_{e \in F} w(e)$.

We are ready to prove our main theorem.
Proof of Theorem 1.2. We perturb the weight w into w^{\prime} so that a shortest packing for w^{\prime} is unique and is also shortest for w. For each edge e, choose a from $\{2 m n, \ldots, 2 m n+2 m-1\}$ independently and uniformly at random, and let $w^{\prime}(e):=a$. By Lemma 2.5, with a high probability ($\geq 1 / 2$), a shortest $(A+B)$-path packing \mathcal{P}^{*} for w^{\prime} is unique. By the unique optimal solution case above, we can find \mathcal{P}^{*} in $O\left(f(n)^{|A|+|B|}\right)$ time. We finally verify that \mathcal{P}^{*} is actually shortest for the original uniform weight w. Indeed, pick an arbitrary packing \mathcal{P} not equal to \mathcal{P}^{*}. Then we have

$$
\begin{aligned}
1 & \leq w^{\prime}(\mathcal{P})-w^{\prime}\left(\mathcal{P}^{*}\right) \leq(2 m n+2 m-1) w(\mathcal{P})-2 m n w\left(\mathcal{P}^{*}\right) \\
& \leq 2 m n\left(w(\mathcal{P})-w\left(\mathcal{P}^{*}\right)\right)+(2 m-1) w(\mathcal{P})
\end{aligned}
$$

Hence we have

$$
w(\mathcal{P})-w\left(\mathcal{P}^{*}\right) \geq \frac{1}{2 m n}-\frac{(2 m-1) w(\mathcal{P})}{2 m n} \geq-1+\frac{1+w(\mathcal{P})}{2 m n}>-1
$$

where the second inequality follows from $w(\mathcal{P}) \leq n$. Since both $w(\mathcal{P})$ and $w\left(\mathcal{P}^{*}\right)$ are integers, we have $w(\mathcal{P})-w\left(\mathcal{P}^{*}\right) \geq 0$. This means that \mathcal{P}^{*} is shortest for w.

3 Related Results

3.1 NP-Completeness

Here we verify that the perfect $(A+B)$-path packing problem, the problem of deciding the existence of a perfect $(A+B)$-path packing (with $|A|+|B|$ unfixed), is intractable.

Theorem 3.1. The perfect $(A+B)$-path packing problem is $N P$-complete, even if $|B|=2$.
Proof. Hirai and Pap [5] proved that the following edge-disjoint paths problem is NPcomplete: $(*)$ Given an undirected graph $G=(V, E)$ and $S, T \subseteq V$ with $S \cap T=\emptyset$ and $|S|=|T|=k$ and $a, b \in V \backslash(S \cup T)$, find an edge-disjoint set \mathcal{P} of paths $P_{0}, P_{1}, \ldots, P_{k}$ such that P_{0} connects a and b and P_{i} connects S and $T(i=1,2, \ldots, k)$. They gave a reduction from 3-SAT to the problem $(*)$. In their reduction [5, Section 5.2.3], a solution is necessarily vertex-disjoint. Moreover, one can see from the reduction that a set \mathcal{P} of paths is a solution of $(*)$ if and only if \mathcal{P} is a perfect $(S \cup T+\{a, b\})$-path packing. Consequently the perfect $(A+B)$-path packing problem is also NP-complete, even if $|B|=2$.

3.2 Other Path Packing via Hafnian

In this subsection, we generalize our technique for solving other path packing problems and discuss its limitation. Let $G=(V, E)$ be a simple undirected graph. Let T be a terminal set with even cardinality $|T|=2 \tau$. As in Section 2.2, we assume that there is no edge joining T.

To specify path packing problems, we introduce a notion of perfect matching with parity (PMP) on T, which is defined as a set of pairs $\left(s_{i} t_{i}, \sigma_{i}\right)(i=1, \ldots, \tau)$ such that $\bigcup_{i}\left\{s_{i}, t_{i}\right\}=T$ and $\sigma_{i} \in\{$ odd, even $\}$ is a parity. A perfect T-path packing \mathcal{P} (a disjoint set of τT-paths) induces PMP $M_{\mathcal{P}}$:

$$
M_{\mathcal{P}}:=\{(s t, \sigma) \mid \mathcal{P} \text { has an }(s, t) \text {-path with its length having the parity } \sigma\} .
$$

For a set \mathcal{M} of PMPs, a perfect \mathcal{M}-path packing is a perfect T-path packing with $M_{\mathcal{P}} \in \mathcal{M}$. We introduce the shortest perfect \mathcal{M}-path packing problem as the problem of finding a perfect \mathcal{M}-path packing of minimum size. Notice that an $(A+B)$-path packing corresponds to $\mathcal{M}_{A+B}:=\left\{M \cup M^{\prime} \mid M:\right.$ PMP on $A, M^{\prime}:$ PMP on $\left.B\right\}$.

Next we consider a generalization of matrix S^{\prime}. As in Section 2.2, consider graph H, edge sets E_{t} and E_{t}^{\prime}, and matrix S (with $A \cup B=T$). Suppose that $T=\{1,2,3, \ldots, 2 \tau\}$. For $p=\left(p_{1}, \ldots, p_{2 \tau}\right), q=\left(q_{1}, \ldots, q_{2 \tau}\right) \in \mathbb{Z}^{2 \tau}$, we define the matrix $S[p, q]$ from S by

$$
(S[p, q])_{i j}:= \begin{cases}p_{t} s_{i j} & \text { if } i j \in E_{t} \text { for } t \in T \\ q_{t} s_{i j} & \text { if } i j \in E_{t}^{\prime} \text { for } t \in T, \\ s_{i j} & \text { otherwise }\end{cases}
$$

For distinct $s, t \in T$ and parity σ, define $[p, q]_{s t, \sigma}$ by

$$
[p, q]_{s t, \sigma}:= \begin{cases}p_{s} p_{t}+q_{s} q_{t} & \text { if } \sigma=\text { odd } \\ p_{s} q_{t}+q_{s} p_{t} & \text { if } \sigma=\text { even }\end{cases}
$$

A set \mathcal{M} of PMPs is said to be h-representable if there exist $N, k \in \mathbb{Z}_{>0}, n_{i} \in \mathbb{Z}_{\geq 0}$, $p^{i}, q^{i} \in \mathbb{Z}^{2 \tau}$ for $i=1, \ldots, N$ such that a PMP M belongs to \mathcal{M} if and only if

$$
\sum_{i=1}^{N} n_{i} \prod_{(s t, \sigma) \in M}\left[p^{i}, q^{i}\right]_{s t, \sigma} \not \equiv 0 \bmod 2^{k}
$$

In particular, the argument in Section 2.2 says that \mathcal{M}_{A+B} is h-representable with $N=1$, $k=\tau+1, n_{1}=1, p^{1}=(1,1, \ldots, 1)$ and $q^{1}=(1, \ldots, 1,-1, \ldots,-1)$. That is, q^{1} has 1 for the first $|A|$ entries and -1 the remaining $|B|$ entries. A generalization of Theorem 1.2 is the following.

Theorem 3.2. Suppose that a set \mathcal{M} of PMPs is h-representable with parameters N, k, n_{i}, $p^{i}, q^{i}(i=1,2, \ldots, N)$. Then the shortest perfect \mathcal{M}-path packing problem can be solved in randomized polynomial time, provided N and k are fixed.

Proof. As in the proof of Lemma 2.4, one can show

$$
\sum_{i=1}^{N} n_{i} \operatorname{haf} S\left[p^{i}, q^{i}\right]=\sum_{\mathcal{P}}\left[\sum_{i=1}^{N} n_{i} \prod_{(s t, \sigma) \in M_{\mathcal{P}}}\left[p^{i}, q^{i}\right]_{s t, \sigma}\right] x^{w(\mathcal{P})}\left(1+x f_{\mathcal{P}}(x)\right)
$$

where \mathcal{P} ranges over all perfect T-path packings. Therefore, if G has a unique shortest perfect \mathcal{M}-path packing \mathcal{P}^{*}, then we can obtain \mathcal{P}^{*} by computing $\sum_{i=1}^{N} n_{i}$ haf $S\left[p^{i}, q^{i}\right]$ modulo 2^{k}. This can be done in polynomial time provided N and k are fixed. As in Section 2.2, we obtain the randomized polynomial time algorithm for the general case.

We do not know a characterization of h-representable sets of PMPs. We here discuss three interesting special cases, where odd and even are simply denoted by o and e respectively.

Shortest two disjoint paths via hafnian modulo 4. First we return to the shortest two disjoint paths problem, which corresponds to $T=\{1,2,3,4\}$ and

$$
\mathcal{M}_{2}:=\left\{\left\{\left(12, \sigma_{1}\right),\left(34, \sigma_{2}\right)\right\} \mid \sigma_{1}, \sigma_{2} \in\{\mathrm{o}, \mathrm{e}\}\right\} .
$$

We have seen that \mathcal{M}_{2} is h-representable with $N=1=n_{1}=1, p^{1}=(1,1,1,1)$, $q^{1}=(1,1,-1,-1)$, and $k=3$. We present another economical h-representation.

Proposition 3.3. \mathcal{M}_{2} is h-representable with $N=1, k=2, n_{1}=1, p^{1}=(1,1,1,1)$, and $q^{1}=(0,1,-1,-1)$.

Proof. A direct calculation (e.g., $\left.\left[p^{1}, q^{1}\right]_{12, \mathrm{e}}\left[p^{1}, q^{1}\right]_{34, \mathrm{o}}=(1 \cdot 1+0 \cdot 1)\{1 \cdot 1+(-1) \cdot(-1)\}=2\right)$ shows

$$
\prod_{(s t, \sigma) \in M}\left[p^{1}, q^{1}\right]_{s t, \sigma}= \begin{cases}2 & \text { if } M=\{(12, \mathrm{o}),(34, \mathrm{o})\},\{(12, \mathrm{e}),(34, \mathrm{o})\} \\ -2 & \text { if } M=\{(12, \mathrm{o}),(34, \mathrm{e})\},\{(12, \mathrm{e}),(34, \mathrm{e})\} \\ 0 & \text { otherwise }\end{cases}
$$

In particular, modulo 4 computation is sufficient. It might be interesting to compare with the original approach by Björklund-Husfeldt [2]: their algorithm requires to compute permanents of three $n \times n$ matrices modulo 4 , whereas our algorithm with these parameters requires to compute the hafnian of one $2 n \times 2 n$ matrix modulo 4 .

Shortest odd two disjoint paths via four hafnians modulo 4. The hafnian approach can solve the shortest two disjoint paths problem with a parity constraint that the sum of the lengths of paths is odd. This problem corresponds to $T=\{1,2,3,4\}$ and $\mathcal{M}_{2, \text { odd }}:=\{\{(12, \mathrm{o}),(34, \mathrm{e})\},\{(12, \mathrm{e}),(34, \mathrm{o})\}\}$.

Theorem 3.4. $\mathcal{M}_{2, \text { odd }}$ is h-representable with $N=4, k=2,\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(1,1,-1,-1)$, and

$$
\begin{array}{ll}
p^{1}=(1,1,1,0), & q^{1}=(0,0,0,1), \\
p^{2}=(1,1,0,1), & q^{2}=(0,0,1,0), \\
p^{3}=(1,0,1,1), & q^{3}=(0,1,0,0), \\
p^{4}=(0,1,1,1), & q^{4}=(1,0,0,0) .
\end{array}
$$

Proof. One can verify the theorem from the value of $C_{i}:=\prod_{(s t, \sigma) \in M}\left[p^{i}, q^{i}\right]_{s t, \sigma}$ for $i=$ $1,2,3,4$ and all PMPs M on T, which are shown in Table 1 .

Non h-representability of 3-disjoint paths. A deep result by Robertson-Seymour [10] is that the k-disjoint paths problem is solvable in polynomial time (for fixed k). One may naturally ask whether the shortest k-disjoint paths problem for $k \geq 3$ is solvable by this approach. Unfortunately our approach cannot reach the shortest 3 -disjoint paths problem, which corresponds to $T=\{1,2,3,4,5,6\}$ and

$$
\mathcal{M}_{3}:=\left\{\left\{\left(12, \sigma_{1}\right),\left(34, \sigma_{2}\right),\left(56, \sigma_{3}\right)\right\} \mid \sigma_{1}, \sigma_{2}, \sigma_{3} \in\{\mathrm{o}, \mathrm{e}\}\right\} .
$$

Theorem 3.5. \mathcal{M}_{3} is not h-representable.

Table 1: Values of C_{i}.

PMP	C_{1}	C_{2}	C_{3}	C_{4}	$C_{1}+C_{2}-C_{3}-C_{4}$
$\{(12, \mathrm{o}),(34, \mathrm{o})\}$	0	0	0	0	0
$\{(12, \mathrm{o}),(34, \mathrm{e})\}$	1	1	0	0	2
$\{(12, \mathrm{e}),(34, \mathrm{o})\}$	0	0	1	1	-2
$\{(12, \mathrm{e}),(34, \mathrm{e})\}$	0	0	0	0	0
$\{(13, \mathrm{o}),(24, \mathrm{o})\}$	0	0	0	0	0
$\{(13, \mathrm{o}),(24, \mathrm{e})\}$	1	0	1	0	0
$\{(13, \mathrm{e}),(24, \mathrm{o})\}$	0	1	0	1	0
$\{(13, \mathrm{e}),(24, \mathrm{e})\}$	0	0	0	0	0
$\{(14, \mathrm{o}),(23, \mathrm{o})\}$	0	0	0	0	0
$\{(14, \mathrm{o}),(23, \mathrm{e})\}$	0	1	1	0	0
$\{(14, \mathrm{e}),(23, \mathrm{o})\}$	1	0	0	1	0
$\{(14, \mathrm{e}),(23, \mathrm{e})\}$	0	0	0	0	0

We start with a preliminary argument. Let $1:=(1,1, \ldots, 1)$. For $\chi \in\{0,1\}^{2 \tau}$, let $S(\chi):=S[\chi, \mathbf{1}-\chi]$. Then haf $S[p, q]$ can be expressed as a linear combination of haf $S(\chi)$ over $\chi \in\{0,1\}^{2 \tau}$:

Lemma 3.6. haf $S[p, q]=\sum_{\chi \in\{0,1\}^{2 \tau}} \prod_{i=1}^{2 \tau}\left\{\chi_{i} p_{i}+\left(1-\chi_{i}\right) q_{i}\right\}$ haf $S(\chi)$.
Proof. Each perfect matching of H determines $\chi \in\{0,1\}^{2 \tau}$ as: $\chi_{i}=1$ if and only if node i is matched to a node in U. Here χ is called the type of M. We classify all perfect matchings in terms of their types. One can verify

$$
\sum_{M: \text { type } \chi} \prod_{i j \in M}(S[p, q])_{i j}=\left[\prod_{i=1}^{2 \tau}\left\{\chi_{i} p_{i}+\left(1-\chi_{i}\right) q_{i}\right\}\right] \text { haf } S(\chi) .
$$

Thus we have the desired formula.
From Lemma 3.6, in the definition of h-representability, it suffices to consider the case where $p=\chi$ and $q=1-\chi$ for $\chi \in\{0,1\}^{2 \tau}$. In this case, $\prod_{(s t, \sigma) \in M}[p, q]_{s t, \sigma}$ is 0 or 1 . Let $[\chi]_{s t, \sigma}:=[\chi, \mathbf{1}-\chi]_{s t, \sigma}$.
Proof of Theorem 3.5. First consider the following six PMPs:

$$
\begin{array}{rlrl}
M_{1}:=\{(12, \mathrm{o}),(34, \mathrm{o}),(56, \mathrm{e})\}, & M_{2}:=\{(12, \mathrm{o}),(36, \mathrm{o}),(45, \mathrm{e})\}, \\
M_{3} & :=\{(14, \mathrm{o}),(23, \mathrm{o}),(56, \mathrm{e})\}, & M_{4}:=\{(14, \mathrm{o}),(36, \mathrm{o}),(25, \mathrm{e})\}, \\
M_{5} & :=\{(16, \mathrm{o}),(23, \mathrm{e}),(45, \mathrm{o})\}, & M_{6}:=\{(16, \mathrm{o}),(34, \mathrm{e}),(25, \mathrm{o})\} .
\end{array}
$$

Observe that M_{1} is in \mathcal{M}_{3} and other five PMPs are not in \mathcal{M}_{3}. For PMP M and $\chi \in\{0,1\}^{6}$, define $b_{M, \chi}$ by

$$
b_{M, \chi}:=\prod_{(s t, \sigma) \in M}[\chi]_{s t, \sigma} .
$$

By computer calculation, we have verified the following 64 equations to hold;

$$
\begin{equation*}
b_{M_{1}, \chi}=b_{M_{2}, \chi}+b_{M_{3}, \chi}-b_{M_{4}, \chi}+b_{M_{5}, \chi}-b_{M_{6}, \chi} \quad\left(\chi \in\{0,1\}^{6}\right) . \tag{5}
\end{equation*}
$$

Next suppose that \mathcal{M}_{3} is h-representable. Thanks to Lemma 3.6, there exist $k \in \mathbb{Z}_{>0}$ and $n_{\chi} \in \mathbb{Z}$ for $\chi \in\{0,1\}^{6}$ such that a PMP M belongs to \mathcal{M} if and only if

$$
\sum_{\chi \in\{0,1\}^{6}} n_{\chi} \prod_{(s t, \sigma) \in M}[\chi]_{s t, \sigma} \not \equiv 0 \bmod 2^{k} .
$$

In particular, it holds

$$
\sum_{\chi \in\{0,1\}^{6}} n_{\chi} b_{M_{j}, \chi} \equiv 0 \quad \bmod 2^{k} \quad(j=2,3,4,5,6) .
$$

By (5), we have

$$
\sum_{\chi \in\{0,1\}^{6}} n_{\chi} b_{M_{1}, \chi} \equiv 0 \quad \bmod 2^{k} .
$$

However this is a contradiction to $M_{1} \in \mathcal{M}_{3}$.

Acknowledgments

We thank the referees for helpful comments. The work was partially supported by JSPS KAKENHI Grant Numbers 25280004, 26330023, 26280004, 17K00029.

References

[1] A. Björklund: Counting perfect matchings as fast as Ryser, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, (2012), 914-921.
[2] A. Björklund and T. Husfeldt: Shortest two disjoint paths in polynomial time, Proceedings of 41 st International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science 8572, Springer-Verlag, Berlin, (2014), 211-222.
[3] É. Colin de Verdière and A. Schrijver: Shortest vertex-disjoint two-face paths in planar graphs. ACM Transactions on Algorithms 7 (2011), No. 19, 12 pp.
[4] T. Gallai: Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Mathematica Academiae Scientiarum Hungaricae 12, (1961), 131-173.
[5] H. Hirai and G. Pap: Tree metrics and edge-disjoint S-paths, Mathematical Programming 147, (2014), 81-123.
[6] A. Karzanov: Edge-disjoint T-paths of minimum total cost, Technical Report, STAN-CS-92-1465, Department of Computer Science, Stanford University, Stanford, California, 1993, Available at http://alexander-karzanov.net/.
[7] Y. Kobayashi and C. Sommer: On shortest disjoint paths in planar graphs. Discrete Optimization 7, (2010), 235-245.
[8] Y. Kobayashi and S. Toyooka: Finding a shortest non-zero path in group-labeled graphs, Algorithmica 77, (2017), 1128-1142.
[9] K. Mulmuley, U. V. Vazirani and V. V. Vazirani: Matching is as easy as matrix inversion, Combinatorica 7, (1987), 105-113.
[10] N. Robertson and P. D. Seymour: Graph minors. XIII. The disjoint paths problem, Journal of Combinatorial Theory, Series B 63, (1995), 65-110.
[11] A. Schrijver: Combinatorial Optimization. Polyhedra and Efficiency, SpringerVerlag, Berlin, 2003.
[12] P. D. Seymour: Disjoint paths in graphs, Discrete Mathematics 29, (1980), 293-309.
[13] Y. Shiloach: A polynomial solution to the undirected two paths problem, Journal of the ACM 27, (1980), 445-456.
[14] C. Thomassen: 2-linked graphs, European Journal of Combinatorics 1, (1980), 371378.
[15] L. G. Valiant: The complexity of computing the permanent, Theoretical computer science, 8, (1979), 189-201.
[16] Y. Yamaguchi: Shortest disjoint non-zero A-paths via weighted matroid matching, Proceedings of the 27th International Symposium on Algorithms and Computation, (2016), No. 63, 13 pp.

