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The shortest two disjoint paths problem is: given an undirected graph G = (V, E) and
s1,t1,82,t2 € V find two disjoint paths, one connecting s; and ¢; and the other connect-
ing sy and t5, such that the sum of their lengths is minimum. Although the length-less
version, the two disjoint paths problem, is elegantly solved [12] 13}, 14], no polynomial
time algorithm was known for this generalization. Recently, Bjérklund and Husfeldt [2]
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Abstract

Bjorklund and Husfeldt developed a randomized polynomial time algorithm
to solve the shortest two disjoint paths problem. Their algorithm is based on
computation of permanents modulo 4 and the isolation lemma. In this paper, we
consider the following generalization of the shortest two disjoint paths problem, and
develop a similar algebraic algorithm. The shortest perfect (A + B)-path packing
problem is: given an undirected graph G and two disjoint node subsets A, B with
even cardinalities, find shortest |A|/2+ |B|/2 disjoint paths whose ends are both in
A or both in B. Besides its NP-hardness, we prove that this problem can be solved
in randomized polynomial time if |A|+ |B| is fixed. Our algorithm basically follows
the framework of Bjorklund and Husfeldt but uses a new technique: computation
of hafnian modulo 2* combined with Gallai’s reduction from T-paths to matchings.
We also generalize our technique for solving other path packing problems, and
discuss its limitation.
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Introduction

obtained the first polynomial time algorithm.

Theorem 1.1 ([2]).

shortest two disjoint paths problem.

Their algorithm is build on striking application of computation of permanents mod-

ulo 4 by Valiant [I5] and the isolation lemma by Mulmuley—Vazirani—Vazirani [9].
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There exists a randomized polynomial time algorithm to solve the



In this paper, we consider a generalization of the shortest two disjoint paths problem
and develop a randomized polynomial time algorithm based on a similar algebraic tech-
nique. Let us introduce our problem. For 7" C V', a T-path is a path connecting distinct
nodes in 7. We are given two disjoint terminal sets A and B with even cardinalities. A
perfect (A+B)-path packing is a set P of node-disjoint paths such that each path is an
A-path or B-path and |P| = |A|/2+ |B|/2. The size of a perfect (A+ B)-path packing is
defined as the total sum of the length of each path, where the length of a path is defined
as the number of edges in the path. The shortest perfect (A + B)-path packing problem
asks to find a perfect (A + B)-path packing with minimum size. It will turn out that this
problem is NP-hard. In the case where |A| = |B| = 2, the problem is the shortest two
disjoint paths problem above. When B is empty, the problem is the disjoint A-path prob-
lem by Gallai [4]. Our main result says that the problem is tractable, provided |A| + | B|
is fixed.

Theorem 1.2. There exists a randomized algorithm to solve the shortest perfect (A+ B)-
path packing problem in O(f(|V|)IAFIBl) time, where f is a polynomial.

Our algorithm basically follows the framework of Bjorklund—Husfeldt [2] but we use
a new technique: computation of hafnian modulo 2¥, instead of permanent modulo 4,
combined with a classical reduction technique to matching by Gallai (for T-paths) [4]
and Edmonds (for odd path); see [I1], Section 29.11e].

Related work Colin de Verdiere-Schrijver [3] and Kobayashi-Sommer [7] gave combi-
natorial polynomial time algorithms for shortest disjoint paths problems in planar graphs
with special terminal configurations. Karzanov [6] and Hirai-Pap [5] showed the poly-
nomial time solvability of a shortest version of edge-disjoint T-paths problem. Yam-
aguchi [16] reduced the shortest disjoint S-paths problem (nonzero T-paths problem
in a group labeled graph, more generally) to weighted matroid matching. Kobayashi—
Toyooka [§] developed a randomized polynomial time algorithm for the shortest nonzero
(s,t)-path problem in a group labeled graph; their algorithm is also based on the frame-
work of Bjorklund—Husfeldt.

It is well-known that the hafnian of the adjacency matrix of a graph is equal to the
number of perfect matchings. By utilizing the hafnian, Bjérklund [I] developed a faster
algorithm to count the number of perfect matchings.

Organization The rest of this paper is organized as follows. In Section 2, we first
show that hafnian modulo 2* for fixed k is computable in polynomial time. This direct
generalization of permanent computation modulo 2* seems new and interesting in its own
right. Next we present the randomized algorithm in Theorem In Section 3, we verify
the hardness of the (A + B)-path packing problem, and then generalize our technique for
solving other path packing problems, and discuss its limitation.

2 Algorithm

In this section, we first provide an algorithm to compute hafnian modulo 2¥, and next
present a randomized polynomial time algorithm to solve the shortest perfect (A + B)-
path packing problem for fixed |A| 4+ |B|. An undirected pair or edge {i,7} is simply
denoted by 7.



2.1 Computing Hafnian Modulo 2*
The hafnian hatf A of a 2n x 2n symmetric matrix A = (a;;) is defined by

haf A:= Y ] au
MeM ijeM
where M is the set of all partitions of {1,2,3,...,2n} into n pairs.
Let S(n, N) denote the set of all 2n x 2n symmetric matrices with zero diagonal each
of whose element is a univariate polynomial of degree at most N. Let hafyx A denote the
hafnian of A modulo 2*. The main result of this subsection is the following:

Theorem 2.1. There exists a bivariate polynomial f such that for all A € S(n,N),
hafyr A can be computed in O(f(n, N)¥) time.

We prove Theorem [2.1| by the similar way to that for permanents modulo 2* [I5] and
that for permanents of polynomial matrices modulo 2% [2| §]. First we verify Theorem

for k =1. Let A = (@ij) be a skew-symmetric matrix obtained from A by replacing a;;
by —a;; if @ > j. Modulo 2, haf A coincides with pf A (Pfaffian of A). Hence hafy A can

be obtained in time polynomial in n and N by computing v/ det A (mod 2).

Next, we consider the case of k£ > 2. We use a formula like the Laplace expansion of
determinants. Let A[i, j] denote the matrix obtained from A by removing the row i, row
J, column 4, and column j. For distinct 4, j, p, q, let A[i, 7,p, q| := (A3, j])[p, ql-

Lemma 2.2. (1) haf A = Z a;; haf Afi, j].

JigFi

(2) hat A = a;; hat A[i, j] + Z (@ipaj, + aiga;p) hat A, 3, p, ql.
pg: p,a#{i,j},p#q

Proof. (1) For j # i, let M; be the set of all M € M that contain ij. Since {M; | j # i}
is a partition of M, we obtain

haf A := Z [ty Z H Upg = Z a;; haf Ali, 7).
Jig#Fi MeM; pge M\{ij} Jg#i
(2) By using (1) repeatedly, we obtain
haf A = > ayhaf A[i,p] = ayhaf A[i,jl+ Y ayhaf Afi,p|

p:pFi p:pE{i,j}
= a;;haf Afi, j] + Z Qip Z aj,haf Afi, 7, p, q|
p: pZ{i,j} q:q¢{3,5,p}
= a;; haf A[i, j] + Z a;pajq haf Ali, j, p, ql.

(p,9): p,a#ii,5},p#q

Combining the terms for (p,¢) and (q,p), we obtain (2). ]

For A € §S(n, N), let A(i, j; ¢) denote the matrix obtained from A by adding ¢ multiple
of column ¢ to column j, adding ¢ multiple of row i to row j, and replacing the jjth element
with zero. We refer to this operation as the (i, j;c)-operation. Note that differences
between A and A(i, j; ¢) occur only in row j and column j, and that A(i, j; ¢) also belongs
to S(n, N). We investigate how the hafnian changes by the (i, j; ¢)-operation. Let A(i —
j) denote the matrix obtained from A by replacing row j with row i and column j with
column 7.



Lemma 2.3. haf A(7, j;¢) = haf A + ¢ haf A(i — j).

Proof. Let a,, denote the pgth element of A(i, j;¢). We use Lemma (1) with respect
to row 7 and column j.

haf A(i, j;¢) = Z ay; haf Alk, j|
kikAj

= Z ay; hat Alk, j] + Z cay; haf Alk, j
k: kA k: kA

— haf A + ¢ haf A(i — j).
O

Let d be a fixed positive integer. A term of a polynomial is said to be lower if its degree
is at most d and higher otherwise. A polynomial f is said to be even if all coefficients of
lower terms of the polynomial f(z) are even. For a polynomial f(x) that is not even, let
m(f(z)) denote the lowest degree of terms with odd coefficients.

Let A = (a;;) € S(n,d). We are going to show that all lower terms of haf A modulo
2% can be computed in time polynomial in n and d. The hafnian does not change if we
exchange row ¢ and row j, and column ¢ and column j. Hence we exchange rows and
columns of A in advance so that a3 is a minimizer of m(ay;) in a1;(j = 2,...,2n) that are
not even. Next we find a polynomial ¢; such that cjai2 +ay; is even for j = 3,...2n. The
computation can easily be done in time polynomial in n and d [2, Section 3.2]. Using the
(2, j; ¢j)-operation for j = 3,...2n in order, we obtain matrices Az := A(2,3;¢3), Ay :=
A3(2,4;5¢4), ..., Aoy i= Aogn_1(2,2n;¢9,). Then 15 elements of Ay, are even if j > 3.
Applying Lemma [2.3| repeatedly, we obtain

2n
haf Ag, =haf A+ c;haf A;_1(2 — j),

Jj=3

where A; = A. Using Lemma (1) for Ay, = (bi;), we obtain

2n 2n
haf A = byy haf Ay, [1,2] + ) " byjhaf Ag,[1, 5] = c;haf A;_1(2 — j). (1)
j=3 Jj=3

Though there may be higher terms in elements of matrices in , we may replace these
higher terms with 0 (since our goal is computing lower terms). Similarly we may replace
higher terms in by; (j = 2,...,2n) with 0. Hence all matrices in right-hand side of
can be regarded in S(n — 1,d) or S(n,d).

Next we discuss the second and third terms of the right-hand side in detail. For the
second term, we obtain by, haf As,[1, j] modulo 2% from haf Ay,[1, j] modulo 2*~! since
bij (3 < j < 2n) are even. Therefore we need to compute hafnians of 2n — 2 polynomial
matrices in S(n — 1,d) modulo 2+~

Next we consider the third term. For A(i — j), it holds a;, = a;p, a;y = a;q and
a;; = 0 (since A has zero diagonals). Hence, applying Lemma (2) to A(i — j), we
obtain the following:

hafA(Z — ]) = Z 2aipa'jq hafA[iajap7 Q]

p,q



Hence we obtain haf A(i — j) modulo 2* from hafnians of (*",*) matrices in S(n — 2,d)
modulo 271,
In this way, our algorithm recursively computes lower terms of haf A modulo 2% ac-

cording to . We are now ready to prove Theorem .

Proof of Theorem 2.1]. Let T'(n,d, k) be the computational complexity of computing all
lower terms of the hafnian of a matrix in S(n,d). From and the argument after (),
it follows

T(n,d,k) < T(n—1,d,k)+2n—2)T(n—1,d,k—1)

2n — 2
+(2n—2)< n2 )T(n—2,d,k—1)+poly(n,d),

where poly(n, d) is a polynomial of n and d. Since T'(n, d, k) is monotone increasing on n,
it follows that

T(n,d, k) <T(n—1,d,k)+4n*T(n,d,k — 1) + poly(n, d).
Using this inequality repeatedly, we obtain
T(n,d, k) < 4n*T(n,d,k — 1) 4 poly(n, d).

T(n,d, 1) is a polynomial of n and d by the result of the case k = 1. Hence there exists
a polynomial f of n and d such that for all positive integers k, T'(n,d, k) is O(f(n,d)*).

For A € §(n, N), the degree of haf A is at most n/N. Apply the above algorithm with
d = nN, we obtain hafyx A in O(f(n,nN)¥) time. This completes the proof. O

2.2 Perfect (A + B)-Path Packing via Hafnian

Let G = (V, E) be a simple undirected graph and A, B disjoint node sets of even cardinal-
ities. Let n := |V| and m := |E|. We can assume that G = (V, E') has no edge with both
endpoints in A U B; otherwise, replace each edge by a series of two edges. We consider a
general case where GG has positive integer weight w(e) on each edge e. We assume that
the maximum value of the weight is bounded by a polynomial of n. For a path P, let
w(P) denote the sum of the weight of edges in P. The size of a set P of vertex-disjoint
paths is defined as the total sum of w(P) over P € P, and is denoted by w(P).

Gallai’s construction From input G, A, B, we construct graph H = (V, Fy) so that
matchings in H correspond to disjoint T-paths in G (with 7= AU B). This construction
is due to Gallai [4]; see [I1, Section 73.1]. Let U := V\(A U B). First we add to G a
copy of the subgraph of G induced by U. The copy of a node v € U is denoted by v'.
Let U :={v |ve U}, Vg :=VUU = AUBUUUU'. Next, for each v € U, add
an edge vv'. The set of such edges is denoted by E_. Finally, we add edge uv’ for each
uv € E withu € AU B,v € U. The set of all edges in AU B U U’ is denoted by E’. Let
Epy:=FUE UE_. The weight w is extended to Ey — Z>( by

w(e) =0 ifee E_,
w(uv') == w(uv) ifuw € E'ue AUB,

w(u'v') = w(uw) ifuv € B u' v el



A perfect (AU B)-path packing is a set of |A|/2 + |B|/2 node-disjoint (A U B)-paths.
From a perfect matching M of H, we obtain a perfect (AU B)-path packing Py, in G as
follows. For all s € AU B, there exists a unique path P = {s,v1,vs,...,t} in H such that
(s,v1) € M, t € (AUB)\{s} and it goes through edges in M and edges in E_ alternately.
This path in H determines an (s, t)-path in G by picking up the only nodes in (AUB)UU
in the same order. Gathering up these paths, we obtain a perfect (A U B)-path packing
P in G. Conversely, one can see that any perfect (AU B)-path packing in G is obtained
in this way. The size of P, is at most the weight of M. They coincide if and only if all
edges of M not used by Py belong to F_.

Matrices S and S’ Next we introduce a symmetric matrix S associated with H. Let
h = |Vy|. We can assume that Vi = {1,2,...,h}. Let S = (s;;) be an h x h symmetric
matrix defined by

zv@) if 5 € Fy,
Sii —
! 0 otherwise.

Recall that w(ij) denotes the weight of the edge ij in H.
For t € AU B, let E; denote the set of edges joining ¢ and U, and let E} denote the
set of edges joining ¢ and U’. From the matrix S, we define a new matrix S’ = (s;) by

. —s;; ifij € Ejforsomet € B,
Sij otherwise.

Let 7 := (|A|+|B|)/2. For a perfect (A+ B)-path packing P, let 8(P) denote the number
of even-length B-paths in P.

Lemma 2.4.
haf 8" =Y (=1)"P2 2P (1 4 2 fp(x)),
P

where P ranges over all perfect (A + B)-path packings, and fp(x) is a polynomial.

Proof. For a matching M of H, let s'(M) := [[;;c),s;;- By the above discussion on
Gallai’s construction, we obtain

haf S'=> "s'(M)=>_ > (M), (2)

M P M:Py=P

where M ranges over all perfect matchings in H and P ranges over all perfect (A U B)-
path packings in G. First we estimate )., _ps'(M). Suppose P = {Py,..., P }. For
each path P, = (sg,v1,v9,...,0p,,tx) (K =1,...,7), we define two matchings My 1, My
in H by

!/

nk—l

!,/ / 1 :
{8601, 010y, ..., Uny 1V, Uy, B} if 1y i 0dd,
My, =

{Skvl7vllv/27 <o

Uy Ungti ) if g is even,

/ / / : :
Mo — {{skvl, VIV, .., Uy U, Ut} if 1y is odd,
k2 =

, , . .
{skV], V1V, oo Uny 1V, Uy, te ) i g s even.



Both of them have weight w(FPy). Then a perfect matching M with Py, = P can be
represented as the union of (J;_, My, (ix € {1,2}) and a perfect matching M’ of the
subgraph H — P of H obtained by removing vertices in | J;_; Mj;,. Then we obtain

S = S ST STy 8 (M)S (M)
M:Ppy=P i1€{1,2} ire{1,2} M’
= (' (M) + 8'(Mip)) -+ (8'(Mra) + 8/ (M) Y 8'(M),  (3)

M/

where M’ ranges over all perfect matchings of H — P.

Next we estimate s'(Mj.1) + s'(My2). We call an edge in E; for t € B minus. Then
s'(My;) = 2P if My ; has an even number of minus edges, and s'(My, ;) = —z@F) if
Mj, ; has an odd number of minus edges. If P, connects A and B, just one of M;; and
Mj, o contains one minus edge. If Py is an A-path, then neither M} ; nor Mj , contains
one minus edge. If P is a B-path and the length of P is odd, one of M}, ; and Mj o has
two minus edges and the other has no minus edge. If P, is a B-path and the length of P,
is even, both of Mj; and M2 have one minus edge. (Recall the assumption that there
is no edge joining A U B.) Hence we obtain

0 if P, connects A and B,
§'(My1) + 8 (My2) = { —22*F%) if Py is an even-length B-path, (4)

22w (Fr) otherwise.

Finally we estimate ) _,, s’(M’). The perfect matching consisting of edges in E_ has
weight 0, and other perfect matchings have weight at least 1. Thus ), s'(M’) is repre-
sented as 1+ zf(z) for a polynomial f. By this fact and equations (Z2)), and ([4), we
obtain the formula. m

Unique Optimal Solution Case. We first consider the case where GG has a unique
shortest perfect (A + B)-path packing P*. Here w is not necessarily uniform (but is
bounded by a polynomial of n). In this case, Lemma immediately yields a de-
sired algorithm to find P*. Indeed, the leading term (lowest degree term) of haf S’ is
(—1)%P*)27(P*) (by the uniqueness). In particular we can obtain the minimum degree
w(P*) by computing haf S” modulo 27", Observe that an edge e belongs to P* if and
only if the degree of the leading term of haf S’ strictly increases when e is removed from
G. Thus we can determine P* by m + 1 computations of the hafnian of a 2n x 2n ma-
trix in modulo 27!, By Theorem (with N = maximum of w), this can be done in
O(f(n)AFBly time for a polynomial f.

General Case. Suppose now that w is uniform weight, i.e., w(e) = 1 for all e in E. We
consider the general case where there may be two or more shortest perfect (A + B)-path
packings. We construct a randomized polynomial time algorithm with the help of the
isolation lemma [9]. This technique is due to [2]. We use the isolation lemma in the
following form:

Lemma 2.5. Let n be a positive integer and F a family of subsets of E = {e1,...,emn}.
Weight w(e;) is assigned to each element e; of E, where w(e;) are chosen independently
and uniformly at random from {2mn,2mn+1,...,2mn+2m—1}. Then, with probability
greater than 1/2, there exists a unique set F' € F of minimum weight w(F) := " __pw(e).

7



We are ready to prove our main theorem.

Proof of Theorem[1.2] We perturb the weight w into w’ so that a shortest packing for w’ is
unique and is also shortest for w. For each edge e, choose a from {2mn, ... 2mn+2m—1}
independently and uniformly at random, and let w’(e) := a. By Lemma [2.5] with a high
probability (> 1/2), a shortest (A + B)-path packing P* for w’ is unique. By the unique
optimal solution case above, we can find P* in O(f(n)A*IB]) time. We finally verify
that P* is actually shortest for the original uniform weight w. Indeed, pick an arbitrary
packing P not equal to P*. Then we have

1 < W'(P)—w'(P*) < (2mn+2m — 1)w(P) — 2mnw(P*)
< 2mn(w(P) — w(P*)) + (2m — 1)w(P).

Hence we have

. 1 (2m — 1)w(P) 1+ w(P)
w(P) —w(P?) 2 omn 2mn = 2mn

> —1

Y

where the second inequality follows from w(P) < n. Since both w(P) and w(P*) are
integers, we have w(P) — w(P*) > 0. This means that P* is shortest for w. O

3 Related Results

3.1 NP-Completeness

Here we verify that the perfect (A + B)-path packing problem, the problem of deciding
the existence of a perfect (A + B)-path packing (with |A| 4+ | B| unfixed), is intractable.

Theorem 3.1. The perfect (A+ B)-path packing problem is NP-complete, even if | B| = 2.

Proof. Hirai and Pap [5] proved that the following edge-disjoint paths problem is NP-
complete: () Given an undirected graph G = (V, E) and S,7 C V with SNT = ) and
|S| =|T| =k and a,b € V' \ (SUT), find an edge-disjoint set P of paths Py, P, ..., P
such that Py connects a and b and P; connects S and T (i = 1,2,...,k). They gave a
reduction from 3-SAT to the problem (x). In their reduction [5], Section 5.2.3], a solution
is necessarily vertex-disjoint. Moreover, one can see from the reduction that a set P of
paths is a solution of (x) if and only if P is a perfect (S U T + {a,b})-path packing.
Consequently the perfect (A + B)-path packing problem is also NP-complete, even if
|B| = 2. O

3.2 Other Path Packing via Hafnian

In this subsection, we generalize our technique for solving other path packing problems
and discuss its limitation. Let G = (V, E) be a simple undirected graph. Let T be a
terminal set with even cardinality |7 = 27. As in Section [2.2] we assume that there is
no edge joining 7.

To specify path packing problems, we introduce a notion of perfect matching with
parity (PMP) on T, which is defined as a set of pairs (s;t;,0;) (i = 1,...,7) such that
U;{si,t;} =T and o; € {odd,even} is a parity. A perfect T-path packing P (a disjoint
set of 7 T-paths) induces PMP Mp:

Mp :={(st,0) | P has an (s, t)-path with its length having the parity o}.

8



For a set M of PMPs, a perfect M-path packing is a perfect T-path packing with
Mp € M. We introduce the shortest perfect M-path packing problem as the problem
of finding a perfect M-path packing of minimum size. Notice that an (A + B)-path
packing corresponds to Mg :={M UM’ | M:PMP on A, M":PMP on B}.

Next we consider a generalization of matrix S’. As in Section consider graph H,
edge sets E; and E;, and matrix S (with AUB = T). Suppose that T'={1,2,3,...,27}.
For p= (p1,...,p2r),q = (qu, ..., Q) € Z*7, we define the matrix S[p, ¢| from S by

pesi; ifij € Byfort €T,
(Sp,dl)ij .= @si; ifij e Ejfort €T,

Sij otherwise.

For distinct s,t € T' and parity o, define [p, ¢|st.» by

[ Q} — DsPt + qsqt if o = Odd,
e Dsqt + gspr it 0 = even.

A set M of PMPs is said to be h-representable it there exist N,k € Z-o, ni € Z>o,
pl,qt € Z* for i = 1,..., N such that a PMP M belongs to M if and only if

N

Zni H [plv qi]st,a 7_é 0 mod 2k

i=1 (st,o)eM

In particular, the argument in Section [2.2]says that M 4. p is h-representable with N = 1,
k=r+1,n=1,p"'=(1,1,...,1) and ¢ = (1,...,1,—1,...,—1). That is, ¢' has 1 for
the first |A| entries and —1 the remaining |B| entries. A generalization of Theorem
is the following.

Theorem 3.2. Suppose that a set M of PMPs is h-representable with parameters N, k,n;,
p,¢'(i = 1,2,...,N). Then the shortest perfect M-path packing problem can be solved
i randomized polynomial time, provided N and k are fized.

Proof. As in the proof of Lemma one can show

anhafSp q Z an H p7qi]st,a xw(P)(1+xf7)<I>>7

(st,o)eMp

where P ranges over all perfect T-path packings. Therefore, if G has a unique shortest
perfect M-path packing P*, then we can obtain P* by computing S~  n;haf S[p?, ¢']
modulo 2%. This can be done in polynomial time provided N and k are fixed. As in Section
2.2] we obtain the randomized polynomial time algorithm for the general case. O

We do not know a characterization of h-representable sets of PMPs. We here dis-
cuss three interesting special cases, where odd and even are simply denoted by o and e
respectively.



Shortest two disjoint paths via hafnian modulo 4. First we return to the shortest
two disjoint paths problem, which corresponds to 7' = {1,2, 3,4} and

My = {{(12,01),(34,02)} | 01,02 € {o,e}}.

We have seen that M, is h-representable with N = 1 = n; = 1, p' = (1,1,1,1),
q¢' = (1,1,—1,—1), and k = 3. We present another economical h-representation.

Proposition 3.3. My is h-representable with N = 1, k =2, n; = 1, p' = (1,1,1,1),
and ¢* = (0,1,—1,—1).
Proof. A direct calculation (e.g.,[p', ¢'12e[p", ¢']340 = (1-140-1){1-1+(=1)-(-1)} = 2)
shows
2 i M = {(12,0), (34,0)}. {(12,¢), (31, 0)},
FA

[T B a'eo =4 -2 if M ={(12,0).(34,€)}.{(12,e). (34,¢)}.
(st,o)eM 0  otherwise.

Y

[]

In particular, modulo 4 computation is sufficient. It might be interesting to compare
with the original approach by Bjorklund—Husfeldt [2]: their algorithm requires to com-
pute permanents of three n x n matrices modulo 4, whereas our algorithm with these
parameters requires to compute the hafnian of one 2n x 2n matrix modulo 4.

Shortest odd two disjoint paths via four hafnians modulo 4. The hafnian ap-
proach can solve the shortest two disjoint paths problem with a parity constraint that
the sum of the lengths of paths is odd. This problem corresponds to 7' = {1,2, 3,4} and

Mo oaa = {{(12,0), (34,¢)},{(12,¢), (34,0) } }.

Theorem 3.4. My 4qq is h-representable with N = 4, k = 2, (ny,nq,ng,ng) = (1,1, -1, —1),
and

pt=(1,1,1,0), ¢'=1(0,0,0,1),

p*=(1,1,0,1), ¢*>=(0,0,1,0),

p’=(1,0,1,1), ¢°=(0,1,0,0),

p*=(0,1,1,1), ¢*=(1,0,0,0).
Proof. One can verify the theorem from the value of C; := H(st’g)e ulp's @'sto for i =
1,2,3,4 and all PMPs M on T', which are shown in Table [I] O

Non h-representability of 3-disjoint paths. A deep result by Robertson—-Seymour [10]
is that the k-disjoint paths problem is solvable in polynomial time (for fixed k) . One
may naturally ask whether the shortest k-disjoint paths problem for k& > 3 is solvable
by this approach. Unfortunately our approach cannot reach the shortest 3-disjoint paths
problem, which corresponds to 7' = {1,2,3,4,5,6} and

Ms = {{(12,0y), (34, 02), (56,03)} | 01,092,035 € {0,e}}.

Theorem 3.5. M3 is not h-representable.

10



Table 1: Values of C;.

PMP Ci Cy C3 Cp C1+C,—C5—0Cy
(120,350} 0 0 0 0 0
{(12,0),34e)} | 1 1 0 0 2
{(12,e), (34,0} | 0 0 1 1 2
{(12,e),(34,¢)} | O 0 0 O 0
{(13,0), (24,0} | 0 0 0 0 0
{(13,0),(24,¢)} | 1 0 1 0 0
{(13,e),(24,0)} | O 1 0 1 0
{(13,e),(24,0)} | 0 0 0 0 0
{(14,0),(23,0} | 0 0 0 0 0
(14,0, (23,0} |0 1 1 0 0
{(14,e),(23,0)} | 1 0 0 1 0
{(14,e),(23,¢)} | O 0 0 O 0

We start with a preliminary argument. Let 1 := (1,1,...,1). For xy € {0,1}?7, let
S(x) := S[x,1—x]. Then haf S[p, q] can be expressed as a linear combination of haf S(x)
over x € {0,1}*":

2T
Lemma 3.6. haf S[p, ¢| = Z H{Xipi + (1 — x;)q;} haf S(x).

x€{0,1}27 i=1

Proof. Each perfect matching of H determines y € {0,1}? as: y; = 1 if and only if
node ¢ is matched to a node in U. Here y is called the type of M. We classify all perfect
matchings in terms of their types. One can verify

Z H (Sp,al)is = H {xipi + (1 = xi)qi} | haf S(x).

M:type x ijeM
Thus we have the desired formula. O

From Lemma [3.6] in the definition of h-representability, it suffices to consider the case
where p = x and ¢ = 1 — x for x € {0,1}*". In this case, H(Stﬂ)eM[p, q)sto is 0 or 1. Let

[X]st,o' = [X> 1- X]st,o'-
Proof of Theorem [3.5. First consider the following six PMPs:

M :={(12,0),(34,0),(56,e)}, My :={(12,0),(36,0),(45,¢e)},
M; :={(14,0),(23,0),(56,e)}, My :={(14,0),(36,0),(25,e)},
Ms :={(16,0),(23,e), (45,0)}, Mg :={(16,0),(34,e),(25,0)}.

Observe that M; is in M3 and other five PMPs are not in M3. For PMP M and
x € {0,1}°, define by, by
bM,X = H [X]st,o”

(st,o)eM

By computer calculation, we have verified the following 64 equations to hold;
batyx = Dty + bty — ity + Oars o — bargr (X € {0,13°). (5)

11



Next suppose that M3 is h-representable. Thanks to Lemma [3.6] there exist k € Z~q
and n, € Z for x € {0,1}° such that a PMP M belongs to M if and only if

Z Ny H [X]st,a 7_é 0 mod Zk.
x€{0,1}6  (st,o)eM
In particular, it holds

> nybu,y =0 mod 2" (j=2,34,56).
XE{Ovl}G

By (f]), we have
Z nby, x =0 mod 2",
x€{0,1}5

However this is a contradiction to M; € Ms. O
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