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Abstract

An upper dominating set in a graph is a minimal (with respect to set inclusion)
dominating set of maximum cardinality. The problem of finding an upper dominating
set is generally NP-hard. We study the complexity of this problem in classes of graphs
defined by finitely many forbidden induced subgraphs and conjecture that the prob-
lem admits a dichotomy in this family, i.e. it is either NP-hard or polynomial-time
solvable for each class in the family. A helpful tool to study the complexity of an algo-
rithmic problem on finitely defined classes of graphs is the notion of boundary classes.
However, none of such classes has been identified so far for the upper dominating set
problem. In the present paper, we discover the first boundary class for this problem
and prove the dichotomy for classes defined by a single forbidden induced subgraph.

1 Introduction

In a graph G = (V, E), a dominating set is a subset of vertices D C V such that any vertex
outside of D has a neighbour in D. A dominating set D is minimal if no proper subset
of D is dominating. An upper dominating set is a minimal dominating set of maximum
cardinality. The UPPER DOMINATING SET problem (i.e. the problem of finding an upper
dominating set in a graph) is generally NP-hard [9]. Moreover, the problem is difficult
from a parameterized perspective (it is W[2]-hard [6]) and from an approximation point
of view (for any € > 0, the problem is not n'!~¢-approximable, unless P = NP [7]). On
the other hand, in some particular graph classes the problem can be solved in polynomial
time, which is the case for bipartite graphs [10], chordal graphs [15], generalized series-
parallel graphs [14], graphs of bounded clique-width [I1], etc. We contribute to this topic
in several ways.

First, we prove two new NP-hardness results: for complements of bipartite graphs
and for planar graphs of vertex degree at most 6 and girth at least 6. This leads to a
complete dichotomy for this problem in the family of minor-closed graph classes. Indeed,
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if a minor-closed class X contains all planar graphs, then the problem is NP-hard in X.
Otherwise, graphs in X have bounded tree-with [27] (and hence bounded clique-width),
in which case the problem can be solved in polynomial time. Whether this dichotomy
can be extended to the family of all hereditary classes is a challenging open question. We
conjecture that the classes defined by finitely many forbidden induced subgraphs admit
such a dichotomy and prove several results towards this goal. For this, we employ the
notion of boundary classes that has been recently introduced to study algorithmic graph
problems. The importance of this notion is due to the fact that an algorithmic problem
IT is NP-hard in a class X defined by finitely many forbidden induced subgraphs if and
only if X contains a boundary class for II. Unfortunately, no boundary class is known for
the UPPER DOMINATING SET problem. In the present paper, we unveil this uncertainty by
discovering the first boundary class for the problem. We also develop a polynomial-time
algorithm for UPPER DOMINATION in the class of 2Ks-free graphs. Combining various
results of the paper, we prove that the dichotomy holds for classes defined by a single
forbidden induced subgraph.

The organization of the paper is as follows. In Section 2], we introduce basic definitions,
including the notion of a boundary class, and prove some preliminary results. In Section B]
we prove two NP-hardness results. Section Ml is devoted to the first boundary class for the
problem. In Section [, we establish the dichotomy for classes defined by a single forbidden
induced subgraph. Finally, Section [0l concludes the paper with a number of open problems.

2 Preliminaries

We denote by G the set of all simple graphs, i.e. undirected graphs without loops and
multiple edges. The girth of a graph G € G is the length of a shortest cycle in G. As
usual, K, P, and C}, stand for the complete graph, the chordless path and the chordless
cycle with n vertices, respectively. Also, G denotes the complement of G, and 2K5 is the
disjoint union of two copies of K5. A star is a connected graph in which all edges are
incident to the same vertex, called the center of the star.

Let G = (V, E) be a graph with vertex set V and edge set E, and let v and v be two
vertices of G. If u is adjacent to v, we write uv € E and say that v and v are neighbours.
The neighbourhood of a vertex v € V' is the set of its neighbours; it is denoted by N(v).
The degree of v is the size of its neighbourhood. If the degree of each vertex of G equals
3, then G is called cubic.

A subgraph of G is spanning if it contains all vertices of G, and it is induced if two
vertices of the subgraph are adjacent if and only if they are adjacent in G. If a graph H
is isomorphic to an induced subgraph of a graph G, we say that G contains H. Otherwise
we say that G is H-free. Given a set of graphs M, we denote by Free(M) the set of all
graphs containing no induced subgraphs from M.

A class of graphs (or graph property) is a set of graphs closed under isomorphism. A
class is hereditary if it is closed under taking induced subgraphs. It is well-known (and not
difficult to see) that a class X is hereditary if and only if X = Free(M) for some set M.
If M is a finite set, we say that X is finitely defined, and if M consists of a single graph,
then X is monogenic.

A class of graphs is monotone if it is closed under taking subgraphs (not necessarily



induced). Clearly, every monotone class is hereditary.

In a graph, a clique is a subset of pairwise adjacent vertices, and an independent set is
a subset of vertices no two of which are adjacent. A graph is bipartite if its vertices can
be partitioned into two independent sets. It is well-known that a graph is bipartite if and
only if it is free of odd cycles, i.e. if and only if it belongs to Free(Cs, Cs5,C7,...). We say
that a graph G is co-bipartite if G is bipartite. Clearly, a graph is co-bipartite if and only
if it belongs to Free(C3,Cs5,Cr,...).

We say that an independent set I is maximal if no other independent set properly
contains I. The following simple lemma connects the notion of a maximal independent
set and that of a minimal dominating set.

Lemma 1. Every mazimal independent set is a minimal dominating set.

Proof. Let G = (V, E) be a graph and let I be a maximal independent set in G. Then
every vertex u ¢ I has a neighbour in I (else I is not maximal) and hence I is dominating.

The removal of any vertex u € I from I leaves u undominated. Therefore, I is a
minimal dominating set. O

Definition 1. Given a dominating set D and a vertex x € D, we say that a vertex y & D
is a private neighbour of x if x is the only neighbour of y in D.

Lemma 2. Let D be a minimal dominating set in a graph G. If a vertex x € D has a
neighbour in D, then it also has a private neighbour outside of D.

Proof. If a vertex x € D is adjacent to a vertex in D and has no private neighbour outside
of D, then D is not minimal, because the set D — {x} is also dominating. O

Lemma 3. Let G be a connected graph and D a minimal dominating set in G. If there are
vertices in D that have no private neighbour outside of D, then D can be transformed in
polynomial time into a minimal dominating set D' with |D'| < |D| in which every vertex
has a private neighbour outside of D’.

Proof. Assume D contains a vertex x which has no private neighbours outside of D. Then
x is isolated in D (i.e. it has no neighbours in D) by Lemma 2l On the other hand, since
G is connected, x must have a neighbour y outside of D. As y is not a private neighbour of
x, it is adjacent to a vertex z in D. Consider now the set Dy = (D —{x})U{y}. Clearly, it
is a dominating set. If it is a minimal dominating set in which every vertex has a private
neighbour outside of the set, then we are done. Otherwise, it is either not minimal, in
which case we can reduce its size by deleting some vertices, or it has strictly fewer isolated
vertices than D. Therefore, by iterating the procedure, in at most |V (G)| steps we can
transform D into a minimal dominating set D’ with |D’| < |D| in which every vertex has
a private neighbour outside of the set. O

2.1 Boundary classes of graphs

The notion of boundary classes of graphs was introduced in [3] to study the MAXIMUM
INDEPENDENT SET problem in hereditary classes. Later this notion was applied to some
other problems of both algorithmic [4, [, 18, 22] and combinatorial [19, 20, 24] nature.



Assuming P # N P, the notion of boundary classes can be defined, with respect to algo-
rithmic graph problems, as follows.

Let II be an algorithmic graph problem, which is generally NP-hard. We will say that
a hereditary class X of graphs is II-tough if the problem is NP-hard for graphs in X and
II-easy, otherwise. We define the notion of a boundary class for II in two steps. First, let
us define the notion of a limit class.

Definition 2. A hereditary class X is a limit class for II if X is the intersection of a
sequence X1 D Xo O X3 D ... of Il-tough classes, in which case we also say that the
sequence converges to X.

Ezample. To illustrate the notion of a limit class, let us quote a result from [20]
stating that the MAXIMUM INDEPENDENT SET problem is NP-hard for graphs with
large girth, i.e. for (Cs3,Cy,...,Ck)-free graphs for each fixed value of k. With k
tending to infinity, this sequence converges to the class of graphs without cycles,
i.e. to forests. Therefore, the class of forests is a limit class for the MAXIMUM
INDEPENDENT SET problem. However, this is not a minimal limit class for the
problem, which can be explained as follows.

The proof of the NP-hardness of the problem for graphs with large girth is based on
a simple fact that a double subdivision of an edge in a graph G increases the size of
a maximum independent set in G by exactly 1. This operation applied sufficiently
many (but still polynomially many) times allows to destroy all small cycles in G,
i.e. reduces the problem from an arbitrary graph G to a graph G’ of girth at least
k. Obviously, if G is a graph of vertex degree at most 3, then so is G’, and since
the problem is NP-hard for graphs of degree at most 3, we conclude that it is also
NP-hard for for (Cs,Cy,...,Cy)-free graphs of degree at most 3. This shows that
the class of forests of vertex degree at most 3 is a limit class for the the MAXIMUM
INDEPENDENT SET problem. However, it is still not a minimal limit class, because
by the same operation (double subdivisions of edges) one can destroy small induced
copies of the graph H, shown on the left of Figure Il Therefore, the MAXIMUM
INDEPENDENT SET problem is NP-hard in the following class for each fixed value of
k:

Zy is the class of (Cs,...,Ck, Hy, ..., H;)-free graphs of degree at most 3.

It is not difficult to see that the sequence Z3 D Z; D ... converges to the class of
forests every connected component of which has the form S; ;, represented on the
right of Figure [l also known as tripods. Throughout the paper we denote this class
by S, i.e.

S is the intersection of the sequence Z3 D Z4 D .. ..

The above discussion shows that S is a limit class for the MAXIMUM INDEPENDENT
SET problem. Moreover, in [3] it was proved that S is a minimal limit class for this
problem.
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Figure 1: Graphs H,, (left) and S, ;¢ (right).

Definition 3. A minimal (with respect to set inclusion) limit class for a problem II is
called a boundary class for II.

The importance of the notion of boundary classes for NP-hard algorithmic graph prob-
lems is due to the following theorem proved originally for the MAXIMUM INDEPENDENT
SET problem in [3] (can also be found in [4] in a more general context).

Theorem 4. If P # NP, then a finitely defined class X is Il-tough if and only if X
contains a boundary class for 11.

In Section M|, we identify the first boundary class for the UPPER DOMINATING SET
problem. To this end, we need a number of auxiliary results. The first of them is the
following lemma dealing with limit classes, which was derived in [3| 4] as a step towards
the proof of Theorem [l

Lemma 4. If X is a finitely defined class containing a limit class for an NP-hard problem
II, then X is ll-tough.

The next two results were proved in [I7] and [4], respectively.

Lemma 5. The MINIMUM DOMINATING SET problem is NP-hard in the class Zi for each
fized value of k.

Theorem 5. The class S is a boundary class for the MINIMUM DOMINATING SET problem.

3 NP-hardness results

In this section, we prove two NP-hardness results about the UPPER DOMINATING SET
problem in restricted graph classes.

3.1 Planar graphs of degree at most 6 and girth at least 6

Theorem 6. The UPPER DOMINATING SET problem restricted to the class of planar graphs
with maximum vertex degree 6 and girth at least 6 is NP-hard.

Proof. We use a reduction from the MAXIMUM INDEPENDENT SET problem (IS for short)
in planar cubic graphs, where IS is NP-hard [I3]. The input of the decision version of IS
consists of a simple graph G = (V, FE) and an integer k and asks to decide if G contains
an independent set of size at least k.



Let G = (V, E) and an integer k be an instance of IS, where G is a planar cubic graph.
We denote the number of vertices and edges of G by n and m, respectively. We build an
instance G’ = (V', E’) of the UPPER DOMINATING SET problem by replacing each edge
e = wv € E with two induced paths v — v — ue — v and u — v, — u,, — v, as shown in
Figure
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Figure 2: Replacement of an edge by two paths

Clearly, G’ can be constructed in time polynomial in n. Moreover, it is not difficult to
see that G’ is a planar graph with maximum vertex degree 6 and girth at least 6.

We claim that G contains an independent set of size at least k if and only if G’ contains
a minimal dominating set of size at least k + 2m.

Suppose G contains an independent set S with |S| > k and without loss of generality
assume that S is maximal with respect to set-inclusion (otherwise, we greedily add vertices
to S until it becomes a maximal independent set). Now we consider a set D C V'
containing

e all vertices of S,
e vertices v, and v, for each edge e = uv € F with v € S,

e exactly one vertex in {u.,v.} (chosen arbitrarily) and exactly one vertex in {u’,v.}
(chosen arbitrarily) for each edge e = uv € F with u,v ¢ S.

It is not difficult to see that D is a maximal independent, and hence, by Lemma 2] a
minimal dominating, set in G’. Moreover, |D| = |S| + 2m > k + 2m.

To prove the inverse implication, we first observe the following:

o Every minimal dominating set in G’ contains either exactly two vertices or no vertex

in the set {ue,ve,ul,v.} for every edge e = uv € E. Indeed, assume a minimal

er e
dominating set D in G’ contains at least three vertices in {ue, ve, ul, v.}, say ue, ve, ul,.
But then D is not minimal, since u, can be removed from the set. If D contains one
vertex in {ue, v, ul., v}, say u., then both u and v must belong to D (otherwise it

is not dominating), in which case it is not minimal (u. can be removed).

e If a minimal dominating set D in G' contains exactly two vertices in {ue, v, u.,v.},
then

— one of them belongs to {ue,ve} and the other to {u’,v.}. Indeed, if both vertices
belong to {ue, ve }, then both v and v must also belong to D (to dominate u, v’,),
in which case D is not minimal (u. and v, can be removed).



— at most one of u and v belongs to D. Indeed, if both of them belong to D, then
D is not minimal dominating, because u and v dominate the set {ue, ve, u., v.}
and any vertex of this set can be removed from D.

Now let D C V’ be a minimal dominating set in G’ with |D| > k + 2m. If D contains
exactly two vertices in the set {u,,ve,u,,v.} for every edge e = uv € E, then, according
to the discussion above, the set DNV is independent in GG and contains at least k vertices,
as required.

Assume now that there are edges e = uv € E for which the set {ue, ve,ul,, v} contains
no vertex of D. We call such edges D-clean. Obviously, both endpoints of a D-clean
edge belong to D, since otherwise this set is not dominating. To prove the theorem
in the situation when D-clean edges are present, we transform D into another minimal
dominating set D’ with no D’-clean edges and with |D’| > |D|. To this end, we do the
following. For each vertex u € V incident to at least one D-clean edge, we first remove u
from D, and then for each D-clean edge e = uv € E incident to u, we introduce vertices
Ve, v, to D. Under this transformation vertex v may become redundant (i.e. its removal
may result in a dominating set), in which case we remove it. It is not difficult to see that
the set D’ obtained in this way is a minimal dominating set with no D’-clean edges and
with |D’| > |D|. Therefore, D'NV is an independent set in G of cardinality at least k. O

3.2 Complements of bipartite graphs

To prove one more NP-hardness result for the UPPER DOMINATING SET problem, let us
introduce the following graph transformations. Given a graph G = (V, E), we denote by

S(G) the incidence graph of G, i.e. the graph with vertex set VU E, where V and E are
independent sets and a vertex v € V is adjacent to a vertex e € E in S(G) if and
only if v is incident to e in G. Alternatively, S(G) is obtained from G by subdividing
each edge e by a new vertex v.. According to this interpretation, we call E the set
of new vertices and V' the set of old vertices. Any graph of the form S(G) for some
G will be called a subdivision graph.

Q(G) the graph obtained from S(G) by creating a clique on the set of old vertices and a
clique on the set of new vertices. We call any graph of the form Q(G) for some G a

Q-graph.

The importance of Q-graphs for the UPPER DOMINATING SET problem is due to the
following lemma, where we denote by I'(G) the size of an upper dominating set in G and
by 7(G) the size of a dominating set of minimum cardinality in G.

Lemma 6. Let G be a graph with n vertices such that T'(Q(G)) > 3. Then I'(Q(G)) =
n—7(G).

Proof. Let D be a minimum dominating set in G, i.e. a dominating set of size v(G).
Without loss of generality, we will assume that D satisfies Lemma [3] i.e. every vertex
of D has a private neighbour outside of D. For every vertex u outside of D, consider
exactly one edge, chosen arbitrarily, connecting u to a vertex in D and denote this edge
by e,. We claim that the set D' = {v., : u ¢ D} is a minimal dominating set in Q(G).
By construction, D’ dominates E U (V — D) in Q(G). To show that it also dominates



D, assume by contradiction that a vertex w € D is not dominated by D’ in Q(G). By
Lemma [B] we know that w has a private neighbour u outside of D. But then the edge
e = uw is the only edge connecting u to a vertex in D. Therefore, v, necessarily belongs
to D' and hence it dominates w, contradicting our assumption. In order to show that D’ is
a minimal dominating set, we observe that if we remove from D’ a vertex v, with e,, = uw,
u ¢ D, w € D, then u becomes undominated in Q(G). Finally, since |D'| = n — |D|, we
conclude that T'(Q(G)) > n — |D| =n — v(G).

Conversely, let D’ be an upper dominating set in Q(G), i.e. a minimal dominating set
of size I'(Q(G)) > 3. Then D’ cannot intersect both V' and F, since otherwise it contains
exactly one vertex in each of these sets (else it is not minimal, because each of these sets
is a clique), in which case |D'| = 2.

Assume first that D’ C V. Then V — D’ is an independent set in G. Indeed, if G
contains an edge e connecting two vertices in V' — D', then vertex v, is not dominated by
D' in Q(QG), a contradiction. Moreover, V — D' is a maximal (with respect to set-inclusion)
independent set in G, because D’ is a minimal dominating set in Q(G). Therefore, V — D’
is a dominating set in G of size n — I'(Q(G)) and hence v(G) < n —T'(Q(Q)).

Now assume D’ C E. Let us denote by G’ the subgraph of G' formed by the edges
(and all their endpoints) e such that v, € D’. Then:

e G’ is a spanning forest of G, because D’ covers V (else D’ is not dominating in
Q(G)) and G’ is acyclic (else D' is not a minimal dominating set in Q(G)).

e G’ is Py-free, i.e. each connected component of G’ is a star, since otherwise D’ is
not a minimal dominating set in Q(G), because any vertex of D’ corresponding to
the middle edge of a Py in G’ can be removed from D'.

Let D be the set of the centers of the stars of G’. Then D is dominating in G (since
D’ covers V) and |D| =n — |D'|, i.e. v(G) <n —T(Q(G)), as required. O

Since the MINIMUM DOMINATING SET problem is NP-hard and Q(G) is a co-bipartite
graph, Lemma [f] leads to the following conclusion.

Theorem 7. The UPPER DOMINATING SET problem restricted to the class of complements
of bipartite graphs is NP-hard.

4 A boundary class for UPPER DOMINATION

Since the UPPER DOMINATING SET problem is NP-hard in the class of complements of
bipartite graphs, this class must contain a boundary class for the problem. An idea about
the structure of such a boundary class comes from Theorem [l and Lemma [6] and can be
roughly described as follows: a boundary class for UPPER DOMINATION consists of graphs
Q(G) obtained from graphs G in S. In order to transform this idea into a formal proof,
we need more notations and more auxiliary results.

For an arbitrary class X of graphs, we denote S(X) := {S(G) : G € X} and
Q(X) :={Q(G) : G € X}. In particular, Q(G) is the set of all @-graphs, where G
is the class of all simple graphs. We observe that an induced subgraph of a Q-graph is
not necessarily a Q-graph. Indeed, in a ()-graph every new vertex is adjacent to exactly



two old vertices. However, by deleting some old vertices in a @-graph we may obtain a
graph in which a new vertex is adjacent to at most one old vertex. Therefore, Q(X) is not
necessarily hereditary even if X is a hereditary class. We denote by Q*(X) the hereditary
closure of Q(X), i.e. the class obtained from Q(X) by adding to it all induced subgraphs
of the graphs in Q(X). Similarly, we denote by S*(X) the hereditary closure of S(X).
With the above notation, our goal is proving that Q*(S) is a boundary class for the
UPPER DOMINATING SET problem. To achieve this goal we need the following lemmas.

Lemma 7. Let X be a monotone class of graphs such that S € X, then the clique-width
of the graphs in Q*(X) is bounded by a constant.

Proof. In [21], it was proved that if S Z X, then the clique-width is bounded for graphs
in X. It is known (see e.g. [12]) that for monotone classes, the clique-width is bounded
if and only if the tree-width is bounded. By subdividing the edges of all graphs in X
exactly once, we transform X into the class S(X), where the tree-width is still bounded,
since the subdivision of an edge of a graph does not change its tree-width. Since bounded
tree-width implies bounded clique-width (see e.g. [12]), we conclude that S(X) is a class
of graphs of bounded clique-width. Now, for each graph G in S(X) we create two cliques
by complementing the edges within the sets of new and old vertices. This transforms S(X)
into Q(X). It is known (see e.g. [16]) that local complementations applied finitely many
times do not change the clique-width “too much”, i.e they transform a class of graphs of
bounded clique-width into another class of graphs of bounded clique-width. Therefore, the
clique-width of graphs in @Q(X) is bounded. Finally, the clique-width of a graph is never
smaller than the clique-width of any of its induced subgraphs (see e.g. [12]). Therefore,
the clique-width of graphs in Q*(X) is also bounded. O

Lemma 8. Let X C Q*(G) be a hereditary class. The clique-width of graphs in X is
bounded by a constant if and only if it is bounded for QQ-graphs in X.

Proof. The lemma is definitely true if X = Q*(Y) for some class Y. In this case, by
definition, every non-@Q-graph in X is an induced subgraph of a Q-graph from X. However,
in general, X may contain a non-Q-graph H such that no @-graph containing H as an
induced subgraph belongs to X. In this case, we prove the result as follows.

First, we transform each graph H in X into a bipartite graph H’ by replacing the two
cliques of H (i.e. the sets of old and new vertices) with independent sets. In this way,
X transforms into a class X’ which is a subclass of S*(G). As we mentioned in the proof
of Lemma [7, this transformation does not change the clique-width “too much”, i.e. the
clique-width of graphs in X is bounded if and only if it is bounded for graphs in X’.

By definition, H € X is a Q-graph if and only if H' is a subdivision graph, i.e.
H' = S(G) for some graph G. Therefore, we need to show that the clique-width of
graphs in X’ is bounded if and only if it is bounded for subdivision graphs in X’. In one
direction, the statement is trivial. To prove it in the other direction, assume the clique-
width of subdivision graphs in X’ is bounded. If H' is not a subdivision, it contains new
vertices of degree 0 or 1. If H' contains a vertex of degree 0, then it is disconnected, and
if H' contains a vertex x of degree 1, then it has a cut-point (the neighbour of x). It is
well-known that the clique-width of graphs in a hereditary class is bounded if and only if
it is bounded for connected graphs in the class. Moreover, it was shown in [23] that the
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Figure 3: Forbidden graphs for Q*(G)

clique-width of graphs in a hereditary class is bounded if and only if it is bounded for 2-
connected graphs (i.e. connected graphs without cut-points) in the class. Since connected
graphs without cut-points in X’ are subdivision graphs, we conclude that the clique-width
is bounded for all graphs in X’. O

Finally, to prove the main result of this section, we need to show that Q*(G) is a finitely
defined class. To show this, we first characterize graphs in Q*(G) as follows: a graph G
belongs to @Q*(G) if and only if the vertices of G can be partitioned into two (possibly
empty) cliques U and W such that

(a) every vertex in W has at most two neighbours in U,

(b) if x and y are two vertices of W each of which has ezactly two neighbours in U, then

N(z)NnU # N(y)nU.

In the proof of the following lemma, we call any partition satisfying (a) and (b) nice.
Therefore, Q*(G) is precisely the class of graphs admitting a nice partition. Now we
characterize Q*(G) in terms of minimal forbidden induced subgraphs.

Lemma 9. Q*(G) = Free(N), where N is the set of eleven graphs consisting of C3, Cs,
C'7 and the eight graphs shown in Figure[3.

Proof. To show the inclusion Q*(G) C Free(N), we first observe that C3, Cs and C7 are
forbidden in Q*(G), since every graph in this class is co-bipartite, while C3, C5, C; are
not co-bipartite. Each of the remaining eight graphs of the set IV is co-bipartite, but none
of them admits a nice partition, which is a routine matter to check.

To prove the inverse inclusion Free(IN) C Q*(G), let us consider a graph G in Free(N).
By definition, G contains no C3, C5, C7. Also, since Gy is an induced subgraph of C;
with ¢ > 9, we conclude that G contains no complements of odd cycles of length 9 or
more. Therefore, G is co-bipartite. Let V3 UV, be an arbitrary bipartition of V(G) into
two cliques. In order to show that G belongs to Q*(G), we split our analysis into several
cases.
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Case 1: G contains a K, induced by vertices x1,y1 € V1 and z3,y2 € Vo. To analyze
this case, we partition the vertices of V; into four subsets with respect to x2, yo as follows:

Ay is the set of vertices of Vi adjacent to 22 and non-adjacent to yo,
Bi is the set of vertices of V; adjacent to x5 and to yo,

(' is the set of vertices of V7 adjacent to yo and non-adjacent to xo,
Dy is the set of vertices of V7 adjacent neither to xo nor to ¥s.

We partition the vertices of V5 with respect to x1, y; into four subsets As, Bo, Co, Do
analogously. We now observe the following.

(1) For i € {1,2}, either A; = () or C; = (), since otherwise a vertex in A; and a vertex
in C; together with z1,y1, z2,y2 induce Gs.

According to this observation, in what follows, we may assume, without loss of generality,
that

e Oy =0and Cy = 0.
We next observe that

(2) Either Ay = () or Ay = (), since otherwise a vertex a; € A; and a vertex as € Ao
together with x1,y1, 2, y2 induce either G (if a1 is not adjacent to ag) or Go (if aq
is adjacent to asg).

Observation (2) allows us to assume, without loss of generality, that
[ ] A2 = @
We further make the following conclusions:

(3) For i € {1,2}, |D;| < 1, since otherwise any two vertices of D; together with
x1,%2,Y1,y2 induce Gs.

(4) If Dy = {d1} and Dy = {da}, then d; is adjacent to ds, since otherwise dy, ds, x1, z2,
Y1, Y2 induce Gy.

(5) If A1 U Dy U Dy # (), then every vertex of By is adjacent to every vertex of Bs.
Indeed, assume, without loss of generality, that z € A1 U Dy and a vertex by € By is
not adjacent to a vertex by € By. Then the vertices z, b1, ba, x1, 22, y1 induce either
G (if z is not adjacent to by) or G (if z is adjacent to ba).

(6) Either Ay = () or Dy = (), since otherwise a vertex in A; and a vertex in Dy together
with z1,y1, Z2, 2 induce Gj.
According to (6), we split our analysis into three subcases as follows.

Case 1.1: Dy = {d1}. Then A; = () (by (6)) and every vertex of Bj is adjacent to
every vertex of Bs (by (5)). If Dy = (), then U = D; and W = By U By is a nice partition
of G (remember that z1,y1 € By and x2,y2 € B3).
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Now assume Dy = {dy} and denote by BY the vertices of By nonadjacent to dz and
by B} the vertices of By adjacent to dy. Similarly, we denote by BY the vertices of By
nonadjacent to d; and by Ba the vertices of By adjacent to di. Then |Bf U Bi| < 1, since
otherwise any two vertices of Bl1 U B% together with x1,xs,dy,ds induce Go. But then
U= D1UDyand W = By U B> is a nice partition of G.

Case 1.2: A1 # (). Then Dy = 0 (by (6)) and every vertex of B; is adjacent to every
vertex of By (by (5)). In this case, we claim that

(7) every vertex of By is either adjacent to every vertex of A; or to none of them. Indeed,
assume a vertex by € B has a neighbour a’ € A; and a non-neighbour a” € Aj.
Then by, a’,a”, x1,y1,y2 induce Gy.

We denote by BY the subset of vertices of By that have no neighbours in A; and by B2
the subset of vertices of By adjacent to every vertex of A;. Then

e cither |[A;| = 1 or |BY| = 1, since otherwise any two vertices of A; together with any
two vertices of BY and any two vertices of By induce G3.

e if Dy = {ds}, then |Bi| = 1, since otherwise any two vertices of Bi together with
da,x1,y2 and any vertex a in A; induce either G (if a is not adjacent to dg)) or Go
(if a is adjacent to ds)).

e if Dy = {ds}, then dy has no neighbours in B;. Indeed, if dy has a neighbour b; € By,
then vertices by, da, x1, T2, y2 together with any vertex a; € A; induce either Gy (if
dy is not adjacent to aj) or Gy (if dy is adjacent to aq).

Therefore, either U = AyUDy, W = B1UBs (if |A1| = 1) or U = BYUDy, W = A;UB;UB3
(if |BY| = 1) is a nice partition of G.

Case 1.3: Ay = () and Dy = (). In this case, if Dy # (), then U = Dy, W = By U By
is a nice partition of G, since By U By is a clique (by (5)). Assume now that Dy = 0.
If By U B> is a clique, then G has a trivial nice partition. Suppose next that B; U By is
not a clique. If all non-edges of G are incident to a same vertex, say b (i.e. b is incident
to all the edges of G), then U = {b}, W = (B U Bs) — {b} is a nice partition of G.
Otherwise, G contains a pair of non-edges bjby, ¢ E(G) and b{by ¢ E(G) with all four
vertices by,b] € By, by, b € By being distinct (i.e. )b, and bjb) form a matching in
G). We observe that {b,b],b,, 05} N {x1,y1, 79,92} = 0, because by definition vertices
x1, Y1, T2, y2 dominate the set By U By. But then b),bY, b5, b5, z1,y1 induce either Go (if
both b} and b5} are edges in G) or G (if exactly one of b}, and b,b] is an edge in G)
or G (if neither bjb5 nor bhvY is an edge in G). This completes the proof of Case 1.

Case 2: G contains no K4 with two vertices in V7 and two vertices in V5. We claim
that in this case V3 U V4 is a nice partition of G. First, the assumption of case 2 implies
that that no two vertices in the same part of the bipartition V3 U V4 have two common
neighbours in the opposite part, verifying condition (b) of the definition of nice partition.
To verify condition (a), it remains to prove that one of the parts V; and V4 has no vertices
with more than two neighbours in the opposite part. Assume the contrary and let a; € V;
have three neighbours in V5 and let as € V5 have three neighbours in V;.
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First, suppose a; is adjacent to as. Denote by by, co two other neighbours of a1 in V5
and by b1, ¢; two other neighbours of as in V;. Then there are no edges between by, ¢; and
ba, co, since otherwise we are in conditions of Case 1. But now aq, b1, c1, as, ba, c3 induce a
Gs.

Suppose now that aq is not adjacent to as. We denote by b, co, do three neighbours of
a1 in V5 and by by, ¢1, dy three neighbours of as in V;. No two edges between by, ¢y, d; and
by, co,dsy (if any) share a vertex, since otherwise we are in conditions of Case 1. But then
a1, b1, c1,d1, as,ba, co, doy induce either G5 or Gg or G7 or Gg. This contradiction completes
the proof of the lemma. O

Now we are ready to prove the main result of the section.

Theorem 8. If P # NP, then Q*(S) is a boundary class for the UPPER DOMINATING SET
problem.

Proof. From Lemmas [{ and [l we know that UPPER DOMINATION is NP-hard in the class
Q*(Zy,) for all values of k > 3. Also, it is not hard to verify that the sequence of classes
Q*(Z1),Q*(Z2) ... converges to Q*(S). Therefore, Q*(S) is a limit class for the UPPER
DOMINATING SET problem. To prove its minimality, assume there is a limit class X
which is properly contained in @Q*(S). We consider a graph F € Q*(S) — X, a graph
G € Q(S) containing F' as an induced subgraph (possibly G = F if F € Q(S)) and a
graph H € S such that G = Q(H). From the choice of G and Lemma [0 we know that
X C Free(N U{G}), where N is the set of minimal forbidden induced subgraphs for the
class @*(G). Since the set N is finite (by Lemmal[d), we conclude with the help of Lemmall
that the UPPER DOMINATING SET problem is NP-hard in the class Free(NU{G}). To obtain
a contradiction, we will show that graphs in Free(/N U {G}) have bounded clique-width.

Denote by M the set of all graphs containing H as a spanning subgraph. Clearly
Free(M) is a monotone class. More precisely, it is the class of graphs containing no H as
a subgraph (not necessarily induced). Since Free(M) is monotone and S ¢ Free(M) (as
H € S), we know from Lemma [7 that the clique-width is bounded in Q*(Free(M)).

To prove that graphs in Free(N U {G}) have bounded clique-width, we will show that
Q-graphs in this class belong to Q*(Free(M)). Let Q(H') be a Q-graph in Free(N U{G}).
Since the vertices of Q(H') represent the vertices and the edges of H' and Q(H') does
not contain G' as an induced subgraph, we conclude that H’ does not contain H as a
subgraph. Therefore, H' € Free(M), and hence Q(H') € Q(Free(M)). By Lemma [§ this
implies that all graphs in Free(N U {G}) have bounded clique-width. This contradicts the
fact that the UPPER DOMINATING SET problem is NP-hard in this class and completes the
proof of the theorem. O

5 A dichotomy in monogenic classes

The main goal of this section is to show that in the family of monogenic classes the UPPER
DOMINATING SET problem admits a dichotomy, i.e. for each graph H, the problem is either
polynomial-time solvable or NP-hard for H-free graphs. We start with polynomial-time
results.
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5.1 Polynomial-time results

As we have mentioned in the introduction, the UPPER DOMINATING SET problem can be
solved in polynomial time for bipartite graphs [10], chordal graphs [I5] and generalized
series-parallel graphs [I4]. It also admits a polynomial-time solution in any class of graphs
of bounded clique-width [11]. Since Py-free graphs have clique-width at most 2 (see e.g.
[8]), we make the following conclusion.

Proposition 1. The UPPER DOMINATING SET problem can be solved for P,-free graphs in
polynomial time.

In what follows, we develop a polynomial-time algorithm to solve the problem in the
class of 2Ks-free graphs.

We start by observing that the class of 2Ks-free graphs admits a polynomial-time
solution to the MAXIMUM INDEPENDENT SET problem (see e.g. [25]). By Lemma [2] every
maximal (and hence maximum) independent set is a minimal dominating set. These
observations allow us to restrict ourselves to the analysis of minimal dominating sets X
such that

e X contains at least one edge,
o [X]>a(G),

where a(G) is the independence number, i.e. the size of a maximum independent set in
G.

Let G be a 2Ks-free graph and let ab be an edge in G. Assuming that G contains a
minimal dominating set X containing both a and b, we first explore some properties of X.
In our analysis we use the following notation. We denote by

e N the neighbourhood of {a, b}, i.e. the set of vertices outside of {a, b} each of which
is adjacent to at least one vertex of {a,b},

e A the anti-neighbourhood of {a, b}, i.e. the set of vertices adjacent neither to a nor
to b,

e Y =XNN,

o Z:=N(Y)NA,ie. the set of vertices of A each of which is adjacent to at least one
vertex of Y.

Since a and b are adjacent, by Lemma [2] each of them has a private neighbour outside
of X. We denote by

e a* a private neighbour of a,

e b* a private neighbour of b.

By definition, a* and b* belong to N —Y and have no neighbours in Y. Since G is 2K»-free,
we conclude that

Claim 1. A is an independent set.
We also derive a number of other helpful claims.

Claim?2. ZNX =0and A—Z C X.
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Proof. Assume a vertex z € Z belongs to X. Then X — {z} is a dominating set, because
z does not dominate any vertex of A (since A is independent) and it is dominated by its
neighbor in Y. This contradicts the minimality of X and proves that ZNX = (). Also, by
definition, no vertex of A — Z has a neighbour in Y U {a,b}. Therefore, to be dominated
A — Z must be included in X. O

Claim 3. If | X| > a(G), then |Y| = |Z| and every vertex of Z is a private neighbor of a
vertex in Y.

Proof. Since every vertex y in Y belongs to X and has a neighbour in X (a or b), by
Lemma 2] y must have a private neighbor in Z. Therefore, |Z| > |Y|. If |Z| is strictly
greater than |Y|, then |X| < |AU{a}| < a(G) (since A is independent), which contradicts
the assumption |X| > «(G). Therefore, |Y| = |Z]| and every vertex of Z is a private
neighbor of a vertex in Y. O

Claim 4. If |Y]| > 1 and |X| > a(G), then Y C N(a) N N(b).

Proof. Let y1,ys be two vertices in Y and let z1, 29 be two vertices in Z which are private
neighbours of y; and ys, respectively.

Assume a is not adjacent to yi, then b is adjacent to y; (by definition of V') and a*
is adjacent to z1, since otherwise the vertices a,a*,y1, 21 induce a 2K5 in G. Also, a* is
adjacent to zo, since otherwise a 2K5 is induced by a*, z1,y2,20. But now the vertices
a*, z9,b,y1 induce a 2K5. This contradiction shows that a is adjacent to y;. Since y; has
been chosen arbitrarily, a is adjacent to every vertex of Y, and by symmetry, b is adjacent
to every vertex of Y. O

Claim 5. If |Y] > 1 and |X| > a(G), then a* and b* have no neighbours in Z.

Proof. Assume by contradiction that a* is adjacent to a vertex z; € Z. By Claim 3, 2z is
a private neighbour of a vertex y; € Y. Since |Y| > 1, there exists another vertex ys € Y
with a private neighbor zo € Z. From Claim 4, we know that b is adjacent to yo. But then
the set {b,y2,a*, 21} induces a 2K5. This contradiction shows that a* has no neighbours
in Z. By symmetry, b* has no neighbours in in Z. U

The above series of claims leads to the following conclusion, which plays a key role for
the development of a polynomial-time algorithm.

Lemma 10. If | X| > a(G), then |Y| =1 and Y C N(a) N N(b).

Proof. First, we show that |Y| < 1. Assume to the contrary that |Y'| > 1. By definition of
a* and Claim 2, vertex a* has no neighbours in A—Z7, and by Claim 5, ¢* has no neighbours
in Z. Therefore, AU {a*,b} is an independent set of size |X| = |Y|+ |A — Z| + 2. This
contradicts the assumption that |X| > a(G) and proves that |Y| < 1.

Suppose now that |Y| = 0. Then, by Claim 3, |Z| = 0 and hence, by Claim 2,
X = AU{a,b}. Also, by definition of a*, vertex a* has no neighbours in A. But then
AU {a*, b} is an independent set of size |X|, contradicting that |X| > «a(G).

From the above discussion we know that Y consists of a single vertex, say y. It remains
to show that y is adjacent to both a and b. By definition, y must be adjacent to at least
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one of them, say to a. Assume that y is not adjacent to b. By definition of a*, vertex a*
has no neighbours in {y} U (A — Z), and by definition of Z, vertex y has no neighbours in
A—Z. But then (A—Z)U{a*,b,y} is an independent set of size | X| = |Y|+|A— Z|+ 2.
This contradicts the assumption that |X| > «a(G) and shows that y is adjacent to both a
and b. O

Corollary 1. If a minimal dominating set in a 2Ko-free graph G is larger than o(Q),
then it consists of a triangle and all the vertices not dominated by the triangle.

In what follows, we describe an algorithm A to find a minimal dominating set M with
maximum cardinality in a 2Ks-free graph G in polynomial time. In the description of
the algorithm, given a graph G = (V| E) and a subset U C V', we denote by A(U) the
anti-neighbourhood of U, i.e. the subset of vertices of G outside of U none of which has
a neighbour in U.

Algorithm A

Input: A 2Ks-free graph G = (V, E).
Output: A minimal dominating set M in G with maximum cardinality.

1. Find a maximum independent set M in G.
2. For each triangle T in G:

o Let M':=TUA(T).

e If M’ is a minimal dominating set and |M’| > |M]|, then M := M’.
3. Return M.

Theorem 9. Algorithm A correctly solves the UPPER DOMINATING SET problem for 2Ko-
free graphs in polynomial time.

Proof. Let G be a 2Ko-free graph with n vertices. In O(n?) time, one can find a maximum
independent set M in G (see e.g. [25]). Since M is also a minimal dominating set (see
Lemma [T]), any solution of size at most «(G) can be ignored.

If X is a solution of size more than a(G), then, by Corollary [l it consists of a triangle
T and its anti-neighbourhood A(T'). For each triangle T', verifying whether T'U A(T) is a
minimal dominating set can be done in O(n?) time. Therefore, the overall time complexity
of the algorithm can be estimated as O(n®). O

5.2 The dichotomy

In this section, we summarize the results presented earlier in order to obtain the following
dichotomy.

Theorem 10. Let H be a graph. If H is a 2K5 or Py (or any induced subgraph of 2Ko
or Py), then the UPPER DOMINATING SET problem can be solved for H-free graphs in
polynomial time. Otherwise the problem is NP-hard for H-free graphs.

Proof. Assume H contains a cycle C}, then the problem is NP-hard for H-free graphs
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e cither by Theorem [0]if £ < 5, because in this case the class of H-free graphs contains
all graphs of girth at least 6,

e or by Theorem [7 if ¥ > 6, because in this case the class of H-free graphs contains
the class of K3-free graphs and hence all complements of bipartite graphs.

Assume now that H is acyclic, i.e. a forest. If it contains a claw (a star whose center has
degree 3), then the problem is NP-hard for H-free graphs by Theorem [7], because in this
case the class of H-free graphs contains all K3-free graphs and hence all complements of
bipartite graphs.

If H is a claw-free forest, then every connected component of H is a path. If H contains
at least three connected components, then the class of H-free graphs contains all K s-free
graphs, in which case the problem is NP-hard by Theorem [{l Assume H consists of two
connected components P, and P;.

o If K+t > 5, then the class of H-free graphs contains all Ks-free graphs and hence
the problem is NP-hard by Theorem [7l

e If k41t < 3, then the class of H-free graphs is a subclass of Ps-free graphs and hence
the problem can be solved in polynomial time in this class by Proposition [l

o If k+t =4, then

— either K =t = 2, in which case H = 2K, and hence the problem can be solved
in polynomial time by Theorem [9,

— or k=4 and t = 0, in which case H = P, and hence the problem can be solved
in polynomial time by Proposition [I]

— or k=3 and t = 1, in which case the class of H-free graphs contains all K 3-free
graphs and hence the problem is NP-hard by Theorem [1

O

6 Conclusion

In this paper, we identified the first boundary class for the UPPER DOMINATING SET
problem and proved that the problem admits a dichotomy for monogenic classes, i.e.
classes defined by a single forbidden induced subgraph. We conjecture that this dichotomy
can be extended to all finitely defined classes. By Theorem M), the problem is NP-hard in a
finitely defined class X if and only if X contains a boundary class for the problem. In the
present paper, we made the first step towards the description of the family of boundary
classes for UPPER DOMINATION. Since the problem is NP-hard in the class of triangle-free
graphs (Theorem [6]), there must exist at least one more boundary class for the problem.
We believe that this is again the class S of tripods. This class was proved to be boundary
for many algorithmic graph problems, which is typically done by showing that a problem
is NP-hard in the class Z; for any fixed value of k. We believe that the same is true for
UPPER DOMINATION, but this question remains open.

One more open question deals with Lemma [6] of the present paper. It shows a rela-
tionship between MINIMUM DOMINATING SET in general graphs and UPPER DOMINATING
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SET in co-bipartite graphs. For the first of these problems, three boundary classes are
available [4]. One of them was transformed in the present paper to a boundary class for
UPPER DOMINATION. Whether the other two can also be transformed in a similar way is
an interesting open question, which we leave for future research.
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