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Abstract The resiliency of a network is its ability to remain effectively functioning
also when any of its nodes or links fails. However, to reduce operational and set-up
costs, a network should be small in size, and this conflicts with the requirement of
being resilient. In this paper we address this trade-off for the prominent case of the
broadcasting routing scheme, andwe build efficient (i.e., sparse and fast) fault-tolerant
approximate shortest-path trees, for both the edge and vertex single-failure case. In
particular, for an n-vertex non-negatively weighted graph, and for any constant ε > 0,
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we design two structures of size O
(

n log n
ε2

)
which guarantee (1 + ε)-stretched paths

from the selected source also in the presence of an edge/vertex failure. This favorably
compares with the currently best known solutions, which are for the edge-failure case
of size O(n) and stretch factor 3, and for the vertex-failure case of size O(n log n) and
stretch factor 3. Moreover, we also focus on the unweighted case, and we prove that
an ordinary spanner can be slightly augmented in order to build efficient fault-tolerant
approximate breadth-first-search trees.

Keywords Shortest-path trees · Fault-tolerant structures · Approximate distances

1 Introduction

Broadcasting a message from a source node to every other node of a network is one of
the most basic communication primitives. Since this operation should be performed
by making use of a both sparse and fast infrastructure, the natural solution is to root at
the source node a shortest-path tree (SPT) of the underlying graph. However, the SPT,
as any tree-based network topology, is highly sensitive to a link/node malfunctioning,
which will unavoidably cause the disconnection of a subset of nodes from the source.

To be readily prepared to react to any possible (transient) failure in an SPT, one
has then to enrich the tree by adding to it a set of edges selected from the underlying
graph, in order to obtain a subgraph that approximately preserves the distance from the
source vertex even when a single component (i.e., edge or vertex) fails. More formally,
if s denotes a distinguished source vertex of an undirected graph G = (V, E) with
non-negative real weights on its edges, and H is a spanning subgraph of G, then the
stretch of v ∈ V in H w.r.t. to G (and s, that will be omitted) is the ratio between
the distance from s to v in H and in G. Then, for α ≥ 1, we say that a spanning
subgraph H of G is an Edge-fault-tolerant α-Approximate SPT of G w.r.t. s (in short,
α-EASPT), if for each edge e ∈ E , each vertex v ∈ V has stretch at most α in
H − e = (V (H), E(H)\{e}) w.r.t. G − e. When vertex failures are considered, then
the EASPT is correspondingly called VASPT. Ideally we would like an E/VASPT to
have both a low stretch α and a small size, measured as the number |E(H)| of edges
in H . The case in which α = 1 corresponds to requiring all the post-failure distances
in H − e to match the distances in G − e, i.e., H must contain an SPT (rooted at s) of
G − e for every e ∈ E . However, in this case, it is easy to see that Ω(n2) edges might
be required, as shown in Fig. 1.1

The aim of this paper is to show that, as soon as we allow for approximate distances,
we can obtain an almost optimal stretch-size tradeoff for E/VASPTs.

1.1 Related Work

Aproblem that is very closely related to the design of anE/VASPT is that of computing
a single-source distance sensitivity oracle (SDSO). Designing an efficientSDSOmeans

1 Actually, a related but significantly more involved construction was originally provided in [16], in order
to show a similar lower bound for on the space of any data structure for reporting exact shortest paths from
a source vertex upon any vertex/edge failure.
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Fig. 1 A weighted graph G on n vertices and Θ(n2) edges such that an edge-fault-tolerant SPT H of
G is G itself. The vertices are partitioned into three sets X = {x0, . . . , xk = s}, Y = {y1, . . . , xk }, and
Z = {z1, . . . , zk }. Vertices in X are connected by a path whose edges have weight 0, there is a star centered
in x0 whose leaves are the vertices in Y , and the sets Y and Z induce a complete bipartite graph. All edge
weights of the star and the complete bipartite graph are equal to ε with 0 < ε < 1

2 , while, for 0 < i ≤ k,
there is an edge of cost i between xi and zi . A SPT of G from s is shown with bold edges. If any edge
e = (xi , xi+1) fails the new SPT of G − e must include all the edges connecting zi to the vertices in Y

to compute, with a low preprocessing time, a compact data structure which is able to
quickly return a (possibly approximate) distance between a source vertex s and any
other vertex of the graph, following a component failure. Notice that any E/VASPT H
also implies the existence of a (trivial) SDSO having the same size, the same stretch,
and a query time of O(|E(H)| + n log n): this SDSO is obtained by storing the whole
graph H and by running Dijkstra’s algorithm from s on the surviving graph to answer
queries.

In [5] the authors compute in O(m log n+n2 log n) time aSDSO of size O(n log n),
which reports, in constant time per query, 3-stretched distances following the failure
of a single vertex. Such an oracle is also path-reporting, i.e., it is able to return the path
associated with a distance query by paying an additional time which is proportional
to the number of edges it contains. A closer inspection of this result shows that this
SDSO is actually obtained through the computation of a 3-VASPT of size O(n log n).
Regarding single edge failures, in [21] are (implicitly) provided (i) a path-reporting
SDSO having stretch 3, size O(n), and constant query time, and (ii) a corresponding
3-EABFS2 containing 2(n − 1) edges. Very recently, in [8], the authors show how to
build a (non path-reporting) SDSO having stretch 1 + ε, size O(nδ) and query time
O(δ log n), where δ = ε−1 log ε−1, which can be improved to O(1) for the special
case ε = 1.

If we focus on unweighted graphs and we insist on preserving exact distances (i.e.,
stretch equal to 1) then, in [26], the authors provide a 1-E/VABFS of size O(n ·

2 We use the notation E/VABFS instead of E/VASPT to stress the fact that we are dealing with unweighted
graphs.
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min{ecc(s),
√

n}), where ecc(s) denotes the eccentricity of the source s in G. In the
same paper, the authors also exhibit a corresponding lower bound of Ω(n3/2) for
the size of such a structure (in fact, the construction provided in Fig. 1 is obtained
by elaborating such lower bound). In [5] the authors focus on the vertex-failure case
and, for any ε > 0, they compute in O(m

√
n/ε) time a path-reporting SDSO of size

O( n
ε3

+ n log n), stretch (1 + ε), and having constant query time. Once again, this
SDSO is obtained through the construction of a (1+ε)-VABFS of size O( n

ε3
+n log n).

Actually, we point out that the latter structure can be easily sparsified so as to obtain,
for any ε > 0, a (1 + ε)-EABFS of size O( n

ε3
): indeed, its O(n log n)-size term is

associated with an auxiliary substructure that, for the case of edge failures, can be
made of linear size. This result is of independent interest, since it qualifies itself as the
best current solution for the EABFS problem. In [27] the authors present, among other
results, a 3-EABFS having at most 4n edges. Interestingly, this was the first explicit
construction for the problem, but two (better) implicit solutions were already available
in the literature: the first one is the just mentioned structure which can be derived from
the results presented in [5], while the second one is the 3-EASPT of size at most 2n
(and then, a fortiori, a 3-EABFS of the same size) of [21] that can be easily obtained
as a by-product of the results given therein (we will discuss this point in more detail
later).

1.2 Our Results

Our main result is a polynomial time construction3 of a (1 + ε)-E/VASPT of size
O(

n log n
ε2

), for any ε > 0. These two structures substantially improve the stretch of
the 3-EASPT of linear size implicitly given in [21], and that of the 3-VASPT of size
O(n log n) given in [5], respectively, while essentially using the same number of edges
(up to a logarithmic factor in the former case). To obtain our results, we perform a
careful selection of edges that will be added to an initial SPT. The somewhat surprising
outcome of our approach is that if we accept to have slightly stretched fault-tolerant
paths, then we can drastically reduce the Θ(n2) size of the structure that we would
have to pay for having fault-tolerant shortest paths! Actually, the analysis of the stretch
factor and of the structures’ size induced by our algorithms is quite involved. Thus,
for clarity of presentation, we give our result in two steps: first, we show an approach
to build a (1+ ε)-EASPT of size O(

n log n
ε2

), then we outline how this approach can be
extended to the vertex-failure case.

We also focus on the unweighted case, and we exhibit an interesting connection
between a fault-tolerant approximate BFS and an (α, β)-spanner. An (α, β)-spanner
of a graph G is a spanning subgraph H of G such that all the node-to-node distances
in H are stretched by at most a multiplicative factor of α plus an additive term of
β w.r.t. the corresponding distances in G. If such a condition holds even after an
edge/vertex is deleted from both G and H , then H is an edge/vertex-fault-tolerant
(α, β)-spanner. Moreover, if the guarantee on the stretch only holds for distances

3 We do not insist on the time efficiency in building our structures, since the focus of our paper, consistently
with the literature, is on the trade-off between their size and their stretch factor.
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from vertices in a subset S ⊆ V , then the spanner is said to be sourcewise. We show
how a (α, β)-spanner of size σ can be used to build in polynomial time a sourcewise
edge-fault-tolerant (resp. vertex-fault-tolerant) (α, β)-spanner of size O(σ + |S| · n)

(resp., O(σ +|S| ·n log n)). This result has three main consequences. First of all notice
that when |S| = 1, a sourcewise edge/vertex-fault-tolerant (α, 0)-spanner is exactly
an α-E/VABFS. As a consequence, for relevant values of α and β (e.g., when they are
constant) the E/VABFS problem is easier than the corresponding (non fault-tolerant)
spanner problem, and we regard this as an interesting hardness characterization.4 A
second consequence, is that this bridge between the two problems allows to build the
sparsest (1, β)-VABFS structures known so far, by making use of the vast literature

on additive (1, β)-spanners. More precisely, the (1, 4)-spanner of size Õ(n
7
5 ) given

in [11], and the (1, 6)-spanner of size O(n
4
3 ) given in [4], can be used to build cor-

responding VABFS structures. As a last consequence of our result, we are able to:

(i) sparsify, for |S| = ω̃(n
1
15 ), the sourcewise edge-fault-tolerant (1, 4)-spanner of

size O(|S| · n
4
3 ) given in [27] by reducing its size to Õ(n

7
5 + |S|n); and (ii) reduce

the stretch of the sourcewise vertex-fault-tolerant (1, 8)-spanner of size Õ(n
4
3 ) given

in [23] to (1, 6), for |S| = Õ(n
1
3 ) (see Sect. 6 for the exact bounds of the obtained

spanners).

1.3 Other Related Results

Additive EABFS structures In addition to the already cited results, in [27] the authors
also consider (α, β)-EABFS, i.e., edge-fault-tolerant structures for which the length
of a path is stretched by at most a factor of α plus an additive term of β. In particular,
they prove that (1, 3)-EABFS structures admit a lower bound of Ω(n5/4) edges, thus
showing an interesting dichotomy between multiplicative and additive stretches, i.e.,
the fact that additive stretches require super-linear size. Moreover, they construct a
(1, 4)-EABFS of size O(n4/3).

Sourcewise E/VABFS structures In [26], the same authors extend the already cited

1-E/VABFS of size O(n
3
2 ) to the sourcewise case, i.e., that in which the structure

incorporates an edge-fault-tolerantBFS rooted at each vertex of a set S ⊆ V . Here, they
show the existence of a solution of size O(

√|S| · n3/2), which is tight. Moreover, they
also consider the optimization problem of constructing a minimum-size sourcewise 1-
E/VABFS, and they provide a corresponding tight O(log n)-approximation algorithm.

Multiple edge failures Regarding multiple edge failures, Parter in [24] presented a
2-edge-fault-tolerant exact BFS having O(n5/3) edges, which is tight, while in [27] it
is shown the existence of a (3( f + 1), ( f + 1) log n)-EABFS of size O( f n) for any
number f = O(1) of failed edges. This latter result has been improved in [9] where
the authors prove the existence of a (2|F | + 1)-EASPT of size O( f n) which tolerates
the failure of any set F of edges of size at most f . This structure can be converted
into a corresponding SDSO having the same size, and with query time O(|F |2 log2 n).

4 For constant values of α and β, the size of an (α, β)-spanner is ω(n log n) and hence the additive terms
in the size of our E/VABFS are dominated by σ .
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Moreover, if one is willing to use O(m log2 n) space, such an oracle is also able to
handle any number of edge failures (i.e., up to m). In [15], the special case of shortest-
path failures was considered, where the set of failing edges F is supposed to form a
source-leaf subpath in a given SPT of G. In particular, for the case |F | = 2, they give
an SDSO achieving stretch 3, size O(n log n), and constant query time.

Directed graphsFor single-source distances on directed graphswith integer positive
edge weights bounded by M , in [20] it is shown how to build efficiently in Õ(Mnω)

time, where ω < 2.373 denotes the matrix multiplication exponent, a randomized
edge-fault-tolerant SDSO of size Θ(n2) returning in O(1) time distances from the
source which are exact w.h.p.

Fault-tolerant spanners Another setting which is very close in spirit to ours is that
of fault-tolerant spanners. In [12], for weighted graphs and any integer k ≥ 1, the
authors present a (2k − 1, 0)-spanner resilient to f vertex (resp., edge) failures of
size O( f 2 k f +1 n1+1/k log1−1/k n) (resp., O( f n1+1/k)). This was later improved
through a randomized construction in [17]. For a comparison, the sparsest known
(2k − 1)-multiplicative ordinary spanner has size O(n1+1/k) [1], and this is believed
to be asymptotically tight due to the long-standing girth conjecture of Erdős [19].
Finally, we mention that in [3] it was introduced the resembling concept of resilient
spanners, i.e., spanners such that whenever any edge in G fails, then the relative
distance increases in the spanner are very close to those in G, and it was shown how
to build a resilient spanner by augmenting an ordinary spanner.

Concerning unweighted graphs, it makes instead sense to study fault-tolerant addi-
tive spanners. In particular, Braunshvig et al. [10] proposed the following general
approach to build an additive spanner tolerating up to f edge failures: Let A be an
f -edge-fault-tolerant (α, 0)-spanner, and let B be an ordinary (1, β)-spanner. Then
H = A ∪ B is an f –edge-fault-tolerant (1, 2 f (2β + α − 1) + β)-spanner. Recently,
in [7] the corresponding analysis has been refined yielding a better additive bound of
2 f (β + α − 1) + β, and, more in general, improved fault-tolerant additive spanners
have been presented. Also very close to our present work are the (non-fault-tolerant)
sourcewise spanners (which, again, approximately preserves all distances from a given
set S ⊆ V of sources). In that respect, in [14] the authors give, for any k > 1, a structure
with additive stretch 2k and size O(n1+1/(2k+1)(k|S|)k/(2k+1)), which in particular for
k = log n returns a structure with additive stretch 2 log n and size O(n

√|S| log n). To
the best of our knowledge, no results are instead known for the weighted case.

Further related works For recent achievements on all-to-all distance sensitivity
oracles, we refer the reader to [5,6,13,18], while for other results on single-edge/vertex
failures spanners/oracles on unweighted graphs, we finally refer the reader to [2,5,23,
25].

1.4 Paper Organization

The paper is organized as follows: in Sect. 2 we introduce the notation that will be
used throughout the paper; in Sect. 3 we revisit one of the swap procedures presented
in [21] to formally prove that it can be used to build a simple 3-EASPT; in Sects. 4
and 5 we present our main results, namely a (1 + ε)-EASPT and a (1 + ε)-VASPT,
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respectively; in Sect. 6 we focus on unweighted graphs, and we show the connection
between an E/VABFS and an (α, β)-spanner; finally, in Sect. 7 we conclude the paper
by outlining few directions for future research.

2 Preliminaries and Notation

We start by introducing our notation. For the sake of brevity, we give it for the case of
edge failures, but it can be naturally extended to the node failure case.

Let G = (V, E) be a non-negatively real weighted, undirected input graph. Given a
source vertex s ∈ V , we denote by T a fixed SPT of G rooted at s. Letw(e) orw(u, v)

denote the weight of an edge e = (u, v) ∈ E . For a subgraph H = (V (H), E(H))

of G, say H ⊆ G, we denote by w(H) = ∑
e∈E(H) w(e). Moreover, given an edge

e = (u, v), we denote by H − e or H − (u, v) (resp., H + e or H + (u, v)) the graph
obtained from H by removing (resp., adding) the edge e. Similarly, for a set F of
edges, H + F will denote the graph obtained from H by adding the edges in F .

Given an edge e = (u, v) ∈ E(T ), we denote by U (e) and D(e) the partition of V
induced by the two connected components of T − e, such that U (e) contains s and u,
and D(e) contains v. Then, C(e) = {(x, y) ∈ E : x ∈ U (e), y ∈ D(e)} will denote
the cutset of e, i.e., the set of edges crossing the cut (U (e), D(e)).

We will denote by πH (x, y) a shortest path in H between two vertices x, y ∈ V ,
and by dH (x, y) its (weighted) length. Whenever the source vertex s is an endpoint
of a shortest path in H , say towards another vertex u, we will simply write πH (u) and
dH (u) instead of πH (s, u) and dH (s, u). Given an edge e ∈ E , we define π−e

H (x, y),
d−e

H (x, y) and T −e to be, respectively, a shortest path between x and y in H − e, its
length, and an SPT of G − e rooted at s. For the sake of simplifying the notation,
shortest paths and distances in G will be denoted by omitting the subscript. When
considering an edge (u, v) of T , we will assume u to be closer to s than v. Moreover,
if P is a path from x to y and Q is a path from y to z, with x, y, z ∈ V , we will denote
by P ◦ Q the path from x to z obtained by concatenating P and Q.

Throughout the rest of the paper we will assume that, when multiple shortest paths
exist, ties will be broken in a consistent manner. More precisely, we assume the fol-
lowing:

1. T −e is computed using a deterministic algorithm, i.e., multiple runs of the same
algorithm to compute an SPT of G − e always return the same SPT;

2. π−e(t) denotes the shortest path from s to t in G − e which is also contained in
T −e;

3. if x is a node of π−e(t), then π−e(x, t) is a subpath of π−e(t);
4. T −e is computed giving higher priority to edges in T , i.e., if π−e(t) contains two

distinct vertices x and y such that one of them is an ancestor of the other w.r.t. T ,
then the unique shortest path in T from x to y is a subpath of π−e(t).

2.1 Simplifying Assumptions on G

For the sake of avoiding technicalities, we assume that the edge weights in the input
graph G are strictly positive. Indeed, our results easily extend to non-negative weights
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as explained in the following, and thus all our statements are given in the more general
form. Assume w.l.o.g. that the smallest non-zero weight of an edge is 1 (this can
be guaranteed by multiplying all the weights by the inverse of the smallest non-zero
weight), and that ε < 2 (as otherwise the already existing 3-E/VASPT constructions
of [21] and [5] could be used instead). We define a new graph G ′ in which every edge
of weight 0 in G has weight ε

2(1+ ε
2 )n , while the other edge weights remain unaltered.

Then, the edges of any (1+ ε
2 )-E/VASPT H ′ ofG ′ (w.r.t. s) induce a (1+ε)-E/VASPT

H of G (w.r.t. s). Indeed, for every t ∈ V and e ∈ E , we have:

d−e
H (t) ≤ d−e

H ′ (t) ≤
(
1 + ε

2

)
d−e

G ′ (t) < (1 + ε

2
)

(
d−e(t) + nε

2(1 + ε
2 )n

)

= (1 + ε)d−e(t) +
(
1 + ε

2

) nε

2(1 + ε
2 )n

− ε

2
d−e(t)

= (1 + ε)d−e(t) + ε

2
(1 − d−e(t)) < (1 + ε)d−e(t) + (1 − d−e(t)).

If d−e(t) ≥ 1 then the second term is non-positive and therefore d−e
H (t) < (1 +

ε)d−e(t). Otherwise, d−e(t) must be 0 and we have d−e
H (t) < 1 which implies d−e

H =
0.

We also assume, w.l.o.g., that the input graph G is 2-edge/vertex-connected, to
avoid pathological failures that would disconnect the graph (this can be guaranteed by
adding to G a new vertex that is connected to all the other vertices with edges of large
weight).

3 A 3-EASPT Structure with at Most 2n− 2 Edges

We here provide a revisitation of one of the swap procedures presented in [21] to
formally prove that it can be used to build a simple 3-EASPT with at most 2n − 2
edges, on which our construction of the (1 + ε)-EASPT will rely. More precisely, in
[21] the authors were concerned with the problem of reconnecting in a best possible
way (w.r.t. a set of distance criteria) the two subtrees of an SPT undergoing an edge
failure, through a careful selection of a swap edge, i.e., an edge with an endvertex in
each of the two subtrees. In particular, they show that if we select as a swap edge for
e = (u, v) – with u closer to the source s than v – the edge that lies on a shortest path
in G − e from s to v, then the distances from the source towards all the disconnected
vertices is stretched at most by a factor of 3.5 Therefore, a 3-EASPT of size at most
2n − 2 can be obtained by simply adding to an SPT rooted at s such a swap edge for
each corresponding tree edge, and interestingly this improves the 3-EASPT of size at
most 4n provided in [27].

More formally, Algorithm 1 builds a 3-EASPT H0 as follows: initially H0 is an
SPT of G then, for each possible failure of an edge e = (u, v) in T , we augment H0
by adding the (unique) edge (x, y) of C(e) that lies on a shortest path π−e(v) from s

5 Actually, in [21] it is not explicitly claimed the 3-stretch factor, but this is implicitly obtained by the
qualitative analysis of the swap procedure therein provided.
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Algorithm 1: Algorithm for building a 3-EASPT
Input : A non-negatively real weighted graph G, s ∈ V
Output: A 3-EASPT H0 of G rooted at s

1 H0 ← T
2 for e = (u, v) ∈ E(T ) do
3 fe ← the single edge in C(e) ∩ π−e(v)

4 H0 ← H0 + fe
5 return H0

to v. Notice that this is the only edge of π−e(v) that is not already in T as both πT (x)

and πT (v, y) do not contain e.

Lemma 1 Algorithm 1 computes in polynomial time a 3-EASPT structure of size at
most 2n − 2.

Proof The claim on the size of H0 is a direct consequence of the fact that we add at
most one swap edge for each failure, so we only need to prove that H0 is a 3-EASPT
structure. As H0 contains all the edges of T the condition dH0(u) = d(u) ∀u ∈ V is
clearly true. Moreover, the above still holds whenever an edge e /∈ E(T ) fails.

Now, let e = (u, v) ∈ E(T ) be the failed edge and let t be any vertex in V . If t
belongs to U (e) then H0 contains the whole shortest path π−e(t) = π(t). Otherwise,
H0 contains both the path π−e(v) and the path π−e(v, t) = π(v, t) so we can write:

d−e
H0

(t) ≤ d−e(v) + d(v, t) ≤ d−e(t) + 2d(v, t) ≤ d−e(t) + 2d(t) ≤ 3d−e(t).

�

4 A (1+ ε)-EASPT Structure

First, we give a high-level description of our algorithm for computing a (1+ε)-EASPT
(see Algorithm 2).

We build our structure H by starting from the 3-EASPT of size O(n) returned by
Algorithm 1. Then, our algorithm works in n − 1 phases, where each phase considers
the failure of an edge of T w.r.t. a fixed preorder visit of the edges, say e1, . . . , en−1.
Let eh be the edge of T of the h-th phase of the algorithm. The algorithm checks all the
vertices in D(e) and, whenever a vertex t is bad for eh , i.e., d−eh

H (t) > (1+ε)d−eh (t),
it chooses a suitable value η ≥ 1 and adds to H all the last η edges of π−eh (t) that
are missing in H . As we will see, the choice of η guarantees not only that the stretch
of t in the augmented structure w.r.t. G − eh is within 1 + ε, but it also guarantees a
substantial improvement on the stretch factors of all the nodes in π−eh (t) in which the
added edges were entering. More precisely, as a first ingredient, we will show that if
the algorithm adds mh edges to our structure during phase h, then the total decrease
on the stretch factors of these nodes (once measured w.r.t. G − eh) is at least Ω(

ε mh
log n ).

However, this is not enough to get to our final result, since when passing to the next
phase, i.e., when considering the removal of eh+1, the current stretches now measured
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w.r.t G−eh+1 might change completely. Thus, our main difficulty will lie in putting all
the phases together in the analysis. To this aim,wewillmake use of a second ingredient,
namely a suitable non-negative monotonically decreasing potential function Φ, which
essentially measures the overall stretches w.r.t. G, and so it is independent of the
current failing edge. Such Φ will be such that its initial value is O(n/ε), and it will be
shown to decrease at each phase of a quantity Ω(

ε mh
log n ). As a consequence, at the end

of the last phase, we will obtain that the total number of added edges is O(
n log n

ε2
).

The main result we are going to prove in this section is then the following:

Theorem 1 Given an n-vertex non-negatively real weighted graph G = (V, E), a
source vertex s ∈ V , and any ε > 0, the structure H returned in polynomial time by
Algorithm 2 is a (1 + ε)-EASPT of G w.r.t. s of size O(

n log n
ε2

).

We will prove separately the bound on the stretch factor and on the size of the
structure in the next two subsections (see Lemmas 3 and 10, respectively).

4.1 Stretch Factor of the Structure

To prove the correctness of our algorithm, we first show that for each bad vertex, say
t , associated with a failing edge, say e, the algorithm adds a set F of η edges of π−e(t)
to the current structure so as the augmented structure minus e contains a path from
s to t which is 1 + ε stretched w.r.t. G − e. We now describe how both η and F are
chosen.

Let us denote by H̃ the structure built by the algorithm just before t is considered.
Let f = (x, y) with x ∈ U (e) be the unique edge (recall indeed that edge weights
are positive) in C(e) ∩ E(π−e(t)). Consider the subpath of π−e(t) going from x to
t and let X = {x0 = x, x1 = y, . . . , xr = t} be its vertices, in order of appearance
in π−e(x, t). Then, let X ′ = {xi ∈ X : (xi−1, xi ) /∈ E(H̃)}. We rename the vertices
of X ′ as z1, . . . , zk , according to their order, and we let z0 = x (see Fig. 2). For

i = 0, . . . k, let αi = d−e
H̃

(zi )

d−e(zi )
, i.e., the stretch of zi in H̃ − e w.r.t. G − e. Observe that

α0 = 1.
Think of the edges in π−e(t) as being directed towards t for a moment. We now

describe how the set F of edges added by the algorithm, with |F | = η, is selected. For
i = 0, . . . , k, consider the sequence γi = 1 + ε

Hk
(Hk − Hk−i ), where Hn denotes

the n-th harmonic number. Notice that the sequence is monotonically increasing from
γ0 = 1 to γk = 1 + ε. Let 0 ≤ j < k be the largest index such that α j ≤ γ j (see
Fig. 3). Notice that j always exists as α0 = γ0. Then, we add the set F of the edges
entering into the last η = k − j vertices in X ′ to H̃ .

This is enough to prove the correctness of our algorithm as the following lemma
shows.

Lemma 2 Let e be any edge of T and let t be any bad vertex for e. Let H̃ be the
structure built by the algorithm just before t is considered during the visit of e, and,
finally, let j be the maximum index such that α j ≤ γ j . Then, for every vertex t ′ of
π−e(z j , t), we have that d−e

H̃+F
(t ′) ≤ d−e

H̃
(z j ) + d−e(z j , t ′) ≤ α j d−e(t ′).
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Fig. 2 Edge selection phase of
Algorithm 2 when a bad vertex t
for the failing edge e is
considered. Bold edges belong
to H̃ while the black path is
π−e(t). The shortest paths from
s to zi and t in G are shown in
gray

e

v

u

x = z0

s

z2

zi

zk−1 zk = t

π−e(t)

f

C(e)

y=z1

Proof Observe that π−e(z j , t) is a subpath of π−e(t). Therefore

d−e
H̃+F

(t ′) ≤ d−e
H̃

(z j ) + d−e(z j , t ′) ≤ α j d−e(z j ) + d−e(z j , t ′)

≤ α j
(
d−e(z j ) + d−e(z j , t ′)

) = α j d−e(t ′). �

Since the structure H returned by the algorithm contains H̃ + F and since α j ≤
γ j ≤ 1 + ε, Lemma 2 immediately implies the following.

Lemma 3 The structure H returned by Algorithm 2 is a (1 + ε)-EASPT.

4.2 Size of the Structure

Now we describe the edge selection process and we analyze the size of our final
structure. To this aim, we first describe how a bad vertex is handled, then we show
how this will be exploited within a single phase, and finally in the development of all
the algorithm’s phases.

4.2.1 Handling a Bad Vertex

Let us fix the failed edge e = (u, v) and a single bad vertex t for e. We here
show that the choice of F described above ensures that the overall decrease of
the values αi , once they are computed w.r.t. H̃ + F , will be at least ε

Hn
η. As we

will see later, this fact will be instrumental to show the final bound on our struc-
ture.

Let Z(t) = {z j+1, . . . , zk} be the set of vertices for which an incoming edge has
been added in F , that we call the special vertices associated with t . For every vertex
z ∈ Z(t), we define in H̃ + F − e the following path P(z) := π−e

H̃
(z j ) ◦ π−e(z j , z)
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Algorithm 2: Algorithm for building an (1 + ε)-EASPT
Input : A non-negatively real weighted graph G, s ∈ V , ε > 0
Output: A (1 + ε)-EASPT of G rooted at s

1 H ← H0.
2 for e ∈ E(T ) in preorder w.r.t. T do
3 for every t ∈ D(e) do
4 if d−e

H (t) > (1 + ε)d−e(t) then // vertex t is bad for edge e
// Select a suitable set of edges F ⊆ E(π−e(t))

5 Let f = (x, y) with x ∈ U (e) be the unique edge in C(e) ∩ E(π−e(t)),
6 Let π−e(x, t) = 〈x0, x1, x2, . . .〉.
7 Let X = {xi : (xi−1, xi ) /∈ E(H)}.
8 Let z0 = x and let X ′ = {z1, . . . , zk } be the vertices of X , in order of appearance in

π−e(x, t).

9 Let αi = d−e
H (zi )

d−e(zi )
for i = 0, . . . , k.

10 j ← max{ j | α j ≤ 1 + ε
Hk

(Hk − Hk−i )}
// F contains the edges of π−e(x, t) entering the last

k − j = η vertices in X ′
11 F ← {(xi−1, xi ) | xi ∈ {z j+1, . . . , zk }}

// Add the edges in F to the current subgraph
12 H ← H + F
13 return H

(notice indeed that by construction π−e(z j , z) is entirely contained in H̃ + F − e).
Moreover, we define α′

i = w(P(zi ))
d−e(zi )

, and note that α′
i is an upper bound to the stretch

of zi in H̃ + F − e w.r.t. G − e. The following holds:

Lemma 4 For every i = j + 1, . . . , k, α′
i ≤ α j < αi .

Proof Indeed, by definition of j , we have α j ≤ γ j < γi < αi . Moreover, since zi is
a vertex of π−e(z j , t), from Lemma 2 we have that

α′
i = w(P(zi ))

d−e(zi )
= d−e

H̃
(z j ) + d−e(z j , zi )

d−e(zi )
≤ α j . �

Next lemma provides a lower-bound on the overall decrease on the stretch factors
of nodes in Z(t), once H̃ is enriched with new added edges in F (see also Fig. 3):

Lemma 5
∑

z∈Z(t)

(
d−e

H̃
(z)

d−e(z) − w(P(z))
d−e(z)

)
≥ ε

Hn
η.
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Fig. 3 Representation of the
sequences αi and γi . The gray
area is a lower bound to the
overall decrease of the α′

i values
w.r.t. αi with i > j . This area is,
in turn, lower bounded by the
area of the striped region which
is ε

Hk
(k − j)

1 + ε

1

z0 zj zk. . . . . .

γi
αi

γi
αi

Proof Indeed (notice that the first inequality follows from Lemma 4):

∑
z∈Z(t)

(
d−e

H̃
(z)

d−e(z)
− w(P(z))

d−e(z)

)
=

k∑
i= j+1

(αi − α′
i ) ≥

k∑
i= j+1

(αi − α j ) ≥
k∑

i= j+1

(γi − γ j )

= ε

Hk

k∑
i= j+1

(Hk− j − Hk−i
) = ε

Hk

k∑
i= j+1

⎛
⎝

k− j∑
�=1

1

�
−

k−i∑
�=1

1

�

⎞
⎠

= ε

Hk

k∑
i= j+1

⎛
⎝

k− j∑
�=k−i+1

1

�

⎞
⎠ = ε

Hk

k− j∑
�=1

|{i | k − � + 1 ≤ i ≤ k}|
�

= ε

Hk

k− j∑
�=1

1 = ε

Hk
(k − j) = ε

Hn
η. �

4.2.2 Analysis of a Single Phase

In each phase, the above selection procedure is repeated by the algorithm for every
bad vertex that should arise. To exploit how our careful selection of additional edges
for a single bad vertex will impact on the final size of our structure, we now provide a
lower-bound on the overall decrease on the stretch factors of all the special nodes of
a phase.

Let us then focus on the h-th phase of the algorithm, when edge eh is removed.
We call Bh the set of all the bad vertices considered in this phase, and moreover, let
Zh = ∪t∈Bh Z(t) (notice that Bh ⊆ Zh).

It is worth noting that for every t, t ′ ∈ Bh , with t �= t ′, we have Z(t) ∩ Z(t ′) = ∅,
i.e., sets Z(·) are pairwise disjoint. Indeed, once z ∈ Z(t), we add the edge of π−eh (t)
entering z, say (z′, z), and so when any further bad vertex t ′ is taken into consideration
during phase h, and it happens that the corresponding path π−eh (x, t ′) passes through
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z, then it will clearly uses edge (z′, z), and so z cannot be special also for t ′. Hence, we
let Ph(z) be the unique path P(z) which is built during phase h. Finally, recall that H0
is the initial 3-EASPT structure, and let H ′

h , H̃(t), and Hh be the structures currently
built by the algorithm at the beginning of phase h, just before the bad vertex t ∈ Bh

is processed, and at the end of phase h, respectively. The following corollary follows
from Lemma 4.

Corollary 1 For every z ∈ Zh, w(Ph(z)) ≤ d−eh
H ′

h
(z).

Proof Let t be a bad vertex during phase h, and let H̃ be the structure right before

t is visited within phase h. Let α = d
−eh
H̃

(z)

d−eh (z)
and α′ = w(P(z))

d−eh (z)
. Then, we have that

w(Ph(z)) = w(P(z)) = α′ d−eh (z) < α d−eh (z) = d−eh

H̃
(z) ≤ d−eh

H ′
h

(z). �

Let mh be the number of new edges added during the phase h. Next lemma, which
shows that the total decrease on the stretch factors of the nodes Zh is at least Ω(

ε mh
log n ),

is the first ingredient for bounding the size of H .

Lemma 6
∑
z∈Zh

⎛
⎝d−eh

H ′
h

(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

⎞
⎠ ≥ mh

ε

Hn
.

Proof For a bad vertex t ∈ Bh , let ηt be the number of edges selected by the algorithm
when t is considered (i.e., |F | according to the notation we used when we focused on
a single bad vertex). In the following chain of (in)equalities we use, in this order, the
fact that (i) sets Z(t) are pairwise disjoint, (ii) every H̃(·) is a supergraph of H ′

h , and
(iii) Lemma 5.

∑
z∈Zh

⎛
⎝d−eh

H ′
h

(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

⎞
⎠ =

∑
t∈Bh

∑
z∈Z(t)

⎛
⎝d−eh

H ′
h

(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

⎞
⎠

≥
∑
t∈Bh

∑
z∈Z(t)

⎛
⎝d−eh

H̃(t)
(z)

d−eh (z)
− w(Ph(z))

d−eh (z)

⎞
⎠ ≥

∑
t∈Bh

ηt
ε

Hn
≥ mh

ε

Hn
.

�

4.2.3 Putting all the Phases Together

In order to conclude our size analysis, we now consider the whole sequence of phases
executed by our algorithm. Let us define recursively a function φh(z), for every h =
0, . . . , n − 1 and every z ∈ V : first we set φ0(z) = 6

ε
d(z), and then we set

φh(z) =
{

w(Ph(z)) if z ∈ Zh;
φh−1(z) if z /∈ Zh .
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Now, let Sh = ⋃h
i=1 Zi (notice that S0 = ∅), namely the set of vertices that has been

special in one or more phases up to the end of phase h. In the following, we first
show that if z ∈ Sh , then φh−1(z) is an upper bound to d−eh

H ′
h

(z) (recall that H ′
h is the

structure at the beginning of phase h). This will be the key property needed to prove
our bound on the size of H .

In order to show the first mentioned property of φh(z), we separately consider the
cases z ∈ Zh\Sh−1 and z ∈ Sh−1 in the following two lemmas:

Lemma 7 For every z ∈ Zh\Sh−1 we have φh−1(z) ≥ d−eh
H ′

h
(z).

Proof Since z ∈ Zh we know that an incoming edge to z has been selected when the
algorithm was considering some bad vertex t for the edge eh = (u, v). Recalling that
H0 − eh ⊆ H ′

h − eh contains by construction π−eh (v) and π(v, t), we have:

d−eh (v) + d(v, t) ≥ d−eh
H ′

h
(t) > (1 + ε)d−eh (t) = (1 + ε)(d−eh (z) + d(z, t))

≥ (1 + ε)(d−eh (z) + |d(z) − d(t)|). (1)

Moreover, we also have:

d−eh (v) + d(v, t) ≤ d−eh (z) + d(z, v) + d(v, t) ≤ d−eh (z) + d(z) + d(t)

The above inequalities together imply:

d−eh (z) <
d(z) + d(t) − (1 + ε) |d(z) − d(t)|

ε
.

If d(z) ≥ d(t), the above formula becomes:

d−eh (z) <
d(z) + d(t) − (1 + ε)(d(z) − d(t))

ε
= 2d(t) + ε(d(t) − d(z))

ε
≤ 2d(z)

ε
.

Otherwise, d(z) < d(t) and we have:

d−eh (z) <
d(z) + d(t) − (1 + ε)(d(t) − d(z))

ε
= 2d(z) + ε(d(z) − d(t))

ε
≤ 2d(z)

ε
.

By hypothesis z /∈ Sh−1 (i.e., z does not belong to any set Zh′ with h′ < h), therefore
φh−1(z) = φ0(z) = 6

ε
d(z). Since H ′

h is a supergraph of H0, which is a 3-EASPT, we
immediately have:

d−eh
H ′

h
(z) ≤ d−eh

H0
(z) ≤ 3d−eh (z) <

6

ε
d(z) = φ0(z) = φh−1(z). (2)

�
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We now consider the remaining case:

Lemma 8 For z ∈ Sh−1, φh−1(z) ≥ d−eh
H ′

h
(z).

Proof For the sake of consistencywith our notation, we prove the following equivalent
claim: for any node z ∈ Zh , the weight of the path Ph(z) built by the algorithm when
eh = (u, v) fails is an upper bound to d

−ep

H ′
p

(z), for any p > h. In particular, we argue

that Ph(z) is vertex disjoint (and then edge disjoint) from π(v, z) (except for z). As
a consequence, when ep fails, either (i) ep is not in Ph(z), and so Ph(z) is still all in

H ′
p − ep, and then clearly d

−ep

H ′
p

(z) ≤ w(Ph(z)), or (ii) ep is not in π(v, z), and since

ep cannot belong to π(s, v) (as failing edges are considered in preorder), we have

d
−ep

H ′
p

(z) = d(z) ≤ w(Ph(z)).

Let H̃ be the structure constructed by the algorithm just before Ph(z) is built, t be
the corresponding bad vertex, and z j be the vertex chosen as described in Sect. 4.2.1.
Recall that z = zi for some i > j , and that Ph(z) = π

−eh

H̃
(z j ) ◦ π(z j , z). Suppose by

contradiction that Ph(z) andπ(v, z) intersect at somevertexq �= z. Clearlyq ∈ D(eh),
and we have two cases:

1. If q ∈ V (π(z j , z)) we have that the subpath π ′ of π(v, z) going from q to z
is a shortest path in T that only traverses vertices in D(eh) and hence, by our
tie-breaking rule, the subpath of π−eh (t) going from q to z coincides with π ′. It
follows that all the vertices in V (π(q, z))\{q} cannot belong to Zh . This implies
q = z, a contradiction.

2. Otherwise q ∈ V (π
−eh

H̃
(z j )). In this case, d−eh

H̃
(z j ) = d−eh

H̃
(q) + d−eh

H̃
(q, z j ).

Moreover, z j precedes z in π−eh (t) and hence d−eh (z) = d−eh (z j )+ d−eh (z j , z).
Therefore (notice that the first inequality follows from the triangle inequality and
from the fact that q ∈ π(v, z), and so π(q, z) is in T − eh and then in H̃ − eh):

αi = d−eh

H̃
(z)

d−eh (z)
≤ d−eh

H̃
(q) + d(q, z)

d−eh (z)
≤ d−eh

H̃
(q) + d−eh (q, z j )+d−eh (z j , z)

d−eh (z)
=

d−eh

H̃
(z j ) + d−eh (z j , z)

d−eh (z j ) + d−eh (z j , z)
≤ max

{
d−eh

H̃
(z j )

d−eh (z j )
,

d−eh (z j , z)

d−eh (z j , z)

}
=max{α j , 1} = α j

where we used the inequality a+b
c+d ≤ max

{ a
c , b

d

} ∀a, b, c, d > 0, and the fact
that α j ≥ 1. This is impossible as it contradicts Lemma 4. �
To summarize, by combining Lemmas 7 and 8 together, we immediately have:

Corollary 2 If z ∈ Sh, then φh−1(z) ≥ d−eh
H ′

h
(z).

We are now ready to prove the bound on the size of our structure. To this aim, as
the second ingredient for bounding the size of H , we define a non-increasing global
potential function Φ(h), h = 0, . . . , n − 1:

Φ(h) =
∑

z∈V \{s}

φh(z)

d(z)
.
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In other words, Φ(h) maps a phase h to an upper bound of the overall stretch of
Hh − eh w.r.t. G − eh : indeed, φh(z) ≥ d−eh

Hh
(z) and d−eh (z) ≤ d(z). Observe that,

by definition of φ0(z), we have Φ(0) = ∑
z∈V \{s}

φ0(z)
d(z) ≤ 6

ε
n.

Next lemma shows that the decrease of Φ after each phase, say h, of the algorithm
is at least equal to the lower bound that we gave in Lemma 6 on the overall decrease
on the stretch factors (as measured in Hh − h w.r.t. G − eh) of all the special nodes of
that phase. Since this bound depends on the number of edges added in that phase, we
will then be able to put into relationship the final size of our structure with the global
decreasing of Φ.

Lemma 9 Φ(h − 1) − Φ(h) ≥ mh
ε
Hn

.

Proof Using the definitions we have:

Φ(h − 1) − Φ(h) =
∑

z∈V \{s}

φh−1(z)

d(z)
−

∑
z∈V \{s}

φh(z)

d(z)

=
∑
z∈Zh

φh−1(z) − φh(z)

d(z)
+

∑
z∈V \(Zh∪{s})

φh−1(z) − φh(z)

d(z)

=
∑
z∈Zh

φh−1(z) − φh(z)

d(z)
≥

∑
z∈Zh

⎛
⎝d−eh

H ′
h

(z) − w(Ph(z))

d(z)

⎞
⎠

where the latter equality follows from the fact that φh(z) = φh−1(z) whenever z /∈
Zh ∪ {s}, while last inequality follows from Corollary 2 and by definition of φh(z).
Since Corollary 1 implies that every term at the numerator is non-negative, using
Lemma 6 we obtain

∑
z∈Zh

⎛
⎝d−eh

H ′
h

(z) − w(Ph(z))

d(z)

⎞
⎠ ≥

∑
z∈Zh

⎛
⎝d−eh

H ′
h

(z)

d−e(z)
− w(Ph(z))

d−e(z)

⎞
⎠ ≥ ε

Hn
mh .

�
We are finally able to prove the following:

Lemma 10 The size of the structure H returned by Algorithm 2 is O
(

n log n
ε2

)
.

Proof Since H0 contains O(n) edges, we only focus on bounding the number μ =∑n−1
h=1 mh of edges in E(H)\E(H0). Recall thatΦ(0) ≤ 6

ε
n. Moreover, as every φh(z)

is non-negative,Φ(n −1) ≥ 0 holds. Using these inequalities together with Lemma 9,
we can write:

6

ε
n ≥ Φ(0) − Φ(n − 1) =

n−1∑
h=1

(Φ(h − 1) − Φ(h)) ≥ ε

Hn

n−1∑
h=1

mh = ε

Hn
μ

which can be solved for μ to get μ = O(
n log n

ε2
). �
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Algorithm 3: Algorithm for building a 3-VASPT.
Input : A non-negatively real weighted graph G, s ∈ V , ε > 0
Output: A 3-VASPT H0 of G rooted at s

1 H0 ← T
2 Compute a decomposition of T into a set Q of ancestor-leaf vertex-disjoint paths Q1, Q2, . . . as
described in [5].

3 for Q ∈ Q do
4 for u ∈ V (Q) such that u is not a leaf in T do
5 Let v be the vertex following u in Q.
6 U ← vertices of the unique connected component of T − u containing s.
7 D ← vertices of the unique connected component of T − u containing v.
8 O ← vertices of the connected components of T − u not containing s, v.
9 T ′ ← SPT of G − u with edges directed away from s.

10 E(H0) ← E(H0) ∪ {(x, y) ∈ E(T ′) : y /∈ D}
11 E(H0) ← E(H0) ∪ {(x, y) ∈ E(π−u(v)) : (x ∈ U ∪ O) ∧ y ∈ D}
12 return H0

5 A (1+ ε)-VASPT Structure

In this section we extend our previous (1 + ε)-EASPT structure to deal with vertex
failures. In this case, when a vertex u is removed, the tree T − u breaks into several
subtrees (not just in 2, as for the edge failure case), and so a different approach is
needed. Informally, by following the ideas developed in [5], we decompose T into
several subpaths, and we let fail all the vertices along each subpath. Then, whenever
each such vertex fails, say u, we handle the bad vertices that will arise only in the tree
of the forest T − u that contains the subsequent vertices of the subpath. As we will
see, by using the path-decomposition of T developed in [5], we will be able to provide
the sought bound on the size of our structure.

Let us then see how our method works. First of all, we build a different initial
subgraph H0 (see Algorithm 3), which is a 3-VASPT. The construction of H0 is similar
to that given by Baswana and Khanna [5] for the related problem of computing a
vertex-fault-tolerant SDSO which reports (post-failure) 3-approximate distances from
s. In particular, the key difference between their construction and ours is pointed out
within the proof of the forthcoming Lemma 12, and such a difference is instrumental
to guarantee the correctness of our approach. In the following, we first describe the
construction of our structure H0, and then we argue on how the analysis for the edge-
failure case can be adjusted to show the same bound on the size of H for the vertex
failure case as well.

Initially, H0 is equal to T . Then, proceeding as proposed in [5], T is decomposed
into ancestor-leaf vertex-disjoint paths in the following recursive way: select a path
Q from the root of T to a leaf such that the removal of Q splits the tree into a forest
where the size of each subtree is at most half the size of the original tree, and then
proceed recursively on each subtree. After this preliminary path-decomposition step of
T , for each generated path an approximate structure is built. This structure will provide
approximate distances towards the vertices V \{u} whenever any vertex u along the
path fails. The union of T with all these structures will form H0.
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Fig. 4 Edge selection phase of the vertex-version of Algorithm 2 when a bad vertex t for the failing vertex
u is considered. Bold edges belong to H̃ while the black path is π−u(t). The shortest paths from v to zi
and t in G are shown in gray. Notice that all the special vertices zi ’s belong to the down set D

Let us then describe how to build the initial structure for a fixed path Q of the
previous decomposition. Let q be the starting (i.e., closest to s) vertex of Q, and let Tq

be the subtree of T rooted at q. Moreover, let u ∈ V (Q) be a failing vertex, and let v
be the next vertex in Q.6 Similarly to what is done in [5,22], we partition the vertices
of the forest T − u into three sets: (i) the up set U , containing all the vertices of the
tree of T − u rooted at s, (ii) the down set D, containing all the vertices of the tree of
T − u rooted at v, and (iii) the others set O , containing all the remaining vertices (see
Fig. 4).

In order to select the set of additional edges associated with Q, we construct an
SPT T ′ of G − u rooted at s, and we imagine that its edges are directed towards the
leaves. We select all the edges of E(T ′)\E(T ) that do not lead to a vertex in D, plus
the unique edge of π−u(v) that crosses the cut C induced by the sets U ∪ O and D.7

Notice that T − u contains all the paths in T ′ towards the vertices in U , and that each
vertex has at most one incoming edge in T ′. This implies that the number of selected
edges is at most |O| + 1.

The above procedure is repeated for all the failing vertices of Q, in order. As the
sets O associated with the different vertices are disjoint we have that, while processing
Q, at most |V (Tq)| + |Q| = O(|V (Tq)|) edges are selected. Finally, the procedure
is repeated for all the paths of the decomposition, and since such a decomposition is

6 W.l.o.g. we are assuming that the failing vertex u is not a leaf, as otherwise T − u is already an SPT of
G − u.
7 The uniqueness of such an edge follows from the suboptimality property of shortest paths, and from the
fact that if (x, y) is the first edge in the considered cut C that is encountered along the path π−u(v), then
π−u(v) = π−u(x)◦(x, y)◦π−u(y, v), whereπ−u(y, v) = π−u

T (v, y) from our shortest-path tie-breaking
rule.
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done as suggested in [5], it immediately follows that the size of the entire structure
H0 is O(n log n).

We now prove some useful properties of the structure H0. First of all, observe that,
by construction and similarly to the edge-failure case, we immediately have:

Lemma 11 Let u be a failed vertex. Then, we have that: (i) for the root v of the unique
tree in T −u that contains the vertices in D, d−u

H0
(v) = d−u(v), and (ii) for any z ∈ D,

d−u
H0

(z) ≤ 3d−u(z).

Moreover, we also have the following:

Lemma 12 Let H be a subgraph of G containing H0 and let u be a failed vertex. If,
for every t ∈ D, d−u

H (t) ≤ (1 + ε)d−u(t), then d−u
H (t) ≤ (1 + ε)d−u(t), for every

t ∈ V .

Proof Let t ∈ V . Clearly, if t ∈ U ∪ D, then the claim trivially follows. Therefore,
we assume that t ∈ O . Let t ′ be the last vertex of π−u(t) which is contained in D
during a traversal of π−u(t) from s to t . Since H contains H0 and, furthermore, since
H0 contains the shortest path from t ′ to t in G − u, we have that

d−u
H (t) ≤ d−u

H (t ′) + d−u(t ′, t) ≤ (1 + ε)d−u(t ′) + d−u(t ′, t) ≤ (1 + ε)d−u(t).

�
Lemma 12 suggests the following simple modification of Algorithm 2. More pre-

cisely, when u is failing, not all the vertices which are disconnected from s in T − u
must be visited, but it is sufficient to visit all the vertices in D.

At this point, the same analysis given for the case of edge failures can be retraced
for vertex failures as well. Indeed, all the special vertices for a bad vertex t are, by
construction, in D as well (see Fig. 4), since in H0 we were adding all the edges of a
SPT of G − u rooted at s not leading to a vertex in D, and so in particular we were
adding all the edges of π−u(t) not leading to a vertex in D. Finally, we use Lemma 11
in the proof of Lemma 7, and more precisely statement (i) in the inequality of (1) and
statement (ii) in the second inequality of Eq. (2). From this, it will be again possible
to show through the use of the potential function Φ that the number of edges added
to H0 is O(

n log n
ε2

). Hence we have:

Theorem 2 Given an n-vertex non-negatively real weighted graph G = (V, E), a
source vertex s ∈ V , and any ε > 0, the vertex-version of Algorithm 2 computes in
polynomial time a (1 + ε)-VASPT of G w.r.t. s of size O(

n log n
ε2

).

6 Relation with (α, β)-Spanners in Unweighted Graphs

In this section we turn our attention to the unweighted case, and we provide two
polynomial-time algorithms that augment an (α, β)-spanner of G so as to obtain an
(α, β)-EABFS/VABFS. We first present the algorithm for the vertex-failure case, and
then we show how it can be adapted to the edge-failure case.
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The algorithm for computing an (α, β)-VABFS of G w.r.t. s, say H , works as
follows: it first computes the structure H0 as explained in Sect. 5, then augments it
with a set of edges, and finally further augments it with the edges of the given (α, β)-
spanner of G. The structure H0 is initially augmented as follows. The vertices of the
BFS of G rooted at s are visited one at a time. Let u be a vertex visited by the algorithm
and let D be the set of vertices of the tree defined so as explained in Sect. 5 w.r.t the
path decomposition computed for H0. For every t ∈ D, the algorithm checks whether
π−u(t) contains no vertex in D\{t} and d−u(t) < d−u

H0
(t). If this is the case, then the

algorithm augments H0 with the edge of π−u(t) incident to t .
The following observation is crucial to prove the algorithm correctness.

Fact 1 For every vertex u and every vertex t ∈ V \{u} such that π−u(t) contains
a vertex in D, let x and y be the first and last vertex of π−u(t) that belong to D,
respectively. We have d−u

H0
(x) = d−u(x) and d−u

H0
(y, t) = d−u(y, t).

We can now give the following:

Theorem 3 Given an n-vertex unweighted graph G = (V, E), a source vertex s ∈ V ,
and an (α, β)-spanner of G of size σ , it is possible to compute in polynomial time an
(α, β)-VABFS of G w.r.t. s of size O

(
σ + n log n

)
.

Proof Let H be the subgraph of G computed as described above. We first prove
that H is an (α, β)-VABFS of G w.r.t. s by showing that d−u

H (t) ≤ α · d−u(t) + β,
for two distinct vertices u, t ∈ V . W.l.o.g., we can assume that π−u(t) contains
some vertices in D\{t} because, if our assumption was not true, then, by Fact 1,
d−u

H (t) = d−u(t) ≤ α · d−u(t) + β.
Let x and y be thefirst and last vertex ofπ−u(t) contained in D\{t} in a path traversal

from s to t , respectively. We have that π−u(t) = π−u(x)◦π−u(x, y)◦π−u(y, t), i.e.,

d−u(t) = d−u(x) + d−u(x, y) + d−u(y, t). (3)

By Fact 1, H contains π−u(x) as well as π−u(y, t). Therefore,

d−u
H (x) = d−u(x) and d−u

H (y, t) = d−u(y, t). (4)

We now prove that d−u
H (x, y) ≤ α ·d−u(x, y)+β. Since H contains an (α, β)-spanner

of G, H contains a path P from x to y such that w(P) ≤ α · d(x, y) + β. Clearly, if
u /∈ V (P), then H −u contains P and therefore d−u

H (x, y) ≤ w(P) ≤ α ·d(x, y)+β.
Otherwise, if u ∈ V (P), then let v be the least common ancestor of x and y in the
BFS of G rooted at s. Since v ∈ D, it follows that

d−u
H (x, y) ≤ dH (x, v)+dH (v, y) < dH (x, u)+dH (u, y) ≤ w(P) ≤ α ·d(x, y)+β.

Using the last inequality together with Eqs. (3) and (4), we have that

d−u
H (t) ≤ d−u

H (x) + d−u
H (x, y) + d−u

H (y, t)

≤ d−u(x) + α · d(x, y) + β + d−u(y, t) ≤ α · d−u(t) + β.
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We now prove that the size of H is O
(
σ + n log n

)
by showing that the size of

H0 is O(n log n). We have already shown in the previous section that the number of
edges of H0 before the algorithm augments it is O(n log n). Therefore, it remains to
bound the number of edges initially added to H0. Let F be the set of such edges. Our
argument is similar to the one used in [27] to bound the size of a 3-EABFS. Namely,
we prove that |F | ≤ 3n by showing that each vertex t caused the addition of at most
3 edges to F . Let t be a fixed vertex. Let u0, . . . , u� be the vertices of the path π(t),
in a traversal of the path from s to t whose failures caused the insertion of the edge
(vi , t) of π−ui (t) incident to t in F . Since G is unweighted, d(t) = d(vi ) + j , where
j ∈ {−1, 0, 1}. Furthermore, for every vertex u′ �= t which is a proper descendant
of u0 in the BFS tree of G rooted at s, H − u′ contains the path π(v0) ◦ π(v0, t) of
length at most d(t) + 1+ 1 = d(t) + 2. Finally, observe that for every 1 ≤ i ≤ � and
for every vertex u′ �= t which is a descendant of ui in the BFS tree of G rooted at s,
H − u′ contains the path π−ui (t). Therefore, for every 2 ≤ i ≤ �, we have that

d(t) ≤ d−ui (t) ≤ d(t) + 2 − i.

The above inequality implies that � ≤ 2. Hence each vertex t caused the addition of
at most � + 1 ≤ 3 edges to F . �

Now, we adapt the algorithm to prove a similar result for the (α, β)-EABFS. The
algorithm first augments a BFS tree T of G rooted at s and then adds its edges to
the (α, β)-spanner of G. The tree T is augmented by visiting its edges. Let e be the
edge visited by the algorithm. For every t ∈ D(e), the algorithm checks whether
π−e(t) contains no vertex in D(e)\{t} and d−e(t) < d−e

T (t). If this is the case, then
the algorithm augments T with the edge of π−e(t) incident to t . It is easy to see that
the proof of Theorem 3 can be adapted to prove the following:

Theorem 4 Given an n-vertex unweighted graph G = (V, E), a source vertex s ∈ V ,
and an (α, β)-spanner of G of size σ , it is possible to compute in polynomial time an
(α, β)-EABFS of G w.r.t. s of size at most σ + 3n.

Notice that the obtained (α, β)-E/VABFS structures can be easily adapted to
the multisource case, by simply rooting at each given source vertex s ∈ S
an augmented BFS. This will immediately provide corresponding (α, β)-stretched
sourcewise edge/vertex-fault-tolerant spanners (SES/SVS) of size O

(
σ +|S| ·n

)
and

O
(
σ + |S| · n log n

)
, respectively.

Interestingly, this immediately allows to improve some existing contructions.

Indeed, by using the (1, 4)-spanner of size Õ(n
7
5 ) given in [11] we obtain the fol-

lowing result:

Corollary 3 Given an unweighted graph G = (V, E) with n vertices, and a set of
source vertices S ⊆ V , it is possible to compute an (1, 4)-SES of G w.r.t. S having

size Õ(n
7
5 + |S| · n) in polynomial time.

This sparsifies the (1, 4)-SES of size O(|S|·n 4
3 ) given in [27] as soon as |S| = ω̃(n

1
15 ).

Moreover, by using the (1, 6)-spanner of size O(n4/3) provided in [4], we also
have:

123



Algorithmica (2018) 80:3437–3460 3459

Corollary 4 Given an unweighted graph G = (V, E) with n vertices, and a set of
source vertices S ⊆ V , it is possible to compute an (1, 6)-SVS of G w.r.t. S having

size O(n
4
3 + |S| · n log n) in polynomial time.

This improves the additive stretch of the (1, 8)-SVS of size Õ(n
4
3 ) given in [23], which

holds for |S| = Õ(n
1
3 ).

7 Conclusions

In this paper, we have studied the problem of designing single-edge/vertex-fault-
tolerant structures rooted at a source vertex, aiming at finding a compact set of edges of
the input (either weighted or unweighted) graph that will provide approximate shortest
paths from the source following the failure of an edge/vertex in the graph. The main
contribution of our research is that we can get almost shortest paths with almost linear
size, in sharp contrast with a corresponding true-shortest paths structure which may
require a quadratic size. Another interesting contribution we provided is the bridging
between (α, β)-spanners and (α, β)-E/VABFS.

The problem of designing good fault-tolerant approximate-shortest-path structures
deserves further investigation. For the single-source case, we mention three intriguing
problems: (1) designing a SDSO with stretch arbitrary close to 1, almost linear size
and constant query time for both the single-edge and the single-vertex failure scenario.
The closest result is the SDSO given in [8] that has a logarithmic query time (w.r.t.
the number of vertices of the graph) and only works for single edge failures; (2)
removing the log-factor from the size of our structure, either improving its analysis
or by further sparsifying it; (3) studying the multiple vertex-failure case. To the best
of our knowledge there are no non-trivial VASPTs or SDSOs for this case. Other
future directions involve the study of the multisource case (i.e., a sourcewise fault-
tolerant spanner), with the goal of designing a structure which only adds a sublinear
(in the number of sources) term to the size of our single-source structure. Moreover,
we also plan to investigate the existence of efficient fault-tolerant structures for other
notable network topologies, like the minimum spanning tree, the tree spanner, or the
minimum-routing cost spanning tree.
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