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Abstract

We show that randomization can lead to significant improvements for a few fundamental problems
in distributed tracking. Our basis is the count-tracking problem, where there are k players, each holding
a counter ni that gets incremented over time, and the goal is to track an ε-approximation of their sum
n =

∑
i ni continuously at all times, using minimum communication. While the deterministic commu-

nication complexity of the problem is Θ(k/ε · logN), where N is the final value of n when the tracking
finishes, we show that with randomization, the communication cost can be reduced to Θ(

√
k/ε · logN).

Our algorithm is simple and uses only O(1) space at each player, while the lower bound holds even
assuming each player has infinite computing power. Then, we extend our techniques to two related dis-
tributed tracking problems: frequency-tracking and rank-tracking, and obtain similar improvements over
previous deterministic algorithms. Both problems are of central importance in large data monitoring and
analysis, and have been extensively studied in the literature.

1 Introduction

We start with a very basic problem in distributed tracking, what we call count-tracking. There are k players
each holding a counter ni that is initially 0. Over time, the counters get incremented and we denote by
ni(t) the value of the counter ni at time t. The goal is to track an ε-approximation of the total count
n(t) =

∑
i ni(t), i.e., an n̂(t) such that (1− ε)n(t) ≤ n̂(t) ≤ (1 + ε)n(t),1 continuously at all times. There

is a coordinator whose job is to maintain such an n̂(t), and will try to do so using minimum communication
with the k players (the formal model of computation will be defined shortly).

There is a trivial solution to the count-tracking problem: Every time a counter ni has increased by a
1 + ε factor, the player informs the coordinator of the change. Thus, the coordinator always has an ε-
approximation of every ni, hence an ε-approximation of their sum n. Letting N denote the final value of
n, simple analysis shows that the communication cost of this algorithm is O(k/ε · logN)2. This algorithm
was actually used in [16] for solving essentially the same problem, which also provided many practical
motivations for studying this problem. Note that this algorithm is deterministic and only uses one-way
communication (from the players to the coordinator), and yet it turns out this simple algorithm is already

1We sometimes omit “(t)” when the context is clear.
2A more careful analysis leads to a slightly better bound ofO(k/ε · log(εN/k)), but we will assume thatN is sufficiently large,

compared to k and 1/ε, to simplify the bounds.
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space (per site) communication
count-tracking trivial O(1) Θ(k/ε · logN)

new O(1) O(
√
k/ε · logN)

Ω(
√
k/ε · logN) messages

frequency-tracking [29] O(1/ε) Θ(k/ε · logN)

new O(1/(ε
√
k)) O(

√
k/ε · logN)

Ω(1/(ε
√
k)) bits? Ω(

√
k/ε · logN) messages

rank-tracking [29] O(1/ε · log n) O(k/ε · logN log2(1/ε))

new O
(

1/(ε
√
k) · log1.5 1

ε log0.5 1
ε
√
k

)
O
(√

k/ε · logN log1.5 1
ε
√
k

)
Ω(1/(ε

√
k)) bits? Ω(

√
k/ε · logN) messages

sampling [9] O(1) O(1/ε2 · logN)

Table 1: Space and communication costs of previous and new algorithms. We assume k ≤ 1/ε2. All upper
bounds are in terms of words. ?This is conditioned upon the communication cost being O(

√
k/ε · logN)

bits.

optimal for deterministic algorithms, even if two-way communication is allowed [29]. Thus the immediate
questions are: What about randomized algorithms that are allowed to fail with a small probability? Is two-
way communication not useful at all? In this paper, we set out to address these questions, and then move on
to consider other related distributed tracking problems.

1.1 The distributed tracking model

We first give a more formal definition of the computation model that we will work with, which is essentially
the same as those used in prior work on distributed tracking [2, 3, 5, 6, 8, 9, 16, 23, 29]. There are k dis-
tributed sites S1, . . . , Sk, each receiving a stream of elements over time, possibly at varying rates. Let N be
the total number of elements in all k streams. We denote byAi(t) the multiset (bag) of elements received by
Si up until time t, and let A(t) =

⊎k
i=1Ai(t) be the combined data set, where ] denotes multiset addition.

There is a coordinator whose job is to maintain (an approximation of) f(A(t)) continuously at all times,
for a given function f (e.g., f(A(t)) = |A(t)| for the count-tracking problem above). The coordinator has
a direct two-way communication channel with each of the sites; note that broadcasting a message costs k
times the communication for a single message. The sites do not communicate with each other directly, but
this is not a limitation since they can always pass messages via the coordinator. We assume that communi-
cation is instant, i.e., no element will arrive until all parties have decided not to send more messages. As in
prior work, our measures of complexity will be the communication cost and the space used to process each
stream. Unless otherwise specified, the unit of both measures is a word, and we assume that any integer less
than N , as well as an element from the stream, can fit in one word.

This model was initially abstracted from many applied settings, ranging from distributed data monitor-
ing, wireless sensor networks, to network traffic analysis, and has been extensively studied in the database
community. From 2008 [8], the model has started to attract interests from the theory community as well,
as it naturally combines two well-studied models: the data stream model and multi-party communication
complexity. When there is only k = 1 site who also plays the role of the coordinator, the model degenerates
to the standard streaming model; when k ≥ 2 and our goal is to do a one-shot computation of f(A(∞)),
then the model degenerates to the (number-in-hand) k-party communication model. Thus, distributed track-
ing is more general than both models. Meanwhile, it also appears to be significantly different from either,
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with the above count-tracking problem being the best example. This problem is trivial in both the streaming
and the communication model (even computing the exact count is trivial), whereas it becomes nontrivial in
the distributed tracking model and requires new techniques, especially when randomization is allowed, as
illustrated by our results in this paper.

Note that there is some work on distributed streaming (see e.g. [10, 11, 17, 30]) that adopts a model very
similar to ours, but with a fundamental difference. In their model there are k streams, each of which runs
a streaming algorithm on its local data. But the function f on the combined streams is computed only at
the end or upon requests by the user. As one can see that the count-tracking problem is also trivial in this
model. The crucial difference is that, in this model, the sites wait passively to get polled. If we want to track
f continuously, we have to poll the sites all the time. Whereas in our model, the sites actively participate in
the tracking protocol to make sure that f is always up-to-date.

1.2 Problem statements, previous and new results

In this paper, we first study the count-tracking problem. Then we extend our approach to two related, more
general problems: frequency-tracking and rank-tracking. Both problems are of central importance in large
data monitoring and analysis, and have been extensively studied in the literature. In all the communication
upper bounds, we will assume k ≤ 1/ε2; otherwise all of them will carry an extra additive O(k logN)
term. There are other good reasons to justify this assumption, which we will explain later. All our results
are summarized in Table 1; below we discuss each of them respectively.

As mentioned earlier, the deterministic communication complexity for the count-tracking problem has
been settled at Θ(k/ε · logN) [29]3, with or without two-way communication. In this paper, we show that
with randomization and two-way communication, this is reduced to Θ(

√
k/ε·logN). We first in Section 2.1

present a randomized algorithm with this communication cost that, at any one given time instance, maintains
an ε-approximation of the current n with a constant probability. The algorithm is very simple and uses O(1)
space at each site. It is easy to make the algorithm correct for all time instances and boost the probability
to 1− δ: Since we can use the same approximate value n̂ of n until n grows by a 1 + ε factor, it suffices to
make the algorithm correct for O(log1+εN) = O(1/ε · logN) time instances. Then running O(log( logN

δε ))
independent copies of the algorithm and taking the median will achieve the goal of tracking n continuously
at all times, with probability at least 1−δ. The Ω(

√
k/ε · logN) lower bound (Section 2.2) actually holds on

the number of messages that have to be exchanged, regardless of the message size, and holds even assuming
the sites have unlimited space and computing power. That randomization is necessary to achieve this

√
k-

factor improvement follows from the previous deterministic lower bound [29]; here in Section 2.2 we give
an proof that two-way communication is also required. More precisely, we show that any randomized
algorithm with one-way communication has to use Ω(k/ε · logN) communication, i.e., the same as that for
deterministic algorithms.

In the frequency-tracking (a.k.a. heavy hitters tracking) problem, A(t) is a multiset of cardinality n(t)
at time t. Let fj(t) be the frequency of element j in A(t). The goal is to maintain a data structure from
which fj(t), for any given j, can be estimated with absolute error at most εn(t), with probability at least
0.9 (say). Note that this problem degenerates to count-tracking when there is only one element. It is
reasonable to ask for an error in terms of n(t): if the error were εfj(t), then every element would have
to be reported if they were all distinct. In fact, this error requirement is the widely accepted definition
for the heavy hitters problem, which has been extensively studied in the streaming literature [7]. Several

3The lower bound in [29] was stated for the heavy hitters tracking problem, but essentially the same proof works for count-
tracking.
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algorithms with the optimal O(1/ε) space exist [18–20]. In the distributed tracking model, we previously
[29] gave a deterministic algorithm with O(k/ε · logN) communication, which is the best possible for
deterministic algorithms. In this paper, by generalizing our count-tracking algorithm, we reduce the cost to
O(
√
k/ε · logN), with randomization (Section 3). Since this problem is more general than count-tracking,

by the count-tracking lower bound, this is also optimal. Our algorithm uses O(1/(ε
√
k)) space to process

the stream at each site, which is actually smaller than the Ω(1/ε) space lower bound for this problem
in the streaming model. This should not come at a surprise: Due to the fact that the site is allowed to
communicate to the coordinator during the streaming process, the streaming lower bounds do not apply in
our model. To this end, we prove a new space lower bound of Ω(1/(ε

√
k)) bits for our model, showing that

our algorithm also uses near-optimal space. This space lower bound is conditioned upon the requirement
that the communication cost should be O(

√
k/ε · logN) bits. Note that it is not possible to prove a space

lower bound unconditional of communication: A site can send every element to the coordinator and thus
only needs O(1) space. In fact, what we prove is a space-communication trade-off; please see Section 3.2
for the precise statement.

For the rank-tracking problem, it will be convenient to assume that the elements are drawn from a
totally ordered universe and A(t) contains no duplicates. The rank of an element x in A(t) (x may not be
in A(t)) is the number of elements in A(t) smaller than x, and our goal is to compute a data structure from
which the rank of any given x can be estimated with error at most εn(t), with constant probability. Note
that a rank-tracking algorithm also solves the frequency-tracking problem (but not vice versa), by turning
each element x into a pair (x, y) to break all ties and maintaining such a rank-tracking data structure.
When the frequency of x is desired, we ask for the ranks of (x, 0) and (x,∞) and take the difference. We
previously [29] gave a deterministic algorithm for the rank-tracking problem with communication O(k/ε ·
logN log2(1/ε)). In this paper, we show in Section 4 how randomization can bring this down to O(

√
k/ε ·

logN log1.5(1/ε
√
k)), which is again optimal ignoring polylog(1/ε, k) factors. Since rank-tracking is more

general than frequency-tracking, the previous lower bounds also hold here. Our algorithm uses space that is
also close to the Ω(1/(ε

√
k)) lower bound.

Since we are talking about randomized algorithms with a constant success probability, we should also
compare with random sampling. It is well known [25] that this probabilistic guarantee can be achieved for
all the problems above by taking a random sample of size O(1/ε2). A random sample can be maintained
continuously over distributed streams [9], solving these distributed tracking problems, with a communication
cost ofO(1/ε2 · logN). This is worse than our algorithms when k = o(1/ε2). As noted earlier, all the upper
bounds we have mentioned above have a hidden additive O(k logN) term, including that for the random
sampling algorithm. Thus when k = Ω(1/ε2), all of them boil down to O(k logN), while Ω(k) is an easy
lower bound for all these problems (see Theorem 2.3). This means that when k = Ω(1/ε2), all problems
can be solved optimally by just random sampling, up to an O(logN) factor. Therefore, k = o(1/ε2) is the
more interesting case worthy of studying. In addition, as the error (in particular for the frequency-tracking
and the rank-tracking problems) is in terms of n, the current size of the entire data set, typical values of ε
are quite small. For example, ε = 10−2 ∼ 10−4 was used in the experimental study [7] for these problems
in the streaming model; while k usually ranges from 10 to 104. Thus we will assume k ≤ 1/ε2 in all the
upper bounds throughout the paper.

The idea behind all our algorithms is very simple. Instead of deterministic algorithms, we use random-
ized algorithms that produce unbiased estimators for ni, the frequencies, and ranks with variance (εn)2/k,
leading to an overall variance of (εn)2, which is sufficient to produce an estimate within error εn with con-
stant probability. This means we can afford an error of εn/

√
k from each site, as opposed to εn/k for deter-

ministic algorithms. This is essentially where we obtain the
√
k-factor improvement by randomization. Our
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algorithms are simple and extremely lightweight, in particular the count-tracking and frequency-tracking
algorithms, thus can be easily implemented in power-limited distributed systems like wireless sensor net-
works.

1.3 Other related work

As distributed tracking is closely related to the streaming and the k-party communication model, it could
be enlightening to compare with the known results of the above problems in these models. As mentioned
earlier, the count-tracking problem is trivial in both models, requiring O(1) space in the streaming model
and O(k) communication in the k-party communication model.

Both the frequency-tracking and rank-tracking problems have been extensively studied in the streaming
model with a long history. The former was first resolved by the MG algorithm [20] with the optimal space
O(1/ε), though several other algorithms with the same space bound have been proposed later on [18, 19].
The rank problem is also one of the earliest problems studied in the streaming model [21]. The best deter-
ministic algorithm to date is the one by Greenwald and Khana [12]. It uses O(1/ε · log n) working space
to maintain a structure of size O(1/ε), from which any rank can be estimated with error εn. Note that the
rank problem is often studied as the quantiles problem in the literature. Recall that for any 0 ≤ φ ≤ 1, the
φ-quantile of D is the element in A(t) that ranks at bφnc, while an ε-approximate φ-quantile is any element
that ranks between (φ− ε)n and (φ+ ε)n. Clearly, if we have the data structure for one problem, we can do
a binary search to solve the other. Thus the two problems are equivalent, for deterministic algorithms. For
algorithms with probabilistic guarantees, we need allO(log(1/ε)) decisions in the binary search to succeed,
which requires the failure probability to be lowered by an O(log(1/ε)) factor. By running O(log log(1/ε))
independent copies of the algorithm, this is not a problem. So the two problems differ by at most a factor of
O(log log(1/ε)).

The existing streaming algorithms for the frequency and rank problems can be used to solve the one-
shot version of the problem in the k-party communication model easily. More precisely, we use a streaming
algorithm to summarize the data set at each site with a structure of size O(1/ε), and then send the these
summary structures to the coordinator, resulting in a communication cost of O(k/ε). Recently, we designed
randomized algorithms for these two problems withO(

√
k/ε) communication [13, 14], which have just been

shown to be near-optimal in an unpublished manuscript [26]. Thus, the results in this paper demonstrate that,
the seemingly much more challenging tracking problem, which requires us to solve the one-shot problem
continuously at all times, is only harder by an Θ(logN) factor (except for the count-tracking problem, which
is much harder than its one-shot version).

Finally, we should mention that all these distributed tracking problems have been studied in the database
community previously, but mostly using heuristics. Keralapura et al. [16] approached the count-tracking
problem using prediction models, which do not work under adversarial inputs. Babcock and Olston [3]
studied the top-k tracking problem, a variant of the frequency (heavy hitters) tracking problem, but did
not offer a theoretical analysis. The rank-tracking problem was first studied by Cormode et al. [6]; their
algorithm has a communication cost of O(k/ε2 · logN) under certain inputs.

2 Tracking Distributed Count

2.1 The algorithm

The algorithm with a fixed p Let p be a parameter to be determined later. For now we will assume that p
is fixed. The algorithm is very simple: Whenever site Si receives an element (hence ni gets incremented by

5



one), it sends the latest value of ni to the coordinator with probability p. Let n̄i be the last updated value of
ni received by the coordinator. We first estimate each ni by

n̂i =

{
n̄i − 1 + 1/p, if n̄i exists;
0, else.

(1)

Then we estimate n as n̂ =
∑

i n̂i.

Analysis As mentioned in the introduction, our analysis will hold for any given one time instance. It is
also important to note that this given time instance shall not depend on the randomization internal to the
algorithm.

We show that each n̂i is an unbiased estimator of ni with variance at most 1/p2. This is very intuitive,
since ni − n̄i is the number of failed trials until the site decides to send an update to the coordinator, when
we look backward from the current time instance. This follows a geometric distribution with parameter p,
but not quite, as it is bounded by ni. This is why we need to separate the two cases in (1). A more careful
analysis is given below:

Lemma 2.1 E[n̂i] = ni; Var[n̂i] ≤ 1/p2.

Proof. Define the random variable

X =

{
ni − n̄i + 1, if n̄i exists;
ni + 1/p, else.

Now we can rewrite n̂i as n̂i = ni−X+1/p. Thus it suffices to show that E[X] = 1/p and Var[X] ≤ 1/p2.
Letting t = ni − n̄i + 1, we have

E[X] =

ni∑
t=1

(t(1− p)t−1p) + (ni + 1/p)(1− p)ni =
1

p
.

Var[X] =

ni∑
t=1

((t− 1/p)2(1− p)t−1p) + (ni + 1/p− 1/p)2(1− p)ni

=
(1− p)(1− (1− p)ni)

p2
≤ 1

p2
.

By Lemma 2.1, we know that n̂ is an unbiased estimator of n with variance ≤ k/p2. Thus, if p =√
k/εn, the variance of n̂ will be (εn)2, which means that n̂ has error at most 2εn with probability at least

3/4, by Chebyshev inequality. Rescaling ε and p by a constant will reduce the error to εn and improves
the success probability to 0.9, as desired. Here we also see that separating the two cases in (1) is actually
important. Otherwise, when ni = Θ(εn/

√
k), there would be a constant probability that n̄i does not

exist, leading to a bias of Θ(1/p) = Θ(εn/
√
k). Summing over all k sites, this would exceed our error

requirement.
It is interesting to note that similar ideas were used to solve the one-shot quantile problem over dis-

tributed data [13].
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Dealing with a decreasing p It is not possible and necessary to set p exactly to
√
k/εn. From the analysis

above, it should be clear that keeping p = Θ(
√
k/εn) will suffice. To do so, we first track n within a

constant factor. This can be done efficiently as follows. Each site Si keeps track of its own counter ni.
Whenever ni doubles, it sends an update to the coordinator. The coordinator sets n′ =

∑k
i=1 n

′
i, where n′i

is the last update of ni. When n′ doubles (more precisely, when n′ changes by a factor between 2 and 4),
the coordinator broadcasts n′ to all the sites. Let n̄ be the last broadcast value of n′. It is clear that n̄ is
always a constant-factor approximation of n. The communication cost is O(k logN), since each site sends
O(logN) updates to the coordinator and the coordinator broadcasts O(logN) times, each of which costs k
messages. These broadcasts divide the whole tracking period into O(logN) rounds, and within each round,
n stays within a constant factor of n̄, the broadcast value at the beginning of the round.

Now, when n̄ ≤
√
k/ε, we set p = 1. This causes all the first O(

√
k/ε) elements to be sent to the

coordinator. When n̄ >
√
k/ε, we set p = 1/bεn̄/

√
kc2, where bxc2 denotes the largest power of 2 smaller

than x. Since n̄ is monotonically increasing, p gets halved over the rounds. At the beginning of a round, if
the new p is half4 of that in the previous round, each site Si adjusts its n̄i appropriately, as follows. First
with probability 1/2, the site decides if n̄i remains the same. If so, nothing changes; otherwise, it repeatedly
flips a coin with probability 1/p (with the new p). Every failed coin flip decrements n̄i by one. It does so
until a successful coin flip, or n̄i = 0. Finally, the site informs the coordinator of the new value of n̄i; if
n̄i = 0, the coordinator will treat it as if n̄i does not exist. It should be clear that after this adjustment, the
whole system looks as if it had always been running with the new p.

It is easy to see that the communication cost in each round is O(k + pn) = O(k +
√
k/ε) = O(

√
k/ε),

thus the total cost is O(
√
k/ε · logN).

Theorem 2.1 There is an algorithm for the count-tracking problem that, at any time, estimates n =
∑

i ni
within error εn with probability at least 0.9. It uses O(1) space at each site and O(

√
k/ε · logN) total

communication.

2.2 The lower bound

Before proving the lower bounds, we first state our lower bound model formally, in the context of the count-
tracking problem. TheN elements arrive at the k sites in an online fashion at arbitrary time instances. We do
not allow spontaneous communication. More precisely, it means that a site is allowed to send out a message
only if it has just received an element or a message from the coordinator. Likewise, the coordinator is
allowed to send out messages only if it has just received messages from one or more sites. When a site Sj is
allowed to send out a message, it decides whether it will indeed do so and the content of the message, based
only on its local counter nj and the message history between Sj and the coordinator, possibly using some
random source. We assume that the site does not look at the current clock. We argue that the clock conveys
no information since the elements arrive at arbitrary and unpredictable time instances. (If the elements arrive
in a predictable fashion, say, one per time step, the problem can be solved without communication al all.)
Similarly, when the coordinator is allowed to send out messages, it makes the decision on where and what to
send based only on its message history and some random source. We will lower bound the communication
cost only by the number of messages, regardless of the message size.

4To be more precise, the new p might also be a quarter of the previous p, but it can be handled similarly.
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2.2.1 One-way communication lower bound

In this section we show that two-way communication is necessary to achieve the upper bound in Theo-
rem 2.1, by proving the following lower bound. Remember that we assume N is sufficiently larger than k
and 1/ε.

Theorem 2.2 If only the sites can send messages to the coordinator but not vice versa, then any randomized
algorithm for the count-tracking problem that, at any time, estimates n within error εn with probability at
least 0.9 must send Ω(k/ε · logN) messages.

Proof. We first define the hard input distribution µ.

(a) With probability 1/2, all elements arrive at one site that is uniformly picked at random.

(b) Otherwise, the N elements arrive at the k sites in a round-robin fashion, each site receiving N/k
elements in the end.

By Yao’s Minimax principle [28], we only need to argue that any deterministic algorithm with success
probability at least 0.8 under µ has expected cost Ω(k/ε · logN).

Note that when only one-way communication is allowed, a site decides whether to send messages to the
coordinator only based on its local counter nj . Thus the communication pattern can be essentially described
as follows. Each site Sj has a series of thresholds t1j , t

2
j , . . . such that when nj = tij , the site sends the i-th

message to the coordinator. These thresholds should be fixed at the beginning.
We lower bound the communication cost by rounds. Let Wi be the number of elements that have arrived

up until round i. We divide the rounds by setting W1 = k/ε, and Wi+1 = d(1 + ε)Wie for i ≥ 1. Thus
there are 1/ε · log(εN/k) rounds, which is Ω(1/ε · logN) for sufficiently large N .

At the beginning of round i + 1, suppose that S1, S2, . . . , Sk have already sent zi1, z
i
2, . . . , z

i
k messages

to the coordinator, respectively. Let ti+1
max = (1 + ε) ·max{tz

i
j

j | j = 1, 2, . . . , k}. We first observe that there

must be at least k/2 sites with their next threshold t
zij+1

j ≤ ti+1
max. Otherwise, suppose there are less than

k/2 sites with such next thresholds, then with probability at least 1/4 case (a) happens and the random site

Sj chosen to receive all elements has t
zij+1

j > ti+1
max ≥ (1 + ε)t

zij
j . Thus, with probability at least 1/4 the

algorithm fails when the ti+1
max-th element arrives, contradicting the success guarantee.

On the other hand, with probability 1/2 case (b) happens. In this case all t
zij
j (j = 1, 2, . . . , k) are no

more than Wi/k, since in case (b), elements arrive at all k sites in turn. In the next εWi elements, each site

Sj receives εWi/k elements. If the site Sj has t
zij+1

j ≤ ti+1
max, then it must send a message in this round,

since Wi/k + εWi/k ≥ ti+1
max ≥ t

zij+1

j , that is, its (zij + 1)-th threshold is triggered. As argued, there are

≥ k/2 sites with t
zij+1

j ≤ ti+1
max, so the communication cost in this round is at least k/2.

Summing up all rounds, the total communication is at least Ω(k/ε · logN).

2.2.2 Two-way communication lower bound

Below we prove two randomized lower bounds when two-way communication is allowed. The first one
justifies the assumption k ≤ 1/ε2, since otherwise, random sampling will be near-optimal.
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Theorem 2.3 Any randomized algorithm for the count-tracking problem that, at any time, estimates n
within error 0.1n with probability at least 0.9 must exchange Ω(k) messages.

Proof. The hard input distribution is the same as that in the proof of Theorem 2.2. To prove this lower
bound we are only interested in the number of sites that communicate with the coordinator at least once.
Before any element arrives, we can still assume that each site keeps a triggering threshold. The thresholds
of Sj shall remain the same unless it communicates with the coordinator at least once. We argue that there
must be at least k/2 sites whose triggering threshold is no more than 1, since otherwise if case (a) happens
and the randomly chosen site is one with a triggering threshold larger than 1, the algorithm will fail, which
would happen with probability at least 1/4. On the other hand, if case (b) happens, then all the sites with
threshold 1 will have to communicate with the coordinator at least once: either their thresholds are triggered
by the round-robin arrival of elements, or they receive a message from the coordinator, which can possibly
change their threshold.

Finally, we show that the upper bound in Theorem 2.1 is asymptotically tight. We first introduce the
following primitive problem.

Definition 2.1 (1-bit) Let s be either k/2 +
√
k or k/2−

√
k, each with probability 1/2. From the k sites,

a subset of s sites picked uniformly at random each have bit 1, while the other k − s sites have bit 0. The
goal of the communication problem is for the coordinator to find out the value of s with probability at least
0.8.

We will show the following lower bound for this primitive problem.

Lemma 2.2 Any deterministic algorithm that solves 1-bit has distributional communication complexity
Ω(k).

Lemma 2.2 immediately implies the following theorem:

Theorem 2.4 Any randomized algorithm for the count-tracking problem that, at any time, estimates n
within error εn with probability at least 0.9 must exchange Ω(

√
k/ε · logN) messages, when k < 1/ε2.

Proof. We will again fix a hard input distribution first and then focus on the distributional communication
complexity of deterministic algorithms with success probability at most 0.8. Let [m] = {0, 1, . . . ,m − 1}.
The adversarial input consists of ` = log εN

k = Ω(logN) rounds. We further divide each round i ∈ [`] into
r = 1/(2ε

√
k) subrounds.

The input at round i ∈ [`] is constructed as follows, at each subround j ∈ [r], we first choose s to be
k/2+

√
k or k/2−

√
k with equal probability. Then we choose s sites out of the k sites uniformly at random

and send 2i elements to each of them (the order does not matter).
It is easy to see that at the end of in each subround in round i, the total number of items is no more than

τi =
√
k/ε · 2i. Thus after s · 2i elements have arrived in a subround, the algorithm has to correctly identify

the value of s with probability at least 0.8, since otherwise with probability at least 0.2 the estimation of the
algorithm will deviate from the true value by at least

√
k · 2i > ετi, violating the success guarantee of the

algorithm. This is exactly the 1-bit problem defined above. By Lemma 2.2, the communication cost of each
subround is Ω(k). Summing over all r subrounds and then all ` rounds, we have that the total communica-
tion is at least ` · r · Ω(k) ≥ Ω(

√
k/ε · logN).
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Now we prove Lemma 2.2.
Proof. (of Lemma 2.2) First of all, observe that whenever the coordinator communicates with a site, the
site can send its whole input (i.e., its only bit) to the coordinator. After that, the coordinator knows all the
information about that site and does not need to communicate with it further. Therefore all that we need to
investigate is the number of sites the coordinator needs to communicate with.

There can be two types of actions in the protocol.

(a) A site initiates a communication with the coordinator based on the bit it has.

(b) The coordinator, based on all the information it has gathered so far, asks some site to send its bit.

Note that if a type (b) communication takes place before a type (a) communication, we can always swap
the two, since this only gives the coordinator more information at an earlier stage. Thus we can assume that
all the type (a) communications happen before type (b) ones.

In the first phase where all the type (a) communications happen, let x be the number of sites that send bit
0 to the coordinator, and y be the number of sites that send bit 1 to the coordinator. If E[x+ y] = Ω(k), then
we are done. So let us assume that E[x + y] = o(k). By Markov inequality we have that, with probability
at least 0.9, x+ y = o(k). After the first phase, the problem becomes that there are s′ = s− y = s− o(k)
sites having bit 1, out of a total k′ = k − x − y = k − o(k) sites. The coordinator needs to figure out the
exact value of s′ with probability at least 0.8− (1− 0.9) = 0.7.

In the second phase where all type (b) communication happens, from the coordinator’s perspective, all
the remaining sites are still symmetric (by the random input we choose), therefore the best it can do is to
probe an arbitrary site among those that it has not communicated with. This is still true even after the co-
ordinator has probed some of the remaining sites. Therefore, the problem boils down to the following: The
coordinator picks z sites out of the remaining k′ sites to communicate and then decides the value of s′ with
success probability at least 0.7. We call this problem the sampling problem. We can show that to achieve
the success guarantee, z should be at least Ω(k). This result is perhaps folklore; proofs to more general
versions of this problem can be found in [4] (Chapter 4), and also [22, 27]. We include a simpler proof in
the appendix for completeness. With this we conclude the proof of Lemma 2.2.

3 Tracking Distributed Frequencies

In the frequency-tracking problem, A (we omit “(t)” when the context is clear) is a multiset and the goal is
to track the frequency of any item j within error εn. Let fij denote the local frequency of element j in Ai,
and let fj =

∑k
i=1 fij .

3.1 The algorithm

The algorithm with a fixed p As in Section 2.1 we first describe the algorithm with a fixed parameter p.
If each site tracks the local frequencies fij exactly, we can essentially use the count-tracking algorithm to
track the fj’s. To achieve small space, we make use of the following algorithm due to Manku and Motwani
[18] at each site Si: We maintain a list Li of counters. When an element j arrives at Si, it first checks if there
is a counter cij for j in Li. If yes, we increase cij by 1. Otherwise, we sample this element with probability
p. If it is sampled, we insert a counter cij , initialized to 1, into Li. It is easy to see that the expected size of
Li is O(pni).

10



Next, we follow a similar strategy as in the count-tracking algorithm: The site reports the counter cij to
the coordinator when it is first added to the counter list with an initial value of 1. Afterward, for every j that
is arriving, the site always increments cij as before, but only sends the updated counter to the coordinator
with probability p. We use c̄ij to denote the last updated value of cij .

The tricky part is how the coordinator estimates fij , hence fj . Fix any time instance. The difference
between fij and ĉij comes from two sources: one is the number of j’s missed before a copy is sampled, and
the other is the number of j’s that arrive after the last update of cij . It is easy to see that both errors follow
the same distribution as ni − n̄i in the count-tracking algorithm. Thus it is tempting to modify (1) as

f̂ij =

{
c̄ij − 2 + 2/p, if c̄ij exists;
0, else.

(2)

However, this estimator is biased and its bias might be as large as Θ(εn/
√
k). Summing over k streams,

this would exceed our error guarantee. To see this, consider the fij copies of j. Effectively, the site samples
every copy with probability p, while c̄ij − 2 is exactly the number of copies between the first and the last
sampled copy (excluding both). We define X1 as before

X1 =

{
t1, if the t1th copy is the first one sampled;
fij + 1/p, if none is sampled.

We define X2 in exactly the same way, except that we examine these fij copies backward:

X2 =


t2, if the t2th copy is the first one sampled

in the reverse order;
fij + 1/p, if none is sampled.

It is clear that X1 and X2 have the same distribution with E[X1] = E[X2] = 1/p (by Lemma 2.1), so
f̂ij = fij − (X1 + X2) + 2/p is unbiased. Since c̄ij − 2 = fij − t1 − t2, the correct unbiased estimator
should be

f̂ij =

{
c̄ij − 2 + 2/p, if c̄ij exists;
−fij , else.

(3)

Compared with the previous wrong estimator (2), the main difference is how the estimation is done when
no copy of j is sampled. When fij = Θ(εn/

√
k) and p = Θ(1/fij), this happens with constant probability,

which would result in a bias of Θ(fij) = Θ(εn/
√
k).

However, the correct estimator (3) depends on fij , the quantity we want to estimate in the first place.
The workaround is to use another unbiased estimator for fij when c̄ij is not yet available. It turns out that we
can just use simple random sampling: The site samples every element with probability p (this is independent
of the sampling process that maintains the list Li), and sends the sampled elements to the coordinator. Let
dij be the number of sampled copies of j received by the coordinator from site i, the final estimator for fij
is

f̂ ′ij =

{
c̄ij − 2 + 2/p, if c̄ij exists;
−dij/p, else.

(4)

Since dij is independent of c̄ij , the estimator is still unbiased. Below we analyze its variance.

Analysis Intuitively, the variance is not affected by using the simple random sampling estimator dij/p,
because it is only used when c̄ij is not available, which means that fij is likely to be small, and when fij is
small, dij/p actually has a small variance. When fij is large, dij/p has a large variance, but we will use it
only with small probability. Below we give a formal proof.
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Lemma 3.1 E[f̂ ′ij ] = fij; Var[f̂ ′ij ] = O(1/p2).

Proof. We first analyze the estimator f̂ij of (3). That E[f̂ij ] = fij follows from the discussion above.
Its variance is Var[f̂ij ] = Var[X1 + X2]. Note that X1 and X2 are not independent, but they both have
expectation 1/p and variance ≤ 1/p2. We first rewrite

Var[X1 +X2] = E[X2
1 +X2

2 + 2X1X2]− E[X1 +X2]2

= Var[X1] + E[X1]2 + Var[X2] + E[X2]2

+2E[X1X2]− (E[X1] + E[X2])2

≤ 4/p2 + 2E[X1X2]− 4/p2 ≤ 2E[X1X2].

Let Et be the event that the tth copy of j is the first being sampled. We have

E[X1X2]

=

fij∑
t=1

(1− p)t−1ptE[X2 | Et] + (1− p)fij (fij + 1/p)2

=

fij∑
t=1

(1− p)t−1pt

(1− p)fij−t(fij − t+ 1) +

fij−t∑
l=1

(1− p)l−1pl


+(1− p)fij (fij + 1/p)2

≤ 1

p2
+ (1− p)fijf2

ij +
(1− p)fijfij

p
.

Let c = fijp. If c ≤ 2, fij ≤ 2/p, and the variance is O(1/p2). Otherwise

E[X1X2] ≤ 1

p2
+

c2

p2ec
+

c

p2ec
= O(1/p2),

since c2 ≤ ec when c > 2.
Next we analyze the final estimator f̂ ′ij of (4). First, dij is the sum of fij Bernoulli random variables

with probability p, so E[dij/p] = fij and Var[dij/p] ≤ fijp/p
2 = fij/p. Let E∗ be the event that ĉij is

available, i.e., at least one copy of j is sampled, and E0 = E∗, then

E[f̂ ′ij ] = E[f̂ij | E∗]Pr[E∗] + E[−dij/p | E0]Pr[E0]

= E[f̂ij | E∗]Pr[E∗] + (−fij)Pr[E0]

= E[f̂ij ] = fij .

The variance is

Var[f̂ ′ij ] = E[f̂ ′2ij ]− E[f̂ ′ij ]
2

= E[f̂2
ij | E∗]Pr[E∗] + E[(dij/p)

2 | E0]Pr[E0]− f2
ij

= E[f̂2
ij | E∗]Pr[E∗]− f2

ij + E[(dij/p)
2]Pr[E0]

= E[f̂2
ij | E∗]Pr[E∗]− f2

ij + (Var[dij/p] + f2
ij)Pr[E0]
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Note that

Var[f̂ij ] = E[f̂2
ij ]− f2

ij

= E[f̂2
ij | E∗]Pr[E∗] + E[f̂2

ij | E0]Pr[E0]− f2
ij

= E[f̂2
ij | E∗]Pr[E∗] + f2

ijPr[E0]− f2
ij ,

so

Var[f̂ ′ij ] = Var[f̂ij ] + Var[dij/p]Pr[E0]

≤ Var[f̂ij ] +
fij
p
· (1− p)fij .

Due to the same reason as above, the second term is O(1/p2), and the proof completes.

Dealing with a decreasing p As in the count-tracking algorithm, we divide the whole tracking period into
O(logN) rounds. Within each round, n stays within a constant factor of n̄, while n̄ remains fixed for the
whole round.

Within a round, we set the parameter p for all sites to be p = 1/bεn̄/
√
kc2. When we proceed to a

new round, all sites clear their memory and we start a new copy of the algorithm from scratch with the new
p. Given an item j, the coordinator estimates its frequency from each round separately, and add them up.
Since the variance in a round is O(k/p2) and p increases geometrically over the rounds, the total variance is
asymptotically bounded by the variance of the last round, i.e., O(1/ε2), as desired.

The space used at some site could still be large, since the site may receive too many elements in a
round. If all the O(n) elements in a round have gone to the same site, the site will need to use space
O(pn) = O(

√
k/ε). To bound the space, we restrict the amount of space used by each site. More precisely,

when a site receives more than n̄/k elements, it sends a message to the coordinator for notification, clears
its memory, and starts a new copy of the algorithm from scratch. The coordinator will treat the new copy as
if it were a new site, while the original site no longer receives more elements. Now the space used at each
site is at most pn̄/k = O(1/(ε

√
k)). Since there are at most O(k) such new “virtual” sites ever created in a

round, this does not affect the variance by more than a constant factor.
It remains to show that the total communication cost is O(

√
k/ε · logN). From earlier we know that

there are O(logN) rounds; within each round, n̄ is the same and n stays within Θ(n̄). Focus on one round.
For each arriving element, the site Si updates c̄ij with probability p and also independently samples it with
probability p to maintain dij . This costs O(n · p) = O(

√
k/ε) communication.

Theorem 3.1 There is an algorithm for the frequency-tracking problem that, at any time, estimates the
frequency of any element within error εn with probability at least 0.9. It uses O(1/(ε

√
k) space at each site

and O(
√
k/ε · logN) communication.

3.2 Space lower bound

It is easy to see that the communication lower bounds for the count-tracking problem also hold for the
frequency-tracking problem. In this section, we prove the following space-communication trade-off.
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Theorem 3.2 Consider any randomized algorithm for the frequency-tracking problem that, at any time,
estimates the frequency of any element within error εn with probability at least 0.9. If the algorithm uses
C bits of communication and uses M bits of space per site, then we must have C · M = Ω(logN/ε2),
assuming k ≤ 1/ε2.

Thus, if the communication cost is C = O(
√
k/ε · logN) bits, the space required per site is at least

Ω(1/(ε
√
k)) bits, as claimed in Table 1. Note that, however, our algorithm of the previous section uses

O(
√
k/ε · logN) words of communication and O(1/(ε

√
k)) words of space, so there is still a small gap

between the lower and upper bound. Interestingly, this lower bound also shows that the random sampling
algorithm [9] (see Table 1) actually attains the other end of this space-communication trade-off (ignoring
the word/bit difference).
Proof. (of Theorem 3.2) We will use a result in [26] which states that, under the k-party communication
model, there is an input distribution µk such that, any algorithm that solves the one-shot version of the
problem under µk with error 2εn with probability 0.9 needs at least c

√
k/ε bits of communication for some

constant c, assuming k ≤ 1/ε2. Moreover, any algorithm that solves ` independent copies of the one-shot
version of the problem needs at least ` · c

√
k/ε bits of communication.

We will consider the problem over ρk sites, for some integer ρ ≥ 1 to be determined later. We divide
the whole tracking period into logN rounds. In each round i = 1, . . . , logN , we generate an input indepen-
dently chosen from distribution µρk to the sites. We pick elements from a different domain for every round
so that we have logN independent instances of the problem. In round i, for every element e picked from
µρk for any site, we replace it with 2i−1 copies of e. We arrange the element arrivals in a round so that site
S1 gets all its elements first, then S2 gets all its elements, and so on so forth. We will only require the contin-
uous tracking algorithm to solve the frequency estimation problem at the end of each round. Since the last
round always contains half of all the elements that have arrived so far, the algorithm must solve the problem
for the elements in each round, namely, logN independent instances of the one-shot problem. By the result
in [26], the communication cost to solve all these instances of the problem is at least c

√
ρk/ε · logN .

LetAk be a continuous tracking algorithm over k sites that communicatesC bits in total and usesM bits
of space per site. Below we show how to solve the problem over the ρk sites in each round, by simulating the
k-site algorithmAk. In each round, we start the simulation with sites S1, . . . , Sk. WheneverAk exchanges a
message, we do the same. When S1 has received all its elements, it sends its memory content to Sk+1, which
then takes the role of S1 in the simulation and continue. Similarly, when S2 has received all its elements, it
sends its memory content to Sk+2, which replaces S2 in the simulation. In general, when Sj is done with all
its elements, it passes its role to Sj+k. When Sρk is done, the simulation finishes for this round. Sρk then
sends a broadcast message and we proceed to the next round.

Let us analyze the communication cost of the simulation. First, we exchange exact the same messages
as Ak does, which costs C. We also communicate ρ(k − 1) memory snapshots and a broadcast message in
each round, which costs ≤ ρkM logN over all rounds. Thus, we have

C + ρkM logN ≥ c
√
ρk/ε · logN.

Rearranging,

M ≥ c

ε
√
ρk
− C

ρk logN
=

1√
ρk

(
c

ε
− C√

ρk logN

)
Thus, if we set

√
ρ =

⌈
2Cε

c
√
k logN

⌉
, then

M ≥ c

2ε
√
ρk

= Ω

(
logN

Cε2

)
,
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as claimed.

4 Tracking Distributed Ranks

On a stream of n elements, an algorithm that produces an unbiased estimator for any rank with variance
O((εn)2) was presented in [24], which has been very recently improved and made to work in a stronger
model [1]. It uses O(1/ε · log1.5(1/ε)) working space to maintain a rank estimation summary structure of
size O(1/ε). We call this algorithm A and will use it as a black box in our distributed tracking algorithm.

The overall algorithm As before, with O(k logN) communication, we first track n̄, a constant factor
approximation of the current n. This also divides the tracking period into O(logN) rounds. The Θ(n)
elements arriving in a round are divided into chunks of size at most n̄/k, each processed by an instance of
algorithm C, described below. A site may receive more than n̄/k elements. When the (n̄/k + 1)th element
arrives, the site finishes the current instance of C, and starts a new one, which will process the next n̄/k
elements, and so on so forth.

Algorithm C Algorithm C reads at most n̄/k elements, and divides them into blocks of size b = εn̄/
√
k,

so there are at most 1
ε
√
k

blocks. We build a balanced binary tree on the blocks in the arrival order, and the

height of the tree is h ≤ log 1
ε
√
k

. For each node v in the tree, let D(v) be all the elements contained in
the leaves in the subtree rooted at v. For each D(v), we start an instance of A, denoted as Av, to process
its elements as they arrive. We say that v is active if Av is still accepting elements. For a node v at level `
(the leaves are said to be on level 0), the error parameter of Av is set to 2−`/

√
h. We say v is full if all the

elements in D(v) have arrived. When v is full, we send the summary computed by Av to the coordinator,
and free the space used by Av. Furthermore, for each element that is arriving, we sample it with probability
p =

√
k

εn̄ , and if it is sampled, we send it to the coordinator.

Analysis of costs We first analyze the various costs of C. At any time there are at most h active nodes, one
at each level, so the space used by C is at most

h∑
`=0

√
h2` log1.5 1

ε
= O

( √
h

ε
√
k

log1.5 1

ε

)
.

The communication for C includes all the summaries computed, and the elements sampled. For each `,
the total size of the summaries on level ` is

O

(
1

ε
√
k

2−` · 2`
√
h

)
= O

( √
h

ε
√
k

)
.

Summing over all h levels, it is h1.5

ε
√
k

. There are at most 2k instances of C in a round, therefore the total

communication cost in a round is O(h1.5
√
k/ε). The number of sampled elements in a round is O(np) =

O(
√
k/ε). Thus, over all O(logN) rounds, the total communication cost is O(h1.5

√
k/ε · logN).
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Estimation It remains to show how the coordinator estimates the rank of any given element x at any time
with variance O((εn)2). We decompose all n elements that have arrived so far into smaller subsets, and
estimate the rank of x in each of the subsets. Since all estimators are unbiased, the overall estimator is also
unbiased; the variance will be the sum of all the variances.

We will focus on the current round; all previous rounds can be handled similarly. Recall that there are
O(n̄) elements arriving in this round and n̄ = Θ(n). Every chunk of n̄/k elements are processed by one
instance of C. Consider any such chunk. Suppose up to now, n′ elements in this chunk have arrived for some
n′ ≤ n̄/k. We write n′ as n′ = q · b + r for some r < b, and decompose these n′ elements into at most
h + 1 subsets. The first qb elements are decomposed into at most h subsets, each of which corresponds to
a full node in the binary tree of C. The node has already sent its summary to the coordinator, which we can
use to estimate the rank. For a node at level `, the variance is (2−i/

√
h · 2ib)2 = b2/h, so the total variance

from all h nodes is b2.
For the last r elements of the chunk that are still being processed by an active node, the coordinator

does not have any summary for them. But recall that the site always samples each element with probability
p =
√
k/(εn̄) and sends it to the coordinator if it is sampled. Thus, the rank of x in these r elements can be

estimated by simply counting the number c of elements sampled that are smaller than x, and the estimator is
c/p. The variance of this estimator is r/p ≤ b/p = b2. Thus, the variance from any chunk is O(b2). Since
there are at most 2k chunks in the round, the total variance is O(b2k) = O((εn̄)2) = O((εn)2). As the
variances of the previous rounds are geometrically decreasing, the total variance from all the rounds is still
bounded by O((εn)2), as desired.

Theorem 4.1 There is an algorithm for the rank-tracking problem that, at any time, estimate the rank of
any element within error εn with probability at least 0.9. It uses O

(
1

ε
√
k

log1.5 1
ε log0.5 1

ε
√
k

)
space at each

site with communication cost O
(√

k
ε logN log1.5 1

ε
√
k

)
.
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A Lower bound for the sampling problem

Claim A.1 To solve the sampling problem we need to probe at least Ω(k) sites.

Proof. Suppose that the coordinator only samples z = o(k) sites. Let X be the number of sites that
are sampled with bit 1. Then X is chosen from the hypergeometric distribution with probability density
function (pdf) Pr[X = x] =

(
s′

x

)(
k′−s′
z−x

)
/
(
k′

z

)
. The expected value of X is z

k′ ·s′, which is z
k′

(
k
2 − y +

√
k
)

or z
k′

(
k
2 − y −

√
k
)

, depending on the value of s′. Let p =
(
k
2 − y

)
/k′ = 1

2 ± o(1) and α =
√
k/k′ =

1/
√
k ± o(1/

√
k). To avoid tedious calculation, we assume that X is picked randomly from one of the

two normal distributions N1(µ1, σ
2
1) and N2(µ2, σ

2
2) with equal probability, where µ1 = z(p − α), µ2 =

z(p + α), σ1, σ2 = Θ(
√
zp(1− p)) = Θ(

√
z). In Feller [15] it is shown that the normal distribution

approximates the hypergeometric distribution very well when z is large and p± α are constants in (0, 1) 5.

5In Feller’s book [15] the following is proved. Let p ∈ (0, 1) be some constant and q = 1− p. The population size is N and the
sample size is n, so that n < N and Np,Nq are both integers. The hypergeometric distribution is P (k;n,N) =

(
Np
k

)(
Nq
n−k

)
/
(
N
n

)
for 0 ≤ k ≤ n.
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Now our task is to decide from which of the two distributions X is drawn based on the value of X with
success probability at least 0.7.

Let f1(x;µ1, σ
2
1) and f2(x;µ2, σ

2
2) be the pdf of the two normal distributions N1,N2, respectively. It is

easy to see that the best deterministic algorithm of differentiating the two distributions based on the value of
a sample X will do the following.

• If X > x0, then X is chosen from N2, otherwise X is chosen from N1, where x0 is the value such
that f1(x0;µ1, σ

2
1) = f2(x0;µ2, σ

2
2) (thus µ1 < x0 < µ2).

Indeed, if X > x0 and the the algorithm decides that “X is chosen from N1”, we can always flip this
decision and improve the success probability of the algorithm.

The error comes from two sources: (1) X > x0 but X is actually drawn from N2; (2) X ≤ x0 but X is
actually drawn from N1. The total error is

1/2 · (Φ(−`1/σ1) + Φ(−`2/σ2)),

where `1 = x0−µ1 and `2 = µ2−x0. (Thus `1 + `2 = µ2−µ1 = 2αz). Φ(·) is the cumulative distribution
function (cdf) of the normal distribution. See Figure 1.

Finally note that `1/σ1 = O(αz/
√
z) = O(

√
z/k) = o(1) and `2/σ2 = O(αz/

√
z) = o(1), so

Φ(−`1/σ1) + Φ(−`2/σ2) > 0.99. Therefore, the failure probability is at least 0.49, contradicting our suc-
cess probability guarantee. Thus we must have z = Ω(k).

Theorem A.1 [15] If N →∞, n→∞ so that n/N → t ∈ (0, 1) and xk := (k − np)/√npq → x, then

p(k;n,N) ∼ e−x2/2(1−t)√
2πnpq(1− t)
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