
ar
X

iv
:1

10
7.

28
69

v1
 [

cs
.G

T
]

 1
4

Ju
l 2

01
1

Optimization with Demand Oracles

Ashwinkumar Badanidiyuru
Department of Computer Science

Cornell Unversity
ashwin85@cs.cornell.edu

Shahar Dobzinski
Department of Computer Science

Cornell Unversity
shahar@cs.cornell.edu

Sigal Oren
Department of Computer Science

Cornell Unversity
sigal@cs.cornell.edu

November 7, 2018

Abstract

We study combinatorial procurement auctions, where a buyer with a valuation function v and
budget B wishes to buy a set of items. Each item i has a cost ci and the buyer is interested in a
set S that maximizes v(S) subject to Σi∈Sci ≤ B. Special cases of combinatorial procurement
auctions are classical problems from submodular optimization. In particular, when the costs
are all equal (cardinality constraint), a classic result by Nemhauser et al shows that the greedy
algorithm provides an e

e−1
approximation.

Motivated by many papers that utilize demand queries to elicit the preferences of agents in
economic settings, we develop algorithms that guarantee improved approximation ratios in the
presence of demand oracles. We are able to break the e

e−1
barrier: we present algorithms that

use only polynomially many demand queries and have approximation ratios of 9

8
+ ǫ for the

general problem and 9

8
for maximization subject to a cardinality constraint.

We also consider the more general class of subadditive valuations. We present algorithms
that obtain an approximation ratio of 2 + ǫ for the general problem and 2 for maximization
subject to a cardinality constraint. We guarantee these approximation ratios even when the
valuations are non-monotone. We show that these ratios are essentially optimal, in the sense
that for any constant ǫ > 0, obtaining an approximation ratio of 2 − ǫ requires exponentially
many demand queries.

http://arxiv.org/abs/1107.2869v1

1 Introduction

We study the following combinatorial procurement auction problem: a buyer with a valuation v
and budget B wishes to purchase a set of items S, where each item i has a cost ci. The buyer is
interested in maximizing his value v(S) while not overspending (Σi∈Sci ≤ B).

Truthful mechanisms for various variations of this problem were studied in [26] and its followup
[9]. In this paper we study the problem from a pure combinatorial optimization point of view. This
is analogous to the combinatorial auctions literature, where one branch studies incentives issues
(e.g., [8, 20, 6, 2]), and the other studies the problem as a pure combinatorial optimization problem
ignoring incentives (e.g., [22, 16, 27, 7, 11, 13, 10]).

We focus on cases where the valuation function v is submodular (for each two sets S and T ,
v(S)+v(T) ≥ v(S∪T)+v(S∩T)) or subadditive (for each two sets S and T , v(S)+v(T) ≥ v(S∪T)).
Submodular valuations capture cases where the buyer exhibits decreasing marginal utilities, and
subadditive valuations capture complement freeness. See, e.g., [22], for a more elaborate discussion.

When v is submodular a combinatorial procurement auction is a reformulation of a classical
problem from submodular optimization, maximization subject to a knapsack constraint: each item
i has a cost ci and the goal is to find a maximum-value set S such that Σi∈Sci ≤ B, for a given
budget B. A special case is maximization subject to a cardinality constraint: find a set S of size k
with the highest value. Many other generalizations and variants of this problem were studied (e.g.,
[14, 27, 17, 21, 18, 5]).

We want our algorithms to run in time polynomial in n, the number of items. However, the
valuation function is an object of size 2m. The combinatorial auctions literature therefore usually
assumes that access to the valuation is done via an oracle. Two types of queries were extensively
studied: value queries (given a set S, return v(S)) and demand queries (given prices p1, . . . , pm
return a set S such that S ∈ argmaxT v(T) − Σj∈Tpj). Here we use demand queries to solve
the combinatorial procurement auctions problem. This path was already taken in [9], but let us
mention two reasons:

• Economic interpretation: many algorithms for economic settings, either truthful or not
truthful, assume that the valuations are accessed via demand oracles (e.g., [13, 11, 7, 8, 1, 20]).
As was argued extensively in the literature (e.g., [4, 3, 25, 19, 24]) demand queries are a natural
way for agents to express their preferences.

• Bypassing impossibility results: it is known that polynomially many value queries cannot
guarantee an approximation ratio of n

1
2
−ǫ even for optimization subject to a cardinality

constraint if the valuation of the buyer is subadditive [26, 7]1. Hence we must use stronger
oracles to achieve reasonable approximation ratios.

The classical result in submodular optimization shows that the greedy algorithm provides an
approximation ratio of e

e−1 [14] for optimization subject to a cardinality constraint, and that this
is the best possible with a polynomial number of value queries [23, 12]. We show that demand
queries allow us to break the e

e−1 barrier:

Theorem: There exists a 9
8 -approximation algorithm for the problem of maximizing a monotone

submodular function subject to a cardinality constraint that makes a polynomial number of demand
queries. For the problem of maximizing a monotone submodular function subject to a knapsack

1In fact this bound holds even if the valuation is fractionally subadditive – a valuation is fractionally subadditive
(a.k.a. XOS) if it is the maximum of several additive valuations. A formal definition will be presented later.

1

constraint, for every constant ǫ > 0, there exists a (98 + ǫ)-approximation algorithm that makes a
polynomial number of demand queries.

We start by presenting a natural linear program. The dual of the linear program has exponential
many constraints but only polynomially many variables, so we show that the dual can be solved via
the ellipsoid method, using a demand query as a separation oracle2. We show various structural
properties of optimal solutions to the LP, e.g., there are at most two sets in their support. We now
face an additional challenge: in general, none of these sets (or a part of them, in case they violate
the cardinality constraint) provides a good enough approximation. The key step is showing that by
taking one set and augmenting it using the other set we get a new combined set that does provide
the specified approximation ratio.

Next, we consider the class of subadditive valuations. In [9] a (2 + ǫ) approximation was
obtained for maximization subject to a cardinality constraint. On top of slightly improving this
ratio, we present the first constant-approximation algorithm for maximization subject to a knapsack
constraint, improving over the O(logm) ratio in [9]:

Theorem: There exists a 2-approximation algorithm for the problem of maximizing a subadditive
function subject to a cardinality constraint that makes a polynomial number of demand queries.
For the problem of maximizing a subadditive function subject to a knapsack constraint, for every
constant ǫ > 0, there exists a (2 + ǫ)-approximation algorithm that makes a polynomial number of
demand queries.

These algorithms do not assume that the valuation is monotone. In particular, the algorithms
guarantee the specified approximation ratio also for non-monotone submodular valuations (a class
that received much attention recently – see, e.g., [21, 18, 15, 5]). In fact, we once again break the
lower bound for approximation with value queries: it is known that a 2.03-approximation algorithm
for maximizing non-monotone submodular function must use exponentially many value queries [15].

We also show how to obtain purely combinatorial algorithms via a certain type of a natural
“ascending auction”, possibly with an additional augmentation step. An exciting direction is to
analyze these auctions and similar ones from a more economic point of view, although we do not
push this direction further in this paper.

Our bounds have another implication: they enable us to construct a “monotone estimator” (in
the language of [9]) and improve the best known approximation ratio of a deterministic truthful
mechanism for maximizing subadditive valuation subject to a knapsack constraint to O(log2 m).
The best previously known bound for this setting was O(log3 m) [9].

Are our bounds optimal? We provide an example with a matching integrality gap of 9
8 for

optimizing monotone submodular valuations. For non-monotone submodular valuations we present
an example with a matching integrality gap of 2. Moreover, we show that for subadditive valuations
our results are optimal (in fact, they are optimal even if the function is known to be fractionally
subadditive):

Theorem: Fix some constant ǫ > 0. Let A be a (possibly randomized) (2 − ǫ)-approximation
algorithm for maximizing a fractionally subadditive function subject to a cardinality constraint.
Then, A makes exponentially many demand queries.

We note that proving limits on the power of demand queries requires developing significant amount
of novel machinery3. The idea is to start with some specific valuation v, and obtain a valuation vT

2This first step is very similar to the use of demand oracles in algorithms for combinatorial auctions, where demand
oracles are used to solve the LP [7, 11, 13], but the similarity between the algorithms ends here.

3The most relevant lower bound that applies specifically to demand queries is that of Nisan and Segal [24].

2

by “planting” some bundle T of size k with high value. We would like to show that determining
whether such planting occurred requires an exponential number of demand queries. The challenge
here is that a single demand query can verify whether the valuation is vT for many bundles T
simultaneously. Nevertheless, we show that the power of a single demand query is limited: for
every demand query there exists a set of items (relatively small but of significant size) that is
contained in all bundles T that the demand query simultaneously verifies. This enables us to upper
bound the number of bundles that can be simultaneously verified by a single demand query, and
suffices to derive the theorem. We also use this technique to rule out an FPTAS for maximizing a
submodular function subject to a knapsack constraint.

Open Questions

In this paper we initiated the systematic study of optimization with demand queries. Let us now
mention several intriguing questions that we leave open. The first obvious one is to determine the
possible approximation ratio when the valuation of the buyer is submodular, both in the monotone
and in the non-monotone cases. It is also interesting to understand the possible approximation
ratios using different constraints. Examples include optimizing submodular functions subject to
matroid constraint [14, 27], multiple knapsacks [17, 18] and their combination [21, 5]. What is the
approximation ratio possible if demand queries are available in all these settings? We make a first
step in this direction by providing an O(k) approximation algorithm for optimizing subadditive
function subject to k knapsack constraints. We do not know neither whether this is the optimal
ratio possible nor how to construct good algorithms for the other settings.

Paper Organization

Section 3 presents the LP for the problem and proves some structural properties of optimal solutions.
In Section 4 we give our 9

8 -approximation algorithms for submodular valuations. Section 5 provides
approximation algorithms for subadditive valuations. We show that the algorithms for subadditive
valuations are in fact optimal in Section 6. The proof that there is no FPTAS for submodular
valuations subject to a knapsack constraint is also in that section.

2 Preliminaries

Valuations and Problems Definition

Let M be a set of items, |M | = m. Let v : 2M → R be a set function. We assume that v(∅) = 0. v
is monotone non-decreasing if for each S ⊆ T , v(S) ≤ v(T).

In this paper we are mainly interested in the following two problems4: in the maximization
subject to cardinality constraint problem we are given a number k, and we want to find the largest
value set S, |S| = k. In the maximization subject to budget constraint problem we are given a budget
B and a cost ci for each item i. The goal is to find the largest-value set S, such that Σj∈Scj ≤ B.
We sometimes use the name maximization subject to a knapsack constraint for this problem.

We consider this problem under various restrictions on the valuations. We say that v is submod-
ular if for every S, T ⊆ M we have that v(S)+v(T) ≥ v(S∪T)+v(S∩T). v is subadditive if for every
S, T ⊆ M we have that v(S)+v(T) ≥ v(S∪T). A valuation is additive if v(S) = Σj∈Sv({j}). Notice
that every submodular valuation is also subadditive, and every additive valuation is submodular.

However, the setting of [24] is much simpler, and their ideas do not seem to be applicable in our case.
4We also consider some generalizations, which will be defined in the proper subsections.

3

Another type of valuations that we consider is fractionally subadditive (or XOS). A valuation
is XOS if there exist additive valuations v1, . . . , vl such that v(S) = maxi vi(S) (we say that i is a
maximizing clause of S). It is known [22] that every XOS valuation is subadditive, and that every
monotone submodular valuation is XOS, and that there are subadditive valuations that are not
XOS, and XOS valuations that are not submodular.

We sometimes use the notation v(S|T) to denote v(S∪T)−v(T). For the problem of maximizing
a function subject to budget constraint, we sometimes use the notation C(S) = Σj∈Scj .

Demand Queries

Given prices p1, . . . , pm, a demand query returns a bundle S, S ∈ argmaxT v(T) − Σj∈Tpj . The
set of bundles that achieve the max is called the demand set of the query. Our algorithms provide
the guaranteed approximation ratio without making any assumption about which specific bundle
is returned from the demand set. For lower bounds, as pointed out in [24], some unnatural tie-
breaking rules may supply unrealistic information about the valuation. Therefore, as in [24], our
lower bound assumes any tie-breaking rule that does not depend on the valuation, e.g., return the
lexicographically-first bundle in the demand set.

Another type of well-studied query is value query : given a set S, return v(S). It is known
[4] that a value query can be simulated by polynomially many demand queries (but exponentially
many value queries may be required to simulate a single demand query). This paper concentrates
in designing algorithm with polynomially many demand queries, so we freely assume that we have
access to value queries.

3 The Structure of the LP

Our algorithms are based on finding good roundings of fractional solutions. These fractional so-
lutions are obtained by solving a natural linear relaxation of our problems. The key ingredient is
analyzing the structural properties of optimal fractional solutions: we give limits on the number
of elements in the support, analyze their costs, and give precise formulas for the weights of the
elements in the support.

The LP can be solved using demand oracles. Moreover, we show that there is a combinatorial
method of obtaining solutions to the LP, using a process that can be viewed as an ascending auction.

The LP is presented for the more general case of maximization subject to a budget constraint
(maximization subject to a cardinality constraint is a special case where for each item i, ci = 1 and
B = k).

Maximize:
∑

S xS · v(S)
Subject to:

•
∑

S xS · C(S) ≤ B.

•
∑

S xS ≤ 1.

• For each bundle S: xS ≥ 0.

Although the LP has an exponential number of variables, we show that it can still be solved using
a polynomial number of demand queries:

Proposition 3.1 The LP can be solved using a polynomial number of demand queries.

4

Proof: Consider the dual of the primal LP:

Minimize: y · B + z
Subject to:

• For each bundle S: z + y · C(S) ≥ v(S).

• y ≥ 0.

• z ≥ 0.

We use the ellipsoid method to solve the dual LP and thus obtain a solution to the primal LP.
For the ellipsoid method to work we need to implement a separation oracle that finds some set
S that violates the constraint y · C(S) + z ≥ v(S). To do that, consider the demand query
dq = y · (c1, . . . , cm), and let T be the bundle that dq returns. If z ≥ v(T) − y · C(T) then by the
definition of demand query for every other set S we have z ≥ v(T)− y ·C(T) ≥ v(S)− y ·C(S).

A key ingredient of our algorithms is the following structural property of the LP.

Definition 3.2 A fractional solution is a strict solution if there are two variables xS1 and xS2,

such that C(S1) ≤ B, C(S2) > B, xS1 = α, and xS2 = 1− α, where α = C(S2)−B

C(S2)−C(S1)
.

Proposition 3.3 Either there exists an optimal integral solution to the LP or there exists an
optimal strict solution. Given an optimal solution to the LP, we can transform it in polynomial
time to a fractional solution with the same value that is either integral or strict.

Proof: Suppose that for each set S in the support of the solution we have that C(S) ≤ B. In
this case we claim that there is an integral solution, since max(v(S)|xS > 0) ≥

∑

S xSv(S).
Consider now the other extreme case, where for each set S in the support of the solution we

have that C(S) > B. In this case we show that there is a fractional solution with exactly one
variable in the support:

∑

S

xSv(S) =
∑

S

xS
∑

j∈S

cj
v(S)

∑

j∈S cj

= max(
v(S)

∑

j∈S cj
|xS > 0) ·

∑

S

xS
∑

j∈S

cj

≤ max(
v(S)

∑

j∈S cj
|xS > 0) · B

Let S2 = argmax(v(S)∑
j∈S cj

|xS > 0). In this case we set S1 = ∅. Observe that by setting α = C(S2)−B

C(S2)

we get a strict fractional solution with value at least equal to the value of the optimal fractional
solution.

The only case that is left to handle is the case where there are two sets with xS1 , xS2 > 0 and
C(S1) ≤ B and C(S2) > B. We show a strict fractional solution that is optimal. By complementary
slackness we have that z + y ·C(S1) = v(S1) and z + y ·C(S2) = v(S2). Solving for z and y we get

z = v(S1)C(S2)−v(S2)C(S1)
C(S2)−C(S1)

and y = v(S2)−v(S1)
C(S2)−C(S1)

. Hence the value of the optimal fractional solution is
v(S1)(C(S2)−B)+v(S2)(B−C(S1))

C(S2)−C(S1)
.

Consider now the strict fractional solution xS1 = C(S2)−B

C(S2)−C(S1)
, xS2 = B−C(S1)

C(S2)−C(S1)
. Its value is

exactly the value of the optimal fractional solution: C(S2)−B

C(S2)−C(S1)
· v(S1) +

B−C(S1)
C(S2)−C(S1)

· v(S2)

5

We now present a combinatorial method of obtaining strict fractional solutions to the LP. An
important advantage of this method is that it uses only uniform-price queries (unlike the previous
LP-based approach that requires arbitrary demand queries). We make use of the following simple
property of demand queries:

Lemma 3.4 Let p = (p1, ..., pm). Let S1 be some bundle that maximizes the profit in prices λ1 · p.
Let S2 be some bundle that maximizes the profit in prices λ2 · p. Then λ1 ≤ λ2 if and only if
Σj∈S1pj ≥ Σj∈S2pj.

Proof: By the definition of demand query we have v(S2) − λ1Σj∈S2pj ≤ v(S1) − λ1Σj∈S1pj
and v(S1) − λ2Σj∈S1pj ≤ v(S2) − λ2Σj∈S2pj . Adding the two inequalities and simplifying we get
(λ1 − λ2)(Σj∈S2pj − Σj∈S1pj) ≥ 0. This implies the lemma.

Definition 3.5 λ ≥ 0 is the boundary if there exists S1, S2, C(S1) ≤ B,C(S2) > B, such that S2

is in the demand set in prices λ · (c1, . . . , cm) and for every small enough δ > 0 we have that S1 is
in the demand set in prices (λ+δ) · (c1, . . . , cm). We say that S1 and S2 are two boundary bundles.

Let us further explain the notion of boundary bundles. For simplicity, this paragraph considers
only the simpler cardinality constraint. Consider some prices λ · (1, . . . , 1). When λ = 0, the most
profitable bundle consists of all items. Lemma 3.4 implies that as the value of λ increases, the size
of bundles in the demand set decreases (eventually, when λ is big enough, the demand set will be
empty). The boundary is the specific λ for which the demand set in λ · (1, . . . , 1) contains only
bundles that violate the cardinality constraint, but for (λ+ ǫ) · (1, . . . , 1) the demand set contains
bundles that respect the cardinality constraint.

The boundary bundles (and λ) can be found by an ascending auction in which we continously5

increase the value of λ and obtain a profit-maximizing bundle in the current prices. The boundary
is the λ for which the prices λ · (c1, . . . , cm) are the supremum of the points where supply exceeds
demand. We were surprised to find that the boundary bundles define a high-value fractional
solution:

Lemma 3.6 Let S1 and S2 be two boundary bundles and let λ be the boundary. Let α = C(S2)−B

C(S2)−C(S1)
.

Then xS1 = α and xS2 = 1−α is a strict solution to the LP. Moreover, let O be the optimal integral
solution. Then, xS1v(S1) + xS2v(S2) ≥ v(O).

Proof: To see that the solution respects the budget constraint:

α · C(S1) + (1− α) · C(S2) =
C(S2)−B

C(S2)− C(S1)
· C(S1) +

B − C(S1)

C(S2)− C(S1)
· C(S2)

=
B(C(S2)− C(S1))

C(S2)− C(S1)

= B

As for the second part, S1 and S2 are in the demand set of their respective prices, therefore:

v(O)− (λ+ δ) · C(O) ≤ v(S1)− (λ+ δ) · C(S1)

v(O)− λ · C(O) ≤ v(S2)− λ · C(S2)

5Of course, to obtain a discrete process one may increment λ in some discrete amount. This results in some loss
in the approximation ratios of the algorithms that we construct (the loss depends on the size of the increments).

6

Multiplying the first inequality by α, the second inequality by (1 − α), and summing up the two
we get that (using B ≥ C(O)):

v(O)− (λ+ δ)B + αδ · B ≤ α · v(S1) + (1− α)v(S2)− α · (λ+ δ) · C(S1)− (1− α) · λ · C(S2)

= α · v(S1) + (1− α)v(S2)−
C(S2)−B

C(S2)− C(S1)
· (λ+ δ) · C(S1)

−
B − C(S1)

C(S2)− C(S1)
· λ · C(S2)

= α · v(S1) + (1− α)v(S2)− λ ·B −
C(S2)−B

C(S2)− C(S1)
· δ · C(S1)

Rearranging both sides we get:

v(O)− δ ·B + αδ ·B ≤ α · v(S1) + (1− α)v(S2)−
C(S2)−B

C(S2)− C(S1)
· δ · C(S1)

Now when we let δ go to 0 we get that xS1v(S1) + xS2v(S2) ≥ v(O), as needed.

4 A 9
8-Approximation for Monotone Submodular Valuations

As we have shown, any strict solution to the LP with cardinality constraint contains two bundles,
a “large” bundle with more than k items, and a “small” bundle with at most k items. A natural
approach for an approximation algorithm is to select the maximum of the following two bundles:
the “small” bundle, or an high-value chunk of size k from the “large” bundle. Unfortunately, there
are examples that show that this approach cannot provide an approximation ratio better than 2.
Hence, our strategy is subtler: we start with the small bundle and grab as much value as we can
from the large bundle. We show that this combined bundle provides an approximation ratio of 9

8 .
We also extend this algorithm to handle maximization subject to a knapsack constraint. Here

the approximation ratio we get is slightly worse: 9
8+ǫ. We enumerate over all sets of high-cost items,

then use a variation of our algorithm for a cardinality constraint as an algorithm for instances with
only low-cost items. We complement these results by presenting an instance with an integrality
gap of 9

8 (in the appendix), even for maximization subject to cardinality constraint.

Theorem 4.1 The following algorithms exist:

• A 9
8-approximation algorithm for the problem of maximizing a monotone submodular function

subject to a cardinality constraint that makes a polynomial number of demand queries.

• A (98 +O(ǫ))-approximation algorithm for the problem of maximizing a monotone submodular
valuation subject to a knapsack constraint that makes a polynomial number of demand queries,
for any fixed ǫ > 0.

We start with the algorithm for the cardinality constraint. We first present the algorithm, then
comment on how it can be efficiently implemented.

The Algorithm

1. Obtain a strict solution to the LP: xS1 = α and xS2 = 1− α. Let k1 = |S1| and k2 = |S2|.

2. Find S′ ⊆ S2, |S
′| = k such that v(S′) ≥ k

k2
v(S2).

7

3. Find S′′ ⊆ S2 − S1, |S
′′| = k − k1, such that v(S′′|S1) ≥

k−k1
|S2−S1|

v(S2|S1).

4. Output max(v(S1 ∪ S′′), v(S′)).

As for the efficient implementation of the algorithm, we have already argued in Proposition
3.3 that an optimal and strict solution to the LP can be found with a polynomial number of
demand queries. Alternatively, Step 1 can also be implemented combinatorially as an ascending
auction: start with a price per item of 0 and increase it gradually. When supply exceeds demand,
consider the boundary bundles, and obtain a strict solution as in Lemma 3.6. Steps 2 and 3 can
be implemented using the following folklore lemma (see Lemma 4.5 for a proof of a more general
setting).

Lemma 4.2 Let v be a submodular valuation, S be some bundle, and let t ≤ |S| be some integer.
Then, there exists a set S′ ⊆ S, |S′| = t such that v(S′) ≥ t

|S|v(S). In addition, S can be found
using a polynomial number of value queries.

Step 2 follows immediately from Lemma 4.2. Step 3 follows by observing that the marginal
valuation v(·|S1) is submodular too, and applying Lemma 4.2 again. We are left with proving the
approximation ratio of the algorithm:

Lemma 4.3 Let A be the bundle that the algorithm outputs. Then, v(A) ≥ 8
9(xS1v(S1)+xS2v(S2)).

Proof: Recall that v(S′′|S1) ≥
k−k1

|S2−S1|
v(S2|S1). That is (also using |S2 − S1| ≤ k2):

v(S′′ ∪ S1)− v(S1) ≥
k − k1
k2

(v(S2 ∪ S1)− v(S1))

Rearranging and using v(S2 ∪ S1) ≥ v(S2) (since v is monotone) we have:

v(S′′ ∪ S1) ≥
k − k1
k2

v(S2) +
k1 + k2 − k

k2
v(S1) (1)

We are finally ready to prove the approximation ratio:

α · v(S1) + (1− α) · v(S2) = α
k2

k1 + k2 − k

(

k1 + k2 − k

k2
v(S1) +

k − k1
k2

v(S2)

)

+(1− α− α
k − k1

k1 + k2 − k
)v(S2)

≤ α
k2

k1 + k2 − k
v(S1 ∪ S′′) + (1− α− α

k − k1
k1 + k2 − k

)v(S2)

≤ α
k2

k1 + k2 − k
v(S1 ∪ S′′) + (1− α− α

k − k1
k1 + k2 − k

)
k2
k
v(S′)

≤ (α
k2

k1 + k2 − k
+ (1− α− α

k − k1
k1 + k2 − k

)
k2
k
)max(v(S1 ∪ S′′), v(S′))

≤ γ ·max(v(S1 ∪ S′′), v(S′))

where the second inequality is due to (1). It remains to bound the value of γ (the proof can be
found in the appendix):

Claim 4.4 Let γ = maxk1≤k<k2 α
k2

k1+k2−k
+ (1− α− α k−k1

k1+k2−k
)k2
k
. γ ≤ 9

8 .

8

4.1 A (9
8
+ ǫ)-Approximation Submodular Valuations Subject to a Knapsack

Constraint

The Algorithm

1. For each set L, |L| ≤ 1
ǫ2

such that C(L) ≤ B, and each set L′ ⊆ L, |L′| = ǫ · |L|:

(a) Let T = L− L′.

(b) Define a new valuation vL,L
′

(S) = v(S|T). Let a = minj∈L cj. Let ML,L′

= M − T −
{j|cj > ǫ · a}.

(c) For the set of items ML,L′

, obtain a strict solution to the LP w.r.t. vL,L
′

and budget

BL,L′

= B − C(T): xL,L
′

S1
= αL,L′

and xL,L
′

S2
= 1− αL,L′

.

(d) Find S′ ⊆ S2, C(S′) ≤ BL,L′

such that vL,L
′

(S′) ≥ BL,L′

(1−ǫ)
C(S2)

v(S2). If there is no such

S′ let AL,L′

= ∅ and continue to the next iteration.

(e) Find S′′ ⊆ S2−S1, C(S′) ≤ BL,L′

−C(S1), such that vL,L
′

(S′) ≥ (BL,L′

−C(S1))(1−ǫ)
C(S2−S1)

vL,L
′

(S2).

If there is no such S′ let AL,L′

= ∅ and continue to the next iteration.

(f) Let AL,L′

= argmax(v(T ∪ S1 ∪ S′′), v(T ∪ S′)).

2. Output argmaxL,L′ v(AL,L′

).

Notice that if ǫ is constant then there are only polynomially many iterations. Since each iteration
needs polynomially many demand queries, the total number of demand queries is polynomial too.
We will use Lemma 4.5 to implement Steps (1d) and (1e), similarly to the algorithm for a cardinality
constraint. (Notice that vL,L

′

is a submodular valuation.)

Lemma 4.5 Let v be some submodular valuation, and S be some bundle. Then, there exists a
chain S1 ⊆ . . . ⊆ S|S|−1 ⊆ S|S| = S, where |St| = t and v(St) ≥

C(St)
C(S) v(S) for every t.

Proof: We prove the existence of St for t = |S| − 1. The lemma will then follow as it implies
that we can find S1 ⊆ S2 ⊆ . . . ⊆ S|S|−1 ⊆ S|S| = S, where |St| = t, and for each l, |Sl|+1 = |Sl+1|

and v(Sl) ≥
C(Sl)

C(Sl+1)
v(Sl+1). Now we will have that

v(St) ≥
C(St)

C(St+1)
v(St+1) ≥

C(St)

C(St+1)
·
C(St+1)

C(St+2)
· . . . ·

C(S|S|−1)

C(S|S|)
v(S) =

C(St)

C(S)
v(S)

Notice that given v(Sl) we can v(Sl−1) by considering the l subsets of size l− 1 and taking the one
with the highest value.

We now prove the lemma for t = |S| − 1. We have that

v(S) =

|S|
∑

j=1

v({j}|{1, . . . , j − 1})

≥

|S|
∑

j=1

v({j}|S − {j})

where the inequality holds because v is submodular and has decreasing marginal utilities. In
particular we have that for some item j, v({j|S − {j}}) ≤

cj
C(S) , i.e., v(S − {j}) ≥ C(S−{j})

C(S) v(S).

Let S′ = S − {j}. This completes the proof of the lemma.

9

We only analyze one particular iteration, when L is the set of the 1
ǫ2

items with the highest
costs in the optimal solution. Furthermore, let a1, ..., a|L| be some order on the items of L so that
for every i, v(ai|{1,, ai−1}) ≥ v(ai+1|{1,, ai}). Such order can be obtained by starting from
the empty set and greedily taking the item from L with the highest marginal contribution that
has not been taken yet. Let L′ = {a(1−ǫ)|L|, . . . a|L|}. Observe that by submodularity the value of

the optimal unrestricted solution in ML,L′

∪ T is at least (1 − ǫ)OPT , where OPT is the value of
the optimal solution. Also notice that for each item j ∈ ML,L′

we have that cj ≤ ǫBL,L′

since
BL,L′

> |L′| · cj .
For Step (1d) note that for some St we have by Lemma 4.5 that C(St) ≤ BL,L′

and vL,L
′

(S′) ≥
BL,L′

(1−ǫ)
C(S2)

v(S2). Since for each item j ∈ ML,L′

we have that cj ≤ ǫBL,L′

we immediately get

C(St) ≥ BL,L′

(1 − ǫ) and Step (1d) follows. Step (1e) follows by observing that the marginal
valuation vL,L

′

(·|S1) is submodular too and applying Lemma 4.5 similar to Step (1d).

Lemma 4.6
γ

1−ǫ
vL,L

′

(AL,L′

) ≥ xL,L
′

S1
vL,L

′

(S1) + xL,L
′

S2
vL,L

′

(S2).

Proof: Recall that vL,L
′

(S′′|S1) ≥
(B−C(S1))(1−ǫ)

C(S2−S1)
vL,L

′

(S2|S1). That is (also using C(S2 − S1) ≤

C(S2)):

vL,L
′

(S′′ ∪ S1)− vL,L
′

(S1) ≥
(B − C(S1))(1− ǫ)

C(S2)
(vL,L

′

(S2 ∪ S1)− vL,L
′

(S1))

Rearranging and using vL,L
′

(S2 ∪ S1) ≥ vL,L
′

(S2) (since v is monotone) we have:

vL,L
′

(S′′ ∪ S1) ≥ (
B − C(S1)

C(S2)
vL,L

′

(S2) +
C(S1) + C(S2)−B

C(S2)
vL,L

′

(S1))(1 − ǫ) (2)

α · vL,L
′

(S1) + (1− α) · vL,L
′

(S2) = α
C(S2)

C(S1) + C(S2)−B
(
C(S1) + C(S2)−B

C(S2)
vL,L

′

(S1)

+
B − C(S1)

C(S2)
vL,L

′

(S2)) + (1− α− α
B − C(S1)

C(S1) + C(S2)−B
)vL,L

′

(S2)

≤ α
C(S2)

C(S1) + C(S2)−B

vL,L
′

(S1 ∪ S′′)

1− ǫ

+(1− α− α
B − C(S1)

C(S1) + C(S2)−B
)vL,L

′

(S2)

≤ α
C(S2)

C(S1) + C(S2)−B

vL,L
′

(S1 ∪ S′′)

1− ǫ

+(1− α− α
B − C(S1)

C(S1) + C(S2)−B
)
C(S2)

B

vL,L
′

(S′)

1− ǫ

≤ (α
C(S2)

C(S1) + C(S2)−B
+ (1− α− α

B − C(S1)

C(S1) + C(S2)−B
)
C(S2)

B
)

·
max(vL,L

′

(S1 ∪ S′′), vL,L
′

(S′))

1− ǫ

≤
γ

1− ǫ
·max(vL,L

′

(S1 ∪ S′′), vL,L
′

(S′))

where γ showed to be at most 9
8 in Claim 4.4.

Recall that we lost at most ǫ ·OPT by discarding items in L′. We therefore have that the value
of the solution is at least 8(1−ǫ)

9 (1− ǫ) · OPT .

10

5 A 2-Approximation for Subadditive Valuations

We show that there exists a 2-approximation algorithm for maximization subject to cardinality
constraint. This is the best ratio achievable with a polynomial number of demand queries even if
the valuation is XOS, as we show in Section 6. While this is only a slight improvement over the
(2+ǫ) approximation algorithm for the setting of [9], we then show how to extend this algorithm to
provide a (1+ k

1−ǫ
)-approximation for maximization subject to k-knapsack constraints. In particular

this implies that there exists a (2 + O(ǫ))-approximation algorithm for maximization subject to a
knapsack constraint (k = 1). Previously, the best bound was O(log n) [9].

Both algorithms provide the same approximation ratio also for non-monotone subadditive valu-
ations, not just monotone ones. In the appendix we show that when the valuation is non-monotone
and submodular, then the integrality gap is 2.

Theorem 5.1 The following two algorithms exist:

• A 2-approximation algorithm for maximizing a (not necessarily monotone) subadditive func-
tion subject to a cardinality constraint that uses polynomially many demand queries.

• A (1+ k
1−ǫ

)-approximation algorithm for maximizing a (not necessarily monotone) subadditive
function subject to k-knapsack constraints that uses polynomially many demand queries, for
every constant ǫ > 0 and constant k.

We start with the first algorithm, which uses a simple rounding scheme.

The Algorithm

1. Obtain a strict fractional solution xS1 = α and xS2 = 1− α.

2. Arbitrarily divide S2 into sets U1, . . . , Ul such that for each i < l, |Ui| = k and |Ul| ≤ k.

3. Output A = argmax(v(S1), v(U1), . . . , v(Ul)).

Notice that the above algorithm can be implemented with a polynomial number of demand queries.

Lemma 5.2 Let A be the bundle that the algorithm outputs. Then, 2v(A) ≥ xS1v(S1) + xS2v(S2).

Proof:

xS1v(S1) + xS2v(S2) ≤ xS1v(S1) + xS2 · l ·max(v(U1), . . . , v(Ul))

≤ (xS1 + xS2 · l)max(v(S1), v(U1), . . . , v(Ul))

≤ (xS1 + xS2(
k2
k

+ 1))v(A)

≤ (1 + xS2

|S2|

k
)v(A)

≤ (1 + 1)v(A)

= 2v(A)

where the first inequality holds by subadditivity v(S2) ≤
∑l

i=1 v(Ui), the third uses l ≤ ⌈k2
k
⌉, the

fourth inequality uses xS1 + xS2 ≤ 1, and the last inequality holds since by the LP we have that
xS2 |S2| ≤ k.

11

5.1 An Approximation Algorithm for Subadditive Valuations Subject to k-

Knapsack Constraints

In this section we study maximization subject to k knapsack constraints. In this problem we have
a valuation v and k costs for each item j: ci1, . . . , c

i
k. Let Ci(S) = Σj∈Sc

i
j . We also have k budgets

B1, . . . , Bk. The goal is to find a maximum-value bundle S such that for every i, Ci(S) ≤ Bi.
We note that e

e+1 -approximation algorithms exist for maximizing a montone submodular valu-
ation subject to k knapsack constraints (the algorithms use only value queries) [5, 18] (note that
our algorithms are for the more general subadditive case). Consider a generalization of the LP for
a single knapsack constraint:

Maximize:
∑

S xS · v(S)
Subject to:

• For each constraint i ∈ [k]:
∑

S xS · Ci(S) ≤ Bi.

•
∑

S xS ≤ 1.

• For each bundle S: xS ≥ 0.

Proposition 5.3 The LP can be solved with a polynomial number of demand queries.

Proof: Once again we take its dual and give a separation oracle to the dual to solve the LP.

Minimize:
∑k

i=1 yi ·Bi + z
Subject to:

• For each bundle S: z +
∑k

i=1 yi · Ci(S) ≥ v(S).

• For each constraint i ∈ [k]: yi ≥ 0.

• z ≥ 0.

Similar to the case of single knapsack constraint (Proposition 3.1) we can solve this dual LP by
ellipsoid method. The separation oracle for the dual is a demand query maxT v(T)−

∑k
i=1 yi ·Ci(T).

The final algorithm uses enumeration over “big” items.

Definition 5.4 An item j is called big if cij ≥ ǫ ·Bi for some constraint i ∈ [k]. An item is called
small otherwise.

Let B the set of big items and W be the set of small items.

The Algorithm

1. For each set T ⊆ B such that for each constraint i ∈ [k]: Ci(T) ≤ Bi:

(a) Let M ′ = T ∪W.

(b) Obtain fractional solution on items from M ′.

(c) Divide each bundle S in the fractional solution into sets, US
1 , U

S
2 , . . . , U

S
lS

sets each

satisfying budget constraint each US
i respects all budget constraints. Additionally

lS ≤ ⌈
∑k

i=1
Ci(S)

Bi(1−ǫ)⌉.

12

(d) Let AT = argmax(US
j).

2. Output argmaxT⊆B v(AT).

Notice that Step (1c) can be implemented for each S as follows: put the subset T ∩S in US
1 and

add items from S without violating the budget constraint of US
1 . Now divide the rest of the items S

into bundles US
1 , U

S
2 , . . . , U

S
lS

so that each such bundle respects the budget constraint and for each

i, Bi−Ci(U
S
r) ≤ ǫ ·Bi. Since we only have to handle small items, we get that lS ≤ ⌈

∑k
i=1

Ci(S)
Bi(1−ǫ)⌉.

As for the number of demand queries we make, notice that in each set T we consider all items
are big. Therefore, for this set to respect each of the budget constraints it must be that |T | ≤ k/ǫ,

which implies that the number of iterations we make is at most m
k
ǫ . Since in each iteration we

make a polynomial number of demand queries, if ǫ is constant the total number of queries we make
is indeed polynomial.

Lemma 5.5 Let A be the bundle that the algorithm outputs. Then, (1 + k
1−ǫ

)v(A) ≥
∑

S xSv(S).

Proof: Consider the set AT that was obtained in the iteration where T is exactly the set of big
items in the optimal solution O. The optimal fraction solution with respect to W ∪T has the same
value as the unrestricted fractional solution. We can therefore analyze the approximation ratio for
this AT .

∑

S

xSv(S) ≤
∑

S

xS · lS ·max(v(US
1), v(U

S
2), . . . , v(U

S
lS
))

≤ v(AT)
∑

S

xS · lS

≤ v(AT)
∑

S

xS(⌈
k

∑

i=1

Ci(S)

Bi(1− ǫ)
⌉)

≤ v(AT)
∑

S

xS(

k
∑

i=1

Ci(S)

Bi(1− ǫ)
+ 1)

≤ v(AT)(1 +
∑

S

xS

k
∑

i=1

Ci(S)

Bi(1− ǫ)
)

= v(AT)(1 +
k

∑

i=1

1

Bi(1− ǫ)

∑

S

xSCi(S))

≤ v(AT)(1 +
k

∑

i=1

1

Bi(1− ǫ)
Bi)

≤ v(AT)(1 +
k

1− ǫ
)

where the second inequality holds since by subadditivity v(S) ≤ ΣlS

i=1v(U
S
i), and the second to last

inequality holds since
∑

S xSCi(S) ≤ Bi (by the constraints of the fractional solution).

13

6 Lower Bounds

6.1 A Tight Lower Bound for XOS Valuations

We show that our algorithms from Section 5 are essentially tight: an approximation ratio of 2 −
ǫ requires exponentially many demand queries. We note that proving bounds on the power of
algorithms with demand queries turned out to be not an easy task, and in particular very different
than showing lower bounds on the power of value queries. For example, when we consider value
queries there are only finitely many value queries that we have to consider (no more than the number
of subsets of M), whereas there is an infinite number of demand queries we have to consider. The
crux of our proof is to show that the power of any arbitrary demand query is limited in some formal
sense, hence exponentially many demand queries are needed to distinguish between the case that
the optimal value is 2, and between the case it is 1 + ǫ.

We note that that our bound holds also for randomized mechanisms, and in fact holds also for
a the class of fractionally subadditive valuations, a strict subclass of subadditive valuations.

Theorem 6.1 Let A be a randomized algorithm that achieves a (2 − ǫ)-approximation, for some

fixed ǫ > 0. Let α be such that m = kα. A makes in expectation at least
1
2
·k

ǫk
100 (α−1)

m(400e
ǫ2

)
ǫk
100 (2e)k−

ǫk
100

demand

queries, even if the valuation is XOS.

In particular, fix some ǫ, γ > 0, and let k = m1−γ . The theorem says that obtaining a 2 − ǫ
approximation requires exponential number of demand queries. The following three families of
additive valuations will be used in the proof:

1. For every item j, define the valuation Ij such that Ij({j}) = 1 and for every t 6= j, Ij({t}) = 0.

2. For every subset T , |T | = k, , define the valuation GT such that GT ({j}) =
2
k
if j ∈ T , and

for every j /∈ T , GT ({j}) = 0.

3. The valuation B such that for every item j, B({j}) = 1+ǫ
k
.

For every T , |T | = k, let vT (S) = max(I1(S), . . . , Im(S), B(S), GT (S)). In addition, let v∅(S) =
max(I1(S), . . . , Im(S), B(S)). Notice that the valuations are XOS (i.e., fractionally subadditive)
by definition. We will prove that:

Lemma 6.2 Determining whether the valuation is v∅ (and not vT , for some T) requires in expec-

tation at least
1
2
·k

ǫk
100 (α−1)

m(400e
ǫ2

)
ǫk
100 (2e)k−

ǫk
100

demand queries.

Lemma 6.2 implies Theorem 6.1: the bundle T is of size k and vT (T) = 2. On the other hand, for
every bundle S of size k it holds that v∅(S) = 1 + ǫ.
Proof: Specifically, we show that any deterministic algorithm must make in expectation the
specified number of demand queries to determine if the valuation is v∅, when the valuation is
chosen uniformly at random from the set {v∅}∪T :|T |=k vT . Yao’s principle delievers the lemma now.

We use the following definition:

Definition 6.3 Fix a demand query dq = (p1, ..., pm). We say that dq covers vT if the demand set
of dq in vT contains a set S such that GT is the maximizing clause of S.

14

Claim 6.4 Let dq = (p1, ..., pm) be a demand query, and let vT be a valuation that is covered by
dq. Let S ⊆ T be some bundle in the demand set of dq in vT such that GT is the maximizing clause
of S. Then, Σj∈Spj ≤

2|S|
k

− 1 + 2
k
. Furthermore, we have that |S| ≥ k

2 − 1.

Proof: Let t = argminj∈S pj. GT (and not It) is the maximizing clause for S, and thus:

GT (S)− Σj∈Spj =
2|S|

k
− Σj∈Spj ≥ 1− pt = It(t)− pt

Since S is in the demand set and GT is its maximizing clause, for each j ∈ S, pj ≤ 2
k
(otherwise

S − {j} is more profitable than S, and thus S is not in the demand set).

2|S|

k
− Σj∈Spj ≥ 1−

2

k

Reorganizing we have that 2|S|
k

− 1 + 2
k
≥ Σj∈Spj, as needed. As for the second part of the claim,

notice that if |S| < k
2 − 1 then vT (S) = GT (S) < 1 − 2

k
, and therefore GT is not the maximizing

clause of S since IT (t)− pt < 1− 2
k
.

The key observation is that if vT is not covered by dq, then the demand set of dq is identical in
v∅ and vT . In particular, the only information that executing dq adds is either to determine that
the valuation is some specific vT (in case vT is covered by dq) or to claim that the valuation is not
any of the vT ’s that are covered by dq. However, to determine whether the valuation is v∅, we need
to rule out all possible values of T . The heart of the proof is the following claim:

Claim 6.5 Fix a demand query dq = (p1, ..., pm). The number of bundles that dq covers is at most
(

4k
ǫ
ǫk
100

)

·
(m− ǫk

100

k− ǫk
100

)

.

Proof: We upper bound the number of valuations VT that dq covers by describing a set L of items
of size at most |L| ≤ 4k

ǫ
with the property that for every vT that is covered by dq, |L ∩ T | > ǫk

100 .
The number of these bundles is at most:

k
∑

i= ǫk
100

(4k
ǫ

i

)(

m− 4k
ǫ

k − i

)

≤

(4k
ǫ
ǫk
100

)

·

(

m− ǫk
100

k − ǫk
100

)

We now describe a process that constructs the set L. After that, we prove that L is indeed of
the specified size.

1. Let L0 = ∅, T = {T |vT is covered by dq}, and i = 0.

2. While T 6= ∅:

(a) Let i = i+ 1.

(b) Select some Ti ∈ T .

(c) Let STi
be a set in the demand set of dq in vT that is maximized in the clause GT .

(d) Let Li = Li−1 ∪ STi
.

(e) Let T = {T |vT is covered by dq and |Li ∩ T | < ǫk
100}.

3. Let L = Li.

15

We now show that |L| ≤ 4k
ǫ
. Specifically, we show that if the number of iterations t is more

than 4
ǫ
then the profit of L is at least 2. This means the demand set does not contain bundles

of size at most k at all, since their value is at most 2. Hence dq covers no valuation vT (i.e.,
v(L) − Σj∈Lpj ≥ v(T) − Σj∈Tpj for every bundle T of size at most k). Thus, if dq covers some
valuation vT it must hold that t ≤ 4

ǫ
.

For each iteration i, let Si = Li −Li−1. Observe that by Claim 6.4, |STi
| ≥ k

2 − 1 and therefore

|Si| ≥
k
2 − 1− ǫk

100 . From the same claim we also have that Σj∈STi
pj ≤

2|STi
|

k
− 1+ 2

k
. Together this

implies that Σj∈Si
pj ≤

2(|Si|+
k·ǫ
100

)

k
− 1 + 2

k
.

We would like to bound the number of iterations t the process goes on. By our discussion above,
the process must stop before the profit of L is bigger than 2 (i.e., v∅(L)− Σjpj > 2):

v∅(L)− Σjpj =
(1 + ǫ)|L|

k
− Σj∈Lpj

=
(1 + ǫ)Σi≤t|Si|

k
− Σi≤tΣj∈Si

pj

≥
(1 + ǫ)Σi≤t|Si|

k
− Σi≤t(

2|Si|

k
− 1 +

2

k
+

ǫ

100
)

= t · (1−
ǫ

100
−

2

k
)− (1− ǫ)Σi≤t

|Si|

k

≥ t · (1−
ǫ

100
−

2

k
)− (1− ǫ) · t

= t · (ǫ−
ǫ

100
−

2

k
)

≥ t ·
ǫ

2

where the second to last inequality follows since for each i, |Si| ≤ |Ti| ≤ k. Therefore for the profit
of L to be at most 2 it must hold that t ≤ 4

ǫ
. Recall that any iteration we are adding to L at most

k items. Therefore |L| ≤ t · k ≤ 4k
ǫ
.

Claim 6.5 implies Lemma 6.2: the total number of bundles of size k is
(

m
k

)

. To rule out at least
(mk)
2 possible bundles, the number of demand queries d we have to make is at least (we use the

bounds
(

n
r

)

≥ (n
r
)r,

(

n
r

)

≤ (ne
r
)r and use m = kα):

1
2 ·

(

kα

k

)

(
4k
ǫ
ǫk
100

)

·
(kα− ǫ·k

100

k− ǫk
100

)

≥
1
2 ·

kαk

kk

(e
4k
ǫ
ǫk
100

)
ǫk
100 · (e

kα− ǫ·k
100

k− ǫk
100

)k−
ǫk
100

=
1
2 · kk(α−1) · (k − ǫk

100)
k− ǫk

100

(400e
ǫ2

)
ǫk
100 (ekα)k−

ǫk
100

≥
1
2 · k

k(α−1) · kk−
ǫk
100

(400e
ǫ2

)
ǫk
100 (2ekα)k−

ǫk
100

=
1
2 · kk·α−

ǫ·k
100

(400e
ǫ2

)
ǫk
100 (2e)k−

ǫk
100 · kα·k−

αǫk
100

≥
1
2 · k

ǫk
100

(α−1)

(400e
ǫ2

)
ǫk
100 (2e)k−

ǫk
100

16

Therefore, until we rule out at least half of the bundles, any additional demand query finds T with
probability at most 1

d
. To rule out half of the bundles we have to make at least d queries, hence

after d
m

queries we find T with probability at most o(1).

6.2 Ruling Out an FPTAS for Submodular Maximization Subject to a Knap-

sack Constraint

We show that there is no FPTAS for the problem of optimizing a submodlar function subject to a
knapsack constraint (an FPTAS is a (1 + ǫ)-approximation algorithm that the number of demand
queries it makes is poly(m, 1

ǫ
)).

Theorem 6.6 Let A be a randomized algorithm that achieves an
m
2
− 1

3
m
2
− 1

2

-approximation. A makes

in expectation at least 2
m

·
(m

2
m
4

)

demand queries.

Notice that the lower bound on the approximation ratio depends polynomially on m and there-
fore an FPTAS must achieve a better ratio in time poly(m, 1

ǫ
). This shows that an FPTAS for this

problem is impossible. For proof, we consider the following family of instances. Let A be some
set of m

2 items, and let B be the set that contains the rest of the items. For each item j ∈ A let
cj =

2
m

− ǫ, and for each item j ∈ B let cj =
2
m

+ ǫ. Let the total budget be 1. For every T of size
n
2 such that |T ∩A| = m

4 define the following valuations:

vT (S) =























|S|, |S| < m
2 ;

m
2 , |S| > m

2 ;
m
2 , |S| = m

2 , C(S) > 1;
m
2 − 1

3 , |S| = T ;
m
2 − 1

2 , otherwise.

v∅(S) =















|S|, |S| < m
2 ;

m
2 , |S| > m

2 ;
m
2 , |S| = m

2 , C(S) > 1;
m
2 − 1

2 , otherwise.

Lemma 6.7 Determining whether the valuation is v∅ (and not vT , for some T) requires in expec-

tation at least 2
m

·
(m

2
m
4

)

demand queries.

Lemma 6.7 implies Theorem 6.6: if the valuation is vT then vT (T) =
m
2 − 1

3 . Otherwise, for every
bundle other S of below the budget it holds that v∅(S) ≤

m
2 − 1

2 . Proof: We use the following
definition:

Definition 6.8 Fix a demand query dq = (p1, ..., pm). We say that dq covers vT if the demand set
of dq in vT contains T .

Claim 6.9 Let dq = (p1, ..., pm) be a demand query, and let vT , vT ′ be two valuations that are
covered by dq. Then either T ∩A = T ′ ∩A or T ∩B = T ′ ∩B.

Proof: Suppose not. Let a, b ∈ T and a′, b′ ∈ T ′ be such that a, b /∈ T ′, a′, b′ /∈ T , a, a′ ∈ A,
b, b′ ∈ B. Define the following bundles:

Tb′ = T − a+ b′, T ′
a = T ′ − b′ + a

17

If the valuation is vT , then T is in the demand set and therefore vT (T)− p(T) ≥ vT (Tb′)− p(Tb′).
Since C(Tb) > 1, we have that 1

3 ≤ pb′ − pa.
If the valuation is vT ′ , then we have that vT ′(T ′) − p(T ′) ≥ vT ′(T ′

a) − p(T ′
a). Since C(T ′

a) < 1
we have that 1

6 ≥ pb′ − pa. We have reached a contradiction and the claim follows.

Observe that if vT is not covered by dq, then the demand set of dq is identical in v∅ and vT . In
particular, the only information that executing dq adds is either that the valuation is some specific
vT (in case vT is covered by dq) or provide a proof that the valuation is not any of the vT ’s that are
covered by dq. However, to determine whether the valuation is v∅, we need to rule out all possible

values of T . Suppose that we have d demand queries that fail. There are
(m

2
m
4

)

·
(m

2
m
4

)

possible value

of T (half of the items in T come from A and the other half from B), and by the claim each

demand query can rule out at most
(m

2
m
4

)

(we keep all items in, say, A, and choose m
4 items from B).

Therefore, until we rule out at least half of the bundles, any additional demand query finds T with
probability at most 1

2(
m
2
m
4
)
. To rule out half of the bundles we therefore have to make in expectation

at least
(m

2
m
4

)

queries, hence after 2
m

·
(m

2
m
4

)

queries we find T with probability at most o(1).

Acknowledgments

We thank Bobby Kleinberg for helpful discussions.

References

[1] Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Item pricing for revenue maximiza-
tion. In EC’08.

[2] Yair Bartal, Rica Gonen, and Noam Nisan. Incentive compatible multi unit combinatorial
auctions. In TARK’03.

[3] Liad Blumrosen and Noam Nisan. 2007. Combinatorial Auctions (a survey). In “Algorithmic
Game Theory”, N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, editors.

[4] Liad Blumrosen and Noam Nisan. On the computational power of demand queries. SIAM J.
Comput., 39(4):1372–1391, 2009.

[5] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In STOC’11.

[6] Shahar Dobzinski. An impossibility result for truthful combinatorial auctions with submodular
valuations. In STOC’11.

[7] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for combi-
natorial auctions with complement-free bidders. In STOC’05.

[8] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful randomized mechanisms for
combinatorial auctions. In STOC’06.

[9] Shahar Dobzinski, Christos Papadimitriou, and Yaron Singer. Mechanisms for complement-
free procurement. In EC’11.

18

[10] Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combina-
torial auctions with submodular bidders. In SODA’06.

[11] Uriel Feige. On maximizing welfare where the utility functions are subadditive. In STOC’06.

[12] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

[13] Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems: Improving
the factor of 1-1/e. In FOCS’06.

[14] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maxi-
mizing submodular set functions - ii. In Polyhedral Combinatorics, volume 8 of Mathematical
Programming Studies, pages 73–87. Springer Berlin Heidelberg, 1978.

[15] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing.
In SODA’11.

[16] Subhash Khot, Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproximability
results for combinatorial auctions with submodular utility functions. In WINE’05.

[17] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set functions subject
to multiple linear constraints. In SODA’09.

[18] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and non-
monotone submodular maximization with knapsack constraints. CoRR, abs/1101.2940, 2011.

[19] Se’bastien Lahaie, Florin Constantin, and David C. Parkes. More on the power of demand
queries in combinatorial auctions: Learning atomic languages and handling incentives. In
IJCAI’05.

[20] Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear
programming. In FOCS’05.

[21] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In STOC’09.

[22] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. In EC’01.

[23] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of Operations Research, 3(3):177–188.

[24] Noam Nisan and Ilya Segal. Exponential communication inefficiency of demand queries. In
TARK’05.

[25] Tuomas Sandholm and Craig Boutilier. 2006. Preference Elicitation in Combinatorial Auctions.
In “Combinatorial Auctions”, P. Cramton and Y. Shoham and R. Steinberg, editors.

[26] Yaron Singer. Budget feasible mechanisms. In FOCS’10.

[27] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In STOC’08.

19

A Appendix for Section 4

Proof of Claim 4.4

The proof is basically an algebraic manipulation:

γ = max
k1≤k≤k2

α ·
k2

k1 + k2 − k
+ ((1− α)− α ·

k − k1
k1 + k2 − k

)
k2
k

= max
k1≤k≤k2

k2 − k

k2 − k1
·

k2
k1 + k2 − k

+ (
k − k1
k2 − k1

−
k2 − k

k2 − k1
·

k − k1
k1 + k2 − k

)
k2
k

= max
k1≤k≤k2

k2 − k

k2 − k1
·

k2
k1 + k2 − k

· (1−
k − k1

k
) +

k − k1
k2 − k1

·
k2
k

= max
k1≤k≤k2

k2 − k

k2 − k1
·

k2
k1 + k2 − k

·
k1
k

+
k − k1
k2 − k1

·
k2
k

= max
k1≤k≤k2

k2
k(k2 − k1)

·
k(k1 + k2)− k2 − k21

k1 + k2 − k

= max
k1≤k≤k2

k2
(k2 − k1)

· (1−
k21

k(k1 + k2 − k)
)

= max
k1≤k2

k2
(k2 − k1)

· (1−
4k21

(k1 + k2)2
) (3)

= max
k1≤k2

k2
(k2 − k1)

·
k22 + 2k1k2 − 3k21

(k1 + k2)2

= max
k1≤k2

k2
(k2 − k1)

·
(k2 + 3k1) · (k2 − k1)

(k1 + k2)2

= max
k1≤k2

(k2 + 3k1) · k2
(k1 + k2)2

= max
x≥1

(x+ 3) · x

(x+ 1)2

=
9

8

where in (3) we use the fact that the expression is maximized at k = k1+k2
2 . In the second to last

equation we set x = k2
k1
.

B Integrality Gaps

An Integrality Gap of 9
8 for Monotone Submodular Valuations

Theorem B.1 There exists a monotone submodular valuation v for which the integrality gap for
maximization subject to a cardinality constraint is 9

8 .

Proof: Towards defining the valuation v, consider a six-element universe U = {e1, . . . , e6}. Define
the following four sets: m1 = {e1, e2, e3}, m2 = {e1, e4}, m3 = {e2, e5}, m4 = {e3, e5}. Now define
the following valuation where the set of item is M = {m1,m2,m3,m4}. Let v be the following
valuation: v(S) = | ∪mi∈S mi|, i.e., the number of elements in U that the union of the sets in S
covers. This valuation is submodular.

Now let the cardinality constraint be k = 2. The optimal solution is to take any set S of size 2.
The value of the optimal integral solution is 4. On the other hand, consider the following fractional

20

solution: xm1 = 1
2 and xm2,m3,m4 = 1

2 . The fractional solution respects the cardinality constraint
and has a value of 4.5. The integrality gap is therefore 9

8 .

An Integrality Gap of 2 for Non-Monotone Submodular Valutions

Theorem B.2 For every constant ǫ > 0, there exists a non-monotone submodular valuation v for
which the integrality gap for maximization subject to a cardinality constraint is 2− ǫ.

Proof: Let the items be {1, . . . , k2+1}. Define the following non-monotone submodular valuation:

v(S) =

{

1− |S|
k2
, S ⊆ {2, 3, . . . , k2 + 1}, 1 ∈ S;

|S|
k
, S ⊆ {2, 3, . . . , k2 + 1}.

Then the optimal integral solution has a value of 1, whereas the fractional solution x{1} =
k

k+1 ,

x{2,3,...,k2+1} = 1
k
has value of 1 · k

k+1 + k2 · 1
k+1 = 2k

k+1 . As k tends to infinity the integrality gap
tends to 2.

21

	1 Introduction
	2 Preliminaries
	3 The Structure of the LP
	4 A 98-Approximation for Monotone Submodular Valuations
	4.1 A (98+)-Approximation Submodular Valuations Subject to a Knapsack Constraint

	5 A 2-Approximation for Subadditive Valuations
	5.1 An Approximation Algorithm for Subadditive Valuations Subject to k-Knapsack Constraints

	6 Lower Bounds
	6.1 A Tight Lower Bound for XOS Valuations
	6.2 Ruling Out an FPTAS for Submodular Maximization Subject to a Knapsack Constraint

	A Appendix for Section ??
	B Integrality Gaps

