
ar
X

iv
:1

20
2.

57
15

v1
  [

cs
.C

G
]  

26
 F

eb
 2

01
2

Computing L1 Shortest Paths among Polygonal Obstacles in the

Plane∗

Danny Z. Chen† Haitao Wang†‡

Abstract

Given a point s and a set of h pairwise disjoint polygonal obstacles of totally n vertices in
the plane, we present a new algorithm for building an L1 shortest path map of size O(n) in O(T )
time and O(n) space such that for any query point t, the length of the L1 shortest obstacle-
avoiding path from s to t can be reported in O(log n) time and the actual shortest path can be
found in additional time proportional to the number of edges of the path, where T is the time for
triangulating the free space. It is currently known that T = O(n+ h log1+ǫ h) for an arbitrarily
small constant ǫ > 0. If the triangulation can be done optimally (i.e., T = O(n+ h log h)), then
our algorithm is optimal. Previously, the best algorithm computes such an L1 shortest path map
in O(n log n) time and O(n) space. Our techniques can be extended to obtain improved results
for other related problems, e.g., computing the L1 geodesic Voronoi diagram for a set of point
sites in a polygonal domain, finding shortest paths with fixed orientations, finding approximate
Euclidean shortest paths, etc.

1 Introduction

Computing obstacle-avoiding shortest paths in the plane is a fundamental problem in computational

geometry and has many applications. The Euclidean version that measures the path length by the

Euclidean distance has been well studied (e.g., see [7, 8, 15, 19, 22, 24, 25, 31, 33, 35]). In this

paper, we consider the L1 version, defined as follows. Given a point s and a set of h pairwise disjoint

polygonal obstacles, P = {P1, P2, . . . , Ph}, of totally n vertices in the plane, where s is considered

as a special point obstacle, the plane minus the interior of the obstacles is called the free space of

P. Two obstacles are pairwise disjoint if they do not intersect in their interior. The L1 shortest

path map problem, denoted by L1-SPM, is to compute a single-source shortest path map (SPM for

short) with s as the source point such that for any query point t, an L1 shortest obstacle-avoiding

path from s to t can be obtained efficiently. Note that such a path can consist of any polygonal

segments but the length of each segment of the path is measured by the L1 metric.

We say that an SPM has standard query performances if for any query point t, the length of

the L1 shortest obstacle-avoiding path from s to t can be reported in O(log n) time and an actual

shortest path can be found in additional time proportional to the number of edges (or turns) of the

path.

If the input also includes another point t and the problem only asks for one single L1 shortest

path from s to t, then we call this problem version the L1 shortest path problem, denoted by L1-SP.

A closely related problem version solvable by our approach is to find shortest rectilinear paths.

A rectilinear path is a path each of whose edges is parallel to a coordinate axis and its length

is measured by the Euclidean distances or L1 distances of its segments (they are the same for
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rectilinear paths). Rectilinear shortest paths are used widely in VLSI design and network wire-

routing applications. As shown in [10, 27, 29, 30], it is easy to convert an arbitrary polygonal

path to a rectilinear path with the same L1 length. Thus, in this paper, we focus on computing

polygonal paths measured by the L1 distance.

1.1 Previous Work

The L1-SP problem has been studied extensively (e.g., see [6, 10, 11, 27, 29, 30, 36]). In general,

there are two approaches for solving this problem: Constructing a sparse “path preserving” graph

(analogous to a visibility graph), and the continuous Dijkstra paradigm. Clarkson, Kapoor, and

Vaidya [10] constructed a graph of O(n log n) nodes and O(n log n) edges such that a shortest path

can be found in the graph in O(n log2 n) time; subsequently, they gave an algorithm of O(n log1.5 n)

time and O(n log1.5 n) space [11]. Based on some observations, Chen, Klenk, and Tu [6] showed that

the problem was solvable in O(n log1.5 n) time and O(n log n) space. By applying the continuous

Dijkstra paradigm, Mitchell [29, 30] solved the problem in O(n log n) time and O(n) space. An

O(n + h log h) time lower bound can be established for solving L1-SP (e.g., based on the results

in [12]). Hence, Mitchell’s algorithm is worst-case optimal. Recently, by using a corridor structure

and building a smaller path preserving graph, Inkulu and Kapoor [21] solved the L1-SP problem

in O(n+ h log1.5 n) time and O(n+ h log1.5 h) space.

For the query version of the problem, i.e., L1-SPM, Mitchell’s algorithm [29, 30] builds an SPM

of size O(n) in O(n log n) time and O(n) space with the standard query performances.

In addition, for the convex case where all polygonal obstacles in P are convex, to our best

knowledge, we are not aware of any previous better results than those mentioned above.

1.2 Our Results

We present an algorithm for L1-SPM that builds an SPM of size O(n) in O(T ) time and O(n)

space with the standard query performances, where T always refers to the time for triangulating

the free space of P in the paper. It is obvious to see that given an SPM, we can always add h− 1

line segments in the free space to connect the obstacles in P together to obtain a single simple

polygon and then triangulate the free space, in totally O(n) time [2, 3]. It is currently known

that T = Ω(n + h log h) and T = O(n + h log1+ǫ h) [2], where ǫ is an arbitrarily small positive

constant. Therefore, we essentially solve L1-SPM in Θ(T ) time. In other words, our result shows

that building an SPM is equivalent to triangulating the free space of P in terms of the running

time.

Our approach uses Mitchell’s algorithm [29, 30] as a procedure and further explores the corridor

structure of P [25]. One interesting observation we found is that to find an L1 shortest path among

convex obstacles, it is sufficient to consider only the at most four extreme vertices (along the

horizontal and vertical directions) of each obstacle (these vertices define a core for each obstacle).

Mitchell’s algorithm is then applied to these cores, which takes only O(h log h) time. More work

needs to be done for computing an SPM. For example, one key result we have is that we give an

O(n′ +m′) time algorithm for a special case of constructing the L1 geodesic Voronoi diagram in a

simple polygon of n′ vertices for m′ weighted point sites, where the sites all lie outside the polygon

and influence the polygon through one (open) edge (see Fig. 1). We are not aware of any specific

previous work on this problem, although an O((n′+m′) log(n′+m′)) time solution may be obtained

by standard techniques. Our linear time algorithm, which is clearly optimal, may be interesting in

its own right.
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Figure 1: (a) Three weighted sites (in red) and a simple polygon B with an open edge cd. The goal is to compute
the L1 geodesic Voronoi diagram in B with respect to the three sites which influence B only through the edge cd.
(b) Illustrating a possible solution: B is partitioned into three Voronoi regions VD(ri) for each ri, 1 ≤ i ≤ 3.

For the convex case where all obstacles in P are convex, we can find a shortest s-t path in

O(n+h log h) time and O(n) space since the triangulation can be done in O(n+h log h) time (e.g.,

by the approaches in [2, 20]); this is optimal. A by-product of our techniques, which may be a

little “surprising”, is that in O(n+h log h) time and O(n) space, we can build an SPM of size O(h)

(instead of O(n)) such that the shortest path length queries are answered in O(log h) time each

(instead of O(log n) time).

1.3 Applications

Our techniques can be extended to solve other problems.

The L1 geodesic Voronoi diagram problem, denoted by L1-GVD, is defined as follows. Given an

obstacle set P and a set of m point sites in the free space, compute the geodesic Voronoi diagram

for the m point sites under the L1 distance metric among the obstacles in P. Mitchell [29, 30],

solves the L1-GVD problem in O((n + m) log(n + m)) time. Our approach can compute it in

O(T ′ + n + (m + h) log(m + h)) time, where T ′ is the time for triangulating the free space along

with the m point sites. It is known that T ′ = O(n+ (m+ h) log1+ǫ(m+ h)) [2] or alternatively we

can obtain T ′ = O(n + h log1+ǫ h + m log n). Note that when applying our algorithm to a single

simple polygon P of n vertices, the L1 geodesic Voronoi diagram for m point sites in P can be

obtained in O(n + m log1+ǫm) or O(n + m(log n + logm)) time. In comparison, the Euclidean

version of the one simple polygon case was solved in O((n+m) log(n+m)) time [32].

We also give better results for the shortest path problem in “fixed orientation metrics” [29, 30,

37], for which a sought path is allowed to follow only a given set of orientations. For a number c

of given orientations, Mitchell’s algorithm [29, 30] finds such a shortest path in O(cn log n) time

and O(cn) space, and our algorithm takes O(n + h log1+ǫ h + c2h log ch) time and O(n + c2h)

space. In addition, our approach also leads to an O(n+ h log1+ǫ h+ (1/δ)h log h√
δ
) time algorithm

for computing a δ-optimal Euclidean shortest path among polygonal obstacles for any constant

δ > 0. For this problem, Mitchell’s algorithm [29, 30] takes O((
√

1/δ)n log n) time, and Clarkson’s

algorithm [9] runs in O((1/δ)n log n) time.

2 An Overview of Our Approaches

In this section, we give an overview of our approaches as well as the organization of this paper.

Denote by F the free space of P. We begin with our algorithm for the convex case, which is a key

procedure for solving the general problem.
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We first discuss the L1-SP problem. In the convex case, each obstacle in P = {P1, P2, . . . , Ph}
is convex. For each Pi ∈ P, we compute its core, denoted by core(Pi), which is a simple polygon

by connecting the topmost, leftmost, bottommost, and rightmost points of Pi. Let core(P) be

the set of all h cores of P. For any point t in the free space F , we show that given any shortest

s-t path avoiding all cores in core(P), we can find in O(n) time a shortest s-t path avoiding all

obstacles in P with the same L1 length. Based on this observation, our algorithm has two main

steps: (1) Apply Mitchell’s algorithm [29, 30] on core(P) to compute a shortest s-t path πcore(s, t)

avoiding the cores in core(P), which takes O(h log h) time since each core in core(P) has at most

four vertices; (2) based on πcore(s, t), compute a shortest s-t path avoiding all obstacles in P in

O(n) time. This algorithm takes overall O(n+ h log h) time and O(n) space.

To build an SPM in F (with respect to the source point s), similarly, we first apply Mitchell’s

algorithm on core(P) to compute an SPM of O(h) size in the free space with respect to all cores,

which can be done in O(n+ h log h) time and O(n) space. Based on the above SPM, in additional

O(n) time, we are able to compute an SPM in F . Our results for the convex case are given in

Section 3.

For the general problem where the obstacles in P are not necessarily convex, based on a tri-

angulation of the free space F , we first compute a corridor structure [25], which consists of O(h)

corridors and O(h) junction triangles. Each corridor possibly has a corridor path. As in [25], the

corridor structure can be used to partition the plane into a set P ′ of O(h) pairwise disjoint convex

polygons of totally O(n) vertices such that a shortest s-t path in F is a shortest s-t path avoiding

the convex polygons in P ′ and possibly containing some corridor paths. All corridor paths are

contained in the polygons of P ′. Thus, in addition to the corridor paths, finding a shortest path

is reduced to an instance of the convex case. By incorporating the corridor path information into

Mitchell’s continuous Dijkstra paradigm [29, 30], our algorithm for the convex case can be modified

to find a shortest path in O(T ) time. The above algorithm is presented in Section 4.

Sections 4.3, 5, and 6 are together devoted to compute an SPM in F (Section 4.3 outlines the

algorithm). We use the corridor structure to partition F into the ocean M, bays, and canals. While

the ocean M may be multiply connected, every bay or canal is a simple polygon. Each bay has a

single common boundary edge with M and each canal has two common boundary edges with M.

But two bays or two canals, or a bay and a canal do not share any boundary edge. A common

boundary edge of a bay (or canal) with M is called a gate. Thus each bay has one gate and each

canal has two gates. Further, the ocean M is exactly the free space with respect to the convex

polygonal set P ′. By modifying our algorithm for the convex case, we can compute an SPM in M
in O(T ) time. This part is discussed in Section 4.3.

Denote by SPM (M) the SPM in M. To obtain an SPM in F , we need to “expand” SPM (M)

into all bays and canals through their gates. Here, a challenging subproblem is to solve efficiently a

special case of the (additively) weighted L1 geodesic Voronoi diagram problem on a simple polygon

B: The weighted point sites all lie outside B and influence B through one (open) edge (e.g., see

Fig. 1). The subproblem models the procedure of expanding SPM (M) into a bay, where the polygon

B is the bay, the point sites are obstacle vertices in M, the weight of each site is the length of its

shortest path to the source point s, and the edge of the polygon (e.g., cd in Fig. 1) is the gate of

the bay. As discussed before, we give a linear time solution for this subproblem in Section 5. Note

that although our presentation for solving the subproblem is long and technically complicated, the

algorithm itself is simple and easy to implement; our effort is mostly for simplifying the algorithm

and showing its correctness.

Expanding SPM (M) into canals, which is discussed in Section 6, is also done in linear time by
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using our solution for the above subproblem as a main procedure. In summary, given SPM (M),

computing an SPM for the entire free space F takes additional O(n) time.

We discuss a little more about the above challenging subproblem. The problem may not look

“challenging” at all as it can be solved by many existing techniques. For example, one may attempt

to use the continuous Dijkstra approach [29, 30] to let the “wavelet” enter into the bays/canals.

However, that would lead to an O((n′ +m′) log(n′ +m′)) time solution for the subproblem since it

takes logarithmic time to process each event, where n′ is the number of vertices of B and m′ is the
number of weighted sites, and consequently it would take an overall O(n log n) time for building

an SPM in F . One may also want to use a sweeping algorithm [14], which would also lead to

an O((n′ + m′) log(n′ + m′)) time solution since again it takes logarithmic time to process each

event. In addition, the divide-and-conquer approach [34] would also take O((n′ +m′) log(n′ +m′))
time since the merge procedure takes linear time. Our algorithm for the subproblem, which can

be viewed as an incremental approach, takes O(n′ +m′) time. Incremental approaches have been

widely used in geometric algorithms, and normally they can result in good randomized algorithms.

Incremental approaches have also been used for constructing Voronoi diagrams, which usually take

quadratic time. Our result demonstrates that incremental approaches are able to yield optimal

deterministic solutions for building Voronoi diagrams, and the success of it hinges on discovering

many geometric properties of the problem. We should point out that our techniques for solving the

challenging subproblem are quite independent of other parts of the paper.

In Section 7, we generalize our techniques to solve some related problems discussed in Section

1.3. Section 8 concludes the paper.

As in [29, 30], for simplicity of discussion, we assume that the free space F is connected and

the point t is always in F (thus, a feasible s-t path always exists), and no two obstacle vertices lie

on the same horizontal or vertical line. In the rest of this paper, unless otherwise stated, a shortest

path always refers to an L1 shortest path and a length is always in the L1 metric.

3 Shortest Paths among Convex Obstacles

In this section, we give our algorithms for the convex case, which are also used for the general

case in later sections. Let P ′ = {P ′
1, P

′
2 . . . , P

′
h} be a set of h pairwise disjoint convex polygonal

obstacles of totally n vertices. With respect to the source point s, our algorithm builds an SPM of

O(n) size with standard query performances in O(n+ h log h) time and O(n) space.

3.1 Notation and Observations

For each convex polygon P ′
i ∈ P ′, we define its core, denoted by core(P ′

i ), as the simple polygon

by connecting the leftmost, topmost, rightmost, and bottommost vertices of P ′
i with line segments

(see Fig. 2). Note that core(P ′
i ) is contained in P ′

i and has at most four edges. Let core(P ′) be the
set of the cores of all obstacles in P ′. Consider a point t in the free space F . A key observation (to

be proved) is that a shortest s-t path avoiding the cores in core(P ′) corresponds to a shortest s-t

path avoiding the obstacles in P ′ with the same L1 length. Note that a path avoiding the cores in

core(P ′) may intersect the interior of some obstacles in P ′.
To prove the above key observation, we first define some concepts. Consider an obstacle P ′

i and

core(P ′
i ). For each edge ab of core(P ′

i ) with vertices a and b, if ab is not an edge of P ′
i , then it

divides P ′
i into two polygons, one of them containing core(P ′

i ); we call the one that does not contain

core(P ′
i ) an ear of P ′

i based on ab, denoted by ear(ab) (see Fig. 2). If ab is also an edge of Pi, then
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Figure 2: Illustrating the core and ears of a convex
obstacle; ear(ab) is indicated.
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Figure 3: The line segment cd penetrates ear(ab); cd

intersects the obstacle path of ear(ab) at e and f .

ear(ab) is not defined. Note that ear(ab) has only one edge bounding core(P ′
i ), i.e., ab, which we

call its core edge. The other edges of ear(ab) are on the boundary of P ′
i , which we call obstacle

edges. There are two paths between a and b along the boundary of ear(ab): One path is the core

edge ab and the other consists of all its obstacle edges. We call the latter path the obstacle path

of the ear. A line segment is positive-sloped (resp., negative-sloped) if its slope is positive (resp.,

negative). An ear is positive-sloped (resp., negative-sloped) if its core edge is positive-sloped (resp.,

negative-sloped). Note that by our assumption no two obstacle vertices lie on the same horizontal

or vertical line, and thus no ear has a horizontal or vertical core edge. A point p is higher (resp.,

lower) than another point q if the y-coordinate of p is no smaller (resp., no larger) than that of q.

The next observation is self-evident.

Observation 1 For any ear, its obstacle path is monotone in both the x- and y-coordinates. Specif-

ically, consider an ear ear(ab) and suppose the vertex a is lower than the vertex b. If ear(ab) is

positive-sloped, then the obstacle path from a to b is monotonically increasing in both the x- and

y-coordinates; if it is negative-sloped, then the obstacle path from a to b is monotonically decreasing

in the x-coordinates and monotonically increasing in the y-coordinates.

For an ear ear(ab) and a line segment cd, we say that cd penetrates ear(ab) if the following hold

(see Fig. 3): (1) cd intersects the interior of ear(ab), (2) neither c nor d is in the interior of ear(ab),

and (3) cd does not intersect the core edge ab at its interior. The next lemma will be useful later.

Lemma 1 Suppose a line segment cd penetrates an ear ear(ab). If cd is positive-sloped (resp.,

negative-sloped), then ear(ab) is also positive-sloped (resp., negative-sloped).

Proof: We only prove the case when cd is positive-sloped since the other case is similar.

Assume to the contrary that ear(ab) is negative-sloped. Without loss of generality (WLOG), we

assume a is lower than b. By Observation 1, the obstacle path of ear(ab) from a to b is monotonically

decreasing in the x-coordinates. Thus, the rightmost point and leftmost point of ear(ab) are a and

b, respectively. Note that ear(ab) is contained in the region between the two vertical lines passing

through a and b. Since cd is positive-sloped and ab is negative-sloped, if cd intersects an interior

point of ear(ab), then cd must cross ab at an interior point. But since cd penetrates ear(ab), cd

cannot intersect any interior point of ab. Hence, we have a contradiction. The lemma thus follows.

✷

Clearly, if cd penetrates the ear ear(ab), then cd intersects the boundary of ear(ab) at two

points and both points lie on the obstacle path of ear(ab) (e.g., see Fig. 3).

Lemma 2 Suppose a line segment cd penetrates an ear ear(ab). Let e and f be the two points on

the obstacle path of ear(ab) that cd intersects. Then the L1 length of the line segment ef is equal

to that of the portion of the obstacle path of ear(ab) between e and f (see Fig. 3).
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Proof: WLOG, suppose cd is positive-sloped and e is lower than f . By Lemma 1, ear(ab) is

also positive-sloped. The segment ef from e to f is monotonically increasing in both the x- and

y-coordinates. Denote by êf the portion of the obstacle path of ear(ab) between e and f . Since

ear(ab) is positive-sloped, by Observation 1, the portion êf from e to f is monotonically increasing

in both the x- and y-coordinates. Therefore, the L1 lengths of ef and êf are equal. The lemma

thus follows. ✷

If cd penetrates ear(ab), then by Lemma 2, we can obtain another path from c to d by replacing

ef with the portion of the obstacle path of ear(ab) between e and f such that the new path has

the same L1 length as cd and the new path does not intersect the interior of ear(ab).

The results in the following lemma have been proved in [29, 30].

Lemma 3 [29, 30] There exists a shortest s-t path in the free space such that if the path makes a

turn at a point p, then p is an obstacle vertex.

We call a shortest path that satisfies the property in Lemma 3 a vertex-preferred shortest path.

Mitchell’s algorithm [29, 30] can find a vertex-preferred shortest s-t path. Denote by Tri(P ′) a

triangulation of the free space and the space inside all obstacles. Note that the free space can be

triangulated in O(n+ h log h) time [2, 20] and the space inside all obstacles can be triangulated in

totally O(n) time [3]. Hence, Tri(P ′) can be computed in O(n + h log h) time. The next lemma

gives our key observation.

Lemma 4 Given a vertex-preferred shortest s-t path that avoids the polygons in core(P ′), we can

find in O(n) time a shortest s-t path with the same L1 length that avoids the obstacles in P ′.

Proof: Consider a vertex-preferred shortest s-t path for core(P ′), denoted by πcore(s, t). Suppose

it makes turns at p1, p2, . . . , pk, ordered from s to t along the path, and each pi is a vertex of a core

in core(P ′). Let p0 = s and pk+1 = t. Then for each i = 0, 1, . . . , k, the portion of πcore(s, t) from

pi to pi+1 is the line segment pipi+1, which does not intersect the interior of any core in core(P ′).
Below, we first show that we can find a path from pi to pi+1 such that it avoids the obstacles in P ′

and has the same L1 length as pipi+1.

If pipi+1 does not intersect the interior of any obstacle in P ′, then we are done with pipi+1.

Otherwise, because pipi+1 avoids core(P
′), it can intersects only the interior of some ears. Consider

any such ear ear(ab). Below, we prove that pipi+1 penetrates ear(ab).

First, we already know that pipi+1 intersects the interior of ear(ab). Second, it is obvious that

neither pi nor pi+1 is in the interior of ear(ab). It remains to show that pipi+1 cannot intersect the

core edge ab of ear(ab) at the interior of ab. Denote by A′ ∈ P ′ the obstacle that contains ear(ab).

The interior of ab is in the interior of A′. Since pipi+1 does not intersect the interior of A′, pipi+1

cannot intersect ab at its interior. Therefore, pipi+1 penetrates ear(ab).

Recall that we have assumed that no two obstacle vertices lie on the same horizontal or vertical

line. Since both pi and pi+1 are obstacle vertices, the segment pipi+1 is either positive-sloped or

negative-sloped. WLOG, assume pipi+1 is positive-sloped. By Lemma 1, ear(ab) is also positive-

sloped. Let e and f denote the two intersection points between pipi+1 and the obstacle path of

ear(ab), and êf denote the portion of the obstacle path of ear(ab) between e and f . By Lemma

2, we can replace the line segment ef (⊆ pipi+1) by êf to obtain a new path from pi to pi+1 such

that the new path has the same L1 length as pipi+1. Further, as a portion of the obstacle path of

ear(ab), êf is a boundary portion of the obstacle A′ that contains ear(ab), and thus êf does not

intersect the interior of any obstacle in P ′.
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By processing each ear whose interior is intersected by pipi+1 as above, we find a new path from

pi to pi+1 such that the path has the same L1 length as pipi+1 and the path does not intersect the

interior of any obstacle in P ′.

By processing each segment pipi+1 in πcore(s, t) as above for i = 0, 1, . . . , k, we obtain another

s-t path π(s, t) such that the L1 length of π(s, t) is equal to that of πcore(s, t) and π(s, t) avoids all

obstacles in P ′. Below, we show that π(s, t) is a shortest s-t path avoiding the obstacles in P ′.
Since each core in core(P ′) is contained in an obstacle in P ′, the length of a shortest s-t path

avoiding core(P ′) cannot be longer than that of a shortest s-t path avoiding P ′. Because the length

of π(s, t) is equal to that of πcore(s, t) and πcore(s, t) is a shortest s-t path avoiding core(P ′), π(s, t)
is a shortest s-t path avoiding P ′.

Note that the above discussion also provides a way to construct π(s, t), which can be easily

done in O(n) time with the help of the triangulation Tri(P ′). The lemma thus follows. ✷

Since each core in core(P ′) is contained in an obstacle in P ′, the corollary below follows from

Lemma 4 immediately.

Corollary 1 A shortest s-t path avoiding the obstacles in P ′ is a shortest s-t path avoiding the

cores in core(P ′).

3.2 Computing a Single Shortest Path

Based on Lemma 4, our algorithm for finding a single shortest s-t path works as follows: (1) Apply

Mitchell’s algorithm [29, 30] on core(P ′) to find a vertex-preferred shortest s-t path avoiding the

cores in core(P ′); (2) by Lemma 4, find a shortest s-t path that avoids the obstacles in P ′. The first
step takes O(h log h) time and O(h) space since the cores in core(P ′) have totally O(h) vertices.

The second step takes O(n) time and O(n) space.

Theorem 1 Given a set of h pairwise disjoint convex polygonal obstacles of totally n vertices in

the plane, we can find an L1 shortest path between two points in the free space in O(n + h log h)

time and O(n) space.

3.3 Computing the Shortest Path Map

In this subsection, we compute the SPM for P ′. Mitchell’s algorithm [29, 30] can compute an O(n)

size SPM with the standard query performances in O(n log n) time and O(n) space.

By applying Mitchell’s algorithm [29, 30] on the core set core(P ′), we can compute an O(h)

size SPM in O(h log h) time and O(h) space, denoted by SPM (core(P ′), s). With a planar point

location data structure [13, 26], for any query point t in the free space F , the length of a shortest

s-t path avoiding core(P ′) can be reported in O(log h) time, which is also the length of a shortest

s-t path avoiding P ′ by Lemma 4. We thus have the following result.

Theorem 2 Given a set of h pairwise disjoint convex polygonal obstacles of totally n vertices in

the plane, in O(n + h log h) time and O(n) space, we can construct a shortest path map of size

O(h) with respect to a source point s, such that the length of an L1 shortest path between s and any

query point in the free space can be reported in O(log h) time.

The result in Theorem 2 is superior to Mitchell’s algorithm [29, 30] in three aspects, i.e., the

preprocessing time, the SPM size, and the length query time. However, with the SPM for Theorem

2, an actual shortest path avoiding P ′ between s and a query point t cannot be reported in additional
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time proportional to the number of turns of the path, although we can use this SPM to report an

actual shortest path πcore(s, t) between s and t avoiding core(P ′) in additional time proportional

to the number of turns of πcore(s, t) and then find an actual shortest path avoiding P ′ between s

and t in another O(n) time using πcore(s, t) by Lemma 4.

To process queries on actual shortest paths avoiding P ′ efficiently, in Lemma 5 below, using

SPM (core(P ′), s), we compute an SPM for P ′, denoted by SPM (M), of O(n) size, which has

the standard query performances, i.e., answers a shortest path length query in O(log n) time and

reports an actual path in additional time proportional to the number of turns of the path.

Lemma 5 Given the shortest path map SPM (core(P ′), s) for the core set core(P ′), we can compute

a shortest path map SPM (M) for the obstacle set P ′ in O(n) time (with the help of the triangulation

Tri(P ′)).

Proof: Note that the polygons in P ′ are pairwise disjoint in their interior. For simplicity of

discussion in this proof, we assume that any two different polygons in P ′ have disjoint interior as

well as disjoint boundaries.

Consider a cell Ccore(r) with the root r in SPM (core(P ′), s). Recall that r is always a vertex

of a core in core(P ′) and all points in Ccore(r) are visible to r with respect to core(P ′) [29, 30]. In
other words, for any point p in the cell Ccore(r), the line segment rp is contained in Ccore(r), and

further, there exists a shortest s-p path avoiding core(P ′) that contains rp.

Denote by F(P ′) (resp., F(core(P ′))) the free space with respect to P ′ (resp., core(P ′)). Note
that the cell Ccore(r) is a simple polygon in F(core(P ′)). We assume that Ccore(r) contains some

points in F(P ′) since otherwise we do not need to consider Ccore(r).

The cell Ccore(r) may intersect some ears. In other words, certain space in Ccore(r) may be

occupied by some ears. Let C(r) be the subregion of Ccore(r) by removing from Ccore(r) the space

occupied by all ears except their obstacle paths. Thus C(r) lies in F(P ′). However, for each point

p ∈ C(r), p may not be visible to r with respect to P ′. Our task here is to further decompose C(r)

into a set of SPM regions such that each such region has a root visible to all points in the region

with respect to P ′; further, we need to make sure that each point q in an SPM region has a shortest

path in F(P ′) from s that contains the line segment connecting q and the root of the region. For

this, we first show that C(r) is a connected region.

To show that C(r) is connected, it suffices to show that for any point p ∈ C(r), there is a path

in C(r) that connects r and p. Consider an arbitrary point p ∈ C(r). Since p ∈ Ccore(r), rp is in

Ccore(r) and there is a shortest path in F(core(P ′)) from s to p that contains rp. If the segment rp

does not intersect the interior of any ear, then we are done since rp is in C(r). If rp intersects the

interior of some ears, then let ear(ab) be one of such ears. By the proof of Lemma 4, rp penetrates

ear(ab). Let e and f be the two points on the obstacle path of ear(ab) that rp intersects, and êf

be the portion of the obstacle path between e and f . Note that if rp is horizontal or vertical, then

it cannot penetrate ear(ab) due to the monotonicity of its obstacle path by Observation 1. WLOG,

assume rp is positive-sloped. Then by Lemma 2, ear(ab) is also positive-sloped. Recall that e and

f lie on rp. WLOG, assume r is higher than p and f is higher than e. Then the segment ef from e

to f is monotonically increasing in both the x- and y-coordinates. By Observation 1, the obstacle

path portion êf from e to f is also monotonically increasing in both the x- and y-coordinates. As

in the proof of Lemma 4, for any point q ∈ êf , there is a shortest path in F(core(P ′)) from s to

q that contains rf and the portion of êf between f and q. Since ef is on rp contained in the cell

Ccore(r), by the properties of the shortest path map SPM (M) [29, 30], êf is also contained in the

cell Ccore(r). Thus, êf is also contained in C(r). If we process each ear whose interior intersects rp
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as above, we find a path in C(r) that connects r and p; further, this path has the same L1 length

as rp. Hence, C(r) is a connected region.

Next, we claim that for any point p ∈ C(r), there is a shortest path in F(P ′) from s to p that

contains r. Indeed, since p ∈ Ccore(r), there is a shortest path in F(core(P ′)) from s to p that

contains rp; let πcore(s, r) be the portion of this path between s and r. On one hand, we have shown

above that there is a path from r to p in C(r) with the same L1 length as rp. On the other hand,

by Lemma 4, there exists a path in F(P ′) from s to r with the same length as πcore(s, r). Hence,

a concatenation of these two paths results in a shortest path from s to p in F(P ′) that contains r.

Our claim thus follows.

The above claim and its proof also imply that decomposing C(r) into a set of SPM regions is

equivalent to computing an SPM in C(r) with the vertex r as the source point, which we denote by

SPM (C(r)). Since C(r) is a connected region and Ccore(r) is a simple polygon, we claim that C(r)

is a (possibly degenerate) simple polygon. This is because for any ear E that intersects Ccore(r),

the portion E ∩ Ccore(r) lies on the boundary of the simple polygon Ccore(r); thus, removing E

except its obstacle path from Ccore(r) (to form C(r)) changes only the boundary shape of Ccore(r)

but does not change the nature of a simple polygonal region (from Ccore(r) to C(r)). Based on

the fact that C(r) is a (possibly degenerate) simple polygon, SPM (C(r)) can be easily computed

in linear time in terms of the number of edges of C(r). For example, since the Euclidean shortest

path between any two points in a simple polygon is also an L1 shortest path between the two points

[17], an SPM in a simple polygon with respect to the Euclidean distance is also one with respect to

the L1 distance. Therefore, we can use a corresponding shortest path algorithm for the Euclidean

case (e.g., [16]) to compute each SPM (C(r)) in our problem.

Note that our discussion above also implies that given SPM (core(P ′), s), for each cell Ccore(r)

with a root r, we can compute the corresponding SPM (C(r)) separately. Clearly, the SPM(C(r))’s

corresponding to all cells in SPM (core(P ′), s) constitute a shortest path map SPM (M) for P ′.

Due to the planarity of the cell regions involved, the total number of edges of all C(r)’s is O(n).

Given a triangulation Tri(P ′), all regions C(r) can be obtained in totally O(n) time. Computing

all SPM (C(r))’s also takes totally O(n) time. Thus, SPM (M) can be constructed in O(n) time.

The lemma thus follows. ✷

Theorem 2 and Lemma 5 together lead to the following result.

Theorem 3 Given a set of h pairwise disjoint convex polygonal obstacles of totally n vertices in

the plane, in O(n+h log h) time and O(n) space, we can construct a shortest path map of size O(n)

with respect to a source point s, such that given any query point t in the free space, the length of an

L1 shortest s-t path can be reported in O(log h) time and an actual path can be found in O(log n+k)

time where k is the number of turns of the path.

4 Shortest Paths among General Polygonal Obstacles

In this section, we consider the general case, i.e., the obstacles in P are not necessarily convex. In

the following, in Section 4.1, we review the corridor structure [25], and introduce the ocean M. In

Section 4.2, we present the algorithm for computing a single shortest path and the similar idea also

computes an SPM for M, i.e., SPM(M). In Section 4.3, we outline our algorithm for computing

an SPM in the entire free space F .
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Figure 4: Illustrating a triangulation of the free space among
two obstacles and the corridors (with red solid curves). There
are two junction triangles indicated by the large dots inside
them, connected by three solid (red) curves. Removing the
two junction triangles results in three corridors.
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Figure 5: Illustrating an open hourglass (left) and
a closed hourglass (right) with a corridor path linking
the apices x and y of the two funnels. The dashed
segments are diagonals. The paths π(a, b) and π(e, f)
are shown with thick solid curves.

4.1 Preliminaries

For simplicity of discussion, we assume that all obstacles are contained in a large rectangle R (see

Fig. 4). Let F be the free space inside R. Let t be an arbitrary point in F .

We first review the corridor structure [25]. Denote by Tri(F) a triangulation of F . Let G(F)

denote the (planar) dual graph of Tri(F), i.e., each node of G(F) corresponds to a triangle in Tri(F)

and each edge connects two nodes of G(F) corresponding to two triangles sharing a diagonal of

Tri(F). The degree of each node in G(F) is at most three. As in [25], at least one node dual to a

triangle incident to each of s and t is of degree three. Based on G(F), we compute a planar 3-regular

graph, denoted by G3 (the degree of each node in G3 is three), possibly with loops and multi-edges,

as follows. First, we remove every degree-one node from G(F) along with its incident edge; repeat

this process until no degree-one node exists. Second, remove every degree-two node from G(F)

and replace its two incident edges by a single edge; repeat this process until no degree-two node

exists. The resulting graph is G3 (e.g., see Fig. 4). The resulting graph G3 has O(h) faces, O(h)

nodes, and O(h) edges [25]. Each node of G3 corresponds to a triangle in Tri(F), which is called

a junction triangle (e.g., see Fig. 4). The removal of all junction triangles from G3 results in O(h)

corridors, each of which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 5): (1) A boundary portion of

an obstacle Pi ∈ P, from a point a to a point b; (2) a diagonal of a junction triangle from b to a

boundary point e on an obstacle Pj ∈ P (Pi = Pj is possible); (3) a boundary portion of the obstacle

Pj from e to a point f ; (4) a diagonal of a junction triangle from f to a. The two diagonals be and af

are called the doors of C. The corridor C is a simple polygon. Let π(a, b) (resp., π(e, f)) denote the

shortest path from a to b (resp., e to f) inside C. The region HC bounded by π(a, b), π(e, f), and

the two diagonals be and fa is called an hourglass, which is open if π(a, b) ∩ π(e, f) = ∅ and closed

otherwise (see Fig. 5). If HC is open, then both π(a, b) and π(e, f) are convex chains and are called

the sides of HC ; otherwise, HC consists of two “funnels” and a path πC = π(a, b) ∩ π(e, f) joining

the two apices of the two funnels, called the corridor path of C. The two funnel apices connected

by the corridor path are called the corridor path terminals. Each funnel side is also convex. We

compute the hourglass for each corridor. After the triangulation, computing the hourglasses for all

corridors takes totally O(n) time.

Let Q be the union of all junction triangles and hourglasses. Then Q consists of O(h) junction

triangles, open hourglasses, funnels, and corridor paths. As shown in [21], there exists a shortest

s-t path π(s, t) avoiding the obstacles in P which is contained in Q. Consider a corridor C. If
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π(s, t) contains an interior point of C, then the path π(s, t) must intersect both doors of C; further,

if the hourglass HC of C is closed, then we claim that we can make the corridor path of C entirely

contained in π(s, t). Suppose π(s, t) intersects the two doors of C, say, at two points p and q

respectively. Then since C is a simple polygon, a Euclidean shortest path between p and q inside

C, denoted by πE(p, q), is also an L1 shortest path in C [17]. Note that πE(p, q) must contain the

corridor path of C. If we replace the portion of π(s, t) between p and q by πE(p, q), then we obtain

a new L1 shortest s-t path that contains the corridor path πC . For simplicity, we still use π(s, t) to

denote the new path. In other words, π(s, t) has the property that if π(s, t) intersects both doors

of C and the hourglass HC is closed, then the corridor path of C is contained in π(s, t).

Let M be Q minus the corridor paths. We call M the ocean. Clearly, M ⊆ F . The boundary

of M consists of O(h) reflex vertices and O(h) convex chains, implying that the complementary

region R \M consists of a set of polygons of totally O(h) reflex vertices and O(h) convex chains.

As shown in [25], the region R \ M can be partitioned into a set P ′ of O(h) convex polygons of

totally O(n) vertices (e.g., by extending an angle-bisecting segment inward from each reflex vertex).

The ocean M is exactly the free space with respect to the convex polygons in P ′. In addition, for

each corridor path, no portion of it lies in M. Further, the shortest path π(s, t) is a shortest s-t

path avoiding all convex polygons in P ′ and possibly utilizing some corridor paths. The set P ′ can
be easily obtained in O(n + h log h) time. Therefore, as in [25], other than the corridor paths, we

reduce our original L1-SP problem to the convex case.

4.2 Finding a Single Shortest Path and Computing an SPM for M

With the convex polygon set P ′, to find a shortest s-t path in F , if there is no corridor path,

then we can simply apply our algorithm for the convex case in Section 3. Otherwise, the situation

is more complicated because the corridor paths can give possible “shortcuts” for the sought s-t

path, and we must take these possible “shortcuts” into consideration while running the continuous

Dijkstra paradigm [29, 30]. The details are given below.

First, we compute the core set core(P ′) of P ′. However, the way we construct core(P ′) here

is slightly different from Section 3. For each convex polygon A′ ∈ P ′, in addition to its leftmost,

topmost, rightmost, and bottommost vertices, if a vertex v of A′ is a corridor path terminal, then v

is also kept as a vertex of the core core(A′). In other words, core(A′) is a simple (convex) polygon

whose vertex set consists of the leftmost, topmost, rightmost, and bottommost vertices of A′ and

all corridor path terminals on A′. Since there are O(h) terminal vertices, the cores in core(P ′) still
have totally O(h) vertices and edges. Further, the core set thus defined still has the properties

discussed in Section 3 for computing shortest L1 paths, e.g., Observation 1 and Lemmas 1, 2, and

4. Hence, by using our scheme in Section 3, we can first find a shortest s-t path avoiding the cores

in core(P ′) in O(h log h) time by applying Mitchell’s algorithm [29, 30], and then obtain a shortest

s-t path avoiding P ′ in O(n) time by Lemma 4. But, the path thus computed may not be a true

shortest path in F since the corridor paths are not utilized. To find a true shortest path in F , we

need to modify the continuous Dijkstra paradigm when applying it to core(P ′), as follows.

In Mitchell’s algorithm [29, 30], when an obstacle vertex v is hit by the wavefront for the first

time, it will be “permanently labeled” with a value d(v), which is the length of a shortest path from

s to v in the free space. The wavefront consists of many “wavelets” (each wavelet is a line segment of

slope 1 or −1). The algorithm maintains a priority queue (called “event queue”), and each element

in the queue is a wavelet associated with an “event point” and an “event distance”, which means

that the wavelet will hit the event point at the event distance. The algorithm repeatedly takes

(and removes) an element from the event queue with the smallest event distance, and processes
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the event. After an event is processed, some new events may be added to the event queue. The

algorithm stops when the point t is hit by the wavefront for the first time.

To handle the corridor paths in our problem, consider a corridor path πC with x and y as its

terminals and let l be the length of πC . Recall that x and y are vertices of a core in core(P ′).
Consider the moment when the vertex x is permanently labeled with the distance d(x). Suppose

the wavefront that first hits x is from the funnel whose apex is x. Then according to our discussions

above, the only way that the wavelet of the wavefront at x can affect a shortest s-t path is through

the corridor path πC . If y is not yet permanently labeled, then y has not been hit by the wavefront.

We initiate a “pseudo-wavelet” that originates from x with the event point y and event distance

d(x) + l, meaning that y will be hit by this pseudo-wavelet at the distance d(x) + l. We add the

pseudo-wavelet to the event queue. If y has been permanently labeled, then the wavefront has

already hit y and is currently moving along the corridor path πC from y to x. Thus, the wavelet

through x will meet the wavelet through y somewhere on the path πC , and these two wavelets will

“die” there and never affect the free space outside the corridor. Thus, if y has been permanently

labeled, then we do not need to do anything on y. In addition, at the moment when the vertex x

is permanently labeled, if the wavefront that first hits x is from the corridor path πC (i.e., through

y), then the wavelet at x will keep going to the funnel of x through x; therefore, we process this

event on x as usual (i.e., as in [29, 30]), by initiating new wavelets that originate from x.

For a corridor path πC with two terminals x and y, when x is permanently labeled, if the

wavefront that first hits x is not from the corridor path πC , then we call x a wavefront incoming

terminal; otherwise, x is a wavefront outgoing terminal. According to our discussion above, at least

one of x and y must be a wavefront incoming terminal. In fact, both x and y can be wavefront

incoming terminals, in which case the wavefronts passing through x and y “die” inside the corridor.

Intuitively, the above treatment of corridor path terminals makes corridor paths act as possible

“shortcuts” when we propagate the wavefront. The rest of the algorithm proceeds in the same

way as in [29, 30] (e.g., processing the segment dragging queries). The algorithm stops when the

wavefront first hits the point t, at which moment a shortest s-t path in F has been found.

Since there are O(h) corridor paths, with the above modifications to Mitchell’s algorithm as

applied to core(P ′), its running time is still O(h log h). Indeed, comparing with the original con-

tinuous Dijkstra scheme [29, 30] (as applied to core(P ′)), there are O(h) additional events on the

corridor path terminals, i.e., events corresponding to those pseudo-wavelets. To handle these addi-

tional events, we may, for example, as preprocessing, for each corridor path, associate with each its

corridor path terminal x the other terminal y as well as the corridor path length l. Thus, during

the algorithm, when we process the event point at x, we can find y and l immediately. In this way,

each additional event is handled in O(1) time in addition to adding a new event for it to the event

queue. Hence, processing all events still takes O(h log h) time. Note that the shortest s-t path thus

computed may penetrate some ears of P ′. As in Lemma 4, we can obtain a shortest s-t path in the

free space F in additional O(n) time. Since applying Mitchell’s algorithm on core(P ′) takes O(h)

space, the space used in our entire algorithm is O(n).

In summary, we have the following result.

Theorem 4 Given a set of h pairwise disjoint polygonal obstacles of totally n vertices in the plane,

we can find an L1 shortest path between two points in the free space in O(n + h log1+ǫ h) time (or

O(n+ h log h) time if a triangulation of the free space is given) and O(n) space.

As Mitchell’s algorithm [29, 30], the above algorithm also computes a shortest path map on the

free space of the convex polygons in P ′, i.e., SPM (M). We should point out that because of the
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Figure 6: Illustrating a bay bay(cd) in an open hourglass (left) and a canal canal(x, y) in a closed hourglass (right)
with a corridor path linking the apices x and y of its two funnels.

O(h) corridor paths, SPM (M) is different from a “normal” SPM in the following aspect. Consider

a corridor path πC with two terminals x and y. Suppose x is a wavefront incoming terminal and

y is a wavefront outgoing terminal. Then this means that the algorithm determines a shortest

path from s to y which goes through x. Corresponding to the corridor path πC , we may put a

“pseudo-cell” in SPM (M) with x as the root such that y is the only point in this “pseudo-cell”,

and we also associate with the pseudo-cell the corridor path πC , which indicates that there is a

shortest s-y path that consists of a shortest s-x path and the corridor path πC . If x and y are

both wavefront incoming terminals, then we need not do anything for this corridor path. Clearly,

since there are O(h) corridor paths, the above procedure of building pseudo-cells affects neither the

space bound nor the time bound for constructing SPM (M). Therefore, the SPM(M) of size O(n)

can be computed in O(T ) time and O(n) space, where T is the time for triangulating F . Based on

SPM (M), in Section 4.3, we will compute an SPM on the entire free space F in additional O(n)

time.

4.3 Computing a Shortest Path Map

Based on SPM (M), in Section 4.3, together with Sections 5 and 6, we will compute in additional

O(n) time an SPM on the entire free space F with respect to the source point s, denoted by

SPM (F), which has the standard query performances, i.e., for any query point t, it reports the

length of a shortest s-t path in O(log n) time and the actual path in additional time proportional

to the number of turns of the path.

As discussed in [29, 30], SPM (F) may not be unique. We show that an SPM (F) of size O(n)

can be computed in O(n + h log1+ǫ h) time (or O(n + h log h) time if a triangulation of the free

space is given). Our techniques for constructing SPM(F) are independent of those in the earlier

sections of this paper, and are also different from those in the previous work (e.g., [29, 30]).

This section introduces the new concepts, bays and canals, and outlines the algorithm, while

the details are given in Sections 5 and 6. One key subproblem we need to solve efficiently is the

special weighted L1 geodesic Voronoi diagram problem, i.e., the challenging subproblem illustrated

in Fig. 1. A linear time algorithm is given in Section 5 for it. Section 6 deals with another

subproblem, where the algorithm in Section 5 is used as a procedure.

4.3.1 Bays and Canals

Recall that M ⊆ F . To compute SPM (F), since we already have SPM (M), we only need to

compute the portion of SPM (F) in the space F \M. We first examine the space F \M, which we

partition into two type of regions, bays and canals, defined as follows.
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Consider an hourglassHC of a corridor C. We first discuss the case whenHC is open (see Fig. 6).

HC has two sides. Let S1(HC) be an arbitrary side of HC . The obstacle vertices on S1(HC) all lie

on the same obstacle, say P ∈ P. Let c and d be any two adjacent vertices on S1(HC) such that

the line segment cd is not an edge of P (see the left figure in Fig. 6, with P = Pj). The region

enclosed by cd and a boundary portion of P between c and d is called the bay of P and cd, denoted

by bay(cd), which is a simple polygon. We call cd the bay gate.

If the hourglass HC is closed, then let x and y be the two apices of its two funnels. Consider

two adjacent vertices c and d on a side of a funnel such that the line segment cd is not an obstacle

edge. If neither c nor d is a funnel apex, then c and d must both lie on the same obstacle and the

segment cd also defines a bay with that obstacle as above. However, if either c or d is a funnel

apex, say, x = c, then x and d may lie on different obstacles. If they both lie on the same obstacle,

then they also define a bay; otherwise, we call xd the canal gate at x (see Fig. 6). Similarly, there

is also a canal gate at the funnel apex y, say yz. Let Pi and Pj be the two obstacles defining the

hourglass HC . The region enclosed by Pi, Pj , and the two canal gates xd and yz that contains the

corridor path of HC is called the canal of HC , denoted by canal(x, y), which is a simple polygon.

It is easy to see that F \M consists of all bays and canals thus defined.

To build SPM (F), we need to compute the portion of SPM (F) in all bays and canals since

we already have SPM (M). As all bays and canals are connected with M through their gates,

we need to “expand” SPM (M) to all bays/canals through their gates. Henceforth, when saying

“compute an SPM for a bay/canal,” we mean “expand SPM (M) into that bay/canal”, and vice

versa. Computing an SPM for a bay is a key (i.e., the challenging subproblem). Computing an

SPM for a canal uses the algorithm for a bay as a main procedure.

4.3.2 Expanding SPM(M) into Bays and Canals

We discuss the bays first. Consider a bay bay(cd). If its gate cd is in a single cell C(r) of SPM (M)

with r as the root, then each point in bay(cd) has a shortest path to s via r. Thus, to construct

an SPM for bay(cd), it suffices to compute an SPM on bay(cd) with respect to the single point r.

This can be easily done in linear time (in terms of the number of vertices of bay(cd)) since bay(cd)

is a simple polygon∗. Note that although r may not be a vertex of bay(cd), we can, for example,

connect r to both c and d with two line segments (both rc and rd are in C(r)) to obtain a new

simple polygon that contains bay(cd).

If the gate cd is not contained in a single cell of SPM (M), then the situation is more complicated.

In this case, multiple vertices of SPM (M) may lie in the interior of cd (i.e., the intersections of

the boundaries of the cells of SPM (M) with cd). This is actually the challenging subproblem

illustrated by Fig. 1. We refer to the vertices of SPM (M) on cd (including its endpoints c and d)

as the SPM (M) vertices and let m′ be their total number. Let n′ be the number of vertices of

bay(cd). A straightforward approach for computing an SPM for bay(cd) is to use the continuous

Dijkstra paradigm [29, 30] to let the wavefront continue to move into bay(cd). But, this approach

may take O((n′+m′) log(m′+n′)) time. Later in Section 5, we derive an O(n′+m′) time algorithm,

as stated below.

Theorem 5 For a bay of n′ vertices with m′ SPM(M) vertices on its gate, a shortest path map of

size O(n′ +m′) for the bay can be computed in O(n′ +m′) time.

∗For example, since the Euclidean shortest path between any two points in a simple polygon is also an L1 shortest
path [17], a Euclidean SPM in a simple polygon is also an L1 one. Thus, we can use a corresponding shortest path
algorithm for the Euclidean case (e.g., [16]) to compute an L1 SPM in bay(cd) with respect to r in linear time.
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Since a canal has two gates which are also edges of M, multiple SPM(M) vertices may lie on

both its gates. Later in Section 6, we show the following result.

Theorem 6 For a canal of n′ vertices with totally m′ SPM (M) vertices on its two gates, a shortest

path map of size O(n′ +m′) for the canal can be computed in O(n′ +m′) time.

4.3.3 Wrapping Things Up

By Theorems 5 and 6, the time bound for computing the shortest path maps for all bays and canals

is linear in terms of the total sum of the numbers of obstacle vertices of all bays and canals, which

is O(n), and the total number of the SPM (M) vertices on the gates of all bays and canals, which

is also O(n) since the size of SPM (M) is O(n).

We hence conclude that given SPM (M), SPM (F) can be computed in additional O(n) time.

With a linear size planar point location data structure [13, 26], we have the following result.

Theorem 7 Given a set of h pairwise disjoint polygonal obstacles of totally n vertices and a

source point s in the plane, we can build a shortest path map of size O(n) with respect to s in

O(n+h log1+ǫ h) time (or O(n+h log h) time if a triangulation of the free space is given) and O(n)

space, such that for any query point t, the length of a shortest s-t path can be reported in O(log n)

time and the actual path can be found in additional O(k) time, where k is the number of turns of

the path.

5 Computing a Shortest Path Map for a Bay

Consider a bay bay(cd) with the gate cd (see Fig. 6). Let SPM (bay(cd)) be the SPM for bay(cd)

that we seek to compute.

For the case when the segment cd lies in a single cell C(r) of SPM (M) with the root r, we have

already shown how to construct SPM(bay(cd)) in linear time (in terms of the number of vertices

of bay(cd)). If the gate cd is not contained in a single cell of SPM (M), then let m′ be the number

of SPM (M) vertices on cd, and n′ be the number of vertices of bay(cd). In this section, we give an

algorithm for computing SPM (bay(cd)) in O(n′ +m′) time.

Let R be the set of roots of the cells of SPM (M) that intersect with cd. To obtain SPM (bay(cd)),

we can first compute, for each r ∈ R, the Voronoi region VD(r) inside bay(cd) such that for any

point t ∈ VD(r), there is a shortest s-t path via r; we then compute an SPM on VD(r) with respect

to the single point r. Since every VD(r) is a simple polygonal region in bay(cd), the shortest path

map SPM (VD(r), r) can be computed in linear time in terms of the number of vertices of VD(r)

(e.g., by using an algorithm in [16, 17]). Thus, the key is to decompose bay(cd) into Voronoi regions

for the roots of R, which is exactly the challenging subproblem illustrated by Fig. 1. Denote by

VD(bay(cd)) this Voronoi diagram decomposition of bay(cd). We aim to compute VD(bay(cd)) in

O(n′ +m′) time.

Without loss of generality (WLOG), assume that cd is positive-sloped, bay(cd) is on the right

of cd, and the vertex c is higher than d (e.g., bay(cd) = B in Fig. 1). Other cases can be handled

similarly. Let R = {r1, r2, . . . , rk} be the set of roots of the cells of SPM (M) that intersect with

cd in the order from c to d along cd. Note that R may be a multi-set, i.e., two roots ri and rj with

i 6= j may refer to the same physical point; but this is not important to our algorithm (e.g., we

can view each ri as a physical copy of the same root). Let c = v0, v1, . . . , vk = d be the SPM (M)
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vertices on cd ordered from c to d (thus m′ = k + 1). Hence, for each 1 ≤ i ≤ k, the segment

vi−1vi is on the boundary of the cell C(ri) of SPM (M). Note that each cell C(ri) is a star-shaped

polygon, and for each 1 ≤ i ≤ k − 1, vi lies on the common boundary of C(ri) and C(ri+1) (i.e.,

vi ∈ C(ri) ∩ C(ri+1)). To obtain VD(bay(cd)), for each ri ∈ R, we need to compute the Voronoi

region VD(ri).

Our algorithm can be viewed as an incremental one, i.e., it considers the roots in R one by one.

It is commonly known that incremental approaches can construct Voronoi diagrams in quadratic

time, or may give good randomized result. In contrast, our algorithm is deterministic and takes

only linear time. The success of it hinges on that we can find an order of the roots in R such that by

following this order to consider the roots in R incrementally, we are able to compute VD(bay(cd))

in linear time. The order is nothing but that of the indices of the roots in R we have defined. With

this order, the algorithm is quite simple. However, it is quite challenging to argue its correctness

and achieve a linear time implementation. Our strategy is to show that the algorithm implicitly

maintains a number of invariants that assure the correctness of the algorithm. For this purpose,

we give many observations (in Section 5.2). Additionally, some interesting techniques are also used

to implement and simplify the algorithm.

We first give an algorithm overview in Section 5.1.

5.1 Algorithm Sketch

To compute VD(bay(cd)), it turns out that we need to deal with the interactions between some

rays, each of which belongs to the bisector of two roots in R. Every such ray is either horizontal

or vertical. Further, considering the roots in R incrementally is equivalent to considering the

corresponding rays incrementally. We process these rays in a certain order (e.g., as to be proved,

their origins somehow form a staircase structure). For each ray considered, if it is vertical, then it

is easy (it eventually leads to a ray shooting operation), and its processing does not introduce any

new ray. But, if it is horizontal, then the situation is more complicated since its processing may

introduce many new horizontal rays and (at most) one vertical ray, also in a certain order along

a staircase structure (in addition to causing a ray shooting operation). A stack is used to store

certain vertical rays that need to be further processed.

The algorithm needs to perform ray shooting operations for some vertical and horizontal rays.

Although there are known data structures for ray shooting queries [4, 5, 16, 18], they are not

efficient enough for a linear time implementation of the entire algorithm. Based on observations,

our approach makes use of the horizontal visibility map and vertical visibility map of bay(cd) [3].

More specifically, we prove that all vertical ray shootings are in a “nice” sorted order (called target-

sorted). With this property, all vertical ray shootings are performed in totally linear time by using

the vertical visibility map of bay(cd). The horizontal visibility map is used to guide the overall

process of the algorithm. During the algorithm, we march into the bay and the horizontal visibility

map allows us to keep track of our current position (i.e., in a trapezoid of the map that contains

our current position). The horizontal visibility map also allows each horizontal ray shooting to be

done in O(1) time. In addition, in the preprocessing of the algorithm, we also need to perform

some other ray shootings (for rays of slope −1); our linear time solution for this also hinges on the

target-sorted property of such rays.

Our algorithm is conceptually simple. As mentioned above, the only data structures we need

are linked lists, a stack, and the horizontal and vertical visibility maps. Its correctness relies on

the fact that the algorithm implicitly maintains a set of invariant properties in each iteration. To

prove the algorithmic correctness, of course, we need to show that these invariant properties hold
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Figure 7: Illustrating some cases of the bisector B(p1, p2) of two weighted points p1 and p2. In (3), an entire
quadrant (the shaded area) can be used as B(p1, p2), but we choose B(p1, p2) to be the vertical (solid thick) half-line.

iteratively. Specifically, in our discussion of the algorithm, after each iteration we formally prove

that the invariants are well maintained. For this purpose, before presenting the algorithm in Section

5.3, we first show a set of observations in Section 5.2, which capture some essential properties of

this L1 problem. These observations may be helpful for solving other related problems as well.

However, the discussion of these observations and the formal proofs that the invariant properties

are maintained by the algorithm somehow make the presentation of this whole section lengthy,

technically complicated, or even tedious, for which we ask for the reader’s patience.

5.2 Observations

In this subsection, we give a number of observations, most of which help capture the behaviors

of the bisectors for the roots of R in computing VD(bay(cd)). Although some of the observations

individually might appear simple, they are essential and adding them up leads to an efficient

algorithmic strategy for computing VD(bay(cd)) (as presented in Section 5.3). The observations

also allow our algorithm to perform some key operations (e.g., ray shootings) in a faster manner

than using a standard approach [4, 5, 16, 18].

For a point p, denote by x(p) its x-coordinate and by y(p) its y-coordinate. For two objects O1

and O2 in the plane, if x(p1) ≤ x(p2) for any two points p1 ∈ O1 and p2 ∈ O2, then we say O1 is to

the left or west of O2, or O2 is to the right or east of O1; if y(p1) ≤ y(p2) for any two points p1 ∈ O1

and p2 ∈ O2, then we say O1 is to the south of O2 or O1 is below O2, or O2 is to the north of O1 or

O2 is above O1. If O1 is to the left of O2 and is also below O2, then we say O1 is to the southwest

of O2 or O2 is to the northeast of O1. We define southeast and northwest similarly.

In our problem, each root ri ∈ R can be viewed as an additively weighted point whose weight

is the L1 length of a shortest path from s to ri. Thus, we need to consider the possible shapes

of the bisector of two weighted points. For two weighted points p1 and p2 with weights w1 and

w2, respectively, their bisector B(p1, p2) consists of all points q such that the L1 length of the line

segment p1q plus w1 is equal to the L1 length of p2q plus w2. Figure 7 shows some cases. Note

that the bisector can be an entire quadrant of the plane (e.g., see Figure 7(3)); in this case, as in

[29, 30], we choose a vertical half-line as the bisector. For any pair of consecutive roots ri−1 and

ri in R for 2 ≤ i ≤ k, since the SPM (M) vertex vi−1 ∈ cd is on the common boundary of C(ri−1)

and C(ri), vi−1 lies on the bisector B(ri−1, ri) of ri−1 and ri. For two points p1 and p2, denote

by Rec(p1, p2) the rectangle with p1 and p2 as its two diagonal vertices. The next observation is

self-evident.

Observation 2 The bisector B(p1, p2) consists of three portions: Two half-lines and a line segment

connecting them; the line segment has a slope 1 or −1 and is the intersection of B(p1, p2) and the

rectangle Rec(p1, p2), and each of the two half-lines is perpendicular to an edge of Rec(p1, p2) that

touches the half-line. Depending on the relative positions and weights of p1 and p2, some portions
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Figure 8: An example of ri to the northeast of ri−1. The point p 6= vi−1 is on vi−1vi and is infinitely close to vi−1.
The line segment rip must cross ri−1vi−1.

of B(p1, p2) may degenerate and become empty. B(p1, p2) is monotone to both the x- and y-axes.

For any line l containing a portion of B(p1, p2), p1 and p2 cannot lie strictly on the same side of l.

We call the open line segment of B(p1, p2) strictly inside Rec(p1, p2) its middle segment, denoted

by BM (p1, p2), and the two half-lines of B(p1, p2) its two rays, each originating at a point on an edge

of Rec(p1, p2). Thus, the origins of the two rays of B(p1, p2) are the two endpoints of BM (p1, p2).

Since each cell in an SPM is a star-shaped simple polygon, the observation below is obvious.

Observation 3 Let C(r) and C(r′) be two different cells in SPM (M) with roots r and r′. For any

two points p ∈ C(r) and p′ ∈ C(r′), the line segments pr and p′r′ cannot cross each other.

The next lemma shows the possible relative positions of two consecutive roots in R.

Lemma 6 For any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k, ri cannot be to the

northeast of ri−1, or equivalently, ri−1 cannot be to the southwest of ri.

Proof: Since the SPM (M) vertex vi−1 ∈ cd lies on the common boundary of the two cells C(ri−1)

and C(ri), vi−1 is on the bisector B(ri−1, ri).

Assume to the contrary that ri is to the northeast of ri−1. Note that vi−1 may lie on either a

half-line or the middle segment of B(ri−1, ri). In either case, since ri is to the northeast of ri−1 and

cd is positive-sloped, according to Observation 2, vi−1 must be lower than ri, and vi−1 must be to

the right of ri−1 (see Fig. 8).

Since the segment vi−1vi is not a single point and vi is to the left of vi−1, we can find a point

p ∈ vi−1vi such that p 6= vi−1 and p is infinitely close to vi−1 (see Fig. 8). Since p ∈ vi−1vi and

vi−1vi ⊆ C(ri), we have p ∈ C(ri). Note that vi−1 ∈ C(ri−1) ∩ C(ri). Below we show that the two

line segments rip and ri−1vi−1 must cross each other, which contradicts with Observation 3.

Since both ri and ri−1 are obstacle vertices, by our assumption, ri and ri−1 do not lie on a

horizontal or vertical line. Hence ri is strictly to the northeast of ri−1. Note that no root in R

lies on cd. Since vi−1 is lower than ri and is to the right of ri−1, the three points vi−1, ri, and

ri−1 do not lie on the same line (see Fig. 8). In other words, the triangle △rivi−1ri−1 is a proper

one. Further, suppose ρ(ri, vi−1) (resp., ρ(ri, ri−1)) is the ray originating from ri and going through

vi−1 (resp., ri−1); then ρ(ri, ri−1) can be obtained by rotating ρ(ri, vi−1) clockwise by an angle

∠vi−1riri−1 > 0◦. By the definition of the point p, during this rotation, p will be encountered by

the rotating ray ρ(ri, vi−1) at an angle ∠vi−1rip with 0◦ < ∠vi−1rip < ∠vi−1riri−1, which implies

that rip crosses ri−1vi−1. The lemma thus follows. ✷

By Lemma 6, there are three cases on the possible relative positions of ri−1 with respect to ri,

i.e., ri−1 can be to the southeast, northwest, or northeast of ri.

Lemma 7 Consider any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k.
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Figure 9: Illustrating the three possible relative positions of ri−1 and ri.

1. If ri is to the southeast of ri−1, then vi−1 is on a ray of B(ri−1, ri) that is horizontally going

east and vi−1 is to the right of Rec(ri−1, ri) (see Fig. 9(1)).

2. If ri is to the northwest of ri−1, then vi−1 is on a ray of B(ri−1, ri) that is vertically going

south and vi−1 is below Rec(ri−1, ri) (see Fig. 9(2)).

3. If ri is to the southwest of ri−1, then vi−1 is either on the middle segment BM (ri−1, ri), or

on a ray of B(ri−1, ri) that is either horizontally going east or vertically going south (see

Fig. 9(3)). Further, if vi−1 is on the ray horizontally going east, then vi−1 is to the right of

Rec(ri−1, ri); if vi−1 is on the ray vertically going south, then vi−1 is below Rec(ri−1, ri).

Proof: We first prove Part 1 of the lemma. If ri is to the southeast of ri−1 (see Fig. 9(1)), then

the rectangle Rec(ri−1, ri) cannot intersect cd. Thus, vi−1 cannot be on BM (ri−1, ri), and vi−1

must be on a ray of B(ri−1, ri), denoted by ρ. By Observation 2, the origin of ρ is on an edge α of

Rec(ri−1, ri) and is perpendicular to the edge α. Since vi−1 ∈ ρ and ri−1 is to the northwest of ri, α

must be one of the two edges incident to ri, i.e., the bottom edge or the right edge of Rec(ri−1, ri).

In addition, if α is the bottom edge of Rec(ri−1, ri), then ρ must be vertically going south; further,

since ri is to the southeast of ri−1, by a similar argument as that for the proof of Lemma 6, we

can obtain a contradiction. Thus, α is the right edge of Rec(ri−1, ri) and ρ must be horizontally

going east. In addition, it is easy to see that vi−1 must be to the right of Rec(ri−1, ri). Part 1 of

the lemma thus follows.

Part 2 can be proved analogously as Part 1, and we omit it.

For Part 3, if Rec(ri−1, ri) intersects cd, then it is possible that BM (ri−1, ri) intersects cd (at

vi−1). If BM (ri−1, ri) doest not intersect cd, then vi−1 lies on a ray of B(ri−1, ri), denoted by ρ.

Again, the origin of ρ is on either the right edge of Rec(ri−1, ri) or the bottom edge of Rec(ri−1, ri).

In the former case, ρ is horizontally going east and vi−1 is to the right of Rec(ri−1, ri). In the latter

case, ρ is vertically going south and vi−1 is below Rec(ri−1, ri). Part 3 thus follows. ✷

For any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k, if vi−1 is on a ray ρ of B(ri−1, ri),

then we let ρi−1 be the ray originating at vi−1 with the same direction as ρ. If vi−1 lies on the

middle segment of B(ri−1, ri), then by Lemma 7, ri−1 is to the northeast of ri and cd intersects

Rec(ri−1, ri); in this case, let ρi−1 be the ray of B(ri−1, ri) that is below or to the right of vi−1 and

goes inside bay(cd). For a ray ρ, let or(ρ) denote the origin of ρ. Observation 4 below is obvious.

Observation 4 For any 2 ≤ i ≤ k, the ray ρi−1 is either horizontally going east or vertically going

south. If vi−1 is on a ray of B(ri−1, ri), then or(ρi−1) = vi−1; if vi−1 is on BM (ri−1, ri), then

or(ρi−1) is on either the right edge or the bottom edge of Rec(ri−1, ri).

Lemma 8 Consider any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k.
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1. If the ray ρi−1 is horizontal, then ri−1 is above ρi−1 and ri is below ρi−1.

2. If ρi−1 is vertical, then ri−1 is to the right of ρi−1 and ri is to the left of ρi−1.

3. The origin or(ρi−1) of ρi−1 is always below ri−1 and to the right of ri.

Proof: There are three cases on the possible relative positions of ri−1 and ri.

• If ri−1 is to the northwest of ri (see Fig. 9(1)), then by the proof of Lemma 7, ρi−1 is horizontal

and is contained in the ray of B(ri−1, ri) whose origin is on the right edge of Rec(ri−1, ri).

Since ri−1 and ri are two diagonal vertices of Rec(ri−1, ri), ρi−1 is above ri and below ri−1.

Further, the origin or(ρi−1) is vi−1, which is below ri−1 and to the right of ri.

• If ri−1 is to the southeast of ri (see Fig. 9(2)), then by the proof of Lemma 7, ρi−1 is vertical

and lies on the ray of B(ri−1, ri) whose origin is on the bottom edge of Rec(ri−1, ri). Since

ri−1 and ri are two diagonal vertices of Rec(ri−1, ri), ρi−1 is to the right of ri and to the left

of ri−1. Further, the origin or(ρi−1) is vi−1, which is below ri−1 and to the right of ri.

• If ri−1 is to the northeast of ri (see Fig. 9(3)), then if ρi−1 is horizontal, then the proof is

similar to the first case; otherwise, the proof is similar to the second case.

The lemma thus follows. ✷

Lemma 9 For any i with 3 ≤ i ≤ k − 1, if ri is to the southwest of ri−1, then vi−2 is to the right

of the rectangle Rec(ri−1, ri) and vi is below Rec(ri−1, ri).

Proof: Suppose ri is to the southwest of ri−1. We only prove that vi−2 is to the right of the

rectangle Rec(ri−1, ri). The case that vi is below Rec(ri−1, ri) can be proved analogously.

Note that vi−2 ∈ B(ri−2, ri−1). We discuss the three possible relative positions of ri−2 and ri−1.

By Lemma 6, ri−2 may be to the southeast, northwest, or northeast of ri−1. Since ri is to the

southwest of ri−1, to prove vi−2 is to the right of Rec(ri−1, ri), it suffices to show that vi−2 is to

the right of ri−1.

• If ri−2 is to the southeast of ri−1, then by Lemma 7, vi−2 is on the ray of B(ri−1, ri−2)

vertically going south, i.e., ρi−2 is vertical. By Lemma 8, ri−1 is to the left of ρi−2. Since

vi−2 ∈ ρi−2, vi−2 is to the right of ri−1.

• If ri−2 is to the northwest of ri−1, then by Lemma 7, vi−2 is to the right of Rec(ri−2, ri−1),

and thus to the right of Rec(ri−1, ri).

• If ri−2 is to the northeast of ri−1, then the rectangle Rec(ri−2, ri−1) is to the northeast of

Rec(ri−1, ri). If vi−2 is on BM(ri−2, ri−1), then since vi−2 is inside Rec(ri−2, ri−1), vi−2 is to

the right of Rec(ri−1, ri); otherwise, the proof is similar to the above two cases.

The lemma thus follows. ✷

Recall that when sketching the algorithm in Section 5.1, we mentioned that the origins of the

rays involved somehow form a staircase structure. The next lemma states this important fact.

Lemma 10 For any i with 2 ≤ i ≤ k − 1, or(ρi−1) is to the northeast of or(ρi).
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Figure 10: Illustrating the case when rj is to the northeast of rj+1 and or(ρj) 6= vj .

Proof: We first discuss a scenario that will be used later in this proof. Consider any two consecutive

roots rj and rj+1 in R, 1 ≤ j ≤ k − 1, with or(ρj) 6= vj. Then based on our discussion above, it

must be the case that rj+1 is to the southwest of rj, cd intersects the rectangle Rec(rj , rj+1), and

or(ρj) is a point on an edge of Rec(rj , rj+1). Let zj be the intersection of cd and the right edge of

Rec(rj , rj+1) (see Fig. 10). The origin or(ρj) can be either on the right edge or the bottom edge

of Rec(rj , rj+1). In either case, or(ρj) must be both below and to the left of zj , i.e., zj is to the

northeast of or(ρj).

Consider any i with 2 ≤ i ≤ k− 1. To prove the lemma, depending on whether or(ρi−1) = vi−1

and whether or(ρi) = vi, there are four cases.

1. If or(ρi−1) = vi−1 and or(ρi) = vi, then since vi−1 and vi are on cd in the order from c to d,

vi−1 is to the northeast of vi, and thus or(ρi−1) is to the northeast of or(ρi).

2. If or(ρi−1) = vi−1 and or(ρi) 6= vi, then by our discussion at the beginning of this proof, ri+1

is to the southwest of ri, the rectangle Rec(ri, ri+1) intersects cd, and the point zi is to the

northeast of or(ρi). Further, since ri+1 is to the southwest of ri, by Lemma 9, vi−1 is to the

right of Rec(ri, ri+1) and thus to the right of zi. Since vi−1 is to the right of zi and both

vi−1 and zi are on cd, vi−1 is to the northeast of zi. Therefore, or(ρi−1) (= vi−1) is to the

northeast of or(ρi).

3. If or(ρi−1) 6= vi−1 and or(ρi) = vi, then the analysis is somewhat similar to the second case.

4. If or(ρi−1) 6= vi−1 and or(ρi) 6= vi, then ri−1 is to the northeast of ri and ri is to the northeast

of ri+1. Hence, the rectangle Rec(ri−1, ri) is to the northeast of Rec(ri, ri+1). Since or(ρi−1) is

on Rec(ri−1, ri) and or(ρi) is on Rec(ri, ri+1), we also obtain that or(ρi−1) is to the northeast

of or(ρi).

The lemma thus follows. ✷

Lemma 11 Consider any root ri ∈ R with 1 ≤ i ≤ k. For any ray ρj , if j ≤ i − 1 and ρj is

vertical, then ρj is to the right of ri; if j ≥ i and ρj is horizontal, then ρj is below ri.

Proof: WLOG, assume i < k. Consider the ray ρi, which is on B(ri, ri+1). By Lemma 8, the

origin or(ρi) is below ri. By Lemma 10, for any ray ρj with j ≥ i, or(ρj) is below or(ρi) and thus

is below ri. Hence, if ρj is horizontal, then ρj must be below ri.

By an analogous analysis, we can show that if j ≤ i−1 and ρj is vertical, then ρj is to the right

of ri. We omit the details. The lemma thus follows. ✷

Note that in any SPM, a common boundary of two adjacent cells C(r) and C(r′) is a subset of

the bisector B(r, r′).
For any two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, the vertex vi−1 divides B(ri−1, ri)

into two portions; we denote by Bbay(ri−1, ri) the portion that goes inside bay(cd) following vi−1.
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A key to building VD(bay(cd)) is to compute the interactions among all Bbay(ri−1, ri)’s, for i =

2, 3, . . . , k, inside bay(cd). Note that if vi−1 is on a ray of B(ri−1, ri), then Bbay(ri−1, ri) is the ray

ρi−1; otherwise, vi−1 is on BM (ri−1, ri) (i.e., the middle segment of B(ri−1, ri)), and Bbay(ri−1, ri)

consists of a portion of BM (ri−1, ri) in Rec(ri−1, ri) (i.e., the line segment vi−1or(ρi−1)) and the ray

ρi−1. Lemma 12 below shows that the portion of BM (ri−1, ri) which is inside bay(cd) will appear

in SPM(F) (and thus in VD(bay(cd))), implying that we can simply keep it when computing

VD(bay(cd)) and we only need to further deal with the rays ρi for i = 1, 2, . . . , k− 1. Thus, dealing

with the rays ρi is the main issue of our algorithm (as discussed in Section 5.1).

Lemma 12 For any two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, if vi−1 lies on BM(ri−1, ri),

then the portion of BM (ri−1, ri) inside bay(cd) will appear in VD(bay(cd)).

Proof: Consider two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, with vi−1 lying on BM (ri−1, ri).

Denote by B′
M the portion of BM (ri−1, ri) inside bay(cd). Recall that BM (ri−1, ri) is an open

segment that does not contain its endpoints and is strictly inside Rec(ri−1, ri). To prove the lemma,

it suffices to show that for any two roots rj and rh in R with {rj , rh} 6= {ri−1, ri}, if a portion of

B(rj, rh) appears in SPM (F), then that portion does not intersect B′
M .

By Lemma 6, ri may be to the southeast, or northwest, or southwest of ri−1. Since cd is

positive-sloped, if ri is to the northwest or southeast of ri−1, then cd cannot intersect the rectangle

Rec(ri−1, ri) and thus vi−1 cannot lie on BM (ri−1, ri). Therefore, the only possible case is that ri
is to the southwest of ri−1.

First, we assume i−1 ≥ 2 and consider the root ri−2. We discuss the possible relative positions

of ri−2 with respect to ri−1. Recall that the bisector portion Bbay(ri−2, ri−1) either is ρi−2 or consists

of vi−2or(ρi−2) and ρi−2. Note that in either case, when moving along Bbay(ri−2, ri−1) from vi−2,

Bbay(ri−2, ri−1) is monotonically increasing in the x-coordinates. Hence, vi−2 is a leftmost point of

Bbay(ri−2, ri−1). Since ri is to the southwest of ri−1, by Lemma 9, vi−2 is to the right of Rec(ri−1, ri)

and thus is strictly to the right of B′
M . Hence, Bbay(ri−2, ri−1) cannot intersect B

′
M .

For any pair of consecutive roots rj−1 and rj in R, 2 ≤ j ≤ i− 2, similarly, when moving from

vj−1 along Bbay(rj−1, rj), Bbay(rj−1, rj) is monotonically increasing in the x-coordinates. Since vi−2

is strictly to the right of B′
M and vj−1 is to the right of vi−2, Bbay(rj−1, rj) cannot intersect B

′
M .

Let R1 = {r1, r2, . . . , ri−1} and R2 = {ri, ri+1, . . . , rk}. (Note that since R may be a multi-set,

R1 and R2 possibly contain the same physical root, but this is not important to our analysis.)

For any two different pairs of consecutive roots rj−1, rj and rt−1, rt with 2 ≤ j ≤ i − 1 and

2 ≤ t ≤ i − 1, it is possible that Bbay(rj−1, rj) and Bbay(rt−1, rt) intersect in SPM(F); if that

happens, then let B′ be the resulting bisector. It is not difficult to see that B′ must be going

in a direction between the original directions of Bbay(rj−1, rj) and Bbay(rt−1, rt). Since neither

Bbay(rj−1, rj) nor Bbay(rt−1, rt) intersects B′
M , B′ cannot intersect B′

M . We can further consider

the possible intersection between B′ and the bisector of another two roots in R1 in the manner as

above, and show likewise that the new bisector thus resulted cannot intersect B′
M .

The above argument shows that for any two roots rj and rt in R1 such that a portion of B(rj , rt)

appears in VD(bay(cd)), that portion does not intersect B′
M . By a similar argument, we can also

show that for any two roots rj and rt in R2 such that a portion of B(rj, rt) appears in VD(bay(cd)),

that portion does not intersect B′
M .

It remains to show that for any two roots rj ∈ R1 and rt ∈ R2 such that {rj , rt} 6= {ri−1, ri}
and a portion of B(rj, rt) appears in VD(bay(cd)), that portion does not intersect B′

M . Note that

the case of B(rj , rt) (partially) appearing in VD(bay(cd)) can occur only after Bbay(ri−1, ri) is

“blocked” by an intersection between Bbay(ri−1, ri) and the bisector of two roots in R1 or two roots
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Figure 11: Illustrating an example of BM (ri−1, ri) intersecting both cd (at vi−1) and ∂ (at p). The line segment
vi−1p divides bay(cd) into bay1 and bay2.

in R2. Since the bisector of any two roots in R1 or any two roots in R2 cannot intersect B′
M , the

portion of B(rj , rt) appearing in VD(bay(cd)) cannot intersect B′
M either.

The lemma thus follows. ✷

The observations presented above help determine the behaviors of the bisectors for the roots in

R (e.g., the properties of the rays ρ1, ρ2, . . . , ρk−1), which are crucial to constructing VD(bay(cd)).

They form a basis for both showing the correctness and the efficiency of our algorithm in Section

5.3. For example, Lemma 10 can help conduct a set of ray shooting operations in linear time, and

Lemma 12 allows us to decompose the problem into certain subproblems with good properties.

5.3 The Algorithm for Computing VD(bay(cd))

In this subsection, we present our algorithm for computing VD(bay(cd)), i.e., computing the Voronoi

region VD(r) for each root r ∈ R.

As shown in [29, 30], a key property of the problem in the L1 metric is: There exists an SPM

such that each edge of the SPM is horizontal, or vertical, or of a slope 1 or −1. As shown below,

the curves involved in specifying VD(bay(cd)) consist of only line segments of slopes 0, ∞, and −1

(there is no +1, which is due to the assumption that cd is positive-sloped). A line (segment) is

said to be (−1)-sloped if its slope is −1. Our algorithm needs to perform some vertical, horizontal,

and (−1)-sloped ray shooting queries, whose total number is O(k). By exploiting some properties

of our problem shown in Section 5.2, we conduct all ray shootings in a global manner in totally

O(n′ + k) time.

The pseudo-code of Algorithm 1 summarizes the entire algorithm.

Before describing the main algorithm, we discuss some preprocessing work as well as some basic

algorithmic methods that will be used later in the main algorithm.

5.3.1 Preliminaries and Preprocessing

By Lemma 12, for any two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, if the middle segment

BM (ri−1, ri) of their bisector intersects cd (at vi−1), then we can “separately” process the portion

of BM (ri−1, ri) inside Rec(ri−1, ri), as follows. Let ∂ be the boundary of bay(cd) minus cd, i.e., ∂

consists of all edges of bay(cd) except cd.

Clearly, vi−1 divides BM (ri−1, ri) into two portions; one portion does not contain any point

in bay(cd) and the other contains some points in bay(cd). Denote by B′
M (ri−1, ri) the portion

that contains some points in bay(cd). Thus, B′
M (ri−1, ri) is a line segment and vi−1 is one of its

endpoints (and or(ρi−1) is the other endpoint). We first determine whether B′
M (ri−1, ri) intersects

∂, by performing a −1-sloped ray shooting operation. Specifically, we shoot a ray ρ originating
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Algorithm 1: Computing a shortest path map for bay(cd)

Input: bay(cd), R = {r1, r2, . . . , rk}, and SPM(M) vertices v1, v2, . . . , vk−1.
Output: A shortest path map on bay(cd) with respect to the source point s.

/* Preprocessing */

1 Compute the ray set Ψ = {ρ1, ρ2, . . . , ρk−1} ;

2 Compute the line segment vior(ρi) for each 1 ≤ i ≤ k − 1 if vi 6= or(ρi) ;

3 Compute the horizontal visibility map HM(bay(cd)) and the vertical visibility map VM(bay(cd)) ;

4 Compute the trapezoid in HM(bay(cd)) that contains or(ρi) for each 1 ≤ i ≤ k − 1 ;
/* The main algorithm */

5 p∗ ← c, S ← ∅, Q← {ρ1, ρ2, . . . , ρk−1} ; /* Q is a queue storing the rays. */

6 while Q is not empty do

7 Consider the first ray ρ in Q and remove it from Q ; /* Assume ρ is on B(rj , ri) with i > j. */

8 if ρ is vertical then
9 Push ρ onto the top of S, and exit the current loop ;

10 else /* ρ is horizontal. */

11 Compute the target point tp(ρ) ;
12 if S is empty then

13 The Voronoi region VD(rj) is determined with or(ρ)tp(ρ) ;
14 p∗ ← tp(ρ), and exit the current loop ;

15 else /* S is not empty; assume ρ′ ⊂ B(rt, rj) with j > t is the ray at the top of S. */

16 Scan ∂(p∗, tp(ρ)) to compute the target points on ∂(p∗, tp(ρ)) of the rays in S ;
17 if tp(ρ′) is before tp(ρ) (i.e., tp(ρ′) has been computed) then

18 Determine the Voronoi regions for the roots defining the rays in S ;
19 Pop all rays out of S ;
20 p∗ ← tp(ρ), and exit the current loop ;

21 else /* tp(ρ′) is not before tp(ρ) (i.e., tp(ρ′) has not been computed). */

22 Determine the Voronoi region VD(rj) ;
23 Let p be the intersection of ρ and ρ′, and q be the intersection of the horizontal line through

ri and the vertical line through rt; let p
′ be the other intersection of BM (rt, ri) and the

boundary of Rec(p, q) than p;

24 Move from p along pp′ in HM(bay(cd)) until either p′ or ∂ is encountered first;
25 if ∂ is encountered (say, at the point z) then

26 Scan ∂(tp(ρ), z) to compute the target points on ∂(tp(ρ), z) of the rays in S ;
27 Determine the Voronoi regions for the roots defining the rays in S ;
28 Pop all rays out of S ;
29 p∗ ← z, and exit the current loop ;

30 else /* ∂ is not encountered. */

31 Pop ρ′ out of S ;
32 if p′ is on the bottom edge of Rec(p, q) then
33 Push the ray originating at p′ and going south onto the top of S ;
34 else /* p′ is on the right edge of Rec(p, q). */

35 Add the ray originating at p′ and going east to the front of Q ;

36 p∗ ← tp(ρ), and exit the current loop ;

37 For each ri ∈ Ψ, compute the SPM on the Voronoi region VD(ri) with respect to ri;
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Figure 12: Illustrating the horizontal visibility map of a simple polygon.

at vi−1 and passing through the other endpoint of B′
M (ri−1, ri). If the length of the portion of ρ

between vi−1 and the first point p on ∂ hit by ρ is larger than the length of B′
M (ri−1, ri), then

B′
M (ri−1, ri) does not intersect ∂, and we do nothing. Otherwise, B′

M (ri−1, ri) intersects ∂ (at

the point p). By Lemma 12, the line segment vi−1p appears in SPM(F). Also, vi−1p partitions

bay(cd) into two simple polygons (see Fig. 11); one polygon contains cvi−1 as an edge, which

we denote as bay1, and we denote the other polygon as bay2. Let R1 = {r1, r2, . . . , ri−1} and

R2 = {ri, ri+1, . . . , rk}. (Note that since R may be a multi-set, R1 and R2 possibly refers to the

same physical root, but this is not important to our algorithm.) Since vi−1p is in VD(bay(cd)),

it is not difficult to see that for any point q in bay1, there is a root r ∈ R1 such that a shortest

path from s to q goes through r. Similarly, for any point q in bay2, there is a root r ∈ R2 such

that a shortest s-q path goes through r. This implies that we can divide the original problem of

computing VD(bay(cd)) on bay(cd) and R into two subproblems of computing VD(bay1) on bay1
and R1 and computing VD(bay2) on bay2 and R2.

If we process each pair of consecutive roots in R as above, then the original problem may

be divided into multiple subproblems, each of which has the following property: For any pair of

consecutive roots ri−1 and ri in the corresponding root subset of R, if BM (ri−1, ri) intersects cd,

then B′
M (ri−1, ri) does not intersect ∂ and is contained in the corresponding subpolygon of bay(cd);

further, B′
M (ri−1, ri) is in VD(bay(cd)) and has been computed.

To perform the above process, a key is to derive an efficient method for the −1-sloped ray

shooting operations. For this, we choose to check all pairs of consecutive roots in R in the order

of r1, r2, . . . , rk. In this way, it is easy to see that the ray shootings are conducted such that the

origins of the rays are sorted along cd from c to d. This is summarized by the next observation.

Observation 5 The preprocessing conducts O(k) −1-sloped ray shooting operations that are orga-

nized such that the origins of all rays are on cd ordered from c to d.

We show next that the ray shootings for Observation 5 can be done in O(n′+k) time. Since the

origins of all rays in Observation 5 are sorted on cd, we can perform the ray shootings by computing

the visible region of bay(cd) from cd along the direction of these rays. This can be easily done by

a visibility algorithm on a simple polygon (e.g., [1, 23, 28]). Below, we give a different algorithm

for a more general problem; this more general result is needed by the main algorithm.

Given a simple polygon P , the horizontal visibility map of P contains a horizontal line segment

inside P through each vertex of P , extending as long as possible without properly crossing the

boundary of P (such line segments are called the diagonals; see Fig. 12). The vertical visibility map

with vertical diagonals is defined similarly. Each region in a visibility map is a trapezoid (a triangle

is a special trapezoid). A visibility map of a simple polygon can be computed in linear time [3].

For a ray ρ with its origin in bay(cd) (inside it or on the boundary), the boundary point of

bay(cd) that is not the origin or(ρ) hit by ρ first is called the target point of ρ, denoted by tp(ρ).
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Recall that ∂ is the boundary of bay(cd) excluding the edge cd. In the rest of this paper, unless

otherwise stated, a ray in our discussion always has its origin in bay(cd) and its target point on ∂.

We say that m parallel rays ρ′1, ρ
′
2, . . . , ρ

′
m are target-sorted if we move from c to d (clockwise)

on ∂, we encounter the target points of these rays on ∂ in the order of tp(ρ′1), tp(ρ
′
2), . . . , tp(ρ

′
m).

Given a set ofm target-sorted parallel rays ρ′1, ρ
′
2, . . . , ρ

′
m for bay(cd) whose origins are in bay(cd)

and whose target points are on ∂, below we present a visibility map based approach for computing

their target points in O(n′ +m) time (recall that n′ is the number of vertices of bay(cd)).

WLOG, we assume that the rays are all horizontal. We first compute the horizontal visibility

map of bay(cd) in O(n′) time. Then, starting from the vertex c, we scan ∂ and check each edge

e of ∂ and the trapezoid t(e) of the visibility map bounded by e, to see whether the next ray ρ′i
(initially i = 1) is in the trapezoid t(e) and can hit the edge e. Once the target point of the ray ρ′i
is found, we continue with the next ray ρ′i+1

. Clearly, the time for computing all target points is

O(n′ +m). Thus, we have the following result.

Lemma 13 Given a set of m target-sorted parallel rays for bay(cd) whose origins are in bay(cd)

and whose target points are on ∂, their target points can be computed in O(n′ +m) time.

For the ray shootings in Observation 5, it is easy to see that these rays are target-sorted. Thus,

by Lemma 13, their target points can be computed in O(n′+k) time (of course, these ray shootings

can be done by using the visibility algorithms in [1, 23, 28], which do not compute a visibility map).

We present the above visibility map based technique because our main algorithm in Section 5.3.2

will need it.

In addition, as part of the preprocessing for our main algorithm, we also compute the horizontal

visibility map HM(bay(cd)) and the vertical visibility map VM(bay(cd)) of bay(cd). Further, for

each 1 ≤ i ≤ k − 1, we compute the trapezoid of the horizontal visibility map HM(bay(cd)) that

contains the origin or(ρi) of the ray ρi, in totally O(n′ + k) time, in the following way.

Recall that or(ρi) is either vi or in the interior of bay(cd). In the latter case, or(ρi) is an

endpoint of the line segment B′
M (ri, ri+1) = vior(ρi) whose slope is −1, and the position of or(ρi)

has been determined earlier by the −1-sloped ray shooting operations. By Lemma 10, all origins

or(ρ1), or(ρ2), . . . , or(ρk−1) are ordered from northeast to southwest. Further, or(ρi)’s are all visible

from cd along the direction of slope −1. Thus, it is not difficult to show that if we visit the trapezoids

of HM(bay(cd)) by scanning the edges of ∂ from c to d and looking at the trapezoids bounded

by each edge, then the trapezoids containing such or(ρi)’s are encountered in the same order as

or(ρ1), or(ρ2), . . . , or(ρk−1). This implies that we can use a similar algorithm as for computing

the target points of target-sorted parallel rays on ∂ (i.e., scanning ∂ from c to d and checking the

trapezoids of HM(bay(cd)) thus visited along ∂) to find all the sought trapezoids, in O(n′+k) time.

The above discussion leads to the following lemma.

Lemma 14 The preprocessing on bay(cd) takes O(n′ + k) time.

In the main algorithm, the horizontal visibility map HM(bay(cd)) will be used to guide the

main process. More specifically, during the algorithm, we traverse inside bay(cd) following certain

rays, and use HM(bay(cd)) to keep track of where we are (i.e., which trapezoid of HM(bay(cd))

contains our current position). The vertical visibility map VM(bay(cd)) will be used to compute

the target points of some target-sorted vertical rays using the above visibility map based approach.

For any two points a and b on ∂ with a lying on the portion of ∂ from c clockwise to b, we

denote by ∂(a, b) the portion of ∂ between a and b and say that a is before b or b is after a.
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5.3.2 The Main Algorithm

After the preprocessing, the problem of computing VD(bay(cd)) with the root set R may be di-

vided into multiple subproblems and we need to solve each subproblem. For convenience of the

forthcoming discussion, we assume that the original problem on bay(cd) with R is merely one

such subproblem, i.e., for any two consecutive roots ri and ri+1 in R, if vi ∈ BM (ri, ri+1), then

B′
M (ri, ri+1) (= vior(ρi)) lies completely in VD(bay(cd)) and has been computed. Recall that

in the preprocessing, we have already computed the trapezoid of the horizontal visibility map

HM(bay(cd)) that contains the origin or(ρi) of the ray ρi, for each 1 ≤ i ≤ k − 1. Observation 6

below summarizes these facts.

Observation 6 After the preprocessing,

• for any two consecutive roots ri and ri+1 in R, if vi ∈ BM (ri, ri+1), then their bisector portion

B′
M (ri, ri+1) (= vior(ρi)) has been computed;

• for each 1 ≤ i ≤ k − 1, the trapezoid of HM(bay(cd)) that contains the origin or(ρi) of the

ray ρi is known.

As discussed before, our task is to handle the interactions among the rays ρi for all i =

1, 2, . . . , k − 1.

In the algorithm, we need to compute the target points for O(k) horizontal and vertical rays.

The main procedure is guided by the horizontal visibility map HM(bay(cd)) so that the target

point of each horizontal ray can be determined in constant time. For the vertical ray shootings,

we use the visibility map based approach with the vertical visibility map VM(bay(cd)). Note that

the vertical ray shootings will occur in an online fashion in the algorithm. We will show that the

vertical rays involved are target-sorted. To compute the target points for these vertical rays, the

algorithm maintains a reference point, denoted by p∗. Initially, p∗ = c. Then during the algorithm,

p∗ will be moved forward along ∂ from c to d, i.e., every time p∗ is moved on ∂, its new position is

always after its previous position. In this way, the target points of all vertical rays are computed

in totally O(n′ + k) time (recall that n′ is the number of obstacle vertices of bay(cd)).

Let Ψ = {ρ1, ρ2, . . . , ρk−1}. We process the rays of Ψ incrementally in the order of ρ1, ρ2, . . . , ρk−1,

whose origins are ordered from northeast to southwest by Lemma 5 10. By Observation 4, each ray

in Ψ is either horizontally going east or vertically going south. We say that initially all rays are

active and the entire bay(cd) is active. In general, the active rays are used to decompose the active

region of bay(cd). During the algorithm, some portion of bay(cd) will be implicitly set as inactive,

which means that each point of such a region is in the Voronoi region of a root that has been de-

termined. The active region of bay(cd) at any moment of the algorithm always forms a connected

simple polygon, a fact that we will not explicitly argue in the following algorithm description. Sim-

ilarly, some rays will be set as inactive, meaning that they will no longer be involved in the further

decomposition of the current active region of bay(cd). When the algorithm terminates, the entire

bay(cd) is inactive and all rays of Ψ are inactive. Note that setting a region or a ray as inactive is

done implicitly and is used only for our analysis. Since each ray in Ψ lies on the bisector of two

roots in R, we say that the two roots define the ray.

We start with the first ray ρ1. If ρ1 is horizontal (going east), then since or(ρ1) is the most

northeast origin, no other ray in Ψ can intersect it. Let p be the target point of ρ1 on ∂ (see

Fig. 13). Clearly, p can be found in O(1) time since we already know the trapezoid in HM(bay(cd))

that contains or(ρ1) by Observation 6. Denote by α the portion of B(r1, r2) between v1 and p.
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Figure 13: Illustrating an example of ρ1 being horizontal.

Note that α is either the line segment v1p (if v1 = or(ρ1)), or the concatenation of the two line

segments v1or(ρ1) and or(ρ1)p. In either case, α partitions bay(cd) into two simple polygons. One

of them contains cv1 as an edge and we denote it by bay1 (see Fig. 13). We claim that bay1 is

the Voronoi region of r1, i.e., VD(r1) = bay1. Indeed, by the above analysis and Lemma 12, α is

in VD(bay(cd)), implying that for any point q ∈ bay1, there is a shortest path from s to q via r1.

The claim thus follows, and VD(r1) is determined. We then set the ray ρ1 and the region of bay1
as inactive. Hence, the active region of bay(cd) becomes bay(cd) \ bay1, which needs to be further

decomposed. In addition, we move the reference point p∗ from c to p (= tp(ρ1)). We then continue

with the next ray ρ2.

If ρ1 is vertical (going south), then we push ρ1 onto a stack S (initially, S = ∅), and let the

reference point p∗ stay at c. We then continue with the next ray ρ2.

We will show below that our algorithm maintains the following general invariants, which are

used to prove the correctness of the algorithm. Suppose the current moment of the algorithm is

right before the next ray ρ is considered, and assume ρ lying on the bisector B(rj, ri) with i > j.

The stack S may be non-empty; if S = ∅, then the invariants below related to any rays in S are

not applicable. Let ρ′ be the ray at the top of S, and suppose ρ′ lies on B(rt, rt′) with t′ > t.

Invariant Properties: (1) All rays in S are active and vertically going south. (2) The origins

of all rays in S from top to bottom are ordered from southwest to northeast. (3) The origin of the

next ray to be considered by the algorithm (i.e., ρ) is to the southwest of the origin of the ray at

the top of S (i.e., ρ′). (4) The two indices j = t′. (5) For each ray ρ′′ in S ∪ {ρ}, suppose ρ′′ lies on
the bisector B(rj′ , ri′) of two roots rj′ and ri′ with i′ > j′; then the portion of the boundary of the

Voronoi region VD(ri′) (resp., VD(rj′)) from vi′−1 (resp., vj′) to the origin or(ρ′′) of ρ′′ has already
been computed. (6) For each ray ρ′′ in S, suppose it lies on the bisector B(rj′ , ri′) of two roots rj′

and ri′ with i′ > j′; then rj′ is to the right of ρ′′ and ri′ is to the left of ρ′′. (7) The root rt is to the

left of all rays in S \ {ρ′} (recall that ρ′ ⊂ B(rt, rt′) with t′ > t). (8) For any two consecutive rays

ρ′1 and ρ′2 in S such that ρ′1 is closer to the top of S, suppose ρ′1 is on B(ri1 , ri2) for i2 > i1 and

ρ′2 is on B(rj1 , rj2) for j2 > j1; then i1 = j2. (9) The target points of all rays in S from bottom to

top are ordered clockwise on ∂ (i.e., from c to d). (10) If ρ is vertical, then the target point tp(ρ)

of ρ is after the target point tp(ρ′) of ρ′ on ∂. (11) If the target point of any ray in S has not been

computed yet, then the target point of that ray is after the reference point p∗ (i.e., on ∂(p∗, d)).
(12) The target point tp(ρ) is after p∗. (13) Suppose ρ′′ is the first horizontal ray in Ψ that will

be considered by the algorithm in a future time from now; then its target point tp(ρ′′) is after p∗.
(14) The trapezoid in the horizontal visibility map HM(bay(cd)) that contains the origin or(ρ) of

the ray ρ is known.

Now consider the moment that is right after we finish processing ρ1 and before we consider

ρ2. Based on the processing of ρ1 discussed above, either ρ1 is horizontal and S is empty, or ρ1 is
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vertical and S = {ρ1}. Lemma 15 below shows that in either case, all invariants of the algorithm

hold. We intend to use the proof of Lemma 15 as a “warm-up” for the analysis of the more general

situations later. Observation 7 follows from the definitions of the rays in Ψ and Lemma 10.

Observation 7 The target points of all rays in Ψ are on ∂. For any two rays rj and ri in Ψ with

i > j, if rj is horizontal or ri is vertical, then tp(ri) is after tp(rj) on ∂.

Lemma 15 At the moment after ρ1 has been processed and before ρ2 is considered, all invariants

of the algorithm hold.

Proof: Recall that ρ1 is on B(r1, r2) and ρ2 is on B(r2, r3), and the reference point p∗ is at the

target point tp(ρ1) if ρ1 is horizontal and at the vertex c otherwise.

We first discuss the case when ρ1 is horizontal, in which S is empty and p∗ = tp(ρ1). Invariants

(1) through (11) except (5) simply follow since they are all related to some rays in S. For Invariant

(5), we only need to consider ρ2 ⊂ B(r2, r3), i.e., we need to show that the portion of the boundary

of the Voronoi region VD(r3) from v2 to the origin or(ρ2) of ρ2, which is also the boundary portion

of the Voronoi region VD(r2) from v2 to or(ρ2), has already been computed. Denote this boundary

portion by α. Note that α is the portion of B(r2, r3) between v2 and or(ρ2). Recall that or(ρ2) is

either v2 or not. If or(ρ2) = v2, then we are done since α is just a single point v2. Otherwise, v2 must

be on BM (r2, r3) and α is B′
M (r2, r3) (= v2or(ρ2)), which has been computed in our preprocessing

by Observation 6. Hence, Invariant (5) follows.

For Invariant (12), we need to show that tp(ρ2) is after p∗ = tp(ρ1), which is true due to

Observation 7 and ρ1 being horizontal. For Invariant (13), let i > 1 be the smallest index such that

ρi ∈ Ψ is horizontal. If there is no such i, then Invariant (13) trivially holds; otherwise, we need to

prove that tp(ρi) is after p
∗ = tp(ρ1), which is true due to Observation 7 and ρ1 being horizontal.

For Invariant (14), we need to show that the trapezoid of HM(bay(cd)) containing or(ρ2) is known,

which is true by Observation 6. Hence, when ρ1 is horizontal, all invariants hold.

We then discuss the case when ρ1 is vertical, in which S = {ρ1} and the reference point p∗ = c.

Invariants (1) and (2) simply follow. By Lemma 10, or(ρ2) is to the southwest of or(ρ1), and thus

Invariant (3) holds. Invariant (4) is obvious. For Invariant (5), we need to consider both ρ1 and ρ2.

The proof is similar to that for the case when ρ1 is horizontal, and we omit it. For Invariant (6), we

need to show that r1 is to the right of ρ1 and r2 is to the left of ρ1, which is true due to Lemma 8

and ρ1 being vertical. Invariant (7) simply follows since ρ1 is the only ray in S. Invariants (8) and

(9) trivially hold since S has only one ray. For Invariant (10), we need to show that if ρ2 is vertical,

then tp(ρ2) is after tp(ρ1), which is true by Observation 7. For Invariant (11), note that the target

point tp(ρ1) has not been computed. Since p∗ = c, Invariant (11) trivially holds. Invariants (12)

and (13) also easily hold since p∗ = c and the target points of all rays in Ψ are on ∂. For Invariant

(14), we need to show that the trapezoid of HM(bay(cd)) that contains or(ρ2) is known, which is

true by Observation 6.

We hence conclude that all invariants of the algorithm hold. ✷

As an implementation detail, although we view S as a stack, we represent S as a doubly-linked

list so that we can access the rays in S from both the top and the bottom of S. But, we always

pop a ray out of S from its top and push a ray onto S at its top. Next, we discuss the general

situations of our algorithm.

Suppose our algorithm just starts to process a ray ρi ∈ Ψ, i > 1, which lies on the bisector

B(ri, ri+1), and all invariants of the algorithm hold right before ρi is processed. There are a number
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of cases and subcases to consider, depending on whether ρi is vertical or horizontal, whether S is

empty, and the intersecting consequences between ρi and the rays in S (if S 6= ∅), etc.

Case 1: ρi is vertical (going south). Then we simply push ρi onto the top of S and the reference

point p∗ is not changed. The algorithm then continues with the next ray ρi+1 ∈ Ψ in this situation.

Lemma 16 below shows that all invariants of the algorithm hold.

Lemma 16 If the ray ρi ∈ Ψ is vertical, then at the moment after ρi is processed and before ρi+1

is considered, all invariants of the algorithm hold.

Proof: Note that ρi+1 is on B(ri+1, ri+2). Let ξ be the moment right after ρi is processed and ξ′

be the moment right before ρi is considered. Thus, from ξ′ to ξ, the only change to S is that we

push ρi onto the top of S. The proof below is based on the assumption that S has at least two rays

at the moment ξ (i.e., ρi and at least another ray), since otherwise the invariants related to other

rays in S than ρi trivially hold. This also implies that S is not empty at the moment ξ′. Let ρ be

the ray at the top of S at the moment ξ′, and assume ρ lying on the bisector B(rj , rj′) with j′ > j.

Invariant (1) holds since ρi is vertical.

For Invariant (2), since all invariants of the algorithm hold at the moment ξ′, it suffices to show

that or(ρi) is to the southwest of or(ρ). Note that at the moment ξ′, ρi is the next ray to be

considered by the algorithm. Thus, by Invariant (3) at the moment ξ′, or(ρi) is to the southwest

of or(ρ). Invariant (2) thus follows.

For Invariant (3), Lemma 10 implies that or(ρi+1) is to the southwest of or(ρi).

Invariant (4) trivially holds since ρi ⊂ B(ri, ri+1) and ρi+1 ⊂ B(ri+1, ri+2).

For Invariant (5), it suffices to consider the ray ρi+1, i.e., to show that the portion of the

boundary of VD(ri+1) between vi+1 and or(ρi+1), which is also the portion of the boundary of

VD(ri+2) between vi+1 and or(ρi+1), has already been computed. (Note that the case for the ray

ρi trivially holds due to Invariant (5) at the moment ξ′ when ρi is the next ray to be considered.)

Recall that the above boundary portion is a single point vi+1 if vi+1 = or(ρi+1) and is the line

segment vi+1or(ρi+1) otherwise. By Observation 6, if vi+1 6= or(ρi+1), then vi+1or(ρi+1) has

already been computed in the preprocessing. Thus, Invariant (5) follows.

For Invariant (6), it suffices to prove that ri is to the right of ρi and ri+1 is to the left of ρi,

which follows from Lemma 8 since ρi is vertical.

For Invariant (7), it suffices to show that ri is to the left of ρ. Recall that ρ is on B(rj , rj′) with

j′ > j. At the moment ξ′, by Invariant (4), j′ = i; by Invariant (6), ri (= rj′) is to the left of ρ.

Thus, Invariant (7) follows.

For Invariant (8), it suffices to show j′ = i, which has been proved above for Invariant (7).

For Invariant (9), it suffices to show that tp(ρi) is after tp(ρ) on ∂. Since ρi is vertical, at the

moment ξ′, by Invariant (10), tp(ρi) is after tp(ρ) on ∂. Invariant (9) thus follows.

For Invariant (10), we need to prove that if ρi+1 is vertical, then tp(ρi+1) is after tp(ρi) on ∂,

which follows from Observation 7.

For Invariant (11), note that the target point tp(ρi) has not been computed. We need to show

that tp(ρi) is after p
∗ on ∂. At the moment ξ′, by Invariant (12), tp(ρi) is after p

∗. Further, p∗ has

not been moved since the moment ξ′. Invariant (11) thus follows.

For Invariant (12), we need to show that tp(ρi+1) is after p∗. If ρi+1 is vertical, then by

Observation 7, tp(ρi+1) is after tp(ρi) on ∂, and we have also shown above that tp(ρi) is after p∗;
thus tp(ρi+1) is after p∗. If ρi+1 is horizontal, then at the moment ξ′, since ρi is vertical, the first

horizontal ray in Ψ to be considered by the algorithm in future is ρi+1; thus by Invariant (13),

tp(ρi+1) is after p
∗. Invariant (12) then follows.
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Invariant (13) trivially holds since ρi is vertical. More specifically, suppose the first horizontal

ray in Ψ that will be considered by the algorithm after the moment ξ′ is ρj. Note that j ≥ i. Since

all invariants of the algorithm hold at the moment ξ′, by Invariant (13), tp(rj) is after p∗ on ∂.

Then at the moment ξ, since ρi is vertical, the first horizontal ray in Ψ to be considered by the

algorithm is still ρj . Proving that Invariant (13) holds at the moment ξ is to prove that tp(rj) is

after p∗, which has been proved above since p∗ has not been moved since the moment ξ′.
For Invariant (14), we need to show that the trapezoid of HM(bay(cd)) that contains or(ρi+1)

is known, which is true by Observation 6.

We conclude that all invariants of the algorithm hold at the moment ξ. ✷

Case 2: ρi is horizontal (going east). Let p = tp(ρi). We claim that we can find p in constant time.

Indeed, since ρi is the next ray considered by the algorithm, by Invariant (14), the trapezoid of

HM(bay(cd)) that contains or(ρi) is known. The claim then follows since p is on the boundary of

the above trapezoid. Since ρi is horizontal, by Invariant (13) (at the moment right before processing

ρi), p is after the reference point p∗. Depending on whether the stack S is empty, there are two

subcases to consider.

Subcase 2(a): S = ∅. Then no ray in S intersects ρi before it hits ∂ (and thus no ray shooting

for any ray ρj ∈ Ψ with j < i intersects ρi before hitting ∂). Also, for each ray ρj ∈ Ψ with j > i,

since or(ρj) is to the southwest of or(ρi) and ρi is horizontal, ρj cannot intersect ρi. Hence, the

portion or(ρi)p of the ray ρi appears in VD(bay(cd)). Recall that ρi is on B(ri, ri+1). The portion

of B(ri, ri+1) between vi and p divides the current active region of bay(cd) into two simple polygons;

one of them contains vi−1vi and we denote it by bayi. Further, each point in bayi has a shortest

path to s via ri. Thus, bayi is the Voronoi region VD(ri). We then set ρi and the region bayi as

inactive. In addition, we move p∗ to p. We then consider the next ray ρi+1. We prove below that

all invariants of the algorithm hold right after processing ρi.

Since S is empty, Invariants (1) to (11) except (5) simply hold since they are all related to some

rays in S. For Invariant (5), we only need to consider ρi+1, which also holds by Observation 6 (the

analysis is similar as before). For Invariant (12), we need to show that tp(ρi+1) is after p∗. Since

ρi is horizontal, by Observation 7, tp(ρi+1) is after tp(ρi) (= p∗). Thus, Invariant (12) follows.

For Invariant (13), suppose ρj ∈ Ψ is the first horizontal ray to be considered by the algorithm.

Note that it must be j > i. We need to show that tp(ρj) is after p∗ (= tp(ρi)), which is true

by Observation 7 since ρi is horizontal. For Invariant (14), we need to show that the trapezoid

of HM(bay(cd)) that contains or(ρi+1) is known, which is true by Observation 6. Therefore, all

invariants of the algorithm hold right after processing ρi.

Subcase 2(b): S 6= ∅. Then for the rays in S whose target points lie on ∂(p∗, p), we compute

their target points by scanning ∂(p∗, p) from p∗ to p (= tp(ρi)); this scanning process uses the

visibility map based approach with VM(bay(cd)), as described in the preprocessing. By Invariant

(9), such vertical rays (from bottom to top in S) are target-sorted. Thus, the scanning procedure

takes linear time in terms of the number of edges of ∂(p∗, p) and the number of target points found

in this process. Note that the scanning procedure stops when we encounter the point p. This also

implies that the target points of some rays in S (e.g., the ray at the top of S) are not yet found if

they are on ∂ after p.

Let ρ be the ray at the top of S (e.g., if ρi−1 is vertical, then ρ is ρi−1). Suppose ρ is on the

bisector B(rj, rj′) with j′ > j. Then right before ρi is processed, by Invariant (4), i = j′ since
ρi ⊂ B(ri, ri+1); by Invariant (3), or(ρi) is to the southwest of or(ρ). Depending on whether the

target point tp(ρ) is before p, there are two subcases.
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Figure 14: Illustrating an example that the target points of all rays in S are before p = tp(ρi). All vertical rays are
in S. The ray ρ is at the top of S and ρ′ is at the bottom of S.

Subcase 2(b.1): The target point tp(ρ) is before p = tp(ρi). In this case, the scanning procedure

has found tp(ρ) on ∂(p∗, p). Then by Invariants (9) and (11), the target points of all rays in S have

been obtained and all such target points are before p on ∂. Since p is the target point of ρi, the

above implies that all rays in S hit ∂ before they intersect ρi (see Fig. 14). Further, since all other

active rays in Ψ, i.e., ρi+1, ρi+2, . . . , ρk−1, have their origins to the southwest of or(ρi), no ray in S

can intersect these active rays before it hits ∂. This means that for each ray ρ′ in S, the portion of

ρ′ between or(ρ′) and tp(ρ′) appears in VD(bay(cd)). Based on the discussion above, we perform a

splitting procedure on S, as follows.

Let ρ′ be the ray at the bottom of S and z = tp(ρ′) (see Fig. 14). Suppose ρ′ is on the bisector

B(rt, rt′) with t′ > t. By Invariant (5), the boundary portion of VD(rt) between vt and or(ρ′) has
been computed. The concatenation of the segment or(ρ′)z and this boundary portion of VD(rt)

splits the current active region of bay(cd) into two simple polygons. One of them contains vt−1vt
as an edge; further, each point in this polygon has a shortest path to s via rt. Thus, the polygon

containing vt−1vt is the Voronoi region VD(rt). We also set the region VD(rt) as inactive.

We then continue to process the second bottom ray in S, in the similar fashion. This splitting

procedure stops once all rays in S are processed. In addition, we set all rays in S as inactive and

pop them out of S (S then becomes empty). Finally, we move the reference point p∗ to p (= tp(ρi)),

and consider the next ray ρi+1. By the same analysis as that for the subcase 2(a) when S is empty,

we can prove that all invariants of the algorithm hold. We omit the details.

Subcase 2(b.2): The target point tp(ρ) is not before p = tp(ρi). In this case, tp(ρ) has not been

found on ∂(p∗, p) by the scanning procedure. Then, it is easy to see that ρ intersects ρi before it

hits ∂ (and so may some other rays in S). We need to consider the consequences of the intersections

of such rays in S with ρi. Recall that ρi is on B(ri, ri+1) and ρ is on B(rj, ri) with i > j. Below

we show how to determine the Voronoi region VD(ri) and the portion of the bisector B(rj, ri+1) in

VD(bay(cd)). Let p1 be the intersection point of ρi and ρ (see Fig. 15).

First of all, we determine the Voronoi region VD(ri) (see Fig. 15). Since ρ is the leftmost ray in

S by Invariant (2), both the line segments or(ρi)p1 and or(ρ)p1 appear in VD(bay(cd)). Since the

ray ρ is in the stack S, by Invariant (5), the boundary portion of VD(ri) between vi−1 and or(ρ)

has been computed, which we denote by α. At the moment right before ρi is processed, since ρi
is the next ray to be considered, also by Invariant (5), the boundary portion of VD(ri) between vi
and or(ρi) has been computed, which we denote by β (i.e., β = vi if vi = or(ρi) and β = vior(ρi)

otherwise). As argued similarly in the earlier analysis, VD(ri) is the region bounded clockwise by

α, the segment or(ρ)p1, the segment or(ρi)p1, β, and vi−1vi. This region of VD(ri) is then set as

inactive.
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Figure 15: Illustrating an example that the ray ρ at the top of S intersects ρi (at p1) before ρ hits ∂.

Second, we determine the portion of the bisector B(rj, ri+1) that appears in VD(cd). Since ρi
is horizontal, by Lemma 8, the root ri+1 is below ρi. Since ρ ⊂ B(rj , ri) with i > j, by Invariant

(6), rj is to the right of ρ. Therefore, the intersection point (denoted by q1) of the horizontal line

through ri+1 and the vertical line through rj is to the southeast of p1 (see Fig. 15). We first discuss

the portion of B(rj, ri+1) contained in the rectangle Rec(p1, q1).

Obviously, Rec(p1, q1) is contained in the rectangle Rec(rj , ri+1). Thus, the portion ofB(rj , ri+1)

in Rec(p1, q1) is a portion of the middle segment of B(rj, ri+1). Further, since p1 is the intersection

of ρi and ρ, p1 is at the intersection of B(ri, ri+1) and B(rj, ri). Thus, p1 is on B(rj, ri+1).

We claim that ri+1 is to the southwest of rj. This can be proved by showing that ri+1 is to

the southwest of p1 and p1 is to the southwest of rj . Indeed, since ri+1 is below ρi and cd is

positive-sloped, p1 must be to the right of ri+1, which also implies that ri+1 is to the southwest of

p1. Similarly, we can show that p1 is to the southwest of rj .

Because ri+1 is to the southwest of rj, the middle segment of B(rj, ri+1) is −1-sloped. Denote

by B′
M (rj , ri+1) the portion of B(rj , ri+1) contained in Rec(p1, q1). Based on the above analysis,

B′
M (rj , ri+1) is a −1-sloped line segment with an endpoint at p1 and the other endpoint on one of

the two edges of Rec(p1, q1) incident to q1 (see Fig. 15). Below we prove that B′
M (rj , ri+1)∩bay(cd)

(i.e., the portion of B′
M(rj , ri+1) contained in bay(cd)) appears in VD(bay(cd)), implying that we

should keep this portion of B′
M (rj, ri+1). The proof is similar to that for Lemma 12 and hence

we only sketch it here. For convenience, we view B′
M (rj , ri+1) as the open segment that does not

contain its two endpoints.

It suffices to show that B′
M (rj , ri+1) does not intersect any current active ray. Consider any

current active ray ρ′, ρ′ 6∈ {ρ, ρi}. Then ρ′ either is in S or is a ray ρt ∈ Ψ with t > i.

• If ρ′ ∈ S, then ρ′ is vertical by Invariant (1). By Invariant (7), ρ′ is to the right of the root rj ,

and thus to the right of the rectangle Rec(p1, q1). Hence, ρt does not intersect B′
M (rj , ri+1)

since B′
M (rj , ri+1) is strictly inside Rec(p1, q1).

• If ρ′ = ρt ∈ Ψ with t > i, then there are two subcases.

If ρt is horizontal, then by Lemma 11, ρt is below ri+1, and is thus below the rectangle

Rec(p1, q1). Hence, ρt does not intersect B
′
M (rj, ri+1).

If ρt is vertical, then by Lemma 10, the origin or(ρi) is to the northeast of or(ρt). Clearly,

or(ρi) is to the left of Rec(p1, q1) and thus or(ρt) is to the left of Rec(p1, q1). Since ρt is

vertical, ρt is also to the left of Rec(p1, q1). Hence, ρt does not intersect B
′
M (rj , ri+1).
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Figure 16: Illustrating an example that B′
M (rj , ri+1) (= p1p′1) intersects ∂ (first at z).

The above argument shows that all active rays cannot intersect B′
M(rj , ri+1). Hence, the portion

of B′
M(rj , ri+1) contained in bay(cd) must appear in VD(bay(cd)).

Then, we compute B′
M (rj , ri+1) in O(1) time, and let B′

M (rj , ri+1) = p1p
′
1
(see Fig. 15). Note

that p′1 is either on the right edge or the bottom edge of Rec(p1, q1).

However, p1p′1 may intersect ∂. To determine whether such intersection occurs, we move among

the trapezoids in the horizontal visibility map HM(bay(cd)) from the endpoint p1 of B′
M (rj , ri+1)

along the segment p1p
′
1
, as follows.

Note that the portion of the ray ρi between its origin or(ρi) and its target point p = tp(ρi)

is contained in a single trapezoid of HM(bay(cd)), i.e., the trapezoid containing or(ρi), which is

already known according to Invariant (14). Further, this trapezoid is the one that contains p1 since

p1 ∈ or(ρi)p. Starting at p1 in this trapezoid, we move along the segment p1p′1, and enter/exit

trapezoids in HM(bay(cd)) one after another, until we encounter either p′1 or an edge of ∂ for the

first time. In this way, we can determine whether p1p′1 intersects ∂. Further, if p1p′1 intersects

∂, then the first such intersection point, denoted by z, is also found in this moving process; if

B′
M (rj , ri+1) does not intersect ∂, then the trapezoid of HM(bay(cd)) containing the point p′1 is

determined. It is easy to see that the running time of the above moving procedure is proportional

to the number of trapezoids in HM(bay(cd)) that we visit when moving along p1p′1. We will analyze

the total running time of the moving process in a global manner later.

Depending on whether B′
M (rj , ri+1) (= p1p′1) intersects ∂, there are two cases to consider.

If B′
M (rj, ri+1) intersects ∂, then we have found the first intersection point z of B′

M (rj , ri+1)

and ∂ (see Fig. 16). Note that z must be after p on ∂. Also, note that the Voronoi region VD(ri)

has been computed and set as inactive, and thus p1 lies on the boundary of the current active

region of bay(cd) (see Fig. 16). Similarly as before, the line segment p1z divides the current active

region of bay(cd) into two simple polygons; one of them, say bay′, contains the point p. Then, the

Voronoi regions of the roots that define the rays in S form a decomposition of bay′, and we use

a procedure similar to the splitting procedure discussed earlier to compute this decomposition of

bay′, i.e., by considering the rays in S from bottom to top. However, it is possible that the target

points of some rays in S have not been computed yet. Recall that all target points of the rays in

S before p (= tp(ρi)) have been computed. But, if the target point of a ray in S is on ∂(p, z), then

it is not yet known. To compute these target points, we simply scan ∂(p, z) from p to z. Again,

by Invariant (9), the vertical rays in S are target-sorted. Hence this computation can be done in

linear time in terms of the number of edges of ∂(p, z) and the number of target points found during

this process. In addition, we set the region bay′ and all rays in S as inactive, and pop all rays out
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Figure 17: Illustrating an example that the point p′1 (= or(ρ∗i )) is on the bottom edge of Rec(p1, q1).

of S (S becomes empty). Finally, we move the reference point p∗ to z, and continue with the next

ray ρi+1. Again, since S is empty, similar to the analysis for the subcase 2(a) when S is empty, all

invariants of the algorithm hold. We omit the details of the proof.

If B′
M (rj , ri+1) (= p1p

′
1
) does not intersect ∂ (see Fig. 17), then as shown above, B′

M (rj , ri+1)

appears entirely in SPM(F) since it is contained inside bay(cd). Again, the point p′1 is on either

the right edge or the bottom edge of Rec(p1, q1) (two cases). We discuss these two cases below.

Recall that the trapezoid of HM(bay(cd)) that contains p′1 has been computed. Recall that the ray

at the top of S is ρ, lying on B(rj , ri) with i > j.

We first discuss the case when p′1 is on the bottom edge of Rec(p1, q1) (see Fig. 17). Let ρ∗i be

the vertical ray originating at p′1 and going south, which is on B(rj, ri+1) by Observation 2. We

pop ρ out of S and push ρ∗i onto the top of S, and set ρ as inactive and ρ∗i as active. We move p∗

to p (= tp(ρi)). We then continue to consider the next ray ρi+1 ∈ Ψ. Lemma 17 below shows that

all invariants of the algorithm hold.

Lemma 17 At the moment right before the next ray ρi+1 is considered, all invariants of the algo-

rithm hold.

Proof: Let ξ be the moment right before the next ray ρi+1 is considered, and ξ′ be the moment

right before the ray ρi is considered. Thus, the change to S from the time ξ′ to ξ is that ρ is

popped out and ρ∗i is pushed in. Recall that at the moment ξ′, all invariants of the algorithm hold.

Our goal is to prove that all invariants still hold at the moment ξ. We assume that S has at least

two rays at the moment ξ (otherwise, all invariants related to any other rays in S than ρ∗i hold

trivially). Let ρ′ be the second ray from the top of S (i.e., right below ρ∗i in S) at the moment ξ.

Then ρ′ is also the second ray from the top of S at the moment ξ′ (i.e., right below ρ in S). See

Fig. 17 for an example.

Invariant (1) simply follows since ρ∗i is vertically going south.

For Invariant (2), it suffices to show that or(ρ∗i ) is to the southwest of or(ρ′). At the moment

ξ′, since the ray ρ at the top of S is on B(rj, ri) with i > j, by Invariant (6), rj is to the left of

or(ρ′). Since or(ρ∗i ) ∈ Rec(rj , ri+1) is to the left of rj , we obtain that or(ρ∗i ) is to the left of or(ρ′).
Further, at the moment ξ′, by Invariant (2), or(ρ) is to the southwest of or(ρ′). Since or(ρ∗i ) is

below or(ρ), or(ρ∗i ) is below or(ρ′). Since or(ρ∗i ) is both below and to the left of or(ρ′), we obtain

that or(ρ∗i ) is to the southwest of or(ρ′). Invariant (2) thus follows.
For Invariant (3), we need to show that or(ρi+1) is to the southwest of or(ρ∗i ). By Lemma 10,

or(ρi+1) is to the southwest of or(ρi). Since or(ρ∗i ) is to the right of or(ρi), or(ρ
∗
i ) is also to the
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right of or(ρi+1). By Lemma 8(3), or(ρi+1) is below ri+1. Hence, or(ρi+1) is below the rectangle

Rec(p1, q1) and thus below or(ρ∗i ). Since or(ρi+1) is both below and to the left of or(ρ∗i ), we obtain
that or(ρi+1) is to the southwest of or(ρ∗i ). Thus, Invariant (3) follows.

Invariant (4) simply follows since ρ∗i ⊂ B(rj, ri+1) and ρi+1 ⊂ B(ri+1, ri+2).

For Invariant (5), we need to consider both ρ∗i and ρi+1. For ρ∗i , since ρ∗i ⊂ B(rj , ri+1), we

need to show that the boundary portion of the Voronoi region VD(ri+1) (resp., VD(rj)) from vi
(resp., vj) to or(ρ∗i ) has been computed. For this, recall that the boundary portion of VD(ri+1)

between vi and p1 is a common boundary of VD(ri+1) and VD(ri), which has been computed.

We denote this boundary portion by α. Also, the boundary portion of VD(rj) between vj and

p1 has been computed; we denote this boundary portion by β. Further, after we find the point

p′1, the line segment p1p′1 has also been obtained. Since p1p′1 appears entirely in SPM (F), the

boundary portion of VD(ri+1) between vi and or(ρ∗i ) (= p′1) is the concatenation of α and p1p′1,

which has been computed. Similarly, the boundary portion of VD(rj) between vj and or(ρ∗i ) is the
concatenation of β and p1p′1, which has been computed too. Thus, the case for ρ∗i holds.

For the ray ρi+1, which is the ray to be considered next by the algorithm, we need to show

that the boundary portion of the Voronoi region VD(ri+1) from vi+1 to or(ρi+1), which is also the

boundary portion of the Voronoi region VD(ri+2) from vi+1 to or(ρi+1), has been computed. This

simply follows from Observation 6.

In summary, Invariant (5) holds.

For Invariant (6), it suffices to show that or(ρ∗i ) is to the left of rj and to the right of ri+1. Recall

that or(ρ∗i ) is on the rectangle Rec(p1, q1), q1 is to the southeast of p1, and q1 is the intersection

of the vertical line through rj and the horizontal line through ri+1. As shown above, ri+1 is to the

left of p1. Since or(ρ
∗
i ) is to the right of p1, or(ρ

∗
i ) is to the right of ri+1. Since Rec(p1, q1) is to the

left of rj, or(ρ
∗
i ) is to the left of rj . Invariant (6) thus holds.

For Invariant (7), we need to show that rj is to the left of all rays in S \ {ρ∗i }. At the moment

ξ′, the ray ρ ⊂ B(rj, ri) is at the top of S with i > j; thus by Invariant (7), rj is to the left of all

rays in S \ {ρ}. Since S \ {ρ} = S \ {ρ∗i }, Invariant (7) still holds at the moment ξ.

For Invariant (8), recall that ρ′ is the second ray from the top of S at both the moments ξ and

ξ′. We assume ρ′ lying on B(rt, rt′) with t′ > t. To prove Invariant (8) held at ξ, it suffices to show

t′ = j since ρ∗i ⊂ B(rj, ri+1). At the moment ξ′, since ρ ⊂ B(rj, ri) is the ray at the top of S, by

Invariant (8), we have j = t′. Thus, Invariant (8) still holds at the moment ξ.

For Invariant (9), it suffices to show that tp(ρ∗i ) is after tp(ρ
′) on ∂. Intuitively this is true due

to the following facts: There is a path inside bay(cd) from vi to or(ρ∗i ) (i.e., the concatenation of

vior(ρi), or(ρi)p1, and p1p′1), and both ρ∗i and ρ′ are vertical, and ρ∗i is to the left of ρ′. A detailed

analysis is given below.

First, it is easy to see that tp(ρ∗i ) must be after the point p (= tp(ρi)). The target point tp(ρ′)
may be after p or before p. If tp(ρ′) is before p, then we are done. Thus, we consider the case of

tp(ρ′) being after p. By Invariant (2) (at the moment ξ) proved above, or(ρ′) is to the northeast

of or(ρ∗i ). Thus, the ray ρ′ must cross ρi before it hits ∂ at tp(ρ′); in other words, the two line

segments or(ρ′)tp(ρ′) and or(ρi)tp(ρi) intersect inside bay(cd). Further, since ρ′ is to the right of

ρ∗i and p1 is to the left of ρ∗i , the intersection point of or(ρ′)tp(ρ′) and or(ρi)tp(ρi) is on p1tp(ρi).

Recall that vior(ρi) is either a single point or a line segment that is in VD(bay(cd)) and does

not intersect ∂. Consider the region in bay(cd) bounded by vior(ρi), or(ρi)p, and ∂(p, d), which

we denote by Z. It is easy to see that Z is a simple polygon. Let α be the concatenation of p1p
′
1

and p′
1
tp(p∗i ). Note that α is entirely inside Z except that its two endpoints are on the boundary

of Z, i.e., p1 ∈ or(ρi)p and tp(p∗i ) ∈ ∂(p, d). Thus, α divides Z into two simple polygons; one of
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them contains p1p as an edge, which is denoted by Z ′. Since the intersection of or(ρ′)tp(ρ′) and

or(ρi)tp(ρi) is on p1tp(ρi), the ray ρ′ intersects Z ′. By Invariant (7) (at the moment ξ) proved

above, the root rj is to the left of ρ′. Thus, ρ′ cannot intersect the curve α. Hence, the target point

tp(ρ′) must be on the boundary of Z ′∩∂(p, d), which is on ∂(p, tp(ρ∗i )). Thus, tp(ρ
∗
i ) is after tp(ρ

′),
and Invariant (9) follows.

For Invariant (10), we need to show that if ρi+1 is vertical, then the target point tp(ρi+1) is

after tp(ρ∗i ) on ∂. By Invariant (3) (at the moment ξ) proved above, or(ρi+1) is to the southwest

of or(ρ∗i ). Let Z be the simple polygonal region in bay(cd) bounded by vior(ρi), or(ρi)p1, p1p′1,

p′
1
tp(ρ∗i ), ∂(tp(ρ

∗
i ), d), and dvi. Regardless of whether or(ρi+1) = vi+1, the origin or(ρi+1) of ρi+1 is

in Z since or(ρi+1) is to the southwest of or(ρ∗i ) = p′1. Further, since both ρ∗i and ρi+1 are vertical,

tp(ρi+1) must be on ∂(tp(ρ∗i ), d). Invariant (10) thus follows.
For Invariant (11), it suffices to show that tp(ρ∗i ) is after p

∗ since tp(ρ∗i ) has not been computed.

Since tp(ρ∗i ) is after p = tp(ρi) (= p∗), Invariant (11) simply follows.

For Invariant (12), we need to show that the target point tp(ρi+1) is after p
∗ (= p = tp(ρi)). Let

Z be the simple polygonal region in bay(cd) bounded by vior(ρi), or(ρi)p, ∂(p, d), and dvi. Clearly,

or(ρi+1) is in Z. Further, since or(ρi+1) is to the southwest of or(ρi), regardless of whether ρi+1 is

vertical or horizontal, tp(ρi+1) must be on ∂(p∗, d). Thus, Invariant (12) holds.
For Invariant (13), suppose l is the smallest index with l > i such that ρl ∈ Ψ and ρl is

horizontal. We need to prove that tp(ρl) is after p∗ (= p = tp(ρi)). Consider the simple polygon

Z defined above for proving Invariant (12). Since ρl is horizontal, by Lemma 11, ρl is below ri+1.

Thus, it is easy to see that or(ρl) is in Z and tp(ρl) is on ∂(p∗, d). Hence, tp(ρl) is after p∗, and

Invariant (13) holds.

For Invariant (14), we need to show that the trapezoid of HM(bay(cd)) that contains or(ρi+1)

is known, which is true by Observation 6.

We conclude that all invariants of the algorithm still hold at the moment ξ. ✷

For the purpose of discussing the analysis of the running time of our algorithm later, we call

the ray ρ∗i the termination vertical ray of the (horizontal) ray ρi.

We have finished the discussion for the case when p′1 is on the bottom edge of Rec(p1, q1).

We then discuss the case when the point p′1 is on the right edge of Rec(p1, q1) (see Fig. 18).

Denote by ρi1 the horizontal ray originating at p′1 and going east, which is on B(rj, ri+1) by

Observation 2. Then, we pop ρ out of S and set ρ as inactive. Also, we set ρi1 as active and move

the reference point p∗ to p (= tp(ρi)). Finally, we let ρi1 be the next ray to be considered by the

algorithm (note that ρi1 is not in Ψ). Lemma 18 below shows that all invariants of the algorithm

hold. Recall that the trapezoid of HM(bay(cd)) that contains p′1 has been computed.

Lemma 18 At the moment right before the next ray ρi1 is considered, all invariants of the algorithm

hold.

Proof: Let ξ be the moment right before the next ray ρi1 is considered, and ξ′ be the moment

right before the ray ρi is considered. Thus, the only change to S from the time ξ′ to ξ is that ρ is

popped out. At the moment ξ′, all invariants of the algorithm hold. Our goal is to prove that all

invariants still hold at the moment ξ. We assume S 6= ∅ at the moment ξ (otherwise, all invariants

related to any rays in S hold trivially). Let ρ′ be the ray at the top of S at the moment ξ. Then

ρ′ is the second ray from the top of S (i.e., right below the ray ρ in S) at the moment ξ′. Refer to
Fig. 18 for an example.

Invariants (1) and (2) simply hold.
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Figure 18: Illustrating an example that the point p′1 (= or(ρi1)) is on the right edge of Rec(p1, q1).

For Invariant (3), we need to show that or(ρi1) is to the southwest of or(ρ′). By Invariant (2)

at the moment ξ′, or(ρ) of the ray ρ at the top of S is to the southwest of or(ρ′). Since or(ρi1) = p′1
is below or(ρ), or(ρi1) is below or(ρ′). Also, by Invariant (7) at the moment ξ′, since the top ray ρ

in S is on B(rj, ri) (with i > j), rj is to the left of ρ′ (which is vertical). Since p′1 is on the vertical

line through rj , p
′
1 = or(ρi1) is to the left of or(ρ′). Hence, or(ρi1) is to the southwest of or(ρ′),

and Invariant (3) follows.

For Invariant (4), suppose ρ′ is on B(rt, rt′) with t′ > t; we need to show j = t′ since ρi1 ⊂
B(rj, ri+1) is the next ray to be considered by the algorithm. At the moment ξ′, ρ ⊂ B(rj , ri) (with

i > j) is at the top of S and ρ′ is the second ray from the top of S; thus, by Invariant (8) at the

moment ξ′, j = t′. Invariant (4) hence follows.

For Invariant (5), since no new ray is pushed onto S, we only need to consider the ray ρi1. The

proof is the same as that for Invariant (5) (for the ray ρ∗i ) in the proof of Lemma 17, and we omit

it.

Invariants (6), (7), (8), (9), and (11) trivially hold since no new ray is pushed into S.

Invariant (10) simply follows since ρi1 is the next ray to be considered by the algorithm and ρi1
is not vertical.

For Invariant (12), we need to show that the target point tp(ρi1) is after p∗ (= p = tp(ρi)).

Consider the simple polygonal region Z in bay(cd) bounded by vior(ρi), or(ρi)p, ∂(p, d), and dvi.

It is easy to see that or(ρi1) is in Z and tp(ρi1) is on ∂(p∗, d). Thus, tp(ρi1) is after p
∗.

For Invariant (13), suppose l is the smallest index with l > i such that ρl ∈ Ψ and ρl is

horizontal. We need to prove that tp(ρl) is after p∗ (= p = tp(ρi)). Consider the simple polygon

Z defined above for proving Invariant (12). Since ρl is horizontal, by Lemma 11, ρl is below ri+1.

Thus, it is easy to see that or(ρl) is in Z and tp(ρl) is on ∂(p∗, d). Hence, tp(ρl) is after p∗, and
Invariant (13) holds.

For Invariant (14), recall that the trapezoid of HM(bay(cd)) that contains p′1 (= or(ρi1)) has

been computed, and thus Invariant (14) holds.

We conclude that all invariants of the algorithm hold at the moment ξ. ✷

For analysis, we refer to the ray ρi1 as a successor horizontal ray of the (horizontal) ray ρi.

This finished the discussion for the case when p′1 is on the right edge of Rec(p1, q1).

Again, ρi1 is the next ray to be considered by the algorithm. Although our earlier discussion

on the algorithm processing the next ray is mostly on processing a ray ρi ∈ Ψ, the processing for

ρi1 (6∈ Ψ) is the same, and the proof for all invariants is also very similar. In particular, there may

also be a termination vertical ray or a successor horizontal ray generated at the end of processing
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Figure 19: Illustrating the first two successor horizontal rays ρi1 and ρi2 of a horizontal ray ρi ∈ Ψ.

ρi1, which we still refer to as a termination vertical ray or a successor horizontal ray of ρi. It is

easy to see that a horizontal ray ρi may lead to multiple successor horizontal rays but at most one

termination vertical ray, i.e., a successor horizontal ray may generate another successor horizontal

ray (e.g., see Fig. 19), but a termination vertical ray does not generate another ray.

One might be curious about why the roles of horizontal rays and vertical rays are quite different

in our above algorithm, while the L1 metric does not prefer one of these two directions over the

other. The asymmetric roles of these two directions are related to the order of ρ1, ρ2, . . . , ρk−1 in

which we process these rays. If one uses a reversed order (i.e., ρk−1, ρk−2, . . . , ρ1) in the processing,

then the roles of these two types of rays will be reversed.

For the purpose of analyzing the running time of the algorithm later, we discuss more details

related to the successor horizontal rays of a horizontal ray ρi ∈ Ψ. We process the first successor

horizontal ray ρi1 of ρi in the same way as ρi. After ρi1 is processed, we may obtain another

successor horizontal ray ρi2. In general, assume all successor horizontal rays we obtain for ρi are

ρi1, ρi2, . . . , ρit, ordered by the time when they are produced (see Fig. 19). Then, after the last ray

ρit is processed, we may or may not obtain the termination vertical ray ρ∗i . For example, when

processing ρit, if S = ∅, then no termination vertical ray is generated. In either case, after ρit is

processed, we continue to consider the next ray ρi+1 ∈ Ψ.

Let ρi0 = ρi. For each 1 ≤ w ≤ t, we define the points pw+1, qw+1, and p′w+1 for the ray ρiw
similarly to the points p1, q1, and p′1 for ρi0 (see Fig. 19). Note that when processing ρit, depending

on the specific situations, the points pt+1, qt+1, and p′t+1 may not exist (e.g., if S = ∅). In the

following, we assume they exist (otherwise, the analysis is actually simpler).

It is easy to see that for each 1 ≤ w ≤ t, the ray ρi,w−1 contains the top edge of the rectangle

Rec(pw, p
′
w) and the ray ρiw touches the bottom edge of Rec(pw, p

′
w). In addition, the ray ρit

contains the top edge of Rec(pt+1, p
′
t+1). In other words, ρi0 (= ρi), Rec(p1, p

′
1), ρi1, Rec(p2, p

′
2), ρi2,

. . ., Rec(pt, p
′
t), ρit, Rec(pt+1, p

′
t+1) are ordered from high to low and left to right (see Fig. 19). Thus,

no two different rectangles in the sequence above intersect in their interior. Actually, the rectangles

Rec(p1, p
′
1), Rec(p2, p

′
2), . . . , Rec(pt+1, p

′
t+1) are ordered from northwest to southeast. Further, all

successor horizontal rays and rectangles involved are higher than ri+1. To see this fact, note that

for each 1 ≤ w ≤ t + 1, the point p′w is higher than the point qw and qw is on the horizontal

line through ri+1 (see Fig. 19). Thus, all these rectangles are contained in the horizontal strip

between the horizontal line containing ρi and the horizontal line through ri+1; we denote this strip
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by HStrip(ρi). Recall that during our algorithm, the horizontal visibility map HM(bay(cd)) is

utilized as a guide and we often move among its trapezoids. When computing and processing

these successor horizontal rays, we always follow HM(bay(cd)), e.g., for each w = 0, 1, . . . , t, we

utilize HM(bay(cd)) to compute the target point tp(ρiw) of the ray ρiw, to determine whether

pw+1p
′
w+1

intersects ∂, and to find the trapezoid in HM(bay(cd)) that contains p′w+1 = or(ρi,w+1).

The discussion above implies that the time for processing all successor horizontal rays of ρi is

proportional to O(t) plus the number of trapezoids in HM(bay(cd)) that intersect the horizontal

strip HStrip(ρi) as well as the time for computing the target points of some (vertical) rays in S.

In addition, during this process, each of the t successor horizontal rays ρiw of ρi corresponds to

a ray in S that is popped out. Thus, there are t vertical rays popped out of S for ρi. But, at most

one ray, i.e., the termination vertical ray ρ∗i , is pushed onto S for ρi.

We have finished the description of our algorithm for computing SPM (bay(cd)), which is sum-

marized by the pseudo-code of Algorithm 1.

5.3.3 The Time Complexity

It remains to analyze the running time of the algorithm. First, we show the following lemma.

Lemma 19 The total number of rays ever contained in the stack S throughout the entire algorithm

is at most k. Once a ray is popped out of S, it will never be pushed back in again.

Proof: When processing each ray ρi ∈ Ψ, if it is vertical, then we push it onto S; if it is horizontal,

then as shown above, although there may be multiple successor horizontal rays of ρi, at most one

ray, i.e., the termination vertical ray, is put into S. Further, according to our algorithm, once a ray

in S is popped out, it will never be considered again, and thus never be put into S again. ✷

We then discuss the total time for computing the target points for all vertical ray shootings in

the entire algorithm. We use a reference point p∗ on ∂ and the vertical visibility map VM(bay(cd))

for this purpose. To conduct the vertical ray shootings, because the rays involved are always target-

sorted, we simply scan the edges in a portion of ∂ between p∗ and another point p that is after

p∗ on ∂. Further, when such a scanning is done, we always move p∗ to p. This implies that any

portion of ∂ is scanned at most once in the entire algorithm. In addition, the number of all vertical

ray shootings is at most k. This is because each vertical ray involved is from S, and by Lemma 19,

the number of rays ever contained in S is at most k. Therefore, the total time for computing the

target points of all vertical rays in the entire algorithm is O(n′ + k).

For each ray ρi ∈ Ψ, if it is vertical, then processing it takes O(1) time, i.e., pushing ρi onto

S. If it is horizontal, then assume that ρi has t successor horizontal rays. We have discussed that,

besides the procedure for computing their target points, the time for processing these t successor

horizontal rays is proportional to t plus the number of trapezoids in HM(bay(cd)) intersecting the

horizontal strip HStrip(ρi). We have also shown that each successor horizontal ray corresponds

to a ray in the stack S that is popped out. Since there are at most k rays ever contained in S

by Lemma 19, the total number of successor horizontal rays in the entire algorithm is at most k.

On the other hand, consider two different horizontal rays ρi and ρj in Ψ. We claim that the two

horizontal strips HStip(ρi) and HStrip(ρj) do not intersect each other in their interior. WLOG,

assume i < j. Indeed, the strip HStrip(ρi) is above the horizontal line through the root ri+1 and

HStrip(ρj) is below the ray ρj. Since ρj is horizontal and j > i, by Lemma 11, ρj is below ri+1.

Our claim thus holds. The above claim implies that, besides the time for computing their target

points, the time for processing all successor horizontal rays in the entire algorithm is proportional

to the total number of trapezoids in HM(bay(cd)) plus k, which is O(n′ + k).
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The algorithm performs totally O(k) horizontal ray shootings, for computing the target points

of the horizontal rays in Ψ and their successor horizontal rays. Using HM(bay(cd)) and based on

the fact that we already know (i.e., have computed) the trapezoid of HM(bay(cd)) containing the

origin of each such horizontal ray, all such horizontal ray shootings can be done in O(k) time.

In summary, the total running time of our algorithm for computing the shortest path map for

the bay bay(cd) is O(n′ +m′) (where m′ = k − 1 is the number of SPM (M) vertices on cd). It is

easy to see that the size of this SPM is O(n′ +m′) (e.g., since the running time is O(n′ +m′)).
Theorem 5 thus follows.

6 Computing a Shortest Path Map for a Canal

In this section, we show how to compute a shortest path map for a canal, which uses our shortest

path map algorithm for a bay in Section 5 as a main procedure.

Consider a canal canal(x, y) with x and y as the corridor path terminals and two gates xd and

yz (e.g., see Fig. 6). There may be SPM (M) vertices on both gates. Let m1 (resp., m2) be the

number of SPM (M) vertices on xd (resp., yz), and n′ be the number of obstacle vertices of the

canal. We show that a shortest path map for the canal can be computed in O(m1 +m2 +n′) time.

Let R1 (resp., R2) be the set of roots whose cells in SPM (M) intersect xd (resp., yz).

Recall that we have defined wavefront incoming/outgoing terminals in Section 4.2. Namely,

consider the corridor path terminals x and y of canal(x, y). It is possible that y has a shortest

path from s via x (i.e., this path contains the corridor path of canal(x, y)), in which case there is

a “pseudo-cell” in SPM (M) with x as the root and y being the only other point in this “pseudo-

cell”; then x is a wavefront incoming terminal and y is the wavefront-outgoing terminal. If neither

y has a shortest path from s via x nor x has a shortest path from s via y, then both x and y are

wavefront-incoming terminals. In this case, there is a point on the corridor path of canal(x, y) that

has two shortest paths from s, one via x and the other via y (we will use this property to compute

an SPM for canal(x, y)).

Note that for the two terminals x and y, either both of them are wavefront-incoming terminals,

or only one of them is an wavefront-incoming terminal and the other is an wavefront-outgoing

terminal. Below, we first discuss the former case; the algorithm for the latter case is very similar.

6.1 Both x and y are Wavefront-Incoming Terminals

If both x and y are wavefront-incoming terminals, by the properties of the corridor path, there is a

point p∗ on the corridor path of canal(x, y) such that there exist two shortest paths π1(s, p
∗) and

π2(s, p
∗) from s to p∗ with x ∈ π1(s, p

∗) and y ∈ π2(s, p
∗). The point p∗ can be found in O(n′) time

since we know the shortest path distances from s to x and to y.

Let VD(canal(x, y), R1) be the (additively) weighted Voronoi diagram of canal(x, y) with re-

spect to the root set R1, i.e., we treat canal(x, y) as a bay with the gate xd. As defined in Section

5, VD(canal(x, y), R1) is the Voronoi decomposition of canal(x, y) with respect to the roots in R1.

Similarly, let VD(canal(x, y), R2) be the weighted Voronoi diagram of canal(x, y) with respect to

the root set R2. Using our algorithm in Section 5, VD(canal(x, y), R1) and VD(canal(x, y), R2)

can be computed in totally O(m1+m2+n′) time. Denote by VD(canal(x, y), R1, R2) the weighted

Voronoi diagram of canal(x, y) with respect to the roots in R1 ∪ R2. As shown in Section 5, af-

ter VD(canal(x, y), R1, R2) is computed, an SPM on canal(x, y) with the source s can be built

in O(m1 +m2 + n′) time. Thus, the key is to compute VD(canal(x, y), R1, R2). Below, we show
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how to compute VD(canal(x, y), R1, R2) in O(m1 + m2 + n′) time with the help of the point p∗,
VD(canal(x, y), R1), and VD(canal(x, y), R2).

To compute VD(canal(x, y), R1, R2), our strategy is to find a “dividing curve” in canal(x, y)

that divides canal(x, y) into two simple polygons C1 and C2, such that each point in C1 has a

shortest path from s via a root in R1 and each point in C2 has a shortest path from s via a root in

R2. Further, each point on the dividing curve has two shortest paths from s, one path containing

a root in R1 and the other path containing a root in R2. After finding C1 and C2, we simply apply

the algorithm in Section 5 on C1 and R1 to compute the weighted Voronoi diagram of C1 with

respect to R1, i.e., VD(C1, R1). We similarly compute VD(C2, R2). Then, VD(canal(x, y), R1, R2)

consists of VD(C1, R1) and VD(C2, R2). Thus, our remaining task is to compute a dividing curve

in canal(x, y), which we denote by γ.

Note that the point p∗ ∈ γ. Computing γ can be done in O(n′ +m1 +m2) time by a procedure

similar to the merge procedure of the divide-and-conquer algorithm for computing the Voronoi

diagram of a set of points in the plane [34]. The details are given below.

To compute γ, we start at the point p∗ and trace γ out by traversing some corresponding cells

in VD(canal(x, y), R1) and in VD(canal(x, y), R2) simultaneously. Specifically, we first compute a

triangulation of VD(canal(x, y), R1), denoted by Tri1, and a triangulation of VD(canal(x, y), R2),

denoted by Tri2 (this can be done in linear time [3] since each cell of VD(canal(x, y), R1) and

VD(canal(x, y), R2) is a simple polygon). Since p∗ is in a triangle (say, tri1) of Tri1 and is in a

triangle (say, tri2) of Tri2, we find tri1 in Tri1 and tri2 in Tri2. From the cell of VD(canal(x, y), R1)

(resp., VD(canal(x, y), R2)) that contains tri1 (resp., tri2), we obtain the root r1 (resp., r2) of that

cell. We then move along the bisector B(r1, r2) inside canal(x, y), starting at p∗ and going in each

of the two directions along B(r1, r2). As following a line segment or a ray of B(r1, r2) in a direction,

we determine, in O(1) time, which of tri1 or tri2 that we exit first. As we cross from one triangle

tri (say, in Tri1) to the next triangle tri′, we check which of the following cases occurs: (i) The

next triangle tri′ (in Tri1) is contained in the same cell of VD(canal(x, y), R1) as that containing

tri; (ii) tri′ is contained in a different cell of VD(canal(x, y), R1) than that containing tri; (iii) the

movement touches the boundary of canal(x, y) (thus tri′ does not exist). In Case (i), we continue

to follow the same bisector (say, B(r1, r2)). In Case (ii), we find the root (say, r′1) of the next cell of

VD(canal(x, y), R1); then we compute a new bisector (say, B(r′1, r2)), and our movement continues

along B(r′1, r2). In Case (iii), the movement reaches an end of γ (on the boundary of canal(x, y)).

The dividing curve γ is the concatenation of the portions of the bisectors thus traversed.

Due to the properties of the cells of VD(canal(x, y), R1) and VD(canal(x, y), R2), our movement

above can visit each triangle of Tri1 and Tri2 at most once, taking O(1) time per triangle visited.

Thus, the partition curve γ is computed in O(n′ +m1 +m2) time.

In summary, in this case, an SPM on canal(x, y) can be computed in O(n′ +m1 +m2) time.

6.2 Only One of x and y is a Wavefront-Incoming Terminal

In this case, exactly one of x and y is a wavefront-incoming terminal. The algorithm is similar to

that for the former case. The only difference is on how to find a point p∗ on the dividing curve γ

because in this case no such a point p∗ can be on the corridor path of canal(x, y).

WLOG, we assume that x is a wavefront-incoming terminal and y is not. Then each point on

the corridor path (including y) has a shortest path from s via x. Further, the shortest path through

x passes y and goes to the outside of canal(x, y), which means that y is the root of a cell C(y) in

SPM (M). If the canal gate yz is completely contained in the cell C(y), then it is easy to see that

VD(canal(x, y), R1) is VD(canal(x, y), R1, R2). Otherwise, as in the former case, we need to find a
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dividing curve γ to divide canal(x, y) into two polygons C1 and C2 such that each point in C1 has

a shortest path from s via a root in R1 and each point in C2 has a shortest path from s via a root

in R2. To obtain γ, the key is to find a point p∗ ∈ γ. Since the canal gate yz is not completely

contained in C(y), there must be a point q on yz that is on the common boundary of C(y) and

another cell C(r) in SPM (M). We claim that q is on γ. Indeed, note that r is in R2. Hence there

is a shortest path π1(s, q) from s to q that contains x, the corridor path in canal(x, y), and the

line segment yq, and there is another shortest path π2(s, q) from s to q via the root r ∈ R2. In

other words, q has two shortest paths from s, one via a root in R1 and the other via a root in R2.

Therefore, q is on the dividing curve γ. The rest of the algorithm is similar to that for the former

case.

In summary, in this case, an SPM on canal(x, y) can also be built in O(n′ +m1 +m2) time.

Therefore, a shortest path map SPM on canal(x, y) can be computed in O(n′+m1+m2) time.

Similarly, the size of this SPM is O(n′ +m1 +m2).

Theorem 6 thus follows.

7 Applications of Our Shortest Path Algorithms

In this section, we extend our techniques to solve some other problems.

7.1 The L1 Geodesic Voronoi Diagram

Given a set P of h polygonal obstacles of totally n vertices and a set of m point sites, the L1-GVD

problem aims to construct the L1 geodesic Voronoi diagram of for the m point sites. Denote by

GVD(P) the Voronoi diagram that we want to construct.

Mitchell’s algorithm [29, 30] can be modified to compute GVD(P) in O((n + m) log(n + m))

time. Namely, instead of initiating a wavelet at a single source, the modified algorithm for GVD(P)

initiates a wavelet at each point site. The rest of the algorithm remains the same as before.

We can also extend our SPM algorithm in a similar way to compute GVD(P). Generally, since

our algorithm makes use of Mitchell’s algorithm [29, 30] as a main procedure when computing the

shortest path map SPM(M) for the oceanM, to computeGVD(P), we can simply replace Mitchell’s

algorithm by its modified version for computing L1 geodesic Voronoi diagrams. More specifically,

our algorithm for computing GVD(P) has the following steps. (1) Compute a triangulation of the

free space, in which the m point sites are treated as m point obstacles. (2) Compute the corridor

structure on P and the m point obstacles that consists of O(m+ h) corridors, which partition the

plane into a set P ′ of O(m + h) convex polygons of totally O(n + m) vertices. (3) Compute the

core set core(P ′) for the convex polygons in P ′. (4) Apply Mitchell’s modified algorithm [29, 30]

to compute the L1 geodesic Voronoi diagram GVD(core(P ′)) on the core set core(P ′). (5) Based

on GVD(core(P ′)), compute the L1 geodesic Voronoi diagram GVD(P ′) on the convex polygon set

P ′. Although we have multiple sources, this step is the same as before (i.e., as in Lemma 5). (6)

Based on GVD(P ′), compute the Voronoi regions in all bays and canals, as in Sections 5 and 6.

Again, the algorithms for this step are as before, i.e., as the algorithms in Sections 5 and 6. We

then obtain the final L1 geodesic Voronoi diagram GVD(P).

To analyze the running time, Steps (1), (2), and (3) are the same as before except that the

number of obstacles becomes m + h. Specifically, the triangulation in Step (1) takes O(n + (h +

m) log1+ǫ(h+m)) time [2]. Steps (2) and (3) together take O(n+ (h+m) log(h+m)) time. Step

(4) takes O((m + h) log(m + h)) time since the core set core(P ′) has totally O(m + h) vertices.
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Steps (5) and (6) are also the same as before, which take linear time, i.e., O(n +m). Therefore,

the entire algorithm takes O(n + (h +m) log1+ǫ(h+m)) time, which is dominated by the time of

the triangulation procedure in Step (1).

Theorem 8 The L1 geodesic Voronoi diagram of m point sites among a set of h pairwise disjoint

polygonal obstacles of totally n vertices in the plane can be computed in O(n+(h+m) log1+ǫ(h+m))

time (or O(n+ (h+m) log(h+m)) time if a triangulation is given).

If the m point sites are all inside a simple polygon, then Theorem 8 leads to the following result.

Corollary 2 The L1 geodesic Voronoi diagram of a set of m point sites in a simple polygon can

be computed in O(n+m log1+ǫm) time (or O(n+m logm) time if a triangulation is given).

Note that the currently fastest known GVD algorithm for the Euclidean version of the single

simple polygon case runs in O((n+m) log(n+m)) time [32].

Remark. Since the given m sites are points, there is an alternative triangulation algorithm

that may be faster (than simply applying the algorithm in [2]) in some situations. The algorithm

works as follows: (1) Compute the triangulation of the free space without considering the m sites;

(2) find the triangles in the triangulation that contain those m sites (e.g., by a point location data

structure); (3) triangulate those triangles that contain at least one point site by considering the

point sites as obstacles. It is easy to see that this algorithm takes O(n+m log n) time in the single

polygon case and O(n+h log1+ǫ h+m log n) time in the polygonal domain case. Therefore, using this

triangulation algorithm, the geodesic Voronoi diagram can be constructed in O(n+m(logn+logm))

time in the single polygon case and in O(n+ h log1+ǫ h+m log n+ (h+m) log(h+m)) time in the

polygonal domain case.

7.2 Shortest Paths with Fixed Orientations and Approximate Euclidean Short-

est Paths

As in [29, 30], our algorithms can be generalized to solving the C-oriented shortest path problem

[37]. A C-oriented path is a polygonal path with each edge parallel to one of a given set C of

fixed orientations. A shortest C-oriented path between two points is a C-oriented path with the

minimum Euclidean distance. Rectilinear paths are a special case of this problem with two fixed

orientations of 0 and π/2. Let c = |C|. Mitchell’s algorithm [29, 30] can compute a shortest C-

oriented path in O(cn log n) time and O(cn) space among h pairwise disjoint polygons of totally n

vertices in the plane. Similarly, our algorithms also work for this problem, as follows.

We first consider the convex case (i.e., all polygons are convex). We compute a core for each

convex polygon based on the orientations in C. Note that in this case, a core has O(c) vertices.

Thus, we obtain a core set of totally O(ch) vertices. We then apply Mitchell’s algorithm for the

fixed orientations of C on the core set to compute a shortest path avoiding the cores in O(c2h log ch)

time and O(c2h) space, after which we find a shortest path avoiding the input polygons in additional

O(n) time as in Lemma 4. Thus, a shortest path can be found in totally O(n + c2h log ch) time

and O(n+ c2h) space. For the general case when the polygons need not be convex, the algorithm

scheme is similar to our L1 algorithm in Section 4. In summary, we have the following result.

Theorem 9 Given a set C of orientations and a set of h pairwise disjoint polygonal obstacles of

totally n vertices in the plane, we can compute a C-oriented shortest s-t path in the free space

in O(n + h log1+ǫ h + c2h log ch) time (or O(n + c2h log ch) time if a triangulation is given) and

O(n+ c2h) space, where c = |C|.
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This also yields an approximation algorithm for computing a Euclidean shortest path between

two points among polygonal obstacles. Since the Euclidean metric can be approximated within an

accuracy of O(1/c2) if we use c equally spaced orientations, as in [29, 30], Theorem 9 leads to an

algorithm that computes a path guaranteed to have a length within a factor (1+δ) of the Euclidean

shortest path length, where c is chosen such that δ = O(1/c2).

Corollary 3 A δ-optimal Euclidean shortest path between two points among h pairwise disjoint

polygons of totally n vertices in the plane can be computed in O(n+h log1+ǫ h+(1/δ)h log h√
δ
) time

(or O(n+ (1/δ)h log h√
δ
) time if a triangulation is given) and O(n+ (1/δ)h) space.

8 Conclusions

We present new algorithms for solving L1 shortest path problems in polygonal domains. Our

algorithms are optimal if the triangulation for the free space can be done optimally (i.e., T =

O(n + h log h)). In fact, our results show that building an L1 shortest path map is equivalent to

the triangulation in terms of the running time.

Some of our techniques may be helpful on solving the Euclidean version of the problem. For

the Euclidean version, as the L1 version, a long-standing open problem is to compute a shortest

path in O(n+ h log h) time and O(n) space. Hershberger and Suri [19] built an SPM of size O(n)

in O(n log n) time and O(n log n) space. Recently, Inkulu et al. announced an algorithm that

can find an Euclidean shortest path in O(n + h log h log n) time [22]; we give an algorithm for the

problem that runs in O(n + h log1+ǫ h + k) time [8], where k is a parameter sensitive to the input

and is bounded by O(h2). Note that our algorithm [8] particularly works for obstacles that have

curved boundaries. To generalize the techniques given in this paper to the Euclidean version, some

difficulty appears. For example, the idea of using cores does not seem to work (e.g., Lemma 4 is

not applicable to the Euclidean version). A possible direction for solving the Euclidean version is

to first solve the convex case with the performance desired by the open problem. If this is possible,

then by generalizing the techniques given in this paper, it is very likely that the general case may

also be solved accordingly, and thus the open problem can be settled although we may still have to

suffer the O(n+ h log1+ǫ h) triangulation time.
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