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Abstract

We describe a set of ∆ − 1 slopes that are universal for 1-bend planar drawings of planar
graphs of maximum degree ∆ ≥ 4; this establishes a new upper bound of ∆ − 1 on the
1-bend planar slope number. By universal we mean that every planar graph of degree ∆ has
a planar drawing with at most one bend per edge and such that the slopes of the segments
forming the edges belong to the given set of slopes. This improves over previous results
in two ways: Firstly, the best previously known upper bound for the 1-bend planar slope
number was 3

2
(∆ − 1) (the known lower bound being 3

4
(∆ − 1)); secondly, all the known

algorithms to construct 1-bend planar drawings with O(∆) slopes use a different set of slopes
for each graph and can have bad angular resolution, while our algorithm uses a universal set
of slopes, which also guarantees that the minimum angle between any two edges incident to
a vertex is π

(∆−1)
.

1 Introduction

This paper is concerned with planar drawings of graphs such that each edge is a poly-line with
few bends, each segment has one of a limited set of possible slopes, and the drawing has good
angular resolution, i.e. it forms large angles between consecutive edges incident on a common
vertex. Besides their theoretical interest, visualizations with these properties find applications in
software engineering and information visualization (see, e.g., [11, 25, 39]). For example, planar
graphs of maximum degree four (degree-4 planar graphs) are widely used in database design,
where they are typically represented by orthogonal drawings, i.e. crossing-free drawings such that
every edge segment is a polygonal chain of horizontal and vertical segments. Clearly, orthogonal
drawings of degree-4 planar graphs are optimal both in terms of angular resolution and in terms
of number of distinct slopes for the edges. Also, a classical result in the graph drawing literature
is that every degree-4 planar graph, except the octahedron, admits an orthogonal drawing with
at most two bends per edge [4].

It is immediate to see that more than two slopes are needed in a planar drawing of a graph
with vertex degree ∆ ≥ 5. The k-bend planar slope number of a graph G with degree ∆ is defined
as the minimum number of distinct slopes that are sufficient to compute a crossing-free drawing of
G with at most k bends per edge. Keszegh et al. [29] generalize the aforementioned technique by
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Biedl and Kant [4] and prove that for any ∆ ≥ 5, the 2-bend planar slope number of a degree-∆
planar graph is d∆/2e; the construction in their proof has optimal angular resolution, that is 2π

∆ .
For the case of drawings with one bend per edge, Keszegh et al. [29] also show an upper bound

of 2∆ and a lower bound of 3
4 (∆− 1) on the 1-bend planar slope number, while a recent paper by

Knauer and Walczak [30] improves the upper bound to 3
2 (∆− 1). Both these papers use a similar

technique: First, the graph is realized as a contact representation with T -shapes [9], which is
then transformed into a planar drawing where vertices are points and edges are poly-lines with at
most one bend. The set of slopes depends on the initial contact representation and may change
from graph to graph; also, each slope is either very close to horizontal or very close to vertical,
which in general gives rise to bad angular resolution. Note that Knauer and Walczak [30] also
considered subclasses of planar graphs. In particular, they proved that the 1-bend planar slope
number of outerplanar graphs with ∆ > 2 is d∆

2 e and presented an upper bound of ∆ + 1 for
planar bipartite graphs.

In this paper, we study the trade-off between number of slopes, angular resolution, and number
of bends per edge in a planar drawing of a graph having maximum degree ∆. We improve the
upper bound of Knauer and Walczak [30] on the 1-bend planar slope number of planar graphs
and at the same time we achieve Ω( 1

∆ ) angular resolution. More precisely, we prove the following.

Theorem 1. For any ∆ ≥ 4, there exists an equispaced universal set S of ∆ − 1 slopes for
1-bend planar drawings of planar graphs with maximum degree ∆. That is, every such graph has
a planar drawing with the following properties: (i) each edge has at most one bend; (ii) each edge
segment uses one of the slopes in S; and (iii) the minimum angle between any two consecutive
edge segments incident on a vertex or a bend is at least π

∆−1 .

Theorem 1, in conjuction with [26], implies that the 1-bend planar slope number of planar
graphs with n ≥ 5 vertices and maximum degree ∆ ≥ 3 is at most ∆− 1. We prove the theorem
by using an approach that is conceptually different from that of Knauer and Walczak [30]: We do
not construct an intermediate representation and then transform it into a 1-bend planar drawing,
but we prove the existence of a universal set of slopes and use it to directly compute a 1-bend
planar drawing of any graph with degree at most ∆. The universal set of slopes consists of ∆− 1
distinct slopes such that the minimum angle between any two of them is π

(∆−1) . An immediate

consequence of the 3
4 (∆− 1) lower bound argument in [29] is that a 1-bend planar drawing with

the minimum number of slopes cannot have angular resolution larger than 4
3

π
(∆−1) . Hence, the

angular resolution of our drawings is optimal up to a multiplicative factor of at most 0.75; also,
note that the angular resolution of a graph of degree ∆ is at most 2π

∆ even when the number of
slopes and the number of bends along the edges are not bounded.

Figure 1: A 1-bend planar drawing
with 4 slopes and angular resolu-
tion π

4 of a graph with ∆ = 5.

The proof of Theorem 1 is constructive and it gives rise
to a linear-time algorithm assuming the real RAM model of
computation. Figure 1 shows a drawing computed with this
algorithm. The construction for triconnected planar graphs
uses a variant of the shifting method of De Fraysseix, Pach
and Pollack [10]; this construction is the building block for
the drawing algorithm for biconnected planar graphs, which
is based on the SPQR-tree decomposition of the graph into its
triconnected components (see, e.g., [11]). Finally, the result
is extended to connected graphs by using a block-cutvertex
tree decomposition as a guideline to assign subsets of the
universal slope set to the different biconnected components
of the input graph. If the graph is disconnected, since we use a universal set of slopes, the distinct
connected components can be drawn independently.
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Related work. The results on the slope number of graphs are mainly classified into two
categories based on whether the input graph is planar or not. For a (planar) graph G of maximum
degree ∆, the slope number (planar slope number) is the minimum number of slopes that are
sufficient to compute a straight-line (planar) drawing of G. The slope number of non-planar
graphs is lower bounded by d∆/2e [40] but it can be arbitrarily large, even when ∆ = 5 [1]. For
∆ = 3 this number is 4 [34], while it is unknown for ∆ = 4, to the best of our knowledge. Upper
bounds on the slope number are known for complete graphs [40] and outer 1-planar graphs [13]
(i.e., graphs that can be drawn in the plane such that each edge is crossed at most once, and
all vertices are on the external boundary). Deciding whether a graph has slope number 2 is
NP-complete [14, 18].

For a planar graph G of maximum degree ∆, the planar slope number of G is lower bounded
by 3∆ − 6 and upper bounded by O(2∆) [29]. Improved upper bounds are known for special
subclasses of planar graphs, e.g., planar graphs with ∆ ≤ 3 [14, 12, 27], outerplanar graphs with
∆ ≥ 4 [31], partial 2-trees [32], planar partial 3-trees [24]. Note that determining the planar slope
number of a graph is hard in the existential theory of the reals [23].

Closely related to our problem is also the problem of finding d-linear drawings of graphs, in
which all angles (that are formed either between consecutive segments of an edge or between edge-
segments incident to the same vertex) are multiples of 2π/d. Bodlaender and Tel [7] showed that,
for d = 4, an angular resolution of 2π/d implies d-linearity and that this is not true for any d > 4.
Special types of d-linear drawings are the orthogonal [4, 6, 20, 38] and the octilinear [2, 3, 35]
drawings, for which d = 2 and d = 4 holds, respectively. As already recalled, Biedl and Kant [4],
and independently Liu et al. [33], have shown that any planar graph with ∆ ≤ 4 (except the
octahedron) admits a planar orthogonal drawing with at most two bends per edge. Deciding
whether a degree-4 planar graph has an orthogonal drawing with no bends is NP-complete [20],
while it solvable in polynomial time if one bend per edge is allowed (see, e.g., [5]). On the other
hand, octilinear drawings have been mainly studied in the context of metro map visualization and
map schematization [36, 37]. Nöllenburg [35] proved that deciding whether a given embedded
planar graph with ∆ ≤ 8 admits a bendless planar octilinear drawing is NP-complete. Bekos et
al. [2] showed that a planar graph with ∆ ≤ 5 always admits a planar octilinear drawing with at
most one bend per edge and that such drawings are not always possible if ∆ ≥ 6. Note that in
our work we generalize their positive result to any ∆. Later, Bekos et al. [3] studied bounds on
the total number of bends of planar octilinear drawings.

Finally, trade-offs between number of bends, angular resolution, and area requirement of planar
drawings of graphs with maximum degree ∆ are, for example, studied in [8, 15, 16, 17, 19, 21].

Paper organization. The rest of this paper is organized as follows. Preliminaries are given in
Section 2. In Section 3, we describe a drawing algorithm for triconnected planar graphs. The
technique is extended to biconnected and to general planar graphs in Sections 4 and 5, respectively.
Finally, in Section 6 we discuss further implications of Theorem 1 and we list open problems.

2 Preliminaries

A graph G = (V,E) containing neither loops nor multiple edges is simple. We consider simple
graphs, if not otherwise specified. The degree of a vertex of G is the number of its neighbors.
We say that G has maximum degree ∆ if it contains a vertex with degree ∆ but no vertex with
degree larger than ∆. A graph is connected, if for any pair of vertices there is a path connecting
them. Graph G is k-connected, if the removal of k − 1 vertices leaves the graph connected. A
2-connected (3-connected) graph is also called biconnected (triconnected, respectively).
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A drawing Γ of G maps each vertex of G to a point in the plane and each edge of G to a
Jordan arc between its two endpoints. A drawing is planar, if no two edges cross (except at
common endpoints). A planar drawing divides the plane into connected regions, called faces. The
unbounded one is called outer face. A graph is planar, if it admits a planar drawing. A planar
embedding of a planar graph is an equivalence class of planar drawings that combinatorially define
the same set of faces and outer face.

The slope s of a line ` is the angle that a horizontal line needs to be rotated counter-clockwise
in order to make it overlap with `. The slope of an edge-segment is the slope of the line containing
the segment. Let S be a set of slopes sorted in increasing order; assume w.l.o.g. up to a rotation,
that S contains the 0 angle, which we call horizontal slope. A 1-bend planar drawing Γ of graph
G on S is a planar drawing of G in which every edge is composed of at most two straight-line
segments, each of which has a slope that belongs to S. We say that S is equispaced if and only if
the difference between any two consecutive slopes of S is π

|S| . For a vertex v in G, each slope

s ∈ S defines two different rays that emanate from v and have slope s. If s is the horizontal slope,
then these rays are called horizontal. Otherwise, one of them is the top and the other one is the
bottom ray of v. Consider a 1-bend planar drawing Γ of a graph G and a ray rv emanating from
a vertex v of G. We say that rv is free if there is no edge attached to v through rv. We also say
that rv is incident to face f of Γ if and only if rv is free and the first face encountered when
moving from v along rv is f .

Let Γ be a 1-bend planar drawing of a graph and let e be an edge incident to the outer face of
Γ that has a horizontal segment. A cut at e is a y-monotone curve that (i) starts at any point
of the horizontal segment of e, (ii) ends at any point of a horizontal segment of an edge e′ 6= e
incident to the outer face of Γ, and (iii) crosses only horizontal segments of Γ.

Central in our approach is the canonical order of triconnected planar graphs [10, 28]. Let
G = (V,E) be a triconnected planar graph and let Π = (P0, . . . , Pm) be a partition of V into
paths, such that P0 = {v1, v2}, Pm = {vn}, edges (v1, v2) and (v1, vn) exist and belong to the
outer face of G. For k = 0, . . . ,m, let Gk be the subgraph induced by ∪ki=0Pi and denote by
Ck the outer face of Gk. Π is a canonical order of G if for each k = 1, . . . ,m− 1 the following
hold: (i) Gk is biconnected, (ii) all neighbors of Pk in Gk−1 are on Ck−1, (iii) |Pk| = 1 or the
degree of each vertex of Pk is two in Gk, and (iv) all vertices of Pk with 0 ≤ k < m have at least
one neighbor in Pj for some j > k. A canonical order of any triconnected planar graph can be
computed in linear time [28].

An SPQR-tree T represents the decomposition of a biconnected graph G into its triconnected
components (see, e.g., [11]) and it can be computed in linear time [22]. Every triconnected
component of G is associated with a node µ of T . The triconnected component itself is called
the skeleton of µ, denoted by Gskel

µ . A node µ in T can be of four different types: (i) µ is an

R-node, if Gskel
µ is a triconnected graph, (ii) a simple cycle of length at least three classifies µ as

an S-node, (iii) a bundle of at least three parallel edges classifies µ as a P-node, (iv) the leaves of
T are Q-nodes, whose skeleton consists of two parallel edges. Neither two S- nor two P -nodes
are adjacent in T . A virtual edge in Gskel

µ corresponds to a tree node ν that is adjacent to µ in

T , more precisely, to another virtual edge in Gskel
ν . If we assume that T is rooted at a Q-node

ρ, then every skeleton (except the one of ρ) contains exactly one virtual edge, called reference
edge and whose endpoints are the poles of µ, that has a counterpart in the skeleton of its parent.
Every subtree Tµ rooted at a node µ of T induces a subgraph Gµ of G called pertinent, that is
described by Tµ in the decomposition.

Finally, the BC-tree B of a connected graph G represents the decomposition of G into
its biconnected components. B has a B-node for each biconnected component of G and a C-
node for each cutvertex of G. Each B-node is connected to the C-nodes that are part of its
biconnected component.
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3 Triconnected Planar Graphs

Let G be a triconnected planar graph of maximum degree ∆ ≥ 4 and let S be a set of ∆ −
1 equispaced slopes containing the horizontal one. We consider the vertices of G according to
a canonical order Π = (P0, . . . , Pm). At each step k = 0, . . . ,m, we consider the planar graph
G−k obtained by removing edge (v1, v2) from Gk. Let C−k be the path from v1 to v2 obtained by
removing (v1, v2) from Ck. We seek to construct a 1-bend planar drawing of G−k on S satisfying
the following invariants.

I.1 No part of the drawing lies below vertices v1 and v2, which have the same y-coordinate.

I.2 Every edge on C−k has a horizontal segment.

I.3 Each vertex v on C−k has at least as many free top rays incident to the outer face of G−k as
the number of its neighbors in G \Gk.

Once a 1-bend planar drawing on S of G−m satisfying Invariants I.1–I.3 has been constructed,
a 1-bend planar drawing on S of G = G−m ∪{(v1, v2)} can be obtained by drawing edge (v1, v2) as
a polyline composed of two straight-line segments, one attaching at the first clockwise bottom ray
of v1 and the other one at the first anti-clockwise bottom ray of v2. Note that, since S has at least
three slopes, these two rays cross. Invariant I.1 ensures that edge (v1, v2) does not introduce any
crossing. In the following lemma, we show an important property of any 1-bend planar drawing
on S satisfying Invariants I.1–I.3.

Lemma 1. Let Γk be a 1-bend planar drawing on S of G−k satisfying Invariants I.1–I.3. Let
(u, v) be an edge of C−k such that u precedes v along path C−k and let σ be any positive number.
It is possible to construct a 1-bend planar drawing Γ′k on S of G−k , satisfying Invariants I.1–I.3,
in which the horizontal distance between any two consecutive vertices along C−k is the same as in
Γk, except for u and v, whose horizontal distance is increased by σ.

Proof. We first show that there exists a cut of Γk at (u, v) that separates the subpath of C−k
connecting v1 to u from the subpath of C−k connecting v to v2. We use this cut to construct Γ′k as
a copy of Γk in which all the horizontal segments that are crossed by the cut are elongated by σ.

By Invariant I.2, edge (u, v) has a horizontal segment, which is the first segment crossed
by the cut we are going to construct. Then, consider the internal face f of Γk edge (u, v) is
incident to; this face is uniquely defined since G−k is biconnected and (u, v) is incident to the
outer face. By the properties of the canonical order, there exists at least an edge ef incident to f
that belongs to G−k−1 but not to G−k ; in particular, this edge belongs to C−k−1, and hence has a
horizontal segment, by Invariant I.2; see Fig. 2a. We thus make our cut traverse face f and cross
the horizontal segment of ef . By repeating this argument until reaching the outer face, we obtain
the desired cut.

u

v

v1 v2

f

G−
k−1

ef

(a)

u

v

v1 v2

f

G−
k−1

ef

(b)

u1

v1 v2

u
u2

ru

P1
P2

(c)

Figure 2: Illustrations for (a-b) Lemma 1 and (c) Lemma 2.
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We now describe how to obtain a drawing Γ′k of G−k satisfying all the required properties;
refer to Fig. 2b. Let L and R be the two sets of vertices separated by the cut. All the vertices in
L and all the edges between any two of them are drawn in Γ′k as in Γk; all the vertices in R and
all the edges between any two of them are drawn in Γ′k as in Γk, after a translation to the right
by σ. Finally, for each edge that is crossed by the cut, the part that is not horizontal, if any, is
drawn in Γ′k as in Γk, while the horizontal part is elongated by σ.

We prove that Γ′k satisfies all the required properties. First, Γ′k is a 1-bend planar drawing of
G−k on S since Γk is. Invariant I.1 holds since the y-coordinates of the vertices have not been
changed, while Invariants I.2–I.3 hold since all the edges are attached to their incident vertices
in Γ′k using the same rays as in Γk. The fact that the horizontal distances among consecutive
vertices of C−k are the required ones descends from the fact that L contains all the vertices in the
path of C−k from v1 to u, while R contains all the vertices in the path of C−k from v to v2.

Invariant I.3 guarantees that every vertex on C−k has enough free top rays incident to the
outer face to attach all its incident edges following it in the canonical order. The next lemma
shows that these rays can be always used to actually draw these edges (see Fig. 2c).

Lemma 2. Let Γk be a 1-bend planar drawing on S of G−k satisfying Invariants I.1–I.3. Let
u be any vertex of C−k , and let ru be any free top ray of u that is incident to the outer face of
G−k in Γk. Then, it is possible to construct a 1-bend planar drawing Γ′k on S of G−k , satisfying
Invariants I.1–I.3, in which ru does not cross any edge of Γ′k.

Proof. Since ru is a top ray of u incident to the outer face of Γ−k and due to Invariant I.1, if ru
crosses some edges of G−k , then at least one of these belongs to C−k . So, we can focus on removing
the crossings with the edges of C−k . Let P1 be the path of C−k between v1 and u, and let P2 be the
path of C−k between u and v2. Also, let u1 and u2 be the neighbors of u in P1 and P2, respectively.
Refer to Fig. 2c. By Lemma 1, we can elongate (u, u1) to eliminate all crossings between ru
and edges of P1 without introducing any new crossings between ru and edges of P2. We also
elongate (u, u2) to eliminate all crossings between ru and edges of P2 without introducing any
new crossings between ru and edges of P1. The obtained drawing Γ′k satisfies all the requirements
of the lemma. This concludes our proof.

We now describe our algorithm. First, we draw P0 = {v1, v2} and P1 = {v3, . . . , vj} of
partition Π such that v1, v3, . . . , vj , v2 lie along a horizontal line, in this order (recall that edge
(v1, v2) is not considered). Invariants I.1 and I.2 clearly hold. Invariant I.3 follows from the fact
that S contains ∆− 2 top rays and all vertices drawn so far (including v1 and v2) have at most
∆ − 2 neighbors later in the canonical order. We now describe how to add path Pk, for some
k > 1, to a drawing Γk−1 satisfying Invariants I.1–I.3, in such a way that the resulting drawing
Γk of G−k is a 1-bend planar drawing on S satisfying Invariants I.1–I.3. We distinguish two cases,
based on whether Pk is a chain or a singleton.

Suppose first that Pk is a chain, say {vi, vi+1, . . . , vj}; refer to Fig. 3a. Let u` and ur be the
neighbors of vi and vj in C−k−1, respectively. By Invariant I.3, each of u` and ur has at least one
free top ray that is incident to the outer face of Γk−1; among them, we denote by τa(u`) the
first one in anti-clockwise order for u`, and by τc(ur) the first one in clockwise order for ur. By
Lemma 2, we can assume that τa(u`) and τc(ur) do not cross any edge in Γk−1. This implies that
there exists a horizontal line-segment h whose left and right endpoints are on τa(u`) and τc(ur),
respectively, that does not cross any edge of Γk−1. We place all the vertices vi, vi+1, . . . , vj of Pk
on interior points of h, in this left-to-right order. Then, we draw edge (u`, vi) with a segment
along h and the other one along τa(u`); we draw edge (ur, vj) with a segment along h and the
other one along τc(ur), and we draw every edge (vq, vq+1), with q = i, . . . , j − 1, with a unique
segment along h.
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u`

vj
h

G−
k−1

ur

vi

τc(ur)
τa(u`)

v1 v2

(a)

u`

v1 v2

G−
k−1

ur

hi

vi

u1
u2

u3
u4

p` p1 p2 p3 p4 pr

τa(u`)
τc(ur)

(b)

Figure 3: Illustration of the cases of: (a) a chain, (b) a singleton of degree δi in Gk.

By construction, Γk is a planar drawing on S. All the vertices of Pk lie above u` and ur,
since τa(u`) and τc(ur) are top rays of u` and ur, respectively. Hence, these vertices and their
incident edges lie above v1 and v2, and thus Invariant I.1 is satisfied by Γk. Invariant I.2 is
satisfied since every edge that is drawn at this step has a segment along h, which is horizontal.
Invariant I.3 is satisfied since we attached edges (u`, vi) and (ur, vj) at vertices u` and ur using
the first anti-clockwise free top ray of u` and the first clockwise free top ray of ur among those
incident to the outer face, respectively. Thus, we reduced only by one the number of free top rays
incident to the outer face for u` and ur. For the other vertices of Pk, the invariant is satisfied
since their ∆− 2 top rays are free and incident to the outer face. This concludes our description
for the case in which Pk is a chain.

Suppose now that Pk is a singleton, say {vi}, of degree δi ≤ ∆ in G−k . This also includes the
case in which k = m, that is, Pk is the last path of Π. If δi = 2, then vi is placed as in the case
of a chain. So, we may assume in the following that δi ≥ 3. Let u`, u1, u2, . . . , uδi−2, ur be the
neighbors of vi as they appear along C−k−1.

Refer to Fig. 3b. By Invariant I.3, each neighbor of vi in C−k−1 has at least one free top ray
that is incident to the outer face of Γk−1; among them, we denote by τa(u`) the first one in
anti-clockwise order for u` and by τc(ur) the first one in clockwise order for ur, as in the case in
which Pk is a chain, while for each vertex uq, with q = 1, . . . , δi − 2, we denote by τ(uq) any of
these rays arbitrarily. By Lemma 2, we can assume that these rays do not cross any edge in Γk−1.

Consider any horizontal line hi lying above all vertices of Γk−1. Rays τa(u`), τ(u1), . . . , τ(uδi−2),
τc(ur) cross hi; however, the corresponding intersection points p`, p1, . . . , pδi−2, pr may not appear
in this left-to-right order along hi; see Fig. 4a. To guarantee this property, we perform a sequence
of stretchings of Γk−1 by repediately applying Lemma 1. First, if p` is not the leftmost of these
intersection points, let σ be the distance between p` and the leftmost intersection point. We apply
Lemma 1 on any edge between u` and u1 along C−k−1 to stretch Γk−1 so that all the vertices in

the path of C−k from u1 to v2 are moved to the right by a quantity σ′ slightly larger than σ. This
implies that p` is not moved, while all the other intersection points are moved to the right by a
quantity σ′, and thus they all lie to the right of p` in the new drawing; see Fig. 4b. Analogously,
we can move p1 to the left of every other intersection point, except for p`, by applying Lemma 1
on any edge between u1 and u2 along C−k−1. Repeating this argument allows us to assume that
in Γk−1 all the intersection points appear in the correct left-to-right order along hi.

We now describe the placement of vi. Let β1(vi), . . . , βδi−2(vi) be any set of δi − 2 consecutive
bottom rays of vi; to see that vi has enough bottom rays, recall that S contains ∆− 1 slopes and
that δi ≤ ∆. Observe that, if we place vi above hi, rays β1(vi), β2(vi), . . . , βδi−2(vi) intersect hi
in this left-to-right order. Let ρ1, . . . , ρδi−2 be the corresponding intersection points. The goal
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G−
k−1

ur

v1 v2

hi

u`
u1
u2

u3

p1 p` pr p3 p2

σ

(a)

G−
k−1

ur

v1 v2

hi

u`
u1
u2

u3

p1p` pr p3 p2

(b)

Figure 4: (a) Intersection points p`, p1, . . . , pδi−2, pr appear in a wrong order along hi. (b)
Applying Lemma 1 to make p` be the leftmost intersection point.

is to place vi so that each ρq, with q = 1, . . . , δi − 2, coincides with pq. To do so, consider the
line λ1 passing through p1 with the same slope as β1(vi). Observe that placing vi on λ1 above hi
results in ρ1 to coincide with p1. Also note that, while moving vi upwards along λ1, the distance
d(ρq, ρq+1) between any two consecutive points ρq and ρq+1, with q = 1, . . . , δi − 3, increases.

We move vi upwards along λ1 in such a way that d(ρq, ρq+1) > d(p1, pδi−2), for each q =
1, . . . , δi − 3. This implies that all points p2, . . . , pδi−2 lie strictly between ρ1 and ρ2. Then,
we apply Lemma 1 on any edge between u1 and u2 along C−k−1 to stretch Γk−1 so that all the

vertices in the path of C−k from u2 to v2 are moved to the right by a quantity d(p2, ρ2). In
this way, u1 is not moved and so p1 still coincides with ρ1; also, p2 is moved to the right to
coincide with ρ2; finally, since d(ρ2, ρ3) > d(p1, pδi−2) > d(p2, pδi−2), all points p3, . . . , pδi−2 lie
strictly between ρ2 and ρ3. By repeating this transformation for all points p3, . . . , pδi−2, if any,
we guarantee that each ρq, with q = 1, . . . , δi − 2, coincides with pq. We draw each edge (vi, uq),
with q = 1, . . . , δi − 2, with a segment along τ(uq) and the other one along βq(vi).

It remains to draw edges (vi, u`) and (vi, ur), which by Invariant I.2 must have a horizontal
segment. After possibly applying Lemma 1 on any edge between u` and u1 along C−k−1 to
stretch Γk−1, we can guarantee that τa(u`) crosses the horizontal line through vi to the left of vi.
Similarly, we can guarantee that τc(ur) crosses the horizontal line through vi to the right of vi by
applying Lemma 1 on any edge between uδi−2 and ur. We draw edge (vi, u`) with one segment
along τa(u`) and one along the horizontal line through vi, and we draw edge (vi, ur) with one
segment along τc(ur) and one along the horizontal line through vi. A drawing produced by this
algorithm is illustrated in Fig. 3b.

The fact that Γk is a 1-bend planar drawing on S satisfying Invariant I.1–I.3 can be shown as
for the case in which Pk is a chain. In particular, for Invariants I.2 and I.3, note that vertices
u1, . . . , uδi−2 do not have neighbors in G \Gk and do not belong to C−k . Thus, they do not need
to have any free top ray incident to the outer face of G−k and the edges connecting them to vi do
not need to have a horizontal segment. This concludes our description for the case in which Pk is
a singleton, and yields the following theorem.

Theorem 2. For any ∆ ≥ 4, there exists a equispaced universal set S of ∆− 1 slopes for 1-bend
planar drawings of triconnected planar graphs with maximum degree ∆. Also, for any such graph
on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

Proof. Apply the algorithm described above to produce a 1-bend planar drawing of G on S. The
correctness has been proved through out the section. We now prove the time complexity. As
already mentioned, computing the canonical order Π of G takes linear time [28]. Hence, our
algorithm can be easily implemented in quadratic time. In fact, when a chain is added, we apply
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Lemma 1 a constant number of times. For a singleton vi of degree δi ≤ ∆, instead, we may apply
this lemma O(δi) times. However, since

∑n
i=1 δi = O(n), the total number of applications of

the lemma over all singletons is O(n). The total quadratic time descends from the fact that a
straightforward application of Lemma 1 may require linear time. To improve the time complexity
of our algorithm to linear we seek to use the shifting method of Kant [26]. However, as the
y-coordinates of the vertices are not consecutive, this method is not directly applicable. On the
other hand, observe that the y-coordinates of the vertices that have been placed at some step
of our algorithm do not change in later steps. As noted by Bekos et al. [2], one can exploit this
observation so to allow the usage of the shifting method (even in the case of non-consecutive
y-coordinates) in order to perform all applications of Lemma 1 in total linear time.

4 Biconnected Planar Graphs

In this section we describe how to extend Theorem 2 to biconnected planar graphs, using the
SPQR-tree data structure described in Section 2.

The idea is to traverse the SPQR-tree of the input biconnected planar graph G bottom-up and
to construct for each visited node a drawing of its pertinent graph (except for its two poles) inside
a rectangle, which we call chip. Besides being a 1-bend planar drawing on S, this drawing must
have an additional property, namely that it is possible to increase its width while changing neither
its height nor the slope of any edge-segment. We call this property horizontal stretchability. In
the following, we give a formal definition of this drawing and describe how to compute it for each
type of node of the SPQR-tree.

Let T be the SPQR-tree of G rooted at an arbitrary Q-node ρ. Let µ be a node of T with
poles sµ and tµ. Let Gµ be the pertinent graph of µ. Let Gµ be the graph obtained from Gµ as
follows. First, remove edge (sµ, tµ), if it exists; then, subdivide each edge incident to sµ (to tµ)
with a dummy vertex, which is a pin of sµ (is a pin of tµ); finally, remove sµ and tµ, and their
incident edges. Note that, if µ is a Q-node other than the root ρ, then Gµ is the empty graph.
We denote by δ(sµ, µ) and δ(tµ, µ) the degree of sµ and tµ in Gµ, respectively; note that the
number of pins of sµ (of tµ) is δ(sµ, µ)− 1 (is δ(tµ, µ)− 1), if edge (sµ, tµ) exists in G, otherwise
it is δ(sµ, µ) (it is δ(tµ, µ)).

The goal is to construct a 1-bend planar drawing of Gµ on S that lies inside an axis-aligned
rectangle, called the chip of µ and denoted by C(µ), so that the following invariant properties
are satisfied (see Figure 5a):

P.1: All the pins of sµ lie on the left side of C(µ), while all the pins of tµ lie on its right side;

P.2: for each pin, the unique edge incident to it is horizontal; and

P.3: there exist pins on the bottom-left and on the bottom-right corners of C(µ).

We call horizontally-stretchable (or stretchable, for short) a drawing of Gµ satisfying Properties
P.1-P.3. Note that a stretchable drawing Γ remains stretchable after any uniform scaling, any
translation, and any horizontal or vertical flip, since the horizontal slope is in S and the slopes
are equispaced. On the other hand, it is generally not possible to perform any non-uniform
scaling of Γ (in particular, a horizontal or a vertical scaling) without altering the slopes of some
segments. However, we can simulate a horizontal scaling up of Γ by elongating the horizontal
segments incident to all the pins lying on the same vertical side of the chip, thus obtaining a new
stretchable drawing inside a new chip with the same height and a larger width. Conversely, a
horizontal scaling down cannot always be simulated in this way.

Before giving the details of the algorithm, we describe a subroutine that we will often use to
add the poles of a node µ to a stretchable drawing of Gµ and draw the edges incident to them.
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Figure 5: Illustrations (a) of a pin C(µ) and (b) for Lemma 3.

Lemma 3. Let u ∈ {sµ, tµ} be a pole of a node µ ∈ T and let u1, . . . , uq be q neighbors of u in
Gµ. Consider a stretchable drawing of Gµ inside a chip C(µ), whose pins p1, . . . , pq correspond to
u1, . . . , uq. Suppose that there exists a set of q consecutive free rays of u and that the elongation
of the edge incident to each pin p1, . . . , pq intersects all these rays. Then, it is possible to draw
edges (u, u1), . . . , (u, uq) with two straight-line segments whose slopes are in S, without introducing
any crossing between two edges incident to u or between an edge incident to u and an edge of Gµ.

Proof. Refer to Fig. 5b. First note that, since p1, . . . , pq are all on the same side of C(µ), the
elongations of their incident edges intersect the q free rays of u in the same order; we name
the rays as r1, . . . , rq according to this order. Also note that, since the elongations of the edges
incident to all the pins intersect all of r1, . . . , rq, the elongation of the edge incident to either p1 or
pq separates u from all the other pins. We assume w.l.o.g. that the elongation of the edge incident
to p1 separates u from p2, . . . , pq, as in Fig. 5b. We then place each pin pi, with 1 ≤ i ≤ q, on
the intersection point between the elongation of its incident edge and ri, and draw edge (u, ui)
as a poly-line with a single bend at pi. This procedure yields indeed a drawing satisfying the
required properties by construction and by the fact that the drawing of Gµ is stretchable.

We now describe the algorithm. At each step of the bottom-up traversal of T , we consider a
node µ ∈ T with children ν1, . . . , νh, and we construct a stretchable drawing of Gµ inside a chip
C(µ) starting from the stretchable drawings of Gν1 , . . . , Gνh inside chips C(ν1), . . . , C(νh) that
have been already constructed. In the following, we distinguish four different cases, according to
which µ is a Q-, a P-, an S-, or an R-node.

Suppose that µ is a Q-node. If µ is not the root ρ of T , we do not do anything, since Gµ is
the empty graph; edge (sµ, tµ) of G corresponding to µ will be drawn when visiting either the
parent ξ of µ, if ξ is not a P-node, or the parent of ξ. In the case in which µ is indeed the root ρ
of T , that is µ = ρ, we observe that it has only one child ν1. Since Gµ coincides with Gν1 , the
stretchable drawing of Gν1 is also a stretchable drawing of Gµ. Vertices sµ and tµ, and their
incident edges, will be added at the end of the traversal of T .

Suppose that µ is a P-node; refer to Fig. 6a. We consider a chip C(µ) for µ whose height is
larger than the sum of the heights of chips C(ν1), . . . , C(νh) and whose width is larger than the
one of any of C(ν1), . . . , C(νh). Then, we place chips C(ν1), . . . , C(νh) inside C(µ) so that no
two chips overlap, their left sides lie along the left side of C(µ), and the bottom side of C(νh) lies
along the bottom side of C(µ). Finally, we elongate the edges incident to all the pins on the right
side of C(ν1), . . . , C(νh) till reaching the right side of C(µ). The resulting drawing is stretchable
since each of the drawings of Gν1 , . . . , Gνh is stretchable. In particular, Property P.3 holds for
C(µ) since it holds for C(νh).

Suppose that µ is an S-node; refer to Fig. 6b. Let u1, . . . , uh−1 be the internal vertices of the
path of virtual edges between sµ and tµ that is obtained by removing the virtual edge (sµ, tµ)
from the skeleton of µ. We construct a stretchable drawing of Gµ as follows.
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Figure 6: Illustrations for the cases in which µ is: (a) a P -node and (b) an S-node.

First, we place vertices u1, . . . , uh−1 in this order along a horizontal line lµ. For i = 1, . . . , h−1,
let βa(ui) and βc(ui) be the first bottom rays of ui in anti-clockwise and in clockwise order,
respectively. To place each chip C(νi), with i = 2, . . . , h− 1, we first flip it vertically, so that it
has pins on its top-left and top-right corners, by Property P.3. After possibly scaling it down
uniformly, we place it in such a way that its left side is to the right of ui−1, its right side is to
the left of ui, it does not cross βc(ui−1) and βa(ui), and either its top side lies on line lµ (if edge
(ui−1, ui) /∈ G; see C(ν2) in Fig. 6b), or it lies slightly below it (otherwise; see C(νh−1) in Fig. 6b).

Then, we place C(ν1) and C(νh), after possibly scaling them up uniformly, in such a way
that: (i) Chip C(ν1) lies to the left of u1 and does not cross βa(u1). Also, if (sµ, u1) ∈ G, then
C(ν1) lies entirely below lµ; otherwise, as in Fig. 6b, the topmost pin on its right side has the
same y-coordinate as u1. (ii) Chip C(νh) lies to the right of uh and does not cross βc(uh). Also,
if (uh, tµ) ∈ G, as in Fig. 6b, then C(νh) lies entirely below uh; otherwise, the topmost pin
on its left side has the same y-coordinate as uh. (iii) The bottom sides of C(ν1) and of C(νh)
have the same y-coordinate, which is smaller than the one of the bottom side of any other chip
C(ν2), . . . , C(νh−1).

We now draw all the edges incident to each vertex ui, with i = 1, . . . , h − 1. If edge
(ui−1, ui) ∈ G, then it can be drawn as a horizontal segment, by construction. Otherwise,
ui can be connected with a horizontal segment to its neighbor in Gνi corresponding to the
topmost pin on the right side of C(νi). In both cases, one of these edges is attached at a
horizontal ray of ui. Analogously, one of the edges connecting ui to its neighbors in Gνi+1 ∪{ui+1}
is attached at the other horizontal ray of ui. Thus, it is possible to draw the remaining
δ(ui, νi) + δ(ui, νi+1)− 2 ≤ ∆− 2 edges incident to ui by attaching them at the ∆− 2 bottom
rays of ui, by applying Lemma 3. In fact, since C(νi) and C(νi+1) lie to the left and to the right
of ui, respectively, and do not cross βc(ui) and βa(ui), the elongations of the edges incident to
the pins of ui in C(νi) and in C(νi+1) corresponding to these edges intersect all the bottom rays
of ui, hence satisfying the preconditions to apply the lemma.

Finally, we construct chip C(µ) as the smallest rectangle enclosing all the current drawing.
Note that the left side of C(µ) contains the left side of C(ν1), while the right side of C(µ) contains
the right side of C(νh). Thus, all the pins of sµ, possibly except for the one corresponding to
edge (sµ, u1), lie on the left side of C(µ). Also, if (sµ, u1) exists, we can add the corresponding
pin since, by construction, C(ν1) lies entirely below u1. The same discussion applies for the pins
of tµ. This proves that the constructed drawing satisfies properties P.1 and P.2. To see that it
also satisfies P.3, note that the bottom side of C(µ) contains the bottom sides of C(ν1) and of
C(νh), by construction, which have a pin on both corners, by Property P.3. Thus, the constructed
drawing of Gµ is stretchable.

Suppose that µ is an R-node. We compute a stretchable drawing of Gµ as follows. First, we
compute a 1-bend planar drawing on S of the whole pertinent Gµ of µ, including its poles sµ and
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tµ; then, we remove the poles of µ and their incident edges, we define chip C(µ), and we place
the pins on its two vertical sides so to satisfy Properties P.1–P.3.

In order to compute the drawing of Gµ, we exploit the fact that the skeleton Gskel
µ of µ is

triconnected. Hence, we can use the algorithm described in Section 3 as a main tool for drawing
Gµ, with suitable modifications to take into account the fact that each virtual edge (u, v) of Gskel

µ

actually corresponds to a whole subgraph, namely the pertinent graph Gν of the child ν of µ
with poles sν = u and tν = v. Thus, when the virtual edge (u, v) is considered, we have to add
the stretchable drawing of Gν inside a chip C(ν); this enforces additional requirements for our
drawing algorithm.

The first obvious requirement is that (u, v) will occupy δ(u, ν) consecutive rays of u and δ(v, ν)
consecutive rays of v, and not just a single ray for each of them, as in the triconnected case.
However, reserving the correct amount of rays of u and v is not always sufficient to add C(ν) and
to draw the edges between u, v, and vertices in Gν . In fact, we need to ensure that there exists a
placement for C(ν) such that the elongations of the edges incident to its pins intersect all the
reserved rays of the poles u and v of ν, hence satisfying the preconditions to apply Lemma 3. In
a high-level description, for the virtual edges that would be drawn with a horizontal segment in
the triconnected case (all the edges of a chain, and the first and last edges of a singleton), this
can be done by using a construction similar to the one of the case in which µ is an S-node. For
the edges that do not have any horizontal segment (the internal edges of a singleton), instead, we
need a more complicated construction.

We now describe the algorithm, which is again based on considering the vertices of H = Gµ
according to a canonical order Π = (P0, . . . , Pm) of H, in which v1 = sµ and v2 = tµ, and on
constructing a 1-bend planar drawing of H−k on S satisfying a modified version of Invariants I.1–I.3.

M.1 No part of the drawing lies below vertices v1 and v2, which have the same y-coordinate.

M.2 For every virtual edge (w, z) on C−k , if (w, z) belongs to H then it has a horizontal segment;
also, the edge-segments corresponding to edges incident to the pins of the chip of the child
of µ corresponding to (w, z) are horizontal.

M.3 Each vertex v on C−k has at least as many free top rays incident to the outer face of H−k as
the number of its neighbors in H that have not been drawn yet.

We note that Invariant M.1 is identical to Invariant I.1, while Invariant M.3 is the natural
extension of Invariant I.3 to take into account our previous observation. Finally, Invariant M.2
corresponds to Invariant I.2, as it ensures that we can still apply Lemma 1 and Lemma 2.

At the first step, we draw P0 = {v1, v2} and P1 = {v3, . . . , vj}. Consider the path of virtual
edges (v1, v3), (v3, v4), . . . , (vj , v2). Let ν1,3, ν3,4, . . . , νj,2 be the corresponding children of µ, and
let C(ν1,3), C(ν3,4), . . . , C(νj,2) be their chips. We consider this path as the skeleton of an S-node
with poles v1 and v2, and we we apply the same algorithm as in the case in which µ is an S-node
to draw the subgraph composed of v3, . . . , vj and of chips C(ν1,3), C(ν3,4), . . . , C(νj,2) inside a
larger chip, denoted by C(v1, v2). Note that, by construction, C(v1, v2) has pins on its bottom-left
and on its bottom-right corners. We then place v1 and v2 with the same y-coordinate as the
bottom side of C(v1, v2), with v1 to the left and v2 to the right of C(v1, v2). We draw one of the
edges incident to v1 horizontal, and the remaining δ(v1, ν1,3)− 1 by applying Lemma 3, and the
same for v2. Invariants M.1 and M.2 are satisfied by construction. For Invariant M.3, note that
v3, . . . , vj have all their ∆− 2 top rays free, by construction, and at least two of their neighbors
have already been drawn. Also, v1 and v2 have consumed only δ(v1, ν1,3)− 1 and δ(v2, νj,2)− 1
top rays, respectively. Since edge (v1, v2) does not belong to H−k (but belongs to H), v1 and v2

satisfy Invariant M.3.
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We now describe how to add path Pk, for some k > 1, to the current drawing Γk−1 in the two
cases in which Pk is a chain or a singleton.

Suppose that Pk is a chain, say {vi, vi+1, . . . , vj}; let u` and ur be the neighbors of vi and vj in
C−k . Let ν`, νi, . . . , νj−1, νr be the children of µ corresponding to virtual edges (u`, vi), (vi, vi+1),
. . . , (vj−1, vj), (vj , vr), and let C(ν`), C(νi), . . . , C(νj−1), C(νr) be their chips.

We define rays τa(u`) and τc(ur), and the horizontal segment h between them, as in the
triconnected case. Due to Lemma 2, we can assume that τa(u`) and the δ(u`, ν`)− 1 top rays of
u` following it in anti-clockwise order do not cross any edge of Γk−1, and the same for τc(ur) and
the δ(ur, νr)− 1 top rays of ur following it in clockwise order. Note that, by Invariant M.3, all
these rays are free. As in the step in which we considered P0 and P1 of Π, we use the algorithm
for the case in which µ is an S-node to construct a drawing of the subgraph composed of vi, . . . , vj
and of chips C(ν`), C(νi), . . . , C(νj−1), C(νr) inside a larger chip C(u`, ur), which has pins on
its bottom-left and on its bottom-right corners. We then place C(u`, ur) so that its bottom
side lies on h and it does not cross τa(u`) and τc(ur), after possibly scaling it down uniformly.
Finally, we draw the δ(u`, ν`) edges between u` and its neighbors in Gν` ∪ {vi}, and the δ(ur, νr)
edges between ur and its neighbors in Gνr ∪ {vj}, by applying Lemma 3, whose preconditions are
satisfied. The fact that the constructed drawing satisfies the three invariants can be proved as in
the previous case.

Suppose finally that Pk is a singleton, say {vi}, of degree δi ≤ ∆ in H−k . As in the triconnected
case, we shall assume that δi ≥ 3. Let u`, u1, . . . , uδi−2, ur be the neighbors of vi as they appear
along C−k−1, let ν`, ν1, . . . , νδi−2, νr be the children of µ corresponding to the virtual edges
connecting vi with these vertices, and let C(ν`), C(ν1), . . . , C(νδi−2), C(νr) be their chips.

For each q = 1, . . . , δi − 2, we select any set Tq of consecutive δ(uq, νq) free top rays of uq
incident to the outer face and a set Bq of consecutive δ(vi, νq) bottom rays of vi; see Fig. 7b. Sets
B1, . . . , Bδi−2 are selected in such a way that all the rays in Bq precede all the rays in Bq+1 in
anti-clockwise order. Since δ(vi, ν`) + δ(vi, νr) ≥ 2, vertex vi has enough bottom rays for sets
B1, . . . , Bδi−2. We also define sets T` and Tr as composed of the first δ(u`, ν`) free top rays of u`
in anti-clockwise order and of the first δ(ur, νr) free top rays of ur in clockwise order, respectively.

We then select a horizontal line hi lying above every vertex in Γk−1. As in the algorithm
described in Section 3, after possibly applying O(∆) times Lemma 1, we can assume that all the
rays in sets T`, T1, . . . , Tδi−2, Tr intersect hi in the correct order. Namely, when moving along hi
from left to right, we encounter all the intersections with the rays in T`, then all those with the
rays in T1, and so on. On the other hand, this property is already guaranteed for the rays in
B1, . . . , Bδi−2. This defines two total left-to-right orders OT and OB of the intersection points of
T`, T1, . . . , Tδi−2, Tr and of B1, . . . , Bδi−2 along hi, respectively. To simplify the description, we
extend these orders to the rays in T`, T1, . . . , Tδi−2, Tr and in B1, . . . , Bδi−2, respectively.

Our goal is to merge the two sets of intersection points, while respecting OT and OB , in such
a way that the following condition holds for each q = 1, . . . , δi − 2. If edge (vi, uq) belongs to H,
then the first intersection point of Tq in OT coincides with the first intersection point of Bq in
OB , and the second intersection point of Tq in OT is to the right of the last intersection point of
Bq in OB ; see T1 and B1 in Fig. 7b. Otherwise, (vi, uq) /∈ H and the first intersection point of Tq
in OT is to the right of the last intersection point of Bq in OB ; see T3 and B3 in Fig. 7b. In both
cases, the intersection points of Tq and Bq are to the left of those of Tq+1 and Bq+1.

To obtain this goal, we perform a procedure analogous to the one described in Section 3 to
make points p1, . . . , pδi−2 coincide with points ρ1, . . . , ρδi−2. Namely, we consider a line λ1, whose
slope is the one of the first ray in B1, that starts at the first intersection point of T1 in OT , if
edge (v1, u1) belongs to H, or at any point between the last intersection point of T1 and the first
intersection point of T2 in OT , otherwise. Then, we place vi along λ1, far enough from hi so that
the distance between any two consecutive intersection points in OB is larger than the distance
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Figure 7: Ilustrations for placing singleton vi in the case of an R-node.

between the first and the last intersection points in OT ; see Fig. 7a. Finally, we apply Lemma 1
at most δi − 3 times to move the intersection points of sets T2, . . . , Tδi−2, one by one, in the their
correct positions; see Fig. 7b.

Once the required ordering of intersection points along hi has been obtained, we consider
another horizontal line h′i lying above hi and close enough to it so that its intersections with
the rays in T`, T1, . . . , Tδi−2, Tr and B1, . . . , Bδi−2 appear along it in the same order as along hi.
We place each chip C(νq), with q = 1, . . . , δi − 2, after possibly scaling it down uniformly, in
the interior of the region delimited by these two lines, by the last ray in Tq, and by a ray in Bq
(either the second or the first, depending on whether (vi, uq) ∈ H or not), so that its top side is
horizontal; see Fig. 7c.

We draw the edges incident to vi and uq, for each q = 1, . . . , δi − 2, as follows. If edge (vi, uq)
belongs to H, we draw it with one segment along the first ray in Tq and one along the first
ray in Bq (see the red edge in Fig. 7c). For the other edges we apply Lemma 3 twice, whose
preconditions are satisfied due to the placement of C(νq) (see the blue and green edges in Fig. 7c).

We conclude by drawing the edges connecting vi, u`, and vertices in Gν` ; the edges connecting
vi, ur and vertices in Gνr are drawn symmetrically. First, after possibly applying Lemma 1, we
assume that the last ray of T` intersects the horizontal line through vi to the left of vi, at a
point pi. After possibly scaling C(ν`) down uniformly, we place it so that its left side is to the
right of pi, its right side is to the left of vi, it does not cross the first top ray of vi in clockwise
order, and its bottom side is horizontal and lies either above the horizontal line through vi, if
edge (u`, vi) belongs to H, or along it, otherwise. Then, we draw (u`, vi), if it belongs to H,
with one segment along the last ray of T` and the other one along the horizontal line through
vi. Otherwise, edge (u`, vi) does not belong to H and we can draw one of the edges incident to
vi with a horizontal segment. We finally apply Lemma 3 twice, to draw the edges from u` to
its neighbors in Gν` , and from vi to its other neighbors in Gν` . The fact that the constructed
drawing satisfies Invariants M.1–M.3 can be proved as in the triconnected case.

Once the last path Pm of Π has been added, we have a drawing Γµ of H = Gµ satisfying
Invariants M.1–M.3. We construct chip C(µ) as the smallest axis-aligned rectangle enclosing Γµ.
By Invariant M.1, vertices v1 and v2 lie on the bottom side of C(µ). Also, by Invariant M.2, all the
edges incident to v1 or to v2 have a horizontal segment. Thus, it is possible to obtain a drawing
of Gµ inside C(µ) by removing v1 and v2 (and their incident edges) from Γµ, by elongating the
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horizontal segments incident to them till reaching the vertical sides of C(µ), and by placing pins
at their ends. The fact that this drawing satisfies Properties P.1–P.3 follows from the observation
that v1 and v2 were on the bottom side of C(µ). This concludes the case in which µ is an R-node.

Once we have visited the root ρ of T , we have a stretchable drawing of Gρ inside a chip
C(ρ), which we extend to a drawing of G as follows. Refer to Fig. 5a. We place sρ and tρ at the
same y-coordinate as the bottom side of C(ρ), one to its left and one to its right, so that C(ρ)
does not cross any of the rays of sρ and of tρ. Then, we draw edge (sρ, tρ) with one segment
along the first bottom ray in clockwise order of sρ and the other one along the first bottom
ray in anti-clockwise order of tρ. Also, we draw the edges connecting sρ and tρ to the vertices
corresponding to the lowest pins on the two vertical sides of C(ρ) as horizontal segments. Finally,
we draw all the remaining edges incident to sρ and tρ by applying Lemma 3 twice. The following
theorem summarizes the discussion in this section.

Theorem 3. For any ∆ ≥ 4, there exists a equispaced universal set S of ∆− 1 slopes for 1-bend
planar drawings of biconnected planar graphs with maximum degree ∆. Also, for any such graph
on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

Proof. Apply the algorithm described above to produce a 1-bend planar drawing of G on S. The
correctness has been proved through out the section. For the time complexity, first observe that
the SPQR-tree T of G can be computed in linear time [22]. Also, for each node µ ∈ T , we
can compute a stretchable drawing of Gµ in time linear in the size of Gskel

µ assuming that, for
each chip, we only store the coordinates of two opposite corners. Final coordinates can then be
assigned by traversing the SPQR-tree top-down. Also, notice that for R-nodes, a drawing of the
skeleton can be obtained in linear time by Theorem 2. Since the total size over all the skeletons
of the nodes of T is linear in the size of G, our algorithm is linear.

5 General Planar Graphs

Let G be a connected planar graph of maximum degree ∆ and let B be its BC-tree. We traverse
B bottom-up; at each step, we consider a B-node β, whose parent in B is the C-node γ. We
exploit Theorem 3 to compute a 1-bend planar drawing Γ(β) of β on the slope-set S with ∆− 1
equispaced slopes, assuming that the root of the SPQR-tree of β corresponds to an edge incident
to γ. Consider any vertex c of β different from γ that is a cut-vertex in G, and let δc be the
degree of c in G \ β. The construction satisfies the following two invariants.

K.1 There exists a set of δc consecutive rays of c that are not used in Γ(β).

K.2 The edges incident to γ use a set of consecutive rays in Γ(β).

Note that K.2 is already satisfied by the algorithm of Theorem 3. For K.1, we slightly modify
this algorithm. The modified algorithm still guarantees K.2. Namely, when vertex c is considered
in the bottom-up traversal of the SPQR-tree of β, we reserve δc < ∆ consecutive rays around c.

For each C-node c that is a child of β in B, consider all its children ζ1, . . . , ζq, with q ≤ ∆− 2.
By Invariants K.1 and K.2, each of these blocks has been drawn so that c is one of its poles (and
therefore drawn on its outer face) and its incident edges use a set of consecutive rays. Since the
sum of the degrees of c in these blocks is equal to δc, we can insert these drawings into Γ(β)
using the δc free rays of c. After possibly scaling the drawings of ζ1, . . . , ζq down uniformly and
by rotating them appropriately, we can guarantee that these insertions do not introduce any
crossings between them or with edges of Γ(β).

Since the visit of B can be done in linear time and since a drawing of a disconnected graph can
be obtained by drawing each connected component independently, the proof of Theorem 1 follows.
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6 Conclusions and Open Problems

In this paper, we improved the best-known upper bound of Knauer and Walczak [30] on the
1-bend planar slope number from 3

2 (∆− 1) to ∆− 1, for ∆ ≥ 4. Two side-results of our work
are the following. Since the angular resolution of our drawings is at least π

∆−1 , at the cost of
increased drawing area our main result also improves the best-known upper bound of π

4∆ on the
angular resolution of 1-bend poly-line planar drawings by Duncan and Kobourov [16]. For ∆ = 4,
it also guarantees that planar graphs with maximum degree 4 admit 1-bend planar drawings on a
set of slopes {0, π3 ,

2π
3 }, while previously it was known that such graphs can be embedded with

one bend per edge on a set of slopes {0, π4 ,
π
2 ,

3π
4 } [2] and with two bends per edge on a set of

slopes {0, π} [4].
Our work raises several open problems. (i) Reduce the gap between the 3

4 (∆− 1) lower bound
and the ∆ − 1 upper bound on the 1-bend planar slope number. (ii) Our algorithm produces
drawings with large (possibly super-polynomial) area. Is this unavoidable for 1-bend planar
drawings with few slopes and good angular resolution? (iii) Study the straight-line case (e.g., for
degree-4 graphs). Note that the stretching operation might be difficult in this setting. (iv) We
proved that a set of ∆− 1 equispaced slopes is universal for 1-bend planar drawings. Is every set
of ∆− 1 slopes universal? Note that for ∆ ≤ 4 a positive answer descends from our work and
from a result by Dujmovic et al. [14], who proved that any planar graph that can be drawn on
a particular set of three slopes can also be drawn on any set of three slopes. If the answer to
this question is negative for ∆ > 4, what is the minimum value s(∆) such that every set of s(∆)
slopes is universal?
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