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Abstract
We study the max-min fair allocation problem in which a set of m indivisible items are to be
distributed among n agents such that the minimum utility among all agents is maximized. In
the restricted setting, the utility of each item j on agent i is either 0 or some non-negative weight
wj . For this setting, Asadpour et al. [2] showed that a certain configuration-LP can be used to
estimate the optimal value within a factor of 4+δ, for any δ > 0, which was recently extended by
Annamalai et al. [1] to give a polynomial-time 13-approximation algorithm for the problem. For
hardness results, Bezáková and Dani [5] showed that it is NP-hard to approximate the problem
within any ratio smaller than 2.

In this paper we consider the (1, ε)-restricted max-min fair allocation problem, in which for
some parameter ε ∈ (0, 1), each item j is either heavy (wj = 1) or light (wj = ε). We show that
the (1, ε)-restricted case is also NP-hard to approximate within any ratio smaller than 2. Hence,
this simple special case is still algorithmically interesting.

Using the configuration-LP, we are able to estimate the optimal value of the problem within
a factor of 3 + δ, for any δ > 0. Extending this idea, we also obtain a quasi-polynomial time
(3 + 4ε)-approximation algorithm and a polynomial time 9-approximation algorithm. Moreover,
we show that as ε tends to 0, the approximation ratio of our polynomial-time algorithm approaches
3 + 2

√
2 ≈ 5.83.
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1 Introduction

We consider the Max-Min Fair Allocation problem. A problem instance is defined by (A,B,w),
where A is a set of n agents, B is a set of m items and the utility of each item j ∈ B perceived
by agent i ∈ A has weight wij . An allocation of items to agents is σ : B → A such that
σ(j) = i iff item j is assigned to agent i. The max-min fair allocation problem aims at finding
an allocation such that the minimum total weight received by an agent mini∈A

∑
j∈σ−1(i) wij

is maximized. The problem is also known as the Santa Claus Problem [4]. In the restricted

∗ A full version of the paper is available at https://arxiv.org/abs/1611.08060.
† This research is supported in part by the Hong Kong RGC grant 17202715.

© T.-H. Hubert Chan, Zhihao Gavin Tang, and Xiaowei Wu;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.23
https://arxiv.org/abs/1611.08060
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 On (1,ε)-Restricted Max-Min Fair Allocation Problem

version of the problem, it is assumed that each item j has a fixed weight wj such that for
each i ∈ A and j ∈ B, wij ∈ {0, wj}, i.e., if an agent has non-zero utility for an item j,
the utility is wj . We focus on this paper the restricted version of the problem (restricted
allocation problem) and refer to the problem with general weights the unrestricted allocation
problem. For the restricted allocation problem, let Bi = {j ∈ B : wij > 0} be the set of
items agent i is interested in. For a collection of items S ⊆ B, let w(S) =

∑
j∈S wj .

The problem can be naturally formulated as an integer program, with variable xij for
each i ∈ A and j ∈ B indicating whether item j is assigned to agent i. Its linear program
relaxation Assignment-LP (ALP) is shown as below.

max T

s.t.
∑
j∈Bi xijwj ≥ T, ∀i ∈ A∑

i∈A xij ≤ 1, ∀j ∈ B
xij ≥ 0, ∀i ∈ A, j ∈ B.

Let OPT be the maximum value of the restricted allocation problem such that in the
optimal allocation, every agent is assigned a set of items with total weight at least OPT.
Bezáková and Dani [5] showed that any feasible solution x and T for the ALP can be rounded
into an allocation such that every agent i receives at least T −maxj∈Bi wj total value, which
implies OPT ≥ T ∗ −maxj∈B wj , where T ∗ is the optimal value of the ALP. However, the
above result does not yield any guarantee on the integrality gap. Actually, it can be easily
shown that the integrality gap of ALP is unbounded since it is possible to have a feasible
solution with T > 0 while OPT = 0 (e.g., when |B| < |A|). It was shown in [5] that it is
NP-hard to approximate the problem within any ratio smaller than 2 by a reduction from
3-dimensional matching.

To overcome the limitation of ALP, a stronger linear program called Configuration-LP
(CLP) was proposed by Bansal and Sviridenko [4], in which an O( logn

log logn )-approximation
algorithm was obtained for the restricted allocation problem. For any T > 0, we call an
allocation a T -allocation if it assigns to every agent a set of items with total weight at least T .

I Definition 1 (Bundles with Sufficient Utility). For all i ∈ A, the collection of bundles with
utility at least T for agent i is C(i, T ) := {S ⊆ Bi : w(S) ≥ T}.

The CLP is a feasibility LP associated with T indicating whether it is possible to
(fractionally) assign to each agent one unit of bundle with sufficient utility. The LP (CLP(T ))
and its dual are shown as follows.

Primal min 0

s.t.
∑

S∈C(i,T )

xi,S ≥ 1, ∀i ∈ A

∑
i,S:j∈S∈C(i,T )

xi,S ≤ 1, ∀j ∈ B

xi,S ≥ 0, ∀i ∈ A,S ∈ C(i, T ).

Dual max
∑
i∈A

yi −
∑
j∈B

zj

s.t. yi ≤
∑
j∈S

zj , ∀i ∈ A,S ∈ C(i, T )

yi ≥ 0, ∀i ∈ A
zj ≥ 0, ∀j ∈ B.

Although CLP(T ) has an exponential number of variables, it is claimed in [4] that the
separation problem for the dual LP is the minimum knapsack problem: given a candidate
dual solution (y, z), a violated constraint can be identified by finding an agent i and a
configuration S ∈ C(i, T ) such that yi >

∑
j∈S zj . Hence, we can solve CLP(T ) to any

desired precision. Note that any feasible solution x of CLP(T ) induces a feasible solution x̂
for the ALP by setting x̂ij =

∑
S:j∈S∈C(i,T ) xi,S ≤ 1 for all i ∈ A and j ∈ B.
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I Definition 2 (Integrality Gap). Let T ∗ be the maximum value such that CLP(T ∗) is feasible.
The ratio T∗

OPT is known as the integrality gap.

Note that any upper bound c for the integrality gap implies that we can estimate the
optimal value of the problem within a factor of c+ δ, for any δ > 0. It is shown in [4] that
the integrality gap of CLP for the unrestricted allocation problem is bounded by O(

√
n).

By repeatedly using the Lovasz Local Lemma, Uriel Feige [8] proved that the integrality
gap of CLP for the restricted allocation problem is bounded by a constant. The result was
later turned into a constructive proof by Haeupler [11], who obtained the first constant
approximation algorithm for the restricted allocation problem, although the constant is
unspecified. The integrality gap of CLP was later shown in [2] to be no larger than 4
by a local search technique developed from Haxell [12] for finding perfect matchings in
bipartite hypergraphs. However, the algorithm is not guaranteed to terminate in polynomial
time. It is later shown by Polacek and Svensson [15] that a simple modification of the local
search algorithm can improve the running time from 2O(n) to nO(logn), which implies a
quasi-polynomial (4 + δ)-approximation algorithm, for any δ > 0. Very recently, Annamalai
et al. [1] further extended the local search technique developed in [2, 15] for the restricted
allocation problem and obtained a polynomial-time 13-approximation algorithm for the
problem.

1.1 The (1, ε)-Restricted Allocation Problem
We consider in this paper the (1, ε)-restricted allocation problem, in which for some ε ∈ (0, 1),
each item j ∈ B is either heavy (wj = 1) or light (wj = ε). As the simplest case of the
allocation problem, the problem is not well understood. The current best approximation
results for the problem are for the restricted allocation problem. Indeed, we believe that a
better understanding of the (1, ε)-restricted setting will shed light on improving the restricted
(and even the unrestricted) allocation problem.

The (1, ε)-restricted setting has been studied under different names. Golovin [10] studied
the “Big Goods/Small Goods” max-min allocation problem, which is exactly the same as
the problem we consider in this paper, in which a small item has weight either 0 or 1 for
each agent; a big item has weight either 0 or x > 1 for each agent. They gave an O(

√
n)-

approximation algorithm for this problem and proved that it is NP-hard to approximate the
“Big Goods/Small Goods” max-min allocation problem within any ratio smaller than 2 by
giving a hard instance with x = 2. We show in this paper that the inapproximability result
holds for any fixed x ≥ 2 by generalizing the hardness instance shown in [5]. Later Khot
and Ponnuswami [13] generalized the “Big Goods/Small Goods” setting and considered the
(0, 1, U)-max-min allocation problem with sub-additive utility function in which the weight
of an item to an agent is either 0, 1 or U for some U > 1 and obtained an n

α -approximation
algorithm with mO(1)nO(α) running time, for any α ≤ n

2 . Note that in their setting an
item can have weight 1 for an agent and U for another. In the seminal paper, Bansal and
Sviridenko [4] obtained an O( logn

log logn )-approximation algorithm for the restricted allocation
problem by first reducing the problem to the (1, ε)-restricted case for an arbitrarily small
ε > 0 while losing a constant factor on the approximation ratio, and then proving an
O( logn

log logn )-approximation algorithm for the (1, ε)-restricted case.
The max-min fair allocation problem is closely related to the problem of scheduling

jobs on unrelated machines to minimize makespan, which we call the min-max allocation
problem. The problem has the same input as the max-min fair allocation problem but aims
at finding an allocation that minimizes maxi∈A

∑
j∈σ−1(i) wij . Lenstra et al. [14] showed a

ISAAC 2016
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2-approximation algorithm for the min-max allocation problem by rounding the ALP for
the problem. Applying the techniques developed for the max-min fair allocation problem,
Svensson [16] gave a 5

3 + ε upper bound for the CLP’s integrality gap of the (1, ε)-restricted
min-max allocation problem and then extended it to a 1.9412 upper bound for the general case.
However, their algorithm is not known to converge in polynomial time. Recently Chakrabarty
et al. [7] obtained the first (2− δ)-approximation algorithm for the (1, ε)-restricted min-max
allocation problem, for some constant δ > 0. They considered the case when ε is close to 0
since it is easy to obtain a (2− ε)-approximation algorithm for the (1, ε)-restricted min-max
allocation problem.

Since the (1, ε)-restriction is considered in the community to be interesting for the min-max
setting, in this paper we consider this restriction for the max-min setting.

1.2 Summary of Our Results
We first show that we can slightly improve the hardness result of Golovin [10] for the (1, ε)-
restricted allocation problem. Note that in the unweighted case (ε = 1), the problem can be
solved in polynomial time by combining the max-flow computation between A and B, with a
binary search on the optimal value. The above algorithm for the unweighted case actually
provides a trivial 1

ε -approximation algorithm for the (1, ε)-restricted allocation problem.
Hence, we have a polynomial-time algorithm with ratio 1

ε < 2 for the problem when ε > 0.5.

I Theorem 3 (Inapproximability). For any ε ≤ 0.5, it is NP-hard to approximate the (1, ε)-
restricted allocation problem within any ratio smaller than 2.

The proof is included in our full version. Our reduction shows that it is NP-hard to
estimate the optimal value of the problem within any ratio smaller than 2. The above
hardness result implies that the integrality gap of CLP(T ) is at least 2 unless P = NP.
However, we can remove the P 6= NP assumption by giving a hard instance explicitly (in the
full version).

For the restricted allocation problem, the best hardness result on the approximation ratio
is 2 while the best upper bound for the integrality gap of CLP(T ) is 4. It is not known which
bound (or none) is tight. As a step towards closing this gap, we analyze the integrality gap
of CLP(T ) for the (1, ε)-restricted case and show that the upper bound of 4 is not tight in
this case (Section 2). Our upper bound implies that in polynomial time we can estimate
OPT for the (1, ε)-restricted allocation problem within a factor of 3 + δ, for any δ > 0.

I Theorem 4 (Integrality Gap). The integrality gap of the configuration-LP of the (1, ε)-
restricted allocation problem is at most 3.

We also observe that by picking the “closest addable edge”, the running time of the local
search algorithm can be improved to quasi-polynomial (Section 3). The idea was first used
by Polacek and Svensson [15] to obtain the (4 + δ)-approximation algorithm for the restricted
allocation problem. However, instead of constructing feasible dual solutions for CLP(T ), our
analysis is based on the assumption of T ≤ OPT and is a direct extension of our proof on
the integrality gap of CLP(T ).

I Theorem 5 (Quasi-Polynomial-Time Approximation). There exists a (3 + 4ε)-approximation
algorithm for the (1, ε)-restricted allocation problem that runs in nO( 1

ε logn) time.

We further extend the quasi-polynomial approximation algorithm by combining the lazy
update idea of [1] to obtain a polynomial approximation algorithm (Section 4).
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I Theorem 6 (Polynomial-Time Approximation). For any ε ∈ (0, 1), there exists a polynomial-
time 9-approximation algorithm for the (1, ε)-restricted allocation problem. Moreover, the
approximation ratio approaches 3 + 2

√
2 ≈ 5.83 as ε tends to 0.

Interestingly, while our quasi-polynomial- and polynomial-time algorithms are extended
from the integrality gap analysis by combining ideas on improving the running time of
local search, unlike existing techniques, our algorithms and analysis do not directly use the
feasibility of CLP(T ). To lead to contradictions, existing results [15, 1] tried to construct
feasible dual solutions for CLP(T ) with positive objective values (which implies the infeasibility
of CLP(T )). In contrast, our analysis shows that as long as T ≤ OPT, our algorithms
terminate with the claimed approximation ratios, which simplifies the analysis and is an
advantage in some cases when CLP(T ) cannot be applied, e.g., when the utility function is
sub-additive [13].

1.3 Other Related Work
Unrestricted Allocation Problem. Based on Bansal and Sviridenko’s proof [4] of O(

√
n)-

integrality gap for the unrestricted allocation problem, Asadpour and Saberi [3] achieved an
Õ(
√
n)-approximation algorithm. The current best approximation result for the problem is

an Õ(nδ)-approximation algorithm that runs in time nO( 1
δ ), for any δ = Ω( log logn

logn ), obtained
by Chakrabarty et al. [6].

Other Utility Functions. The max-min fair allocation problem with different utility func-
tions has also been considered. Golovin [10] gave an (m−n+ 1)-approximation algorithm for
the problem when the utility functions of agents are submodular. We note that their result
can also be extended to sub-additive utility functions. Khot and Ponnuswami [13] also con-
sidered the problem with sub-additive utility functions and obtained a (2n−1)-approximation
algorithm. Later Goemans and Harvey [9] obtained an Õ(n 1

2 +δ)-approximation for submod-
ular max-min allocation problem in nO( 1

δ ) time using the Õ(nδ)-approximation algorithm by
Chakrabarty et al. [6] as a black box.

2 Integrality Gap for Configuration LP

We show in this section that for the (1, ε)-restricted allocation problem, the integrality gap
of the CLP is at most 3. Fix T > 0 be such that CLP(T ) is feasible.

We show that whenever CLP(T ) is feasible, there exists a T
3 -allocation (hence OPT ≥ T

3 ),
which implies an integrality gap of at most 3. Given any solution x for CLP(T ) and the
induced ALP solution x̂, for all x̂ij = 0, we can remove j from Bi (pretending that i is not
interested in j). This operation will preserve the feasibility of x while (possibly) decreasing
OPT, which could only enlarge the integrality gap. From now on we assume that a positive
fraction of every item in Bi is assigned to agent i.

Assumption on T : To achieve a T
3 -allocation, we can assume that T < 3

2 ; otherwise, we can
get a T − 1 ≥ T

3 allocation by rounding the ALP solution x̂ [5]. We can further assume T ≥ 1
since otherwise we can set all weights wj ≥ T to T (which does not change CLP(T )) and
scale all weights so that the maximum weight is 1. From now on, we assume that T ∈ [1, 3

2 )
and CLP(T ) is feasible.

Let k = dTε e. Note that every bundle consisting solely of light items must contain at
least k items to have sufficient utility. For all i ∈ A, let B1

i = {j ∈ Bi : wj = 1} be the set

ISAAC 2016
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of heavy items and Bεi = {j ∈ Bi : wj = ε} be the set of light items. Our algorithm fixes
an integer r = dk3 e and tries to assign items such that each agent i receives either a heavy
item j ∈ B1

i or r light items in Bεi . Suppose we are able to find such an allocation, then the
integrality gap is T

rε ≤ 3.

2.1 Getting a “Minimal” Solution
Let x∗ be a solution for CLP(T ). We create another solution x (which might not be feasible)
as follows. Initialize xi,S = 0 for all i ∈ A and S ⊆ Bi. For all x∗i,S > 0, where S ∈ C(i, T ),
1. if S′ = S ∩B1

i 6= ∅, then set xi,S′ = x∗i,S ;
2. otherwise, S contains only light items and set xi,S = x∗i,S .

Note that for each i ∈ A we have the following properties on x:
1. (heavy/light configurations) if xi,S > 0, then (S ⊆ B1

i ∧ |S| ≥ 1) or (S ⊆ Bεi ∧ |S| ≥ k).
2. (covering constraint for agent)

∑
S⊆Bi xi,S =

∑
S∈C(i,T ) x

∗
i,S ≥ 1.

3. (packing constraint for item) for all j ∈ B:
∑
i,S:j∈S xi,S ≤

∑
i,S:j∈S∈C(i,T ) x

∗
i,S ≤ 1.

Now we construct a hypergraph H(A ∪B,E) as follows: for all xi,S > 0,
1. if S ⊆ B1

i , then for each j ∈ S, add {i, j} to E (we call such an edge heavy);
2. otherwise for each S′ ⊆ S and |S′| = r, add {i} ∪ S′ to E (we call such an edge light).

A matching M ⊆ E is a collection of disjoint edges. Note that any perfect matching of
H that matches all nodes in A provides an allocation that assigns each i ∈ A either a heavy
item or r light items. For all F ⊆ E, let A(F ) = A ∩ (

⋃
e∈F e) and B(F ) = B ∩ (

⋃
e∈F e).

2.2 Finding a Perfect Matching
Recall that the existence of a perfect matching in H(A ∪B,E) such that every agent in A is
matched implies that the integrality gap of CLP(T ) is at most 3.

I Theorem 7. The above hypergraph H(A ∪B,E) has a perfect matching.

Proof. Given a partial matching M ⊆ E, we show how to extend its cardinality by one
if |M | ≤ |A| − 1. Let i0 ∈ A\A(M) be an agent not matched by M . For the initial step,
suppose X1 contains an arbitrary edge e1 with A(e1) = {i0} and Y1 = blocking(e1) = {f ∈
M : B ∩ e1 ∩ f 6= ∅} be the blocking edges of e1. If blocking(e1) = ∅, then we can add edge
e1 to the matching. Assume blocking(e1) 6= ∅.

For the recursive step, suppose we already have edges Xt (where t = |Xt|) and Yt, which
together form an alternating tree rooted at i0. We consider adding the (t+ 1)-st edge to Xt

as follows. An edge e ∈ E is addable if (1) A(e) ∈ A(Xt ∪ Yt); (2) B(e) ∩B(Xt ∪ Yt) = ∅.
If such an edge et+1 exists and blocking(et+1) 6= ∅, let Xt+1 = Xt ∪ {et+1} and Yt+1 =
Yt ∪ blocking(et+1). If blocking(et+1) = ∅, then we contract Xt by swapping out blocking
edges (the details of contraction will be discussed later). The contraction operation guarantees
that every addable edge has at least one blocking edge.

I Claim 8 (Always Addable). There is always an addable edge et+1.

Proof. Let P = A(Xt ∪ Yt) be the agents in the tree. Note that |P | = |Yt|+ 1 since each
agent i 6= i0 in P has an unique blocking edge that introduces i.

Let X1
t (Y 1

t ) be the heavy edges and Xε
t (Y εt ) be the light edges of Xt (Yt).

We have |X1
t | = |Y 1

t | since heavy edges can only be blocked by heavy edges. We have
|Xε

t | ≤ |Y εt | since each addable edge has at least one blocking edge.
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Let x1
P =

∑
i∈P

∑
S⊆B1

i
xi,S be the total units of heavy bundles assigned to P by x,

which is a lower bound for the total number of heavy items B1
P = ∪i∈PB1

i agents in P are
interested in since

x1
P =

∑
i∈P

∑
S⊆B1

i

xi,S ≤
∑
i∈P

∑
S⊆B1

i

∑
j∈S

xi,S =
∑
j∈B1

P

∑
i,S:j∈S⊆B1

i

xi,S ≤ |B1
P |.

Let xεP =
∑
i∈P

∑
S⊆Bε

i
xi,S be the total units of light bundles assigned to P by x. By

construction of x, we have∑
i∈P

∑
S⊆Bi

xi,S =
∑
i∈P

∑
S⊆B1

i

xi,S +
∑
i∈P

∑
S⊆Bε

i

xi,S = x1
P + xεP ≥ |P |.

Since |Y 1
t | heavy items are already introduced in the tree, if x1

P > |Y 1
t |, then there must

exist an addable heavy edge for some i ∈ P . If x1
P ≤ |Y 1

t |, then we have xεP ≥ |P | − x1
P ≥

|Y εt |+ 1 ≥ |Xε
t |+ 1. Note that every light addable edge has at most r − 1 unblocked items,

the total number of light items in the tree is

|Bε(Xt ∪ Yt)| ≤ (r − 1)|Xε
t |+ r|Y εt | ≤ (2r − 1)(xεP − 1) < (2r − 1)xεP . (1)

For each i ∈ P and S ⊆ Bεi , if xi,S > 0, then by construction we have |S| ≥ k ≥ 3r − 2.
If i has no more addable light edges (has at most r − 1 unintroduced light items in H),
then at least

∑
S⊆Bε

i
(|S| − (r− 1))xi,S ≥ (2r− 1)

∑
S⊆Bε

i
xi,S units of configurations of light

items appear in the tree. If there is no more addable light edges for all i ∈ P , then we have

|Bε(Xt ∪ Yt)| ≥
∑

j∈Bε(Xt∪Yt)

∑
i,S:j∈S⊆Bε

i

xi,S ≥ (2r − 1)
∑
i∈P

∑
S⊆Bε

i

xi,S = (2r − 1)xεP ,

which is a contradiction to (1). J

Contraction: If blocking(et+1) = ∅, then we remove the blocking edge f that introduces
A(et+1) from the matching and include et+1 into the matching. Both et+1 and f are removed
from the tree. We also remove all edges added after f since they can possibly be introduced
by A(f). We call this operation a contraction on et+1. Note that this operation reduces
the size of blocking(e′) by one, for the edge e′ that is blocked by f . If blocking(e′) = ∅ after
that, then we further contract e′ recursively. After all contractions, suppose the remaining
addable edges in the tree are e1, e2, . . . , et′ (ordered by the time they are added to the tree),
we set t = t′, Xt′ and Yt′ be the addable and blocking edges, respectively.

Signature: At any moment before including an addable edge (suppose there are t addable
edges in the tree), let si = |blocking(ei)| for all i ∈ [t]. Let s = (s1, s2, . . . , st,∞) be the
signature of the tree. Then, we have the following.
1. The lexicographical value of s reduces after each iteration. If there is no contraction in

the iteration, then in the signature, the (t+ 1)-st coordinate decreases from ∞ to st+1,
while si remains the same for all i ≤ t. Otherwise, let ei be the edge whose number of
blocking edges is reduced by one but remains positive in the contraction phase. Then, we
have si is reduced by one while sj remains the same for all j < i.

2. There are at most 2n different signatures since
∑
i∈[t] si ≤ n and t ≤ n.

Since an addable edge can be found in polynomial time and the contraction operation stops
in polynomial time, a perfect matching can be found in n · 2n · poly(n) time. J

ISAAC 2016
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3 Quasi-Polynomial-Time Approximation Algorithm

We show in this section that a simple modification on the algorithm for finding a perfect
matching in Section 2 can dramatically improve the running time from 2O(n) to nO(logn).
Assume that T ≤ OPT. Note that in this case we can still assume T ∈ [1, 3

2 ).
Note that combining the polynomial time 1

ε -approximation algorithm, the approximation
ratio we obtain in quasi-polynomial time is min{ 1

ε , 3 + 4ε} ≤ 4 for all ε ∈ (0, 1). Moreover,
when ε→ 0 (in which case the problem is still (2− δ)-inapproximable), our approximation
ratio approaches the integrality gap upper bound 3.

Proof of Theorem 5. Let T be a guess of OPT and k = dTε e. Since the statement trivially
holds for ε ≥ 1

4 ( 1
ε ≤ 3+4ε). We assume that ε < 1

4 (hence k ≥ 5). We show that if T ≤ OPT,
then we can find in quasi-polynomial time a T

3+4ε -allocation; if no such allocation is found
after the time limit, then T should be decreased as in binary search. Let r = d k

3+4εe. It
suffices to show that a feasible allocation that assigns to each agent i either a heavy item in
B1
i or r light items in Bεi can be found in nO(logn) time, for any ε < 1

4 . We define a heavy
edge {i, j} for each j ∈ B1

i and a light edge {i} ∪ S for each S ⊆ Bεi and |S| = r.
As in the proof of Theorem 7, we wish to find a perfect matching for all agents in A.

Suppose in some partial matching, there is an unmatched agent i0 and we construct an
alternating tree rooted at i0. For each addable edge e, we denote by d(e) the number of light
edges (including e) in the path from i0 to e in an alternating tree rooted at i0. Note that
a path is a sequence of edges alternating between addable edges and blocking edges. The
algorithm we use in this section is the same as previous, except that when there are addable
edges, we always pick the one e such that the distance d(e) is minimized. We show that
in this case there is always an addable edge within distance O( 1

ε logn).
Let Xi and Yi be the set of addable edges and blocking edges at distance i from i0,

respectively. Note that Yi = ∅ for all odd i since light blocking edge must be introduced due
to light addable edge. Moreover, since on the path from i0 to every addable edge e ∈ Xi,
the light edge (if any) closest to e must be a blocking edge (of even distance), we know that
Xodd contains only light edges and Xeven contains only heavy edges. Let Y 1

i and Y εi be the
set of heavy edges and light edges in Yi, respectively.

Let L = dlog1+ ε
10
ne. It suffices to prove Claim 9 below since it implies that

|Y ε≤2L+2| > (1 + ε

10)|Y ε≤2L| > (1 + ε

10)L|Y ε2 | ≥ n,

which is a contradiction and implies that there is always an addable edge within distance
2L+ 1. Note the the last inequality also comes from Claim 9 since otherwise |Y ε2 | = 0 and
|Y ε4 | = 0 ≤ ε

10 |Y
ε

2 | would be a contradiction.

I Claim 9. For all l ∈ [L], when there is no more addable edge within distance 2l + 1, we
have |Y ε2l+2| > ε

10 |Y
ε
≤2l|.

Proof. Let P = A(X≤2l ∪ Y≤2l) = A(Y≤2l) ∪ {i0}. Since there is no more addable edges
within distance 2l + 1, we know that every agent i ∈ P does not admit any addable edges.
Hence for each i ∈ P , all heavy items in B1

i are already included in B1(X1
≤2l) and at most

r − 1 light items in Bεi are not included in Bε(Xε
≤2l+1 ∪ Y ε≤2l+2).

Since T ≤ OPT, we know that at least |P | − |B1(X1
≤2l)| = |Y ε≤2l| + 1 agents in P are

assigned only light items. Hence, out of at least k light items assigned to each of those agents,
at least k − r + 1 items must be included in Bε(Xε

≤2l+1 ∪ Y ε≤2l+2), which means

|Bε(Xε
≤2l+1 ∪ Y ε≤2l+2)| ≥ (k − r + 1)(|Y ε≤2l|+ 1).



T.-H. Hubert Chan, Z. G. Tang, and X. Wu 23:9

Assume |Y ε2l+2| ≤ ε
10 |Y

ε
≤2l|, we have |Y ε≤2l+2| ≤ (1 + ε

10 )|Y ε≤2l|. Since every addable edge
contains at most r − 1 unblocked items (items not used by M), we have the following upper
bound for the number of light items in the tree:

|Bε(Xε
≤2l+1 ∪ Y ε≤2l+2)| ≤ (r − 1)|Xε

≤2l+1|+ r|Y ε≤2l+2| ≤ (1 + ε

10)(2r − 1)|Y ε≤2l|.

For ε < 1
4 , T ∈ [1, 3

2 ), k = dTε e and r = d k
3+4εe, we have k ≥ 3dk3 e − 2 ≥ 3r − 2. Suppose

k = 3r − 2, then we have

k = 3d k

3 + 4εe − 2 ≤ 3k
3 + 4ε + 1 = k − ( 4εk

3 + 4ε − 1),

which is a contradiction since 4εk
3+4ε > 1. Hence we have k ≥ 3r− 1, which implies k− r+ 1 ≥

(3r − 1)− (r − 1) = 2r ≥ (1 + ε
10 )(2r − 1) since r ≤ 5

ε . Hence we have a contradiction. J

At any moment before adding an addable edge, suppose we have constructed X≤2l and
Y≤2l. By the above argument we have 2l ≤ 2L = O( 1

ε logn). Let ai = −|Xi|. Let |Y 1
i | = bi

and |Y εi | = bi−1 for all even i. Let s = (a0, b0, a1, b1, . . . , a2l, b2l,∞) be the signature of the
alternating tree. We show that s is lexicographically decreasing accross all iterations.

No contraction: Suppose we added an addable edge e with blocking(e) 6= ∅, then e will be
included in X≤2l or a newly constructed X2l+1, in both cases the lexicographic value of s
decreases since the last modified coordinate decreases.

Contraction: Suppose the newly added edge has no blocking edge, then in the contraction,
let f ∈ Y ε2i, which must be light, be the last blocking edge that is removed. Since b2i−1
decreases while aj (for all j ≤ 2i−1) and bj (for all j ≤ 2i−2) do not change, the lexicographic
value of s decreases.

Since L = O( 1
ε logn), there are nO( 1

ε logn) different signatures. Since an addable edge can
be found in polynomial time and the contraction operation stops in polynomial time, the
running time of the algorithm is n · poly(n) · nO( 1

ε logn) = nO( 1
ε logn). J

4 Polynomial-Time Approximation Algorithm

We give a polynomial-time approximation algorithm in this section. Based on the previous
analysis, to improve the running time from nO(logn) to nO(1), we need to bound the total
number of iterations (signatures) by poly(n). On a high level, our algorithm is similar to
that of Annamalai et al. [1]: we apply the idea of lazy update and greedy player such that
after each iteration, either a new layer is constructed or the size of the highest layer changed
is reduced by a constant factor. However, instead of constructing feasible dual solutions, we
extend the charging argument used in the previous sections on counting the number of light
items in the tree to prove the exponential growth property of the alternating tree.

In binary search, let T be a guess of OPT. As explained earlier, we can assume T ∈ [1, 3
2 ).

Let k = dTε e. Our algorithm aims at assigning to each agent either a heavy item or r light
items, for some fixed r ≤ k

2 when T ≤ OPT. Such an allocation gives a k
r -approximation. Let

p ∈ (r, k) be an integer parameter. Let 0 < µ� 1 be a very small constant, e.g., µ = 10−10.
As before, for each i ∈ A, we call {i, j} a heavy edge for j ∈ B1

i , and {i} ∪ S a light edge
if S ⊆ Bεi . However, in this section, we use two types of light edges: either |S| = p (addable
edges) or |S| = r (blocking edges). Let M be a maximum matching between A and B1. We
can regard M as a partial allocation that assigns maximum number of heavy items. Let i0
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be an unmatched node in M . We can further assume that every heavy item is interesting to
at least 2 agents since otherwise we can assign it to the only agent and remove the item and
the agent from the problem instance. We use “ + ” and “− ” to denote the inclusion and
exclusion of singletons in a set, respectively.

4.1 Flow Network
Let G(A ∪ B1, EM ) be a directed graph uniquely defined by M as follows. For all i ∈ A
and j ∈ B1

i , if {i, j} ∈ M then (j, i) ∈ EM , otherwise (i, j) ∈ EM . We can interpret the
digraph as the residual graph of the “interest” network (a digraph with directed edges from
each i to j ∈ B1

i ) with current flow M . The digraph G has the following properties
every i ∈ A has in-degree ≤ 1, every j ∈ B1 has out-degree ≤ 1 and in-degree ≥ 1.
all heavy items reachable from i ∈ A with in-degree 0 must have out-degree 1 (otherwise
we can augment the size of M by one).

Given two sets of light edges Y and X (A(Y ) and A(X) do not have to be disjoint), let
f(Y,X) denote the maximum number of node-disjoint paths in G(A∪B1, EM ) from A(Y ) to
A(X). Let F (Y,X) be those paths. We will later see that each such path alternates between
heavy edges and their blocking edges. Unlike the quasi-polynomial-time algorithm, in our
polynomial-time algorithm, the heavy edges do not appear in the alternating tree. Instead,
they are used in the flow network G(A∪B1, EM ) to play a role of connecting existing addable
light edges and blocking light edges.

4.2 Building Phase
I Definition 10 (Layers). For all i ≥ 1, a layer Li is a tuple (Xi, Yi), where Xi is a set of
addable edges and Yi is a set of blocking edges that block edges in Xi.

Initialize l = 0, L0 = (∅, {(i0, ∅)}). We call an addable edge e = {i} ∪ P unblocked if it
contains at least r unblocked light items: |P\(

⋃
e′∈blocking(e) B

ε(e′))| ≥ r. Initialize the set
of unblocked addable edges be I = ∅. Throughout the whole algorithm, we maintain a set
I of unblocked addable edges and layers Li(Xi, Yi) for all i ≤ l, where Xi contains blocked
addable edges. Initialize Xl+1 = Yl+1 = ∅. We build a new layer as follows.

I Definition 11 (Addable). Given layers X≤l+1 and Y≤l, an edge e = {i} ∪ P is addable if
|P | = p and P ⊆ Bεi \Bε(X≤l+1 ∪ Y≤l) such that f(Y≤l, X≤l+1 ∪ I + e) > f(Y≤l, X≤l+1 ∪ I).

Note that such an edge is connected to a blocking edge in Y≤l by a path in G(A∪B1, EM )
that is disjoint from other paths connecting existing blocking edges and addable edges.

Given an addable edge: if it is unblocked, then include it in I; otherwise include it in Xl+1.
When there is no more addable edges, let Yl+1 = blocking(Xl+1) =

⋃
e∈Xl+1

blocking(e), set
l = l+ 1 and try to contract Ll. Note that a blocking edge can block multiple addable edges.

4.3 Collapse Phase
Let W = F (Y≤l, I) be constructed as follows. Initialize W = ∅ = F (Y≤0, I). Recursively
for i = 1, 2, . . . , l, let W = F (Y≤i, I) be augmented from W = F (Y≤i−1, I). In the final
W , let Wi ⊆ W be the paths from A(Yi) to A(I) and let Ii ⊆ I be those reached by Wi.
By the above construction, if f ∈ Y≤i have no out-flow in F (Y≤i, I), then it will not have
out-flow in F (Y≤j , I), for any j > i. Hence we have for all i = 1, 2, . . . , l, |Wi| = |Ii| and
|W≤i| = |I≤i| = f(Y≤i, I) = f(Y≤i, I≤i). Note that every path in Wi starts with an agent
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u ∈ A(Yi) that is assigned a light edge byM and ends at a agent v ∈ A(Ii) with an unblocked
addable edge, which provides a possibility of swapping out a blocking edge in the tree with
an unblocked addable edge (by reassigning all heavy items in the path).

I Definition 12 (Collapsible). We call layer Li collapsible if |Ii| ≥ µ|Yi|.

Intuitively, |Ii| ≥ µ|Yi| implies that we can swap out a µ fraction of blocking edges in Yi
(which is called a collapse). Let Lt be the earliest collapsible layer, we collapse it as follows.

Step-(1). For each path P (u, v) in Wt from e1 := {u} ∪R ∈ Yt to e2 := {v} ∪ P ∈ It:
1. M = M − e1 + e′, swap out blocking edge e1 with e′ := {v} ∪ P ′, where |P ′| = r and

P ′ ⊆ P\
⋃
e∈blocking(e2) B

ε(e),
2. reverse all heavy edges in P (u, v): M = M ∪{{i, j} : (i, j) ∈ P (u, v)∩ (A×B)}\{{i′, j′} :

(j′, i′) ∈ P (u, v) ∩ (B ×A)}.

Note that after the above operations, only Yt and M are changed: the size |Yt| is reduced
by a factor of at least µ and the number of heavy edges in M is not changed.

Step-(2). Set I = I≤t−1. Note that |W≤t−1| = f(Y≤t−1, I) = f(Y≤t−1, I≤t−1) still holds.

Step-(3). Set l = t and repeat the collapse if possible. Remove all unblocked edges in Xt

(since |Yt| decreases). For each removed unblocked edge e, include it in I if f(Y≤t−1, X≤t ∪
I + e) > f(Y≤t−1, X≤t ∪ I).

4.4 Invariants and Properties
I Fact 13 (Key Invariant). Since the construction of Lt (until Lt−1 is collapsed),
f(Y≤t−1, X≤t ∪ I) does not decrease and is always no less than |X≤t|.

Proof. We prove by induction on t ≥ 1. Consider the base case when t = 1. The state-
ment trivially holds when Lt is just constructed and when |Xt ∪ I| increases. Suppose in
some iteration |Xt ∪ I| decreases, then it must be because Yt is collapsed, in which case
f(Y≤t−1, X≤t ∪ I) does not change due to the update rule of step-(3).

Now assume the statement is true for t and consider t+ 1.
When Lt+1 is built we have f(Y≤t, X≤t+1 ∪ I) ≥ f(Y≤t−1, X≤t ∪ I ∪ Xt+1) =

f(Y≤t−1, X≤t ∪ I) + |Xt+1| ≥ |X≤t+1|. Since |Xi| does not increase afterwards for all
i ≤ t+ 1, applying the same argument to Lt+1 as above yields the fact. J

I Lemma 14 (Exponential Growth). Let r = max{dk9 e, d
k−10

3+2
√

2e}, if T ≤ OPT, then for all
i ∈ [l] we have |Yi| ≥ µ2|Y≤i−1|, which implies l = O( 1

µ2 logn).

Proof Sketch. suppose |Yt| < µ2|Y≤t−1|, then by Fact 13 we can show that |X≤t| ≤
f(Y≤t−1, X≤t ∪ I) < ( r

p−r+1 + 2µ)|Y≤t−1| (when µ is sufficiently small). Hence at the
moment when there is no more addable edge that can be included into X≤t, we can show
that the total number of items agents reachable from A(Y≤t−1) are interested in are not
enough to achieve T ≤ OPT. Please refer to our full version for the complete proof. J

Proof of Theorem 6. For any T and k = dTε e, the algorithm tries to compute an rε-
allocation, for integer r as large as possible, by enumerating all possible values of p between r
and k. For any fixed r and p, we try to augment the partial matching M that matches each
agent with either a heavy item or r light items. Hence it suffices to show that the algorithm
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terminates in polynomial time for augmenting the size of M by one. Since each iteration can
be done in polynomial time, it suffices to bound the number of iterations by poly(n). The
approximation ratio will be the maximum of kr , over all T ≤ OPT.

By Lemma 14 and the definition of collapsible, we know that after each iteration, either
(if no collapse) a new layer with |Yl+1| ≥ µ2|Y≤l| is constructed, or some |Yt| is reduced
to at most (1 − µ)|Yt| while Yi are unchanged, for all i < t. Let si = blog 1

1−µ

|Yi|
µ2i c and

s = (s1, s2, . . . , sl,∞) be the signature, then we have: (1) it is lexicographically decreasing
across all iterations: if there is no collapse, then some layer is newly constructed and hence
s decreases; otherwise let Lt be the last layer that is collapsed and |Yt| be the size of Yt
before it is collapse: we know that at the end of the iteration si is not changed for all
i < t while st ≤ blog 1

1−µ

(1−µ)|Yi|
µ2i c = blog 1

1−µ

|Yi|
µ2i c − 1 is decreased by at least one, which

also means s decreases; (2) its coordinates are not decreasing: for all i ∈ [l − 1] we have
si+1 = blog 1

1−µ

|Yi+1|
µ2i+2 c ≥ blog 1

1−µ

|Y≤i|
µ2i c ≥ si. Since we have l = O(logn) and si = O(logn)

for all i ∈ [l], the total number of iterations (signatures) is at most 2O(logn) = poly(n).

Approximation ratio: When k ≤ 9, then a trivial 9-approximation can be achieved by a
ε-allocation (maximum matching). By the proof of Lemma 14, the approximation ratio k

r is
always at most 9 and tends to 3 + 2

√
2 ≈ 5.83 as ε→ 0. J
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