
On Almost Monge All Scores Matrices∗

Amir Carmel1, Dekel Tsur2, and Michal Ziv-Ukelson3

1 Department of Computer Science, Ben-Gurion University of the Negev, Israel
karmela@cs.bgu.ac.il

2 Department of Computer Science, Ben-Gurion University of the Negev, Israel
dekelts@cs.bgu.ac.il

3 Department of Computer Science, Ben-Gurion University of the Negev, Israel
michaluz@cs.bgu.ac.il

Abstract
The all scores matrix of a grid graph is a matrix containing the optimal scores of paths from every
vertex on the first row of the graph to every vertex on the last row. This matrix is commonly used
to solve diverse string comparison problems. All scores matrices have the Monge property, and
this was exploited by previous works that used all scores matrices for solving various problems.
In this paper, we study an extension of grid graphs that contain an additional set of edges, called
bridges. Our main result is to show several properties of the all scores matrices of such graphs.
We also give an O(r(nm+n2)) time algorithm for constructing the all scores matrix of an m×n
grid graph with r bridges.

1998 ACM Subject Classification F.2.0 Nonnumerical Algorithms and Problems

Keywords and phrases Sequence alignment, longest common subsequences, DIST matrices,
Monge matrices, all path score computations.

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.17

1 Introduction

String comparison is a fundamental problem in computer science that has applications
in computational biology, computer vision, and other areas. String comparison is often
performed using sequence alignment: The characters of two input strings are aligned to each
other, and a scoring function gives a score to the alignment according to pairs of the aligned
characters and unaligned characters. The goal of the string alignment problem is to seek an
alignment that maximizes (or minimizes) the score. Common scoring functions are the edit
distance score, and the LCS (longest common subsequence) score.

All scores matrices were introduced by Apostolico et al. [2] in order to obtain fast
parallel algorithms for LCS computation. The all scores matrix of two strings A and B

is a (|B|+ 1) × (|B|+ 1) matrix that stores the optimal alignment scores between A and
every substring of B. More precisely, the element at row i and column j in the matrix is
the optimal alignment score between A and B[i..j]. All scores matrices are also called DIST
matrices [2] or semi-local score matrices [30].

The problem of efficiently constructing the all scores matrix of two strings has been
studied in several papers [29, 1, 2, 17, 19, 20, 21, 22, 26, 31, 30]. All scores matrices provide
a very powerful tool that can be also used for solving many problems on strings: optimal

∗ The research of A.C and D.T was partially supported by ISF grant 981/11. The research of A.C and
M.Z-U was partially supported by ISF grant 478/10. The research of A.C, D.T, and M.Z-U was partially
supported by the Frankel Center for Computer Science at Ben Gurion University of the Negev.

© Amir Carmel, Dekel Tsur, and Michal Ziv-Ukelson;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 On Almost Monge All Scores Matrices

(a) (b)

Figure 1 The crossing paths property yielding the Monge property in grid graphs. In Figure (a),
the dark gray path is an optimal path from (0, 1) to (4, 5), and the light gray path is an optimal
path from (0, 2) to (4, 4). These two paths cross at the vertex v. Figure (b) shows that a path from
(0, 1) to (4, 4) can be obtained by taking the prefix of the dark gray path until v, and the suffix of
the light gray path from v. Similarly, a path from (0, 2) to (4, 5) can be obtained by taking the
prefix of the light gray path until v, and the suffix of the dark gray path from v. The sum of scores
of the new paths is equal to the sum of scores of the former paths, which is equal to D[1, 5] + D[2, 4].
Since the new paths are not necessarily optimal, we obtain that D[1, 4] + D[2, 5] ≥ D[1, 5] + D[2, 4].

sequence alignment computation [9], approximate tandem repeats [24, 29], approximate
non-overlapping repeats [5, 15, 29], common substring alignment [23, 25], sparse spliced
alignment [16, 28], alignment of compressed strings [12], fully-incremental string compari-
son [14, 30], and other problems.

The alignment problem on strings A and B can be represented by using an (|A|+ 1)×
(|B|+1) grid graph, known as the alignment graph (cf. [29]). Vertical (respectively, horizontal)
edges correspond to alignment of a character in A (respectively, B) with a gap, and diagonal
edges correspond to alignment of two characters in A and B. A path from the j-th vertex on
row i to the j′-th vertex on row i′ corresponds to an alignment of A[i..i′] and B[j..j′]. The
all scores matrix is therefore a matrix that contains the maximum (or minimum) scores of
paths from vertices on the first row of the alignment graph to the vertices on the last row.

For an n × n matrix D, its density matrix D� is an (n − 1) × (n − 1) matrix, where
D�[i, j] = D[i, j] +D[i− 1, j − 1]−D[i− 1, j]−D[i, j − 1]. A matrix is called Monge if its
density matrix is either non-negative or non-positive, and unit Monge if every row or column
of the density matrix contains at most one non-zero element, and all the non-zero elements
are equal to 1. All scores matrices of grid graphs are Monge matrices, this follows from the
crossing paths property of the grid graph: If P1 and P2 are two paths from vertices on the
first row to vertices on the last row of the graph, where on the first row the endpoint of P1
appears before the endpoint of P2, and on the last row the endpoint of P1 appears after the
endpoint of P2, then the paths P1 and P2 must cross. This is illustrated in Figure 1. The
Monge property is crucial for many of the algorithms for constructing all score matrices and
for their applications. When the scoring function is the LCS score, the all scores matrix is
unit Monge [31].

In this paper we extend the classical grid graphs to include an additional set of edges.
These additional edges are of form ((i, j), (i′, j′)) where i′ ≥ i and j′ ≥ j, and either
i′ > i+ 1 or j′ > j + 1 (see Figure 2a). We call these edges bridges. The bridges represent
correspondence between pairs of substrings, one per each input sequence, which could be
precomputed using an auxiliary adviser. In grid graphs enhanced with bridges, the crossing
paths property no longer holds, and so the all scores matrix does not necessarily have the
Monge property (see Figure 2).

Motivating examples of grid graphs enhanced with bridges are found in the domain of
computational biology. Here, bridges are often used to incorporate additional information

A. Carmel, D. Tsur, and M. Ziv-Ukelson 17:3

that is known about the function and the physical structure of the aligned biomolecules and
of their components [6, 11, 27]. One such example is found in a problem denoted “sequence
alignment guided by motifs”. Here, each one of the input sequences is first subjected to a
parsing step in which meaningful substrings within it are identified and labeled. Substrings
sharing the same label could be instantiations of the same motif shared by members of a
protein family [13], particular DNA or RNA substrings of similar structure or function [4],
or conserved molecular binding sites shared by multiple sequences that are combinatorially
regulated in some biological pathway. Note that two substrings identified as belonging to
the same motif family could be quite diverged in sequence, as it is the function, rather than
the exact sequence, that is conserved in functional motifs. Yet, pairs of substrings sharing
the same motif label are expected to be highly conserved in their location and order of
occurrences within homologous genomic sequences. To incorporate this information, the
alignment grid graph is enhanced with bridges reflecting pairs of substrings belonging to
the same motif family, one from each sequence, and weights are assigned to these additional
edges based on some a-priori scoring scheme expressing the importance of conserving the
motifs in the alignment [4, 3, 8].

Our contribution and roadmap

In this paper, we consider grid graphs with bridges, and we assume that the non-bridge edges
have 0/1 weights. We note that grid graphs with arbitrary bounded integer weights on the
non-bridge edges can be reduced to grid graphs with 0/1 weights [30], and thus we will only
consider the 0/1 weights scheme. However, this reduction is only quasi-polynomial: If the
weights of non-bridge edges in the original grid graph are integers between −C and C, the
reduction increases the size of graph by a factor of Θ(C2).

Our main result is to show the following properties of the non-zero values in the density
matrix of an all scores matrix of a grid graph with r bridges (see Figure 2 for an example).

1. All the non-zero values in the density matrix are −1 or 1, except for O(r2) values in
specific locations in the matrix.

2. In every row or column, except for r specific rows and r specific columns, the number of
non-zero values is O(r).

In particular, the number of non-zero values in the density matrix is O(rn). Thus, if r = o(n),
the all scores matrix is “almost Monge”. Property 1 will be proved in Section 2 (Theorem 3),
and Property 2 in Sections 3. Due to space constraints, we only prove Property 2 for the
case of a single bridge.

As a consequence of our main result, we obtain an algorithm for computing the all scores
matrix for grid graphs with bridges in O(r(nm + n2)) time. This algorithm is based on
Schmidt’s algorithm [29] for grid graphs with no bridges, and utilizes the properties described
above. See below for comparison of this algorithm with previous results. The algorithm is
given in Section 4 (Theorem 20).

Due to space constraints, some proofs were omitted.

Related work

Our algorithm mentioned above computes the optimal scores of paths from every vertex in
a specific set of vertices (the vertices on the first row) to every vertex in the graph. This
problem is called multiple source shortest paths (MSSP) problem. Algorithms for solving
MSSP were proposed by several previous works. Schmidt [29] gave an MSSP algorithm
for grid graphs with general weights. This algorithm constructs the all scores matrix in

CPM 2016

17:4 On Almost Monge All Scores Matrices

O((nm+ n2) logn) time. For grid graphs with bounded integers weights, Schmidt gave an
algorithm that constructs the all scores matrix in O(mn) time. Tiskin [30] gave an MSSP
algorithm for grid graphs with bounded integer weights that constructs the all scores matrix
in O(mn(log logn/ logn)2) time. The results on grid graphs have been extended to general
planar graphs. Klein [18] gave an algorithm for MSSP on planar graphs with general weights.
The algorithm constructs the all scores matrix of a grid graph in O((nm+ n2) logn) time.
Eisenstat and Klein [10] gave an algorithm for MSSP on undirected planar graphs with
bounded integer weights, which is faster than the algorithm of Klein by a factor of Θ(logn).
Cabello et al [7] extended the result of Klein to graphs that can be embedded on a surface
with genus g. Since a grid graph with r bridges can be embedded on a surface with genus r,
the algorithm of Cabello et al. constructs the all scores matrix of a grid graph with r bridges
and general weights in O(rn2 log2 n) time. Cabello et al. also gave a randomized algorithm
whose running time is O(rn2 logn) with high probability. Our algorithm improves the result
of Cabello et al. by a factor of Θ(log2 n) for the case of bounded integer weights.

2 Preliminaries and basic problem properties

A grid graph with bridges is a directed graph G = (V,E) whose vertex set is V = {(i, j) : 0 ≤
i ≤ m, 0 ≤ j ≤ n}, and whose edge set consists of four types of edges:
1. Horizontal edges: ((i, j), (i, j + 1)) for every pair of indices i, j satisfying 0 ≤ i ≤ m and

0 ≤ j < n.
2. Vertical edges: ((i, j), (i + 1, j)) for every pair of indices i, j satisfying 0 ≤ i < m and

0 ≤ j ≤ n.
3. Diagonal edges: Edges of the form ((i, j), (i+ 1, j + 1)).
4. Bridges: Edges of the form ((i, j), (i′, j′)) where i ≤ i′ and j ≤ j′, and either i+ 1 < i′ or

j + 1 < j′.
In our framework, the horizontal and vertical edges have weight 0, the diagonal edges have
weight 1, and each bridge has a positive integer weight. The score of a path is the sum of
the weights of its edges. The 0/1 weights of the non-bridge edges correspond to the LCS
scoring scheme for sequence alignment.

Let G be a grid graph with bridges f1, . . . , fr. For a path P in G, if the first bridge P
passes through is fs, we say that P is an s-path. If P does not pass through bridges, we say
that P is a 0-path. The reason for focusing on the first bridge is to obtain a variant of the
crossing path property which will be given in Lemma 12.

We define matrices D, D�, and Dfirst as follows (see Figure 2).
1. For 0 ≤ i ≤ j ≤ n, D[i, j] is the maximum score of a path from (0, i) to (m, j). For i > j,

D[i, j] = j − i. The matrix D is called the all scores matrix of G.
2. For 1 ≤ i, j ≤ n, D�[i, j] = (D[i, j] + D[i − 1, j − 1]) − (D[i − 1, j] + D[i, j − 1]). The

matrix D� is called the density matrix of D.
3. For 0 ≤ i, j ≤ n, Dfirst[i, j] is a subset of the set S = {0, 1, . . . , r} of bridge indices. For

every s ∈ S, s ∈ Dfirst[i, j] if and only if there is an s-path from (0, i) to (m, j) with score
D[i, j].

To illustrate the importance of this matrix, consider a region in Dfirst in which all elements
contain the same symbol s. Then, the crossing path property holds for indices in the region
(since the two paths pass through fs), so we obtain that the Monge property holds inside the
region.

Next, we point out the entries in D and in D� that are affected by a bridge in G. For
some bridge fk = ((i, j), (i′, j′)), we define start(fk) = j and end(fk) = j′. We also define

A. Carmel, D. Tsur, and M. Ziv-Ukelson 17:5

(a) Grid graph

-1

-1-2

-1-2-3

-1-2-3-4

-1-2-3-4-5

-1-2-3-4-5-6

-1-2-3-4-5-6-7

-1-2-3-4-5-6-7-8

-1-2-3-4-5-6-7-8-9

-1-2-3-4-5-6-7-8-9-10

0 1 2 3 4 7 7 7 7 7 8

0 1 2 3 7 7 7 7 7 7

0 1 2 7 7 7 7 7 7

0 1 2 3 4 5 6 7

0 1 2 4 4 5 6

0 1 4 4 4 5

0 4 4 4 4

0 1 2 3

0 1 2

0 1

0

(b) D

-4

-1

-3

-1

-1

-1

1

1

1

1

1

1 1

1 1 1 1

1

1

(c) D�

0

0

0

0

0

0

0

0

0

0

0

0 0 0 00 0,1

0 0 0 1 0,1

0 0 1 1

0 0 0 0

20 0

20

0

0

0

0

00

1 1 1 1

1 1 1 1

1 1 1 0,1

0 0 00,2

0,2 00

2 0,2 0

2 2 2 0,2

(d) Dfirst

Figure 2 Figure (a) contains an example of a grid graph with two bridges. The weight of the
bridge f1 = ((1, 2), (9, 5)) is 7, and the weight of the bridge f2 = ((0, 6), (9, 7)) is 4. The matrices
D, D�, and Dfirst of the graph are shown in Figures (b), (c), and (d), respectively. Only the
non-zero values of the density matrix are shown. The boundary indices are marked in grey, and the
intersection indices are marked with darker grey. As stated in the text, each column or row of the
density matrix can contain at most two negative values in non-boundary indices, and these values
must be −1. The value of D�[3, 5] is 2 + 2 − 7 − 1 = −4, and these four values in D are marked in
(b). The cause of the negative value in D�[3, 5] is that the corresponding optimal paths do not cross.

Ek = {(i, j) : i ≤ start(fk), j ≥ end(fk)}. In other words, Ek contains all indices (i, j) in D
such that paths from (0, i) to (m, j) can pass through fk. The boundary of fk is a set of indices
in D�, defined as Bk = {(i, end(fk)) : i ≤ start(fk) + 1} ∪ {(start(fk) + 1, j) : j ≥ end(fk)}.
The two sets in the definition of Bk are called the left boundary and bottom boundary of fk,
respectively. We say that an index (i, j) in D is a boundary index if it is inside the boundary
of some fk. An index (i, j) is an intersection index if there are k, k′ (possibly k = k′) such
that (i, j) is in the left boundary of fk and in the bottom boundary of fk′ (see Figure 2c).

In the introduction we gave two properties of the density matrix. We now restate these
properties using the definitions above.
1. Non-zero values other than −1, 1 can appear only at intersection indices.
2. In every row or column, the number of −1 values in non-boundary indices is at most r,

and the number of 1 values in these indices is at most r.
Due to space constraints, we show these properties only for negative values. We will prove
the properties for the positive values in the full version of the paper. Due to symmetry, we
will show Property 2 only for columns.

CPM 2016

17:6 On Almost Monge All Scores Matrices

Note that if i > j+1, D�[i, j] = (j− i)+((j−1)−(i−1))−(j−(i−1))−((j−1)− i) = 0.
If i = j + 1 then D�[i, j] = −D[j, j], so in this case D�[i, j] = 0 unless there is a bridge
fk with start(fk) = end(fk) = j, in which case (i, j) is an intersection index. Similarly,
for i = j, D�[i, j] ∈ {0, 1} unless one of the following two cases occurs: (1) There is a
bridge fk with start(fk) = j − 1 and end(fk) = j. (2) There are bridges fk and fk′ with
start(fk) = end(fk) = j − 1 and start(fk′) = end(fk′) = j. In both cases (i, j) is an
intersection index. Therefore, the properties stated above are satisfied for indices (i, j) with
i ≥ j. In the rest of the paper we will implicitly assume that indices (i, j) in D� satisfy
i < j.

We now give a proof for Property 1. For this goal, we need the following definition and
lemma.

I Definition 1. A pair of indices (i1, j1), (i2, j2) in the matrix D are said to be bridge
equivalent if for every 1 ≤ k ≤ r, (i1, j1) ∈ Ek if and only if (i2, j2) ∈ Ek. In other words,
(i1, j1), (i2, j2) are bridge equivalent if paths from (0, i1) to (m, j1) and paths from (0, i2) to
(m, j2) can pass through the same set of bridges.

I Lemma 2. For every i, j,
1. If (i, j − 1) and (i, j) are bridge equivalent, D[i, j − 1] ≤ D[i, j] ≤ D[i, j − 1] + 1.
2. If (i− 1, j) and (i, j) are bridge equivalent, D[i, j] ≤ D[i− 1, j] ≤ D[i, j] + 1.

Property 1 is now obtained.

I Theorem 3. Negative values other than −1 can appear only at intersection indices.

Proof. Let (i, j) be an index that is not an intersection index. We have that either (1)
(i, j − 1), (i, j) are bridge equivalent, and (i − 1, j − 1), (i − 1, j) are bridge equivalent, or
(2) (i − 1, j), (i, j) are bridge equivalent, and (i − 1, j − 1), (i, j − 1) are bridge equivalent.
In the former case we can rearrange the terms in the definition of D�[i, j] and obtain that
D�[i, j] = ∆1−∆2, where ∆1 = D[i, j]−D[i, j−1] and ∆2 = D[i−1, j]−D[i−1, j−1]. We
have ∆1 −∆2 < 0, and by Lemma 2, ∆1,∆2 ∈ {0, 1}. It follows that ∆1 = 0 and ∆2 = 1, so
D�[i, j] = −1. In the latter case we write D�[i, j] = ∆′1−∆′2 where ∆′1 = D[i, j]−D[i−1, j]
and ∆2 = D[i, j − 1]−D[i− 1, j − 1]. By Lemma 2, in this case ∆′1 = −1 and ∆′2 = 0, so
again D�[i, j] = −1. J

We next give several lemmas which will be used later to prove Property 2 in Section 3.

I Definition 4. An index (i, j) which is not a boundary index and for which D�[i, j] < 0 is
called an injury. The submatrices D[i− 1..i, j − 1..j] and Dfirst[i− 1..i, j − 1..j] are called
the submatrices of D and Dfirst corresponding to the injury, respectively.

I Lemma 5. For an injury (i, j), D[i− 1..i, j − 1..j] = (x x+1
x x) for some x.

Proof. As in the proof of Theorem 3, D�[i, j] = ∆1−∆2, where ∆1 = D[i, j]−D[i, j−1] = 0
and ∆2 = D[i − 1, j] − D[i − 1, j − 1] = 1. Thus, D[i − 1..i, j − 1..j] is of the form
(y y+1
x x). We also have D�[i, j] = ∆′1 − ∆′2 where ∆′1 = D[i, j] − D[i − 1, j] = −1 and

∆′2 = D[i, j − 1]−D[i− 1, j − 1] = 0. The lemma follows. J

Our next goal is to show that every column in the density matrix contains at most r
injuries. Consider a fixed column, and assume that this column has k injuries.

I Definition 6. Let Di =
(
γi βi

αi δi

)
be the submatrix of Dfirst corresponding to the i-th injury,

where the injuries are numbered in increasing row indices.

A. Carmel, D. Tsur, and M. Ziv-Ukelson 17:7

Our approach for proving that k ≤ r is based on showing properties of the Dfirst matrix.
One of our techniques is showing that there are forbidden structures in Dfirst. For example,
Lemma 10 below states that a structure consisting of a symbol s ∈ βi and s ∈ αj for j ≥ i
is forbidden. For the case of r = 1, applying this lemma with i = j implies that there are
only two possible values for αi, βi: either {0}, {1} or {1}, {0}. If we assume conversely that
there are k = 2 injuries, then there are four possible values for α1, β1, α2, β2. We then use
Lemma 10 and an additional lemma (Lemma 12) that gives another forbidden structure in
Dfirst, and show that each of these four cases cannot occur. This is a contradiction, and
therefore there cannot be two injuries.

I Lemma 7. For every i, j,
1. If (i, j − 1) and (i, j) are bridge equivalent,

(a) If D[i, j − 1] = D[i, j] then Dfirst[i, j − 1] ⊆ Dfirst[i, j].
(b) If D[i, j − 1] + 1 = D[i, j] then Dfirst[i, j] ⊆ Dfirst[i, j − 1].

2. If (i− 1, j) and (i, j) are bridge equivalent,
(a) If D[i, j] = D[i− 1, j] then Dfirst[i, j] ⊆ Dfirst[i− 1, j].
(b) If D[i, j] + 1 = D[i− 1, j] then Dfirst[i− 1, j] ⊆ Dfirst[i, j].

Proof. We first prove the first part of the lemma. Choose a value s ∈ Dfirst[i, j−1]. Let P an
s-path from (0, i) to (m, j− 1) with score D[i, j− 1]. The path P ′ obtained by appending the
vertex (m, j) to P is an s-path from (0, i) to (m, j) with score D[i, j − 1] = D[i, j] Therefore,
s ∈ Dfirst[i, j].

We next prove the second part of the lemma. Let s ∈ Dfirst[i, j], and let P be an s-path
from (0, i) to (m, j) with score D[i, j]. Since (i, j − 1),(i, j) are bridge equivalent, P cannot
pass through a bridge f with end(f) > j− 1, so P has vertices on column j− 1. Denote by k
the maximal index such that (k, j − 1) ∈ P . The path P ′ obtained by taking the prefix of P
until (k, j−1), and appending the vertices (k+ 1, j−1), . . . , (m, j−1) is an s-path from (0, i)
to (m, j − 1) with score at least D[i, j]− 1 = D[i, j − 1]. It follows that s ∈ Dfirst[i, j − 1].

The proofs of the third and fourth parts of the lemma are symmetrical to the proofs of
the first two parts, and thus they are omitted. J

The following lemma follows directly from Lemmas 5 and 7.

I Lemma 8. For every i, αi ⊆ γi ∩ δi and βi ⊆ γi ∩ δi

In order to restrict values of D in indices for which the entries in Dfirst contain the same
symbol s, we define a matrix Ds as follows. For a symbol s ∈ S, let Ds be a matrix in which
for every (i, j) ∈ Es, Ds[i, j] is the maximum score of an s-path from (0, i) to (m, j). For
s = 0, Ds is defined as above, except that Ds[i, j] is defined for every 0 ≤ i, j ≤ n. Note that
Ds[i, j] ≤ D[i, j] for every (i, j) for which Ds[i, j] is defined.

I Lemma 9. For every s ∈ S, the matrix Ds has the Monge property.

Proof. For s = 0 the lemma is true due to the crossing paths property for grid graphs with
no bridges. For s > 0 we also have the crossing paths property: For every index (i, j), a
maximum score s-path from (0, i− 1) to (m, j) must cross a maximum score s-path from
(0, i) to (m, j − 1) as both paths pass through fs. Thus, the lemma follows. J

I Lemma 10. For every 1 ≤ i ≤ j ≤ k, βi ∩ αj = ∅.

Proof. Fix i ≤ j, and assume conversely that s ∈ βi ∩ αj . By Lemma 5, the submatrices of
D corresponding to injuries i and j are D′ = (x x+1

x x) for some x, and D′′ =
(
y y+1
y y

)
for some

CPM 2016

17:8 On Almost Monge All Scores Matrices

(a) (b) (c)

Figure 3 An illustration of the proof of
Lemma 10. The grey s symbols in figure (a) rep-
resent values that are obtained using Lemma 8.

Figure 4 An illustration of the proof of
Lemma 12.

y, respectively (see Figure 3). Let D′s and D′′s be the submatrices of Ds that correspond to
D′ and D′′, respectively. From the assumption s ∈ βi and Lemma 8, we have that s ∈ γi.
Thus, the first row of D′s is equal to the first row of D′. Similarly, we have that s ∈ δj and
therefore the last row of D′′s is equal to the last row of D′′. By taking the first row of D′s
and the last row of D′′s , we obtain that Ds contains a submatrix

(
x x+1
y y

)
and therefore Ds

does not have the Monge property. This contradicts Lemma 9. J

Finally, we give another forbidden structure in Dfirst, based on a variant of the crossing
path property.

I Definition 11. Let � be a linear order on S = {0, 1, . . . , r} defined as follows. For every
i 6= j, i � j if and only if start(fi) ≤ start(fj), where start(f0) =∞.

I Lemma 12. Let di, dj , dk be values on rows i, j, k of some column i′ of Dfirst, where
i < j < k. Then, there are no s, t ∈ S such that s � t, s ∈ di ∩ dk, t /∈ di ∪ dk, and t ∈ dj.

Proof. Assume conversely that there are s, t ∈ S such that s � t, s ∈ di ∩ dk, t /∈ di ∪ dk,
and t ∈ dj . Note that s 6= 0 since by definition, 0 6� t.

Let Pi, Pk be maximum score s-paths from (0, i) and (0, k) to (m, i′), respectively. Let
Pj be a maximum score t-path from (0, j) to (m, i′). Since s � t, in the subgraph of G that
contains the vertices above and to the left of the start vertex of fs, the paths Pi, Pj , Pk do
not pass through bridges (see Figure 4). Thus, Pj must cross one of the paths Pi and Pk.
Assume without loss of generality that Pj crosses Pk.

Let P 1
j , P

1
k denote the prefixes of Pj , Pk until the crossing point, and let P 2

j , P
2
k denote

the suffixes of Pj , Pk from the crossing point. Let y, z denote the scores of the paths Pj , Pk,
respectively, and let a, b denote the score of the paths P 1

j , P
1
k , respectively.

We have that the path P 1
k ∪P 2

j is a t-path from (0, k) to (m, i′). Since t 6∈ dk, we conclude
that b+(y−a) < z. Furthermore, due to the path P 1

j ∪P 2
k we have a+(z−b) ≤ y. Summing

the two inequalities above we obtain y + z < y + z, a contradiction. J

3 Properties of the one bridge case

In this section we assume the grid graph has a single bridge, f = ((ibeg, jbeg), (iend, jend)),
and show that there is at most one injury in every column of D�.

I Theorem 13. There is at most one injury in every column of D�.

Proof. Fix some column of D�, and suppose conversely that there are at least two injuries
in this column. Recall that Di =

(
γi βi

αi δi

)
is the submatrix of Dfirst corresponding to the i-th

A. Carmel, D. Tsur, and M. Ziv-Ukelson 17:9

(a) (b) (c) (d)

Figure 5 The four cases for two injuries in the proof of Theorem 13. The grey 0 in figure (a)
represents a value that is obtained using Lemma 8.

injury. By Lemma 10, αi ∩ βi = ∅, and since αi and βi are non empty subsets of S = {0, 1},
it follows that either Di is of the form (· 1

0 ·) or Di is of the form (· 0
1 ·). Considering the first

two injuries, there are four possible cases (see Figure 5):
1. D1, D2 are of the form (· 1

0 ·).
2. D1, D2 are of the form (· 0

1 ·).
3. D1 is of the form (· 1

0 ·) and D2 is of the form (· 0
1 ·).

4. D1 is of the form (· 0
1 ·) and D2 is of the form (· 1

0 ·).
We now show that each of the cases above yields a contradiction. In Case 1, we have from
Lemma 8 that 0 ∈ δ1. We now apply Lemma 12 on β1, δ1, β2 and obtain a contradiction
(taking s = 1 and t = 0). Case 2 yields a contradiction using similar arguments. In Cases 3
and 4, we have 1 ∈ β1 ∩ α2 and 0 ∈ β1 ∩ α2, respectively, which is a contradiction to
Lemma 10. J

Theorem 13 implies the following corollary.

I Corollary 14. For j 6= jend there are at most two negative values in column j of D�.
Moreover, the negative values can occur only in rows 1, . . . , jbeg + 1, and if there are two
negative values, one of the values must be in row jbeg + 1.

Proof. The column j can contain at most one injury. The column j has at most one boundary
index, so there is at most one negative value in addition to the injury. J

4 Algorithm for constructing all-scores matrices

In this section we give an algorithm for computing the all scores matrix of a grid graph
with bridges. Our algorithm is an extension of the algorithm of Schmidt for a grid graph
without bridges [29]. We follow the presentation of Schmidt’s algorithm which was given in
Matarazzo et al. [26]. For clarity of presentation, we will first describe an algorithm for the
case of a single bridge, and we will later handle the case of r > 1 bridges.

Let f = ((ibeg, jbeg), (iend, jend)) be the single bridge of the grid graph, and let Wf denote
its weight.

Let G0, . . . , Gm be grid graphs, where Gi is the subgraph of G induced by all the vertices
(i′, j) with i′ ≤ i. Let D0, . . . , Dm be the all scores matrices of G0, . . . , Gm, respectively.

For 0 ≤ k ≤ n, define

DiffCi,j(k) = Di[k, j + 1]−Di[k, j] and DiffRi,j(k) = Di+1[k, j]−Di[k, j].

The following lemma follows from the definition above.

I Lemma 15. For i ≤ m, if all DiffCi,j(k) values are known for all j and k, then the
matrix Di can be constructed in O(n2) time.

CPM 2016

17:10 On Almost Monge All Scores Matrices

Our algorithm for constructing the all-scores matrix of G computes all DiffCm,j functions
and then applies Lemma 15. The algorithm is based on the following properties of the
DiffCi,j and DiffRi,j functions.
1. Most DiffCi,j and DiffRi,j functions have compact representations of size O(1).
2. The compact representations of DiffCi+1,j and DiffRi,j+1 can be computed efficiently

from the compact representations of DiffCi,j and DiffRi,j .

Property 1, stated in Lemma 18, is obtained from Lemmas 16 and 17 below. Property 2
is shown in Lemma 19. Similar properties were used in the algorithm of Schmidt for grid
graphs with no bridges. In that case, all the DiffCi,j and DiffRi,j functions have compact
representations, and the size of each representation is exactly 1. In the case of a grid graph
with a bridge, we need additional steps to handle the DiffCi,j and DiffRi,j functions that
do not have compact representations.

I Lemma 16. For every j 6= jend − 1, DiffCi,j(k) ∈ {0, 1}, and for every i 6= iend − 1,
DiffRi,j(k) ∈ {0, 1}.

Proof. Follows immediately from Lemma 2. J

I Lemma 17.
1. For every i and j 6= jend − 1 there are k1 < k2 (where k2 = jbeg + 1) such that for every

k 6= k1, k2, DiffCi,j(k − 1) ≤ DiffCi,j(k).
2. For every i 6= iend − 1 and j there are k1 < k2 (where k2 = jbeg + 1) such that for every

k 6= k1, k2, DiffRi,j(k − 1) ≥ DiffRi,j(k).

Based on the previous two lemmas, we now give a compact representation for the DiffRi,j

and DiffCi,j functions. The compact representation SRi,j of DiffRi,j is an array of “step”
indices, i.e., the indices in which the value of DiffRi,j change. Formally, let I be the set
of all indices k such that DiffRi,j(k) 6= DiffRi,j(k − 1). Then, SRi,j [l] is the l-th smallest
element of I. The arrays SCi,j are defined similarly.

I Lemma 18. For every i 6= iend− 1 and j 6= jend− 1, the arrays SRi,j and SCi,j have O(1)
elements each.

In the following lemma we show that SCi+1,j and SRi,j+1 can be computed efficiently from
SCi,j and SRi,j . For every (i, j) 6= (iend − 1, jend − 1) and k ≤ j, the optimal path from
(0, k) to (i+ 1, j + 1) passes through either (i+ 1, j), (i, j), or (i, j + 1). Thus,

Di+1[k, j + 1] = max{Di+1[k, j], Di[k, j] +Wi,j , Di[k, j + 1]},

where Wi,j = 1 if there is a diagonal edge entering (i, j) and Wi,j = 0 otherwise. From the
equality above, the following formulas for DiffCi+1,j and DiffRi,j+1 are obtained (see [26]).

I Lemma 19. For 0 ≤ k ≤ j and (i, j) 6= (iend − 1, jend − 1),

DiffCi+1,j(k) = Maxi,j(k)−DiffRi,j(k) and DiffRi,j+1(k) = Maxi,j(k)−DiffCi,j(k)

where Maxi,j(k) = max{DiffRi,j(k),Wi,j ,DiffCi,j(k)}.

We will use compact representations SMaxi,j for the Maxi,j functions, which are defined
similarly to the SRi,j arrays. From the definition of Maxi,j , every step of Maxi,j corresponds
to a step of either DiffCi,j or DiffRi,j , and thus the number of elements in SMaxi,j is less
then or equal to the number of elements in both SCi,j and SRi,j . Therefore, SMaxi,j has
O(1) elements for i 6= iend − 1 and j 6= jend − 1.

A. Carmel, D. Tsur, and M. Ziv-Ukelson 17:11

Our algorithm for computing the arrays SCm,j , traverses every i, j and computes SCi+1,j
and SRi,j+1 from SCi,j and SRi,j using Lemma 19. When i 6= iend − 1 and j 6= jend − 1,
this computation takes O(1) time by Lemma 18. There are two cases which require a special
treatment. The first case is (i, j) = (iend − 1, jend − 1). In this case Lemma 19 can not
be applied and thus SCi+1,j and SRi,j+1 must be computed differently. Here we compute
Di+1[k, j], Di[k, j + 1], and Di+1[k, j + 1], for every 0 ≤ k ≤ n. Then, we use these values to
compute DiffCi+1,j(k) and DiffRi,j+1(k) for all k, and finally we compute SCi+1,j and
SRi,j+1 from DiffCi+1,j and DiffRi,j+1.

The values Di+1[k, j] and Di[k, j + 1] are obtained using Lemma 15 in O(n2) time. To
compute the Di+1[k, j + 1] values, we use the equality

Di+1[k, j + 1] = max{Di[k, j + 1], Di[k, j] +Wi,j , Di+1[k, j], Dibeg [k, jbeg] +Wf}.

The second special case is when i = iend − 1 or j = jend − 1. In this case Lemma 18 does
not apply. Therefore, we can only bound the time to compute SCi+1,j and SRi,j+1 by O(n).
Since there are O(n+m) pairs i, j for which this case occurs, the total contribution of this
case to the time complexity of the algorithm is O(n2 + nm).

Extension to r bridges

The algorithm presented above can be extended to the case of r > 1 bridges. In this
case, using the results of the next section we get that for every non-boundary pair (i, j),
DiffCi,j and DiffRi,j are partitioned to O(r) monotone regions and thus their compact
representations SCi,j ,SRi,j have O(r) elements. Therefore, the computation of SCi,j ,SRi,j

for non-boundary indices takes O(rnm) time. As for boundary indices, the technique remains
as in the case of one bridge, only that now there are O(r) intersection indices and O(r(n+m))
boundary indices. Summing the above, the following theorem is obtained.

I Theorem 20. The all scores matrix for an m × n grid graph with r bridges can be
constructed in O(r(nm+ n2)) time.

Acknowledgments. We thank the anonymous CPM 2016 reviewers for their helpful com-
ments.

References
1 C. E. R. Alves, E. N. Cáceres, and S. W. Song. An all-substrings common subsequence

algorithm. Discrete Applied Mathematics, 156(7):1025–1035, 2008.
2 A. Apostolico, M. J. Atallah, L. L. Larmore, and S. McFaddin. Efficient parallel algorithms

for string editing and related problems. SIAM J. on Computing, 19(5):968–988, 1990.
3 A. N. Arslan. Sequence alignment guided by common motifs. In Proceedings of the fourth

Biotechnology and Bioinformatics Symposium, page 30. University of Colorado at Colorado
Springs, 2007.

4 A. N. Arslan. Sequence alignment guided by common motifs described by context free
grammars. In Biotechnology and Bioinformatics Symp. (BIOT’07), 2007.

5 G. Benson. A space efficient algorithm for finding the best nonoverlapping alignment score.
Theoretical Computer Science, 145(1&2):357–369, 1995.

6 H. L. Bodlaender, M. R. Fellows, and P. A. Evans. Finite-state computability of annotations
of strings and trees. In Combinatorial Pattern Matching, pages 384–391. Springer, 1996.

7 S. Cabello, E. W. Chambers, and J. Erickson. Multiple-source shortest paths in embedded
graphs. SIAM J. on Computing, 42(4):1542–1571, 2013.

8 J.-P. Comet and J. Henry. Pairwise sequence alignment using a prosite pattern-derived
similarity score. Computers & chemistry, 26(5):421–436, 2002.

CPM 2016

17:12 On Almost Monge All Scores Matrices

9 M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence alignment
algorithm for unrestricted cost matrices. SIAM J. on Computing, 32(5):1654–1673, 2003.

10 D. Eisenstat and P. N. Klein. Linear-time algorithms for max flow and multiple-source
shortest paths in unit-weight planar graphs. In Proc. 45th ACM Symposium on Theory Of
Computing (STOC), pages 735–744, 2013.

11 P. A. Evans. Algorithms and complexity for annotated sequence analysis. PhD thesis,
Citeseer, 1999.

12 D. Hermelin, G. M. Landau, S. Landau, and O. Weimann. A unified algorithm for ac-
celerating edit-distance computation via text-compression. In Proc. 26th Symposium on
Theoretical Aspects of Computer Science (STACS), pages 529–540, 2009.

13 N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. S. Langendijk-Genevaux,
M. Pagni, and C. Sigrist. The prosite database. Nucleic acids research, 34(suppl 1):D227–
D230, 2006.

14 Y. Ishida, S. Inenaga, A. Shinohara, and M. Takeda. Fully incremental LCS computation.
In Proc. 15th Symp. on Fundamentals of Computation Theory (FCT), pages 563–574, 2005.

15 S. Kannan and E. W. Myers. An algorithm for locating nonoverlapping regions of maximum
alignment score. SIAM J. on Computing, 25(3):648–662, 1996.

16 C. Kent, G. M. Landau, and M. Ziv-Ukelson. On the complexity of sparse exon assembly.
Journal of Computational Biology, 13(5):1013–1027, 2006.

17 S.-R. Kim and K. Park. A dynamic edit distance table. J. of Discrete Algorithms, 2(2):303–
312, 2004.

18 P. N. Klein. Multiple-source shortest paths in planar graphs. In Proc. 16th Symposium on
Discrete Algorithms (SODA), volume 5, pages 146–155, 2005.

19 P. Krusche and A. Tiskin. String comparison by transposition networks. In Proc. of London
Algorithmics Workshop, pages 184–204, 2008.

20 P. Krusche and A. Tiskin. New algorithms for efficient parallel string comparison. In Proc.
22nd Symposium on Parallel Algorithms and Architectures (SPAA), pages 209–216, 2010.

21 G. M. Landau, E. W. Myers, and J. P. Schmidt. Incremental string comparison. SIAM J.
on Computing, 27(2):557–582, 1998.

22 G. M. Landau, E. W. Myers, and M. Ziv-Ukelson. Two algorithms for LCS consecutive
suffix alignment. J. of Computer and System Sciences, 73(7):1095–1117, 2007.

23 G. M. Landau, B. Schieber, and M. Ziv-Ukelson. Sparse LCS common substring alignment.
Information Processing Letters, 88(6):259–270, 2003.

24 G. M. Landau, J. P. Schmidt, and D. Sokol. An algorithm for approximate tandem repeats.
J. of Computational Biology, 8(1):1–18, 2001.

25 G. M. Landau and M. Ziv-Ukelson. On the common substring alignment problem. J. of
Algorithms, 41(2):338–359, 2001.

26 U. Matarazzo, D. Tsur, and M. Ziv-Ukelson. Efficient all path score computations on grid
graphs. Theoretical Computer Science, 525:138–149, 2014.

27 S. Mozes, D. Tsur, O. Weimann, and M. Ziv-Ukelson. Fast algorithms for computing tree
lcs. Theoretical Computer Science, 410(43):4303–4314, 2009.

28 Y. Sakai. An almost quadratic time algorithm for sparse spliced alignment. Theory of
Computing Systems, pages 1–22, 2009.

29 J. P. Schmidt. All highest scoring paths in weighted grid graphs and their application to
finding all approximate repeats in strings. SIAM J. of Computing, 27(4):972–992, 1998.

30 A. Tiskin. Semi-local string comparison: algorithmic techniques and applications.
arXiv:0707.3619v16.

31 A. Tiskin. Semi-local longest common subsequences in subquadratic time. J. Discrete
Algorithms, 6(4):570–581, 2008.

	Introduction
	Preliminaries and basic problem properties
	Properties of the one bridge case
	Algorithm for constructing all-scores matrices

