
Structural Results on Matching Estimation with
Applications to Streaming∗

Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monemizadeh,

Chris Schwiegelshohn, Sofya Vorotnikova, Samson Zhou

We study the problem of estimating the size of a matching when the graph is revealed
in a streaming fashion. Our results are multifold:

1. We give a tight structural result relating the size of a maximum matching to the
arboricity α of a graph, which has been one of the most studied graph parameters
for matching algorithms in data streams. One of the implications is an algorithm
that estimates the matching size up to a factor of (α + 2)(1 + ε) using Õ(αn2/3)
space in insertion-only graph streams and Õ(αn4/5) space in dynamic streams,
where n is the number of nodes in the graph. We also show that in the vertex
arrival insertion-only model, an (α+ 2) approximation can be achieved using only
O(log n) space.

2. We further show that the weight of a maximum weighted matching can be ef-
ficiently estimated by augmenting any routine for estimating the size of an un-
weighted matching. Namely, given an algorithm for computing a λ-approximation
in the unweighted case, we obtain a 2(1+ε)·λ approximation for the weighted case,
while only incurring a multiplicative logarithmic factor in the space bounds. The
algorithm is implementable in any streaming model, including dynamic streams.

3. We also investigate algebraic aspects of computing matchings in data streams, by
proposing new algorithms and lower bounds based on analyzing the rank of the
Tutte-matrix of the graph. In particular, we present an algorithm determining
whether there exists a matching of size k using O(k2 log n) space.

4. We also show a lower bound of Ω(n1−ε) space for small approximation factors to
the maximum matching size in insertion-only streams. This lower bound also holds
for approximating the rank of a matrix.

∗ This work is composed of results appearing in [8, 26, 39].
C. S. was supported by Deutsche Forschungsgemeinschaft within the Collaborative Research Center SFB 876,
project A2 and ERC Advanced Grant 788893 AMDROMA
A. M. and S. V. were supported by NSF CAREER Award CCF-0953754 and CCF-1320719 and a Google Faculty
Research Award.
E. G. and S. Z were supported in part by NSF CCF-1649515.
M.M Amazon, Palo Alto, CA, USA. mmorteza@amazon.com.

1

1 Introduction

In the graph streaming model, introduced by Henzinger et al. [27], we are given a sequence of
updates to the adjacency matrix of a graph, and we aim to solve a graph problem, using as little
space as possible. Much of the recent work has typically focused on the semi-streaming model [21],
where we are allowed to use O(n · polylog n) space for a graph with n nodes, and ideally, we would
use a single pass over the data.

In particular, computing matchings is arguably the most studied problem in graph streaming
models. While a lot is already well-understood about the space requirements for this problem,
many intriguing questions remain still open.

To bypass the Ω(n) lower bound required to store a matching, recent research has begun to
focus on only approximating the size of matchings, resulting in several algorithms with sublinear-
space bounds, even with respect to the number of nodes. We continue this line of work, and present
several results for estimating matchings in weighted and unweighted graphs, using only o(n) space.

1.1 Our Contribution

Structural Results. Most previous papers on estimating matching sizes in streams focus on classes
of sparse graphs, either by limiting the degree of each node [30]1, or more generally by assuming

bounded arboricity [20]. The arboricity of a graph G(V,E) is defined as α := max
U⊆V

⌈
|E(U)|
|U |−1

⌉
, where

E(U) is the set of edges between vertices of U . Equivalently, the arboricity can be defined as the
minimum number of forests into which the edges of the graph can be decomposed. For the rest
of the paper, we assume that the arboricity of the graph (or an upper bound on it) is known in
advance. Our main result is a structural theorem relating the matching size to the arboricity:

Theorem 1. Let match(G) be the size of the maximum cardinality matching in G(V,E). For an

edge e = {u, v} ∈ E define xe = min
(

1
deg(u) ,

1
deg(v) ,

1
α+1

)
. Then,

match(G) ≤ (α+ 1)
∑
e∈E

xe ≤ (α+ 2) match(G)

Therefore, estimating
∑

e∈E xe allows us to estimate the matching size while losing an (α+ 2)
factor. We also show how to estimate this sum, provided it is large enough. If the sum is too
small to be efficiently estimated, we simultaneously use a further algorithm to estimate the size.
The algorithm in question depends on the streaming model. In insertion-only streams, where edges
arrive one after the other, we can greedily maintain a maximal matching, which was also done by
Esfandiari et al. [20], resulting in a (α+ 2)(1 + ε) approximation using Õ(ε−2αn2/3) bits of space.
In dynamic streams, we use an algebraic approach discussed further below.

As a further consequence, we relate the degree distribution of the nodes to the arboricity. This
type of estimation achieves an approximation factor of (α+ 2) of the matching size. In the vertex-
arrival model, where all edges adjacent to a node arrive simultaneously, the degree distribution can
be maintained in a straightforward manner using only O(log n) space.

Reduction of Weighted to Unweighted Matching Estimation. Building on similar approaches
for parallel algorithms [48], and on approximate matching computation in streams [14], we give a
reduction from unweighted to weighted matching estimation as follows:

1The main result of [30] holds for general graphs, but assumes a random order input stream. For adversarial inputs,
the authors give a multi-pass streaming algorithm using polylog space, assuming that the graph has bounded
degree.

2

Theorem 2. Given ε > 0 and a λ-approximate estimation using S space with failure probability δ,
there exists an 2(1 + ε)λ-approximate estimation algorithm for the weighted matching problem with
weight range [1,W] using O(S · logW · ε−1) space with failure probability δ · log1+εW .

This reduction applies to any streaming model including the dynamic stream model, where
edges may be inserted and deleted.

Algebraic Techniques for Computing Matchings in Streams. Finally, we introduce algebraic
techniques for analyzing matching problems in data streams. Like most algebraic matching algo-
rithms, we focus on properties of the Tutte-matrix of a graph. Tutte [47] famously showed that a
graph has a perfect matching if and only if the maximum rank of the Tutte-matrix is n. This was
later generalized by Lovász [36], who showed that the maximum possible rank of the Tutte-matrix is
exactly twice the maximum matching size. The Tutte-matrix is obtained from the adjacency matrix
by replacing every edge e in the upper right half with an indeterminate xe and the corresponding
entry in the lower left half with −xe. It is not obvious how to make use of the aforementioned
results, without an assignment resulting in a maximum rank. Lovász addressed this by showing
that a suitable random assignment results in the maximum rank with high probability.

This has two consequences for streaming algorithms, namely that (1) any approximation algo-
rithm for the rank of a matrix can be used to approximate the matching size of a graph, and that
(2) lower bounds for estimation tasks of the matching size can be used to derive lower bounds for
the rank of a matrix.

Using rank-preserving sketches (see e.g., [11]) applied to the Tutte matrix, we then obtain the
following upper bound:

Theorem 3. Let G(V,E) be an arbitrary graph. Then there exists a dynamic streaming algorithm
that either (1) outputs k if match(G) ≥ k or (2) outputs match(G) otherwise. The algorithm uses
O(k2 log n) bits of space and succeeds with constant probability.

Theorem 3 was also reproved by Chitnis et al. [10] using sampling-based approaches. Combining
this result with our estimation techniques for bounded arboricity matchings, we obtain a (α+2)(1+
ε) factor estimation of the matching using Õ(ε−2αn4/5) space, which is one of the few non-trivial
results for dynamic graph streams using sublinear space.

Lower Bounds on Size Estimation For lower bounds, we show that by approximating the match-
ing to a sufficiently good factor, we can solve hard instances of the Boolean Hidden Hypermatching
(BHH) problem. The Boolean Hidden Matching (BHM) problem was initially proposed by Bar-
Yossef et al. [5] for the purpose of separating the one-way communication complexity of quantum
and classical messaging models. Roughly speaking, Alice is given a binary bit string x ∈ {0, 1}n
and Bob a perfect matching M on the indexes of x as well as a binary vector w ∈ {0, 1}n/2. It is
promised that the parities of the indexes of x with respect to the matching M are either equal to
w or to w and the players’ task is to determine which is the case. A tight bound of Ω(

√
n) on the

communication complexity of BHM has been given by Gavinsky et al. [22]. BHH is a generalization
introduced by Verbin and Yu [50]. With a slightly modified version of BHH we obtain,

Theorem 4 (informal version). Any 1-pass streaming algorithm approximating the size of the
maximum matching up to an (1 +O(ε)) factor requires Ω(n1−ε) bits of space.

Using the aforementioned connection between matching size and rank of a matrix established
by the Tutte matrix, we also obtain an Ω(n1−ε) space bound for 1 +O(ε) approximating the rank
of a matrix in data streams. It also gives an exponential separation between estimating the rank of
a diagonal matrix which admits a O(log n) space algorithm by estimating the `0 norm of a vector,
see for instance Kane et al. [28]

3

Table 1 contains a succinct overview of our specific results and the most relevant previous work.

Reference Graph class Streaming model Approx. factor Space

[30] General Random polylog(n) polylog(n)

[20] Trees Insert 2 + ε Õ(
√
n)

[20] Constant arboricity Insert 5α+ 9 Õ(αn2/3)

here Constant arboricity Insert α+ 2 Õ(αn2/3)

[12] Constant arboricity Insert 22.5α+ 6 Õ(α · polylog n)

[40] Constant arboricity Insert α+ 2 Õ(polylog n)
here Constant arboricity Vertex-Arrival α+ 2 O(log n)
here Trees Dynamic 2 + ε O(log n)

[10] Constant arboricity Dynamic 22.5α+ 6 Õ(αn4/5)

here Constant arboricity Dynamic α+ 2 Õ(αn4/5)

[20] Forests Insert 3
2 − ε Ω(

√
n)

here General Insert 1 + 2ε
3−2ε Ω

(
n1−ε

)
[3] Constant Arboricity Insert α− ε Ω(

√
n/α2.5)

[3] General Insert 1 + ε Ω
(
n
1+ 1

log logn

)
Table 1: Results for estimating the size of a maximum matching in data streams. α is the arboricity

of a graph, e.g., 3 for planar graphs. Õ(f(n)) hides factors polylogarithmic in f(n). We
also suppressed (1+ε) multiplicative factors in some approximation ratios and polynomial
dependencies on ε−1 in the space bounds. All upper bounds can be extended to weighted
matching at an additional loss of a multiplicative factor of 2 in the approximation ratio.

1.2 Related Work

Matching Computation Maintaining a 2-approximation to the maximum matching in an insertion-
only stream can be straightforwardly done by greedily maintaining a maximal matching [21]. This
remains the best algorithm discovered thus far and no single pass semi-streaming algorithm using
O(n · polylog n) space can do better than e/(e − 1), see Goel et al. [25] and Kapralov [29]. If the
edges of an insertion only stream are assumed to arrive in random order as opposed to an adversar-
ial order, Konrad et al. [32] were able to obtain a semi-streaming algorithm with an approximation
factor of 1.989. In sliding window streams, Crouch et al. [13] gave a (3 + ε)-approximation. For dy-
namic streams, Assadi et al. [4] showed that any sketching algorithm computing a nε approximate
matching requires Ω(n2−3ε) space, see also the earlier work by Konrad [31]. Since linear sketches
can be used to obtain lower bounds of dynamic graph streams [1], this result gives a lower bound
for maintaining approximate matchings in dynamic graph streams.

For weighted matching, a trickle of results sequentially improving on the approximation ratio
have been recently published for insertion streams [21, 38, 18, 19, 49, 51, 14]. Paz and Schwartz-
man [44] gave a 2 + ε approximate semi-streaming algorithm, which Ghaffari [23] re-analyzed to
obtain slightly improved space bounds. This result essentially implies that any further improvement
to weighted matching will also improve unweighted matching.

Matching Estimation To bypass the natural Ω(n) bound required by any algorithm maintaining
an approximate matching, recent research has begun to focus on only estimating the size of the
maximum matching. In one of the few non-trivial graph streaming results using polylog n space,
Kapralov et al. [30] obtained a polylogarithmic approximate estimate for randomly ordered streams.

4

Monemizadeh et al. [41] also showed that property testers in bounded degree graphs may be simu-
lated in random order streams. Using a result by Nguyen and Onak [42], this implies that an ε · n
additive approximation to some maximal matching is possible storing only a constant number of
edges in randomly order streams.

The remaining algorithms in this line of research focus on approximating matching sizes in
graphs of bounded arboricity. Estimators relating the matching size to arboricity were first consid-
ered in the field of distributed computing by Czygrinow et al. [16]. In a streaming setting this task
was first addressed by Esfandiari et al. [20], who obtained a (5α + 9)(1 + ε) approximation using
Õ(ε−2αn2/3) bits of space in insertion only streams and Õ(ε−2αn1/2) bits of space in random-order
streams. This was subsequently extended to a Õ(ε−2αn4/5) space algorithm in dynamic streams
indepedently by Chitnis et al. [10], and the initial publication of Bury and Schwiegelshohn [8].
Recently, Cormode et al. [12] gave an insertion-only algorithm with an approximation factor of
(22.5α + 6)(1 + ε) and using only Õ(ε−3α log2 n) space. This was recently further improved by
McGregor and Vorotnikova [40] to an (α+ 2)(1 + ε) approximation using O(ε−2 log n) space.

Lower bounds were first obtained by Esfandiari et al. [20]. The authors showed that Ω(
√
n)

space is necessary for any approximation better than 3
2 . Assadi et al. [3] achieved significant

improvement over our work. Among other results, they showed that for small approximation
factors, a super-linear lower of Ω(n1+1/ log logn) is necessary. They also showed that for graphs with
arboricity bounded by O(α), any algorithm achieving an α-approximation must use Ω(

√
n/α2.5)

space. Chakrabarti and Kale [9] further studied multi-pass streaming. They showed that any
deterministic streaming algorithm using s space and p passes achieving an α-approximation must
satisfy p · s ≥ (neα log e− log n)/2.

Schatten Norm Estimation The p Schatten norm of a matrix A is the `p norm of the vector
containing the singular values of A. Taking the limit of p → 0, the 0 Schatten norm corresponds
to the rank. Most previous work focused on lower bounds for dynamic streams. Clarkson and
Woodruff [11] obtained a Ω(k2) lower bound for determining whether a matrix has rank at least k.
Li et al. [33] showed a lower bound of Ω(

√
n) for the target dimension of any linear sketch-based

constant factor approximation of the rank and an Ω(n2) target dimension for bi-linear sketching,
see also later extensions and improvements for other Schatten norms in [35]. The related question
of finding the largest eigenvalues of a matrix was investigated by Andoni and Nguyen [2], whose
algorithm can also be used to solve the rank decision problem.

The only other result pertaining to insertion-only streams we are aware of is due to Li and
Woodruff [34]. Their result extends upon our construction initially published in [8] by showing
that any algorithm estimating certain classes of functions of singular values well enough can be
used to solve a hard instance of Boolean Hidden Hypermatching.

1.3 Preliminaries

We use Õ(f(n)) to hide factors polylogarithmic in f(n). Graphs are denoted by G(V,E,w) where V
is the set of n nodes, E is the set of edges and w : E → [1,W] is a weight function with maximum
weight W . The subgraph induced by a set of nodes U ⊆ V , is G[U] := (U,E ∩ (U × U)). A
matching M ⊂ E is a set of node disjoint edges. A matching is maximal if it cannot be extended
by any further edge in E and maximum if it is of largest possible cardinality. We refer to the
size of a maximum matching of G by match(G). Our estimated value M̂ is a λ-approximation to

the size of the maximum matching match(G) if M̂ ≤ match(G) ≤ λM̂ . Most of our estimation
algorithms are randomized and have some probability of failure. We use the shorthand constant
probability to indicate that the estimation is correct with probability greater than 1

2 . Hence, we
require that any randomized algorithm succeeds with constant probability. We note that we may

5

amplify the probability of success in the standard way by running multiple estimations in parallel
and outputting the median.

2 Structural Results on Matching in Bounded Arboricity Graphs

2.1 Arboricity-Based Estimation

We first restate Theorem 1:

Theorem 1. For an edge e = {u, v} ∈ E define xe = min
(

1
deg(u) ,

1
deg(v) ,

1
α+1

)
. Then,

match(G) ≤ (α+ 1)
∑
e∈E

xe ≤ (α+ 2) match(G)

Define the fractional matching polytope for a graph G as:

FM(G) = {x ∈ RE : xe ≥ 0 for all e ∈ E,
∑

e∈E:u∈e
xe ≤ 1 for all u ∈ V } .

When the underlying graph is clear from context, we also write FM for FM(G). We say any
x ∈ FM(G) is a fractional matching. The size of this fractional matching is

∑
e∈E xe and for a

graph where edge e has weight we, the weight of the matching is
∑

e∈E wexe. A standard result
on fractional matching is that the maximum size of a fractional matching is at most a factor 3/2
larger than the maximum size of an (integral) matching. We will also make use of the following
lemma, which is a simple corollary of Edmonds’ Matching Polytope theorem [17].

Lemma 1. Let x ∈ FM(G) and suppose there exist λ3, λ5, λ7 . . . such that

∀U ⊆ V where |U | ∈ {3, 5, 7, . . .} ,
∑

e∈G[U]

xe ≤ λ|U |
(
|U | − 1

2

)
.

Then, for any edge weights {we}e∈E,∑
e∈E

wexe ≤ max(1, λ3, λ5, . . .) match(G)

where match(G) is the weight of the maximum weighted (integral) matching.

Proof. By Edmonds’ theorem, match(G) = maxz∈IM(G)

∑
eweze where

IM(G) =

{
x ∈ RE : xe ≥ 0 for all e ∈ E,

∑
e∈E:u∈e

xe ≤ 1 for all u ∈ V ,

∑
e∈G[U]

xe ≤
(
|U | − 1

2

)
for all U ⊂ V of odd size

 .

But x
max(1,λ3,λ5,...)

∈ IM(G) and so
∑

e∈E wexe ≤ max(1, λ3, λ5, . . .) match(G) as required.

For the streaming applications we will be interested in fractional matchings that can be com-
puted locally.

Definition 1. For a given graph G, we say a fractional matching x ∈ FM(G) is local if every xe
is only a function of the edges (and their weights in the case of a weighted graph) that share an end
point with e.

6

Now define x ∈ RE where for e = {u, v} ∈ E, we set

xe = min

(
1

deg(u)
,

1

deg(v)
,

1

α+ 1

)
.

The next two theorems show that x is a local fractional matching and

1

α+ 1
·match(G) ≤ score(x) ≤ α+ 2

α+ 1
·match(G)

where score(x) =
∑

e xe. This proves Theorem 1 and we note that the upper bound can be improved
slightly if α is even. In Section 3, we show that it is possible to efficiently estimate score(x) in the
data stream model.

Theorem 5. x ∈ FM(G) and

score(x)

match(G)
≤

{
α+2
α+1 if α odd
α+3
α+2 if α even

.

Furthermore, if G is bipartite then score(x) ≤ match(G).

Proof. First, note that xe ≥ 0 for each e ∈ E and for any u ∈ V ,∑
e∈E:u∈e

xe ≤
∑

e∈E:u∈e
1/deg(u) = 1 .

and hence x ∈ FM. The bound for bipartite graphs follows because the maximum size of a fractional
matching in a bipartite graph equals the maximum size of an integral matching. For the rest of the
result, we appeal to Lemma 1. Since x ∈ FM, it is simple to show that x satisfies the conditions
of the lemma with λt ≤ t/(t − 1); this follows because

∑
e∈G[U] xe ≤ |U |/2 for any x ∈ FM.

Furthermore, since there are at most
(|U |

2

)
edges in G[U] and xe ≤ 1/(α+ 1) for all e,

∑
e∈G[U]

xe ≤
(
|U |
2

)
1

α+ 1
=
|U | − 1

2
· |U |
α+ 1

.

Therefore, λt ≤ min (t/(t− 1), t/(α+ 1)). Consequently,

max
t odd

λt =

{
α+2
α+1 if α odd
α+3
α+2 if α even

.

Note that Theorem 5 is tight. For example, a 5-clique has arboricity 3, maximum matching of
size 2, and score(x) = 5/2.

We next bound score(x) in terms of the number of edges whose endpoints both have “large”
degree and the number of edges whose endpoints both have “small” degree.

Theorem 6. Define a node to be heavy if it has degree at least α+ 2. Let h be the number of heavy
nodes, let E2 be the set of edges where both endpoints are heavy, and let E0 be the set of edges where
neither endpoints are heavy. Then,

score(x) ≥ h− |E2|
α+ 2

+
|E0|
α+ 1

≥ match(G)

α+ 1
.

7

L1

L2

L3

Figure 1: A tight example for Theorem 6. Let L1 consist of α nodes whereas L2 and L3 consist of
n � α nodes. The edges are a complete bipartite graph of L1 and L2 and a matching
between L2 and L3. Then score(x) = αn · 1/n+ n · 1/(α+ 1) and match(G) = n. Hence
match(G)/ score(x) tends to α+ 1 as n tends to infinity.

Proof. Let di be the degree of node i and assume d1 ≥ d2 ≥ d3 ≥ Let bi = |{j < i : {i, j} ∈ E}|
and ci = |{i < j : {i, j} ∈ E}|, i.e., the number of neighbors of node i that have higher or lower
degree respectively than node i where ties are broken by the ordering supposed in the above line.
Consider labeling an edge e with weight xe where we first label edges incident to node 1, then
the (remaining unlabeled) edges incident to node 2, etc. Then c1 = d1 edges get labeled with
min(1/d1, 1/(α + 1)), c2 edges get labeled with min(1/d2, 1/(α + 1)), c3 edges get labeled with
min(1/d3, 1/(α+ 1)) etc. Then

score(x) =
∑
i

ci min(1/di, 1/(α+ 1))

=
∑

i:di≥α+2

ci/di +
∑

i:di≤α+1

ci/(α+ 1)

= h−
∑

i:di≥α+2

bi/di +
∑

i:di≤α+1

ci/(α+ 1)

≥ h− (
∑

i:di≥α+2

bi)/(α+ 2) + (
∑

i:di≤α+1

ci)/(α+ 1).

Note that
∑

i:di≥α+2 bi is the number of edges in the induced subgraph on heavy nodes, i.e.,
|E2|. Similarly,

∑
i:di≤α+1 ci = |E0|. Therefore,

score(x) ≥ h− |E2|
α+ 2

+
|E0|
α+ 1

.

Note that |E2| < αh, because these edges in this induced subgraph can be partitioned into at most
α forests. Therefore,

score(x) ≥ h(1− α/(α+ 2)) + |E0|/(α+ 1) = 2h/(α+ 2) + |E0|/(α+ 1),

as required. Note that h + |E0| ≥ match(G) because every edge in a matching is either in E0 or
has at least one heavy node as an endpoint. Therefore,

score(x) ≥ (h+ |E0|)/(α+ 1) ≥ match(G)/(α+ 1).

See Figure 1 for an example that shows that Theorem 6 is tight.

8

2.2 Structural Result for Weighted Graphs

In this section we show how to find a good local fractional matching for weighted graphs. It does
not improve upon the bounds given by the unweighted to weighted reduction of Section 4. However,
we think the structural result is interesting and could be useful in other computational models.

Define y ∈ RE where for e = {u, v} ∈ E, we set

ye = min

(
1

dege(u) ·H(deg(u))
,

1

dege(v) ·H(deg(v))
,

1

α+ 1

)
,

where dege(u) and dege(v) are the number of edges at least as heavy as e that are incident to u
and v respectively and H(r) = 1/1 + 1/2 + . . .+ 1/r is the harmonic function.

The next two theorems show that y is a local fractional matching and

1

H(D) · (α+ 1)
match(G) ≤ score(y) ≤ α+ 2

α+ 1
match(G),

where score(y) =
∑

eweye and D is the maximum degree of the graph. Note that bounded
arboritcity does not imply a bounded maximum degree and thus Theorem 8 only applies to the
latter type of graphs.

Theorem 7. y ∈ FM(G) and

score(y)

match(G)
≤

{
α+2
α+1 if α odd
α+3
α+2 if α even

.

Furthermore, if G is bipartite then score(y) ≤ match(G).

Proof. For all u ∈ V ,∑
e∈E:u∈e

ye ≤
1

H(deg(u))

∑
e∈E:u∈e

1

dege(u)
≤ 1

H(deg(u))
(1/1 + 1/2 + . . .+ 1/ deg(u)) = 1 ,

and hence y ∈ FM. The result of the proof follows as in the proof of Theorem 5 since ye ≤ 1/(α+1)
for all e.

Theorem 8. match(G) ≤ H(D)(α+ 1) score(y) where D is the maximum degree.

Proof. Let ze be the optimum weighted integral matching. Let 0 < w1 < w2 < w3 < . . . be the
distinct weights in the graph and let w0 = 0. Let Gk be the unweighted graph formed from the
original weighted graph where all edges whose weight is < wk are deleted and the other edges are
given weight 1. Let zke be the optimum unweighted integral matching for Gk and let degk(u) be
the degree of node u in Gk.

Then,

score(z) =
∑
e

zewe ≤
∑
k

(wk − wk−1)
∑
e∈Gk

zke

≤ (α+ 1)
∑
k

(wk − wk−1)
∑
e∈Gk

min

(
1

degk(u)
,

1

degk(v)
,

1

α+ 1

)
where the last inequality follows by our result for the unweighted case.

9

L1

L2

L4

L3

Figure 2: A tight example for Theorem 8. There are four levels where, |L1| = α, |L2| = |L4| =
√
n,

and L3 consists of
√
n groups of (

√
nα − 1) vertices. There is a complete bipar-

tite graph between L1 and L2, matching between L2 and L4, and each group of ver-
tices in L3 is connected to one of the vertices in L2. Black edges have weight

√
n,

red ones have weight 1. A maximum weighted matching has weight n. score(y) =

α
√
n

√
n√

nH(
√
n)

+
√
n

√
n

(α+1)H(
√
n)

+
√
n(
√
n − α − 1) 1√

nH(
√
n)

= α(α+1)
√
n+n+(α+1)(

√
nα−1)

(α+1)H(
√
n)

.

Then match(G)/ score(y) = (α+1)H(
√
n)n

α(α+1)
√
n+n+(α+1)(

√
nα−1) which goes to (α + 1)H(

√
n) as n

goes to infinity. Note that
√
n is maximum degree in G and H(

√
n) = Θ(log n).

But for any e ∈ E, ∑
k:e∈Gk

(wk − wk−1) min

(
1

degk(u)
,

1

degk(v)
,

1

α+ 1

)

≤
∑

k:e∈Gk

(wk − wk−1) min

(
1

dege(u)
,

1

dege(v)
,

1

α+ 1

)

≤ we min

(
1

dege(u)
,

1

dege(v)
,

1

α+ 1

)
≤ H(D)weye

where the first inequality follows because degk(u) ≥ dege(u) for all k such that e ∈ Gk. Therefore
match(G) ≤ H(D)(α+ 1) score(y) as claimed.

See Figure 2 for an example that shows that Theorem 8 is tight.

2.3 Exact Degree Distribution

Using ideas from the previous sections, we now show that the size of the maximum matching can
be approximated up to a (α+2) factor given just the degree distribution of G. Specifically, consider
the following estimate:

M̃ =
∑
u∈V

min(α+ 1− deg(u)/2, deg(u)/2) .

The next theorem shows that M̃ is an (α+ 2) approximation for match(G).

Theorem 9. match(G) ≤ M̃ ≤ (α+ 2) ·match(G).

Proof. As before, let h be the number of “heavy” nodes with degree at least α + 2. Partition the
edges E into E0, E1, and E2 depending on whether the edge has zero, one, or two heavy endpoints.

10

Then, ∑
u∈V

min(α+ 1− deg(u)/2,deg(u)/2)

=
∑
u∈V

deg(u)/2−max(deg(u)− α− 1, 0)

= |E0|+ |E1|+ |E2| −

 ∑
u:deg(u)≥α+2

deg(u)− α− 1


= |E0|+ |E1|+ |E2| −

 ∑
u:deg(u)≥α+2

deg(u)

+ h(α+ 1)

= |E0|+ |E1|+ |E2| − |E1| − 2|E2|+ h(α+ 1)

= |E0| − |E2|+ h(α+ 1) .

Note that |E2| < αh because the number of edges in any induced subgraph is at most α times the
number of nodes in that subgraph. Hence,

|E0| − |E2|+ h(α+ 1) ≥ |E0|+ h ≥ match(G) .

From Theorem 6 and Theorem 5, we know that

h− |E2|
α+ 2

+
|E0|
α+ 1

≤ α+ 2

α+ 1
·match(G)

and hence,

|E0| − |E2|+ h(α+ 1) ≤ |E0| − |E2| ·
α+ 1

α+ 2
+ h(α+ 1) ≤ (α+ 2) match(G) .

Both inequalities in Theorem 9 are tight. For the lower bound, consider a collection of n disjoint
edges, which has match(G) = M̃ = n. For the upper bound, consider a 5-clique, that has arboricity
3, match(G) = 2, and M̃ = 10.

3 Algorithmic Applications in Streaming Models

3.1 Adversarial Insertion-Only Streams

In this section we briefly describe a streaming estimation based on the results from Section 2.
From Theorem 1, we know we can estimate the size of the maximum cardinality via the following

quantity,

A :=
∑
{u,v}∈E

min

(
1

deg(u)
,

1

deg(v)
,

1

α+ 1

)
.

To do this we first show that A can be estimated via the quantity,

AS :=
∑

{u,v}∈E:u,v∈S

min

(
1

deg(u)
,

1

deg(v)
,

1

α+ 1

)
.

where S is a subset of V formed by sampling each node independently with probability p. The
next lemma shows that AS is within a 1 + ε factor of Ap2 with probability at least 3/4 assuming
p is sufficiently large. Note that a similar approach is taken in Esfandiari et al. [20] and Chitnis et
al. [10] in the context of their algorithm to estimate the number of high degree nodes and edges
that are not incident to high degree nodes.

11

Lemma 2. If p ≥
√

12ε−2A−1, then P
[
|AS −Ap2| ≤ ε ·Ap2

]
≥ 3/4.

Proof. For each edge e = {u, v} ∈ E, let xe = min (1/deg(u), 1/deg(v), 1/(α+ 1)) and define a
random variable Xe where Xe = xe if u, v ∈ S and Xe = 0 otherwise. Note that AS =

∑
e∈E Xe.

Then, the expectation and variance of AS are E [AS] = Ap2 and

V [AS] =
∑
e∈E

∑
e′∈E

E [XeXe′]− E [Xe]E [Xe′] .

Note that for every e, e′ ∈ E

E [XeXe′]− E [Xe]E [Xe′] =


x2e(p

2 − p4) if e = e′

xexe′(p
3 − p4) if e and e′ share exactly one endpoint

0 if e and e′ share no endpoints

.

Since the sum of all xe′ that share an endpoint with e is at most 2 because x ∈ FM,

V [AS] ≤

(∑
e∈E

x2e(p
2 − p4)

)
+ 2A(p3 − p4) ≤ 3Ap2 .

We then use Chebyshev’s inequality to obtain

P
[
|AS −Ap2| ≤ εAp2

]
≤ 3Ap2

ε2A2p4
=

3

ε2Ap2
≤ 3/4 .

Given this key lemma, the algorithm and analysis proceed similarly to that of Esfandiari et
al. [20]. Specifically, two algorithms are run in parallel: a greedy matching algorithm and a
sampling-based algorithm. The greedy matching algorithm uses O(n2/3 log n) space to find a max-
imal matching of size at least min(n2/3,match(G)/2). Since every induced subgraph also has
arboricity α, the sampling-based algorithm uses O(αn2/3 log n) space to sample each node with
probability p = cε−1/n2/3 (for some sufficiently large constant c) and then find all edges whose
endpoints are both sampled along with the degrees of the sampled edges. If the greedy matching
has size less than n2/3 then it is necessarily a 2 approximation of match(G). If not, we can use the
estimate of A based on the nodes sampled since in this case A = Ω(n2/3).

Theorem 10. Given ε > 0, there exists a single pass data stream algorithm using O(αε−1n2/3 log δ−1)
space that returns a (α+2)(1+ε) approximation of the maximum matching with constant probability.

3.2 Adjacency List Graph Streams

In the adjacency list model2 the edges incident to each node v appear consecutively in the stream
[37, 7, 6]. Thus, every edge {u, v} will appear twice: once when we view the adjacency list of u
and once for v. Aside from that constraint, the stream is ordered arbitrarily. For example, for the
graph consisting of a cycle on three nodes V = {v1, v2, v3}, a possible ordering of the stream could
be 〈v3v1, v3v2, v2v3, v2v1, v1v2, v1v3〉. Note that in this model it is trivial to compute

M̃ =
∑
u∈V

min(α+ 1− deg(u)/2, deg(u)/2) .

in O(log n) space since the degree of a node can be calculated exactly when the adjacency list of
that node appears. The next theorem immediately follows from Theorem 9.

2The adjacency list order model is closely related to the vertex arrival model [25, 29] and row-order arrival model
considered in the context of linear algebra problems [11, 24].

12

Theorem 11. An (α+ 2)-approximation of the size of maximum matching can be computed using
O(log n) space in the adjacency list model. In particular, this yields a 5-approximation for planar
graphs.

3.3 Dynamic Streams

Estimation in Trees Let T = (V,E) be a tree with at least three nodes and let hT be the number
of internal nodes, i.e., nodes with degree greater than one. Esfandiari et. al. [20] proved the
following structural result.

Lemma 3. [20] Let T = (V,E) be a tree with at least three nodes. Then

1/2 ≤ match(T)/(hT + 1) ≤ 1 .

One application is a combination of Lemma 3 with sketching algorithms for the Hamming norm.
The Hamming norm of a vector x is defined as `0(x) = |{i : xi 6= 0}|, i.e. the number of non-zero
coordinates of a vector. In order to estimate the matching size of a tree T , we maintain an `0-
estimator for the degree vector d ∈ Rn such that di = deg(vi) − 1 holds at the end of the stream
and with it `0(d) = hT . In other words, we initialize the vector by adding −1 to each entry and
update the two corresponding entries when we get an edge deletion or insertion. Using Theorem
10 from [28] we can maintain the `0-Estimator for d in O(ε−2 log n) space.

Theorem 12. Let T = (V,E) be a tree with at least 3 nodes and let ε ∈ (0, 1). Then there is an
algorithm that estimates the size of a maximum matching in T within a (2+ε)-factor in the dynamic
streaming model with constant probability using 1-pass over the data and O(ε−2 log n) space.

Estimation in Low-Arboricity Graphs Algebraic techniques have found many applications for
matching problems. Given that all known dynamic streaming algorithms are based on sketching,
it may be somewhat surprising that, to the best of our knowledge, no previous work has attempted
to apply these techniques. We will first introduce the necessary definitions and background before
giving an application to matching size estimation.

The singular value decomposition (SVD) of an n × n matrix is denoted by A = UΣV T where
U, V ∈ Rn×n are orthogonal and Σ is diagonal. The rank of a matrix is the number of non-zero
entries of Σ, or alternatively the Hamming norm of the vector containing the singular values of A.
The spectral norm ||A||2 is the largest entry of Σ. For matrices of rank r, we use the truncated
SVD A = UΣV T , where U, V ∈ Rn×r have orthogonal columns, and Σ is an r by r diagonal matrix.

Algebraic matching algorithms are usually based around the Tutte-matrix T of a graph G(V,E)
defined as

Ti,j =


xi,j if i > j and (i, j) ∈ E
−xi,j if j > i and (i, j) ∈ E
0 if (i, j) /∈ E,

where xi,j are indeterminates. In his seminal paper, Tutte [47] showed that a graph contains a
perfect matching, i.e., a matching of size n/2 if and only if for some choice of indeterminates the
determinant of T is nonzero. This was later generalized by Lovász [36] to arbitrary matching size
as follows (see also Rabin and Vazirani [45] for an alternative proof).

Theorem 13 (Lovász [36]). Let G = (V,E) be a graph with a maximum matching M and Tutte
matrix TG. For an assignment w ∈ R|E| to the indeterminates of TG we denote the matrix by TG(w)
where the indeterminates are replaced by the corresponding assignment in w. Then we have

max
w
{rank(TG(w))} = 2 · |M |.

13

In order to calculate the maximum of the rank, Lovász [36] also showed that the rank of the
matrix where the indeterminates are replaced by random numbers uniformly drawn from {1, . . . , R}
is equal to maxw{rank(TG(w))} with probability at least 1− |E|/R.

Theorem 14 (Lovász [36]). Let G = (V,E) be a graph and r ∈ R|E| be a random vector where
each coordinate is uniformly chosen from {1, . . . , R} with R ≥ |E|. Then we have

rank(TG(r)) = max
w
{rank(TG(w))}

with probability at least 1− |E|/R.

We now detail an algorithm determining the exact matching size up to a parameter k using
roughly k2 space based on the Tutte matrix3. Our aim is to randomly choose entries of a Tutte
matrix and update this matrix with the corresponding value whenever an edge is inserted or deleted.
One crucial ingredient is the following result due to Clarkson and Woodruff [11], see Sarlos [46] for
similar, slightly weaker statements.

Lemma 4 (Lemma 3.4 of [11]). Given integer k and ε, δ > 0, there is m = O(k log(1/δ)/ε) and an
absolute constant η such that if S is an n×m sign matrix with η(k + log(1/δ))- wise independent
entries, then for an n× k matrix U with orthonormal columns, with probability at least 1− δ, the
spectral norm ||UTSSTU − UTU ||2 ≤ ε.

Since U is orthogonal, all singular values are 1. If we choose ε to be some constant, the singular
values of STU and U differ only by multiplicative constant factors close to 1, which also implies
that STU and U have the same rank. For our purposes, ε = 1/3 will be sufficient.

Corollary 1. Given integer k and δ > 0, there is m = O(k log(1/δ)) and an absolute constant
η such that if S is an n ×m sign matrix with η(k + log(1/δ))- wise independent entries, then for
an n × k matrix U with orthonormal columns, with probability at least 1 − δ, the rank of STU is
identical to rank of U .

We will also use the following result due to Pagh and Pagh [43].

Theorem 15 (Theorem 1.1 of [43]). Let S ⊂ U = {0, . . . , u−1} be a set of k > 1 elements. For any
constants c > 0 and ε > 0, and for 1 < v < u, there is an algorithm that, using time lg n(lg v)O(1)

and O(lg n + lg lg u) bits of space, selects a family H of functions from U to V = {0, . . . , v − 1}
(independent of S) such that:

• H is k-wise independent when restricted to S, with probability 1−O(1
nc).

• A function in H can be represented by a data structure using space (1 + ε)k lg v + O(k) bits
such that function values can be computed in constant time. The data structure of a random
function in H can be constructed in time O(n).

Our algorithm now proceeds as follows, see also Algorithm 1. We initialize the Tutte matrix T
of the input graph G with randomly chosen entries drawn from a k2-independent hash function h
assigning each edge a random value in [O(k2)]. We then independently sample two sign matrices
S1 and S2 where S1, S2 satisfying the conditions of Corollary 1. We maintain S1TS2 now as
follows. Whenever we process an operation on the edge (u, v), the appropriate random value
of the corresponding entry in T is queried via h. This value is inserted into an n × n matrix
H containing only 0 except for H(u, v) = h(u, v) and H(v, u) = −h(u, v) if (u, v) is inserted and
H(u, v) = −h(u, v) and H(v, u) = h(u, v) if (u, v) is deleted. S1TS2 can then be updated by adding
S1TS2 + S1HS2. Note that we do not have to construct the entire matrix H. The correctness of
this algorithm is an almost direct application of Corollary 1:

3We note that a sampling strategy from [10] could replace the Tutte matrix based estimation. In fact their result is
somewhat stronger, as they show that using only slightly more space, they can recover any matching up to size
k. Nevertheless, we believe that our technique may be of independent interest.

14

Algorithm 1 Tutte Matrix Streaming Estimation

Require: Graph G(V,E), Stream S of insertions E × 1 and deletions E ×−1, integer k > 0
Ensure: min(k,Matching Size of G)

Let h : [n2]→ [O(k2)] be a k2-wise independent hash function.
Let S1 and S2 be independent n×m sign matrices with m = O(k) and O(k) independent entries.
M ∈ Rm×m initially with entries 0.
H ∈ Rn×n initially with entries 0.
for all ((u, v), t) ∈ S do

H(u, v)← (−1)1+th(n · u+ v)
H(v, u)← (−1)th(n · u+ v)
M ←M + ST1 HS2
H ← 0

return rank(M)

Theorem 3. Let G(V,E) be an arbitrary graph. Then there exists a dynamic streaming algorithm
that either (1) outputs k if if the maximum matching is greater than k or (2) outputs maximum
matching size. The algorithm uses O(k2 log n) space and succeeds with constant probability.

Before we prove this theorem, we first remark that Theorem 13 still holds when we have limited
independence.

Corollary 2. Let G = (V,E) be a graph and r ∈ R|E| be a random vector with k2-wise independent
entries where each coordinate is uniformly chosen from {1, . . . , ck2}. Then we have

rank(TG(r)) = min
(
k,max

w
{rank(TG(w))}

)
with probability at least 1− 1/c.

Proof. Consider a k by k sub-matrix T ′ of T with maximum possible rank. If maxw{rank(TG(w))} ≤
k, then maxw{rank(TG(w))} = maxw{rank(T ′G(w))}, otherwise maxw{rank(TG(w))} = k. The
corollary now follows by applying Theorem 14 on T ′.

Proof of Theorem 3. We first argue correctness, then space complexity. We randomly chose the
weights of the Tutte matrix T from 1 to 4k2 such that the weights are k2-wise independent (line
1 of Algorithm 1). By Corollary 2, Theorem 13 holds when we query the size of the matching
with constant probability. It is straightforward to maintain ST1 TS2 whenever we receive and edge
insertion or deletion (lines 6-11 of Algorithm 1).

What remains is to analyze the rank of ST1 TS2. First, let r ≤ k be the rank of T . Let U1ΣU
T
2

be the truncated singular value decomposition of T such that U1, U2 ∈ Rn×r are orthogonal and
Σ ∈ Rr×r is diagonal with non-zero entries. Corollary 1 guarantees us that any rank up to k of ST1 U1

and UT2 S2 is preserved with constant probability. Since Σ is a diagonal matrix with non-zero entries
and U1 is orthogonal, rank(U1ΣU

T
2 S2) = rank(UT1 U1ΣU

T
2 S2) = rank(ΣUT2 S2) = rank(UT2 S2) =

rank(U2) = r. By the same argument and independence of S1 and S2, rank(ST1 TS2) = r.
If r > k, we can decompose U1 (and analogously U2) into the sum of two orthogonal matrices Uk

and UR, where Uk consists of the first k columns of U1 and UR consists of the remaining columns of
U1. We apply the same line of reasoning as above onto Uk and note that the rank cannot decrease
by adding STUR.

The space bound of each ST1 TS2 is in O(k2 log n) due to the dimension of the sign matrices via
Corollary 1 and by observing that the magnitude of entries of ST1 TS2 is polynomial in n. Using
Theorem 15, we can store h using O(k2 log k) bits and S1 and S2 using O(k) bits. Thus, the total
space is dominated by O(k2 log n).

15

We use Theorem 3 to determine the matching size up to n2/5. For larger matchings, we apply
Lemma 2 with p = Θ(ε−1/n4/5).

Theorem 16. There exists a single pass dynamic streaming algorithm using Õ(αε−1n4/5) space
that returns a (α+ 2)(1 + ε) approximation of the maximum matching with constant probability.

4 Weighted Matching

Let G = (V,E) be a weighted graph where edge e has weight we ∈ [1,W]. In this section, we
show that it is possible to reduce the problem of finding a large weighted matching in G to finding
large cardinality matchings. Specifically, we show that given a λ-approximation algorithm for the
unweighted problem, there is a 2(1 + ε)λ-approximation for the maximum weighted problem where
the latter algorithm using a factor O(ε−1 logW) more space. This reduction uses ideas from work
by Uehara and Chen [48] and Crouch and Stubbs [15]. Theorem 2 then follows immediately from
Theorem 17.

This immediately implies 2(α+ 2)(1 + ε)-approximation algorithms for weighted graphs in the
arbitrary order and adjacency list models.

Reduction to Unweighted Matchings For k = 0, 1, . . . , blog1+εW c, define the unweighted graph
Gk = (V,Ek) where e ∈ Ek iff we ≥ (1 + ε)k where we is the weight of e in the original weighted
graph. Note that E0 ⊆ E1 ⊆ E2 ⊆ . . . and, in particular, E0, E1, . . . is not a partition of E.

Theorem 17. Let G be a graph and let m̃k be a λ-approximation of the size of the maximum
cardinality matching in Gk. Then,

match(G)/λ ≤
∑
k≥0

f(k) · m̃k ≤ 2 · (1 + ε) ·match(G)

where

f(k) =

{
(1 + ε)k+1 − (1 + ε)k if k > 0

(1 + ε) if k = 0
.

Proof. Let mk be the size of the maximum cardinality matching in Gk and let M be the set of
edges in the maximum weighted matching in G. We first observe that

(1 + ε)we ≥
∑

k:we≥(1+ε)k
f(k) ≥ we. (1)

holds for all edges e ∈ E. To prove the left inequality, observe that∑
k≥0

f(k) · m̃k ≥
∑
k≥0

f(k) ·mk/λ ≥
∑
k≥0

f(k) · |M ∩ Ek|/λ ≥ match(G)/λ,

where the last inequality follows from Equation 1.
We now prove the right inequality. Consider the matching R formed by taking a maximal

matching in Er where r = blog1+εW c; extending this to a maximal matching in Er−1; extending
this to a maximal matching in Er−2 as so on. Note that since R ∩ Ek is a maximal matching in
Ek, we have m̃k ≤ mk ≤ 2|R ∩ Ek|. Therefore,∑

k≥0
f(k) · m̃k ≤ 2

∑
k≥0

f(k) · |R ∩ Ek| ≤ 2(1 + ε)
∑
e∈R

we ≤ 2(1 + ε) match(G),

where the second last inequality follows from Eq. 1.

16

5 Lower Bounds for Insertion-Only Streams

Esfandiari et al. [20] showed a space lower bound of Ω(
√
n) for any estimation better than 3/2.

Their reduction uses the Boolean Hidden Matching Problem introduced by Bar-Yossef et al. [5],
and further studied by Gavinsky et al. [22]. We will use the following generalization due to Verbin
and Yu [50]. We first require a bit of notation. A t-hypergraph G(V,E) is a set of nodes V and a
set of hyperedges E, where each hyperedge e is a subset of exactly t nodes of V .

Definition 2 (Boolean Hidden Hypermatching Problem [50]). In the Boolean Hidden Hypermatch-
ing Problem BHHt,n Alice gets a vector x ∈ {0, 1}n with n = 2kt and k ∈ N. Bob gets a hypergraph
with n nodes with some arbitrary but fixed ordering and a perfect t-hypermatching M , i.e., each hy-
peredge has exactly t coordinates and each node is contained in exactly one hyperedge, and a string
w ∈ {0, 1}n/t. We denote the vector of length n/t given by (

⊕
1≤i≤t xM1,i , . . . ,

⊕
1≤i≤t xMn/t,i

) by
Mx where (M1,1, . . . ,M1,t), . . . , (Mn/t,1, . . . ,Mn/t,t) are the edges of M . The problem is to return

1 if Mx⊕ w = 1n/t and 0 if Mx⊕ w = 0n/t, otherwise the algorithm may answer arbitrarily.

Verbin and Yu [50] showed a lower bound of Ω(n1−1/t) for the randomized one-way communi-
cation complexity for BHHt,n. For our reduction we require w = 0n/t and x ∈ {0, 1}n has exactly
n/2 bits set to 1. We denote this problem by BHH0

t,n. We can show that this does not reduce the
communication complexity.

Lemma 5. Let n be a multiple of 4t. The communication complexity of BHH0
t,4n is lower bounded

by the communication complexity of BHHt,n.

Proof. Alice is given a boolean vector x ∈ {0, 1}n with n = 4kt for some k ∈ N and Bob a
t-hypermatching on n nodes with some arbitrary but fixed ordering and a boolean vector w ∈
{0, 1}n/t. From their respective inputs, Alice will construct a boolean vector x′ ∈ {0, 1}4n and Bob
will construct a t-hypermatching M ′ on 4n nodes such that M ′x′ ⊕ 0 = 0 if Mx ⊕ w = 0 and
M ′x′ ⊕ 0 = 1 if Mx⊕ w = 1 described as follows.

First, let us assume that t is odd. Alice constructs x′ = [xTxTxTxT]T as the concatenation of
two identical copies of x and two identical copies of the vector resulting from the bitwise negation
of x. Without loss of generality, let {y1, . . . , yt} ∈M be the l-th hyperedge of M , where yi denotes
the ith node of the hypergraph in the arbitrary but fixed ordering. Bob adds the following four
hyperedges to M ′:

• {x1, x2, . . . , xt}, {x1, x2, x3, . . . , xt}, {x1, x2, x3, . . . , xt}, and {x1, . . . , xt} if wl = 0,

• {x1, x2, . . . , xt}, {x1, x2, . . . , xt}, {x1, x2, x3, . . . , xt}, and {x1, . . . , xt} if wl = 1.

The important observation here is that, since t is odd, we flip even number of bits in the case wl = 0
and an odd number of bits if wl = 1. Since every bit flip results in a change of the parity of the set
of bits, the parity does not change iff we flip an even number of bits. Therefore, wl⊕x1⊕. . .⊕xt = 0
iff the parity of each of the corresponding new hyperedges is 0. Applying the same reasoning to all
hyperedges, we deduce that M ′x′ = 04n/t if Mx ⊕ w = 0n/t and M ′x′ = 14n/t if Mx ⊕ w = 1n/t.
The number of ones in x′ ∈ {0, 1}4n is exactly 2n. If t is even, we can just change the cases for
the added edges such that we flip an even number of bits in the case wl = 0 and an odd number
of bits if wl = 1. Overall, this shows that a lower bound for BHHt,n implies a lower bound for
BHH0

t,4n.

Theorem 4. Any randomized streaming algorithm that approximates the maximum matching size
within a 1 + 1

3t/2−1 − ε factor for t ≥ 2 and any ε > 0 needs Ω(n1−1/t) space.

17

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9 v1,10 v1,11 v1,12

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7 v2,8 v2,9 v2,10 v2,11 v2,12

Figure 3: Worst case instance for t = 3. Bob’s hypermatching corresponds to disjoint 3-cliques
among the lower nodes and Alice’ input vector corresponds to the edges between upper
and lower nodes.

Proof. Let n = 4kt for some integer k. Alice is given boolean vector x ∈ {0, 1}n with exactly
n/2 indexes set to 0 and Bob is given a perfect t-hypermatching on a graph with n nodes. It is
promised that either Mx = 0n/t or Mx = 1n/t. Both players add edges to a graph G containing
2n nodes based on their respective inputs. For each index xi we have two nodes v1,i, v2,i and Alice
adds the edge {v1,i, v2,i} iff xi = 1. For each edge {yi1 , . . . , yit} ∈M . Bob adds a t-clique consisting
of the nodes v2,i1 , . . . , v2,it . Alice now runs a streaming algorithm approximating the size of the
maximum matching and sends the memory of the streaming algorithm to Bob. Bob then computes
a 1 + 1

3t/2−1 − ε estimation of the maximum matching size of G. In the following we show that this

approximation is sufficient to distinguish between the cases Mx = 0n/t or Mx = 1n/t. This in turn
shows that the memory of the message sent by Alice, i.e. the space requirement of the streaming
algorithm is lower bounded by BHH0

t,n.
We first consider the case where t is odd. We know that the maximum matching of G is at least

n/2 because x has exactly n/2 ones. Since Bob adds a clique v2,i1 , . . . , v2,it for every hyperedge
{yi1 , . . . , yit} ∈ M it is always possible to match all (or all but one) nodes v2,i of the clique whose
corresponding bit is 0. In the case of Mx = 0n/t the parity of every edge is 0, i.e., the number of
nodes whose corresponding bit is 1 is even. Let M2i ⊆M be the hyperedges containing exactly 2i

one bits and define l2i := |M2i|. Then we know n/2 =
∑bt/2c

i=0 2i · l2i and |M | = n/t =
∑bt/2c

i=0 l2i.
For every hyperedge in M2i the size of the maximum matching within the corresponding subgraph
of G is exactly 2i + b(t − 2i)/2c = 2i + bt/2c − i for every i = 0, . . . , bt/2c (see Fig. 3). Thus, we
have a matching of size

bt/2c∑
i=0

(2i+ (bt/2c − i))l2i =
n

2
+
t− 1

2
· n
t
− n

4
=

3n

4
− n

2t
.

If we have Mx = 1n/t then let M2i+1 ⊆M be the hyperedges containing exactly 2i+1 one bits and

define l2i+1 := |M2i+1|. Again, we know n/2 =
∑bt/2c

i=0 (2i+ 1) · l2i+1 and |M | = n/t =
∑bt/2c

i=0 l2i+1.
For every edge in M2i+1 the size of the maximum matching within the corresponding subgraph is
exactly 2i+ 1 + (t− 2i− 1)/2 = 2i+ 1 + bt/2c − i for every i = 0, . . . , bt/2c. Thus, the maximum
matching has a size

bt/2c∑
i=0

(2i+ 1 + (bt/2c − i))l2i+1 =
n

2
+
t− 1

2
· n
t
− 1

2

bt/2c∑
i=0

(2i+ 1) · l2i+1 +
n

2t
=

3n

4
.

18

For t even, the size of the matching is

t/2∑
i=0

(2i+ (t− 2i)/2)l2i =
n

2
+
t

2
· n
t
− n

4
=

3n

4

if Mx = 0n/t. Otherwise, we have

t/2∑
i=0

(
2i+ 1 +

⌊
t− 2i− 1

2

⌋)
l2i+1 =

n

2
+

t/2∑
i=0

(t/2− i− 1)l2i+1

=
n

2
− (t/2− 1) · n

t
− n

4
+
n

2t
=

3n

4
− n

2t
.

As a consequence, every streaming algorithm that computes an α-approximation on the size of
a maximum matching with

α <
(3/4)n

((3/4)− 1/(2t))n
= 1/(1− 4/6t) = 1 +

1

3t/2− 1

can distinguish between Mx = 0n/t and Mx = 1n/t and, thus, needs Ω(n1−1/t) space.

Using the relationship between rank and Tutte-matrix established by Theorem 13 and 14, we
can now prove the following corollary.

Corollary 3. Any randomized streaming algorithm that approximates rank(A) of A ∈ Rn×n within
a 1 + 1

3t/2−1 − ε factor for t ≥ 2 and any ε > 0 requires Ω(n1−1/t) space.

Proof. Given an instance of BHH0
t,n, Alice and Bob construct the adjacency matrix as described

in Theorem 4. They further choose each entry of the Tutte-matrix uniformly at random from
[n2] from public randomness. Then approximating the rank of the Tutte-matrix within a factor
1 + 1

3t/2−1 − ε approximates the matching within the same factor and solves BHH0
t,n.

References

[1] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New characterizations in turnstile streams
with applications. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, pages 20:1–20:22, 2016.

[2] Alexandr Andoni and Huy L. Nguyen. Eigenvalues of a matrix in the streaming model. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1729–1737, 2013.

[3] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1723–
1742, 2017.

[4] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1345–1364, 2016.

19

[5] Ziv Bar-Yossef, T. S. Jayram, and Iordanis Kerenidis. Exponential separation of quantum and
classical one-way communication complexity. SIAM Journal on Computing, 38(1):366–384,
2008.

[6] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 623–632, 2002.

[7] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Proceedings of the 29th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages
253–262, 2006.

[8] Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic
data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, pages 263–274, 2015.

[9] Amit Chakrabarti and Sagar Kale. Strong fooling sets for multi-player communication with
applications to deterministic estimation of stream statistics. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 41–50, 2016.

[10] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344, 2016.

[11] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages
205–214, 2009.

[12] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Aus-
tria, pages 29:1–29:15, 2017.

[13] Michael Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-window
model. In Proceedings of the 21st Annual European Symposium (ESA), pages 337–348, 2013.

[14] Michael Crouch and Daniel Stubbs. Improved streaming algorithms for weighted matching, via
unweighted matching. In Proceedings of the 18th Workshop on Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pages
96–104, 2014.

[15] Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching,
via unweighted matching. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 96–104, 2014.

[16] Andrzej Czygrinow, Michal Hanckowiak, and Edyta Szymanska. Fast distributed approxima-
tion algorithm for the maximum matching problem in bounded arboricity graphs. In Proceed-
ings of the 20th International Symposium on Symbolic and Algebraic Computation (ISSAC),
pages 668–678, 2009.

20

[17] Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research
of the National Bureau of Standards, 69:125-130, 1965.

[18] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guaran-
tees for weighted matching in the semi-streaming model. SIAM Journal on Discrete Mathe-
matics, 25(3):1251–1265, 2011.

[19] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved bounds for online
preemptive matching. In Proceedings of the 30th Annual Symposium on Theoretical Aspects
of Computer Science (STACS), pages 389–399, 2013.

[20] Hossein Esfandiari, Mohammad T Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and
beyond. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1217–1233, 2015.

[21] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–216,
2005.

[22] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Exponential
separation for one-way quantum communication complexity, with applications to cryptography.
SIAM Journal on Computing, 38(5):1695–1708, 2008.

[23] Mohsen Ghaffari. Space-optimal semi-streaming for (2+ε)-approximate matching. CoRR,
abs/1701.03730, 2017.

[24] Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions:
Simple and deterministic matrix sketching. SIAM J. Comput., 45(5):1762–1792, 2016.

[25] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 468–485, 2012.

[26] Elena Grigorescu, Morteza Monemizadeh, and Samson Zhou. Estimating weighted matchings
in o(n) space. CoRR, abs/1604.07467, 2016.

[27] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data
streams. In External Memory Algorithms: DIMACS Workshop External Memory and Visual-
ization, volume 50, pages 107–118. American Mathematical Society, 1999.

[28] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis,
Indiana, USA, pages 41–52, 2010.

[29] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1679–1697,
2013.

[30] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 734–751, 2014.

21

[31] Christian Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 -
23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
840–852, 2015.

[32] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Proceedings of the 16th Workshop on Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM),
pages 231–242, 2012.

[33] Yi Li, Huy L. Nguyen, and David P. Woodruff. On sketching matrix norms and the top singular
vector. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1562–1581, 2014.

[34] Yi Li and David P. Woodruff. On approximating functions of the singular values in a stream.
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 726–739, 2016.

[35] Yi Li and David P. Woodruff. Tight bounds for sketching the operator norm, schatten norms,
and subspace embeddings. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris,
France, pages 39:1–39:11, 2016.

[36] László Lovász. On determinants, matchings, and random algorithms. In Proceedings of the
2nd Conference on Fundamentals of Computation Theory (FCT), pages 565–574, 1979.

[37] Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approx-
imate counting of cycles in streams. In Algorithms - ESA 2011 - 19th Annual European
Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, pages 677–688, 2011.

[38] Andrew McGregor. Finding graph matchings in data streams. In Proceedings of the 9th
Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM), pages 170–181, 2005.

[39] Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, pages 17:1–17:12, 2016.

[40] Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms, SOSA
2018, January 7-10, 2018, New Orleans, LA, USA, pages 14:1–14:4, 2018.

[41] Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler. Testable bounded
degree graph properties are random order streamable. In 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
pages 131:1–131:14, 2017.

[42] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local im-
provements. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 327–336, 2008.

[43] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space. SIAM
J. Comput., 38(1):85–96, 2008.

22

[44] Ami Paz and Gregory Schwartzman. A (2+ε)-approximation for maximum weight match-
ing in the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 2153–2161, 2017.

[45] Michael O. Rabin and Vijay V. Vazirani. Maximum matchings in general graphs through
randomization. J. Algorithms, 10(4):557–567, 1989.

[46] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 143–152, 2006.

[47] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society,
22:107–111, 1947.

[48] Ryuhei Uehara and Zhi-Zhong Chen. Parallel approximation algorithms for maximum weighted
matching in general graphs. Information Processing Letters, 76(1-2):13–17, 2000.

[49] Ashwinkumar Badanidiyuru Varadaraja. Buyback problem - approximate matroid intersection
with cancellation costs. In Automata, Languages and Programming - 38th International Collo-
quium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, pages 379–390,
2011.

[50] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals,
and other problems. In Proceedings of the 22th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 11–25, 2011.

[51] Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20,
2012.

23

	Introduction
	Our Contribution
	Related Work
	Preliminaries

	Structural Results on Matching in Bounded Arboricity Graphs
	Arboricity-Based Estimation
	Structural Result for Weighted Graphs
	Exact Degree Distribution

	Algorithmic Applications in Streaming Models
	Adversarial Insertion-Only Streams
	Adjacency List Graph Streams
	Dynamic Streams

	Weighted Matching
	Lower Bounds for Insertion-Only Streams

