
On the Complexity Landscape of Connected
f -Factor Problems∗

Robert Ganian1, N. S. Narayanaswamy2, Sebastian Ordyniak3,
C. S. Rahul4, and M. S. Ramanujan5

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
rganian@gmail.com

2 Indian Institute of Technology Madras, Chennai, India
swamy@cse.iitm.ac.in

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
sordyniak@gmail.com

4 Indian Institute of Technology Madras, Chennai, India
rahulcs@cse.iitm.ac.in

5 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

Abstract
Given an n-vertex graph G and a function f : V (G)→ {0, . . . , n−1}, an f -factor is a subgraph H
of G such that degH(v) = f(v) for every vertex v ∈ V (G); we say that H is a connected f -factor
if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial
time algorithm to check whether a given graph has a specified f -factor. However, checking for
the presence of a connected f -factor is easily seen to generalize Hamiltonian Cycle and hence
is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when
f(v) is at least nε for each vertex v and ε < 1; on the other side of the spectrum, the problem
was known to be polynomial-time solvable when f(v) is at least n

3 for every vertex v.
In this paper, we extend this line of work and obtain new complexity results based on re-

stricting the function f . In particular, we show that when f(v) is required to be at least n
(logn)c ,

the problem can be solved in quasi-polynomial time in general and in randomized polynomial
time if c ≤ 1. We also show that when c > 1, the problem is NP-intermediate.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.2 Graph Theory

Keywords and phrases f -factors, connected f -factors, quasi-polynomial time algorithms, ran-
domized algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.41

1 Introduction

f -factors are a fundamental concept of graph theory dating back to the 19th century, spe-
cifically to the work of Petersen [13]. In modern terminology, an f -factor is defined as a
spanning subgraph which satisfies degree constraints (given in terms of the degree function
f) placed on each vertex of the graph [22]. Some of the most fundamental results on f -
factors were obtained by Tutte, who gave sufficient and necessary conditions for the existence
of f -factors [19]. Tutte also developed a method for reducing the existence of an f -factor

∗ The authors acknowledge support by the Austrian Science Fund (FWF, project P26696). Robert
Ganian is also affiliated with FI MU, Brno, Czech Republic.

© Robert Ganian, N. S. Narayanaswamy, Sebastian Ordyniak, C. S. Rahul, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 On the Complexity Landscape of Connected f -Factor Problems

Table 1 The table depicting the known as well as new results in the complexity landscape of
theConnected f-Factor problem.

f(v) ≥ Complexity Class
nε, ∀ε > 0 NPC [4]

n
polylogn QP (Theorem 2)
n

logn RP (Theorem 3)
n
c
, ∀c ≥ 3 P (Theorem 1)

to the existence of a perfect matching [18], which gives a straightforward polynomial time
algorithm for the problem of deciding whether an f -factor exists. There are also several
detailed surveys on f -factors of graphs, for instance by Chung and Graham [3], Akiyama
and Kano [1].

Aside from work on general f -factors, substantial attention has been devoted to the
variant of f -factors where we require the subgraph to be connected (see for instance the
survey articles by Kouider and Vestergaard [20] and Plummer [16]). Unlike the general vari-
ant, deciding the existence of a connected f -factor (the Connected f-Factor problem)
is an NP-complete problem [6, 2]. It is easy to see that Connected f-Factor generalizes
Hamiltonian Cycle (set f(v) = 2 for every vertex v), and even the existence of a determ-
inistic single-exponential (in the number of vertices) algorithm is open for the problem [15].

The NP-completeness of this problem has motivated several authors to study the Con-
nected f-Factor problem for various restrictions of the function f . Cornelissen et al. [4]
showed that Connected f-Factor remains NP-complete even when f(v) is at least nε for
each vertex v and any constant ε between 0 and 1. At the other end of the spectrum, it has
been shown that the problem is polynomial-time solvable when f(v) is at least n

3 [12] for
every vertex v. Aside from these two fairly extreme cases, the complexity landscape of this
problem based on lower bounds on the function f has largely been left uncharted.

Our results and techniques. In this paper, we provide new results for solving the Con-
nected f-Factor problem based on lower bounds on the range of f , both positive and
negative. Since we will study the complexity landscape of Connected f-Factor through
the lens of the function f , it will be useful to formally capture bounds on the function
f via an additional “bounding” function g. To this end, we introduce the Connected
g-Bounded f-Factor problem below:

Connected g-Bounded f-Factor
Instance: An n-vertex graph G and a mapping f : V → N such that f(v) ≥ n

g(n) .
Task: Find a connected subgraph H of G such that each vertex v ∈ V (G) satisfies
dH(v) = f(v).

First, we obtain a polynomial time algorithm for Connected f-Factor when f(v) is at
least n

c for every vertex v and any constant c ≥ 1. This result improves upon the previously
known polynomial-time algorithm for the case when f(v) is at least n

3 . This is achieved
thanks to a novel approach for the problem, which introduces a natural way of converting
one f -factor to another by exchanging a set of edges. Here we formalize this idea using the
notion of Alternating Circuits. These allow us to focus on a simpler version of the problem,

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:3

where we merely need to ensure connectedness across a coarse partition of the vertex set.
Furthermore, we extend this approach to obtain a quasi-polynomial time algorithm for the
Connected f-Factor problem when f(v) is at least n

polylog(n) . To be precise, we prove
the following two theorems (see the next page for an explanation of the function g used in
the formal statements).

I Theorem 1. For every function g(n) = O(1), Connected g-Bounded f-Factor can
be solved in polynomial time.

I Theorem 2. For every c > 0 and function g(n) = O((logn)c), Connected g-Bounded
f-Factor can be solved in time n(logn)O(1) .

Second, we build upon these new techniques to obtain a randomized polynomial-time
algorithm which solves Connected f-Factor in the more general case when f(v) is lower-
bounded by n

O(logn) for every vertex v. For this, we also require algebraic techniques that
have found several applications in the design of fixed-parameter and exact algorithms for
similar problems [5, 21, 7, 14]. Precisely, we prove the following theorem.

I Theorem 3. For every function g(n) = O(logn), Connected g-Bounded f-Factor
can be solved in polynomial time with constant error probability.

We remark that the randomized algorithm in the above theorem has one-sided error with
‘Yes’ answers always being correct. Finally, we also obtain a lower bound result for Con-
nected f-Factor when f(n) is at least n

(logn)c for c > 1. Specifically, in this case we show
that the problem is in fact NP-intermediate, assuming the Exponential Time Hypothesis [8]
holds. Formally speaking, we prove the following theorem.

I Theorem 4. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is neither in P nor NP-hard unless the Exponential Time Hypothesis fails.

We detail the known as well as new results on the complexity landscape of Connected
f-Factor in Table 1.

Organization of the paper. After presenting required definitions and preliminaries in Sec-
tion 2, we proceed to the key technique and framework used for our algorithmic results, which
forms the main part of Section 3. In the next Section 3.2, we obtain both of our deterministic
algorithms, which are formally given as Theorem 1 (for the polynomial-time algorithm) and
Theorem 2 (for the quasipolynomial-time algorithm). Section 4 then concentrates on our
randomized polynomial-time algorithm, presented in Theorem 3. Finally, Section 5 focuses
on ruling out (under established complexity assumptions) both NP-completeness and inclu-
sion in P for all polylogarithmic functions g where we do not already have a polynomial-time
algorithm.

2 Preliminaries

2.1 Basic Definitions and Graphs
We use standard definitions and notations from West [22]. dG(v) denotes the degree of a
vertex v in a graph G. A component in a graph is a maximal subgraph that is connected.
Note that the set of components in a graph uniquely determines a partition of the vertex
set. A circuit in a graph is a cyclic sequence v0, e1, v1, · · · , ek, vk = v0 where each ei is of

MFCS 2016

41:4 On the Complexity Landscape of Connected f -Factor Problems

the form {vi−1, vi} and occurs at most once in the sequence. An Eulerian circuit in a
graph is a circuit in which each edge in the graph appears exactly once.

Let V ′ be a subset of the vertices in the graph G. The induced subgraph G[V ′] is the
graph over vertex set V ′ containing all the edges in G whose endpoints are both in V ′.

Given a partition Q = {Q1, Q2, . . . , Qr} of the vertex set of G, the graph G/Q is con-
structed as follows: The vertex set of G/Q is Q. Corresponding to each edge (u, v) in G

where u in Qi, v in Qj , i 6= j, there exists an edge (Qi, Qj) in G/Q. Thus, G/Q is a
multigraph without loops. For a subgraph G′ of G, we say G′ connects a partition Q if
G′/Q is connected. A refinement Q′ of a partition Q is a partition of V where each part
Q′ in Q′ is a subset of some part Q in Q. This notion of partition refinement was used, e.g.,
by Kaiser [9]. A spanning tree of G/Q refers to a subgraph T of G with |Q|-1 edges that
connects Q.

2.2 Colored Graphs, (Minimal) Alternating Circuits, and f -Factors

Recall the definition of the Connected g-Bounded f-Factor problem. Given an instance
(G, f) of Connected g-Bounded f-Factor, a subgraph H of G is an f -factor if dH(v) =
f(v) for each v ∈ V (G); sometimes we also use the term f -factor to refer to E(H).

A colored graph G is one in which each edge is assigned a color from the set {red, blue}.
In a colored graph G, we use R and B to denote subgraphs of G whose edges are the set
of red edges (E(R)) and blue edges (E(B)) of G, respectively, and V (R) = V (B) = V (G).
We will use this coloring in our algorithm to distinguish between edge sets of two distinct
f -factors of the same graph G. A crucial computational step in our algorithms is to consider
the symmetric difference between edge sets of two distinct f -factors and perform a sequence
of edge exchanges preserving the degree of each vertex. The following definition is used
extensively in our algorithms.

I Definition 5. A colored graph A is called an alternating circuit if there exists an
Eulerian circuit in A where every pair of consecutive edges are of different colors.

Clearly, an alternating circuit has an even number of edges and is connected. Further-
more, dR(v) = dB(v) for each v in A, where dR(v) and dB(v) denote the number of red and
blue edges incident to v, respectively. A minimal alternating circuit M is an alternating
circuit where each vertex v in M has at most two red edges incident to v. By definition, an
empty graph is an alternating circuit.

We will also use the following lemma.

I Lemma 6 ([12, Lemma 5]). Let S ⊆ E(G). An f -factor H containing all the edges in S,
if one exists, can be computed in polynomial time.

3 A Generic Algorithm for Finding Connected g-Bounded f -Factors

Our goal in this section is to present a generic algorithm for Connected g-Bounded f-
Factor. In particular, we will in a certain sense reduce the question of solving Connected
g-Bounded f-Factor to solving a related problem which we call Partition Connector.
This can be viewed as a relaxed version of the original problem, since instead of a connected
f -factor it merely asks for an f -factor which connects a specified partitioning of the vertex
set. A formal definition is provided below.

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:5

Partition Connector
Instance: An n-vertex graph G, f : V → N, and a partition Q of V (G).
Task: Find an f -factor of G that connects Q.

The algorithms for solving Partition Connector will then be presented in the later
parts of this article—specifically, a deterministic algorithm that runs in quasipolynomial time
whenever g(n) = O(polylog(n)) (Section 3.2) and a randomized polynomial-time algorithm
for the case when g(n) = O(logn) (Section 4).

The majority of this section is devoted to proving the key Theorem 7 stated below,
which establishes the link between Partition Connector and Connected g-Bounded
f-Factor.

I Theorem 7. (a) Let g(n) = O(polylog(n)). If there is a deterministic algorithm run-
ning in time O(n2(|Q|−1)) for Partition Connector, then there is a deterministic
quasi-polynomial time algorithm for Connected g-Bounded f-factor with running
time O(g(n) · n2g(n)).

(b) Let g(n) = O(logn). If there is a randomized algorithm running in time O(2|Q|nO(1))
with error probability O(|Q|2/n2) for Partition Connector, then there is a ran-
domized polynomial-time algorithm for Connected g-Bounded f-factor that has a
constant error probability.

3.1 A generic algorithm for Connected g-Bounded f -Factor
The starting point of our generic algorithm is the following observation.

I Observation 8. Let G be an undirected graph and f be a function f : V → N. The graph
G has a connected f -factor if and only if for each partition Q of the vertex set V , there
exists an f -factor H of G that connects Q.

We remark that for the running time analysis for our generic algorithm we will assume
that we are only dealing with instances of Connected g-Bounded f-Factor, where the
number of vertices exceeds 6g(n)4. As g(n) is in O(polylog(n)), this does not reduce the
applicability of our algorithms, since there is a constant n0 such that n ≥ 6g(n)4 for every
n ≥ n0; because g(n) is part of the problem description, n0 does not depend on the input
instance. Consequently, we can solve instances of Connected g-Bounded f-Factor
where n < n0 by brute-force in constant time. We will therefore assume without loss of
generality in the following that n ≥ n0 and hence n ≥ 6g(n)4.

Our algorithm constructs a maximal sequence of pairs (H0,Q0), . . . , (Hk,Qk) satisfying
the following properties:
(M1) Each Qi, 0 ≤ i ≤ k is a partition of the vertex set V , and Q0 = {V (G)}.
(M2) Each Hi, 0 ≤ i ≤ k is an f -factor of G, and Hi connects Qi.
(M3) For each 1 ≤ i ≤ k, Qi is a refinement of Qi−1 satisfying the following:

(a) Each part Y in Qi induces a component Hi−1[Y] in Hi−1[Q], for some Q in Qi−1.
(b) Qi 6= Qi−1.

The following lemma links the existence of a connected f -factor to the properties of
maximal sequences satisfying (M1)–(M3).

I Lemma 9. Let (G, f) be an instance of Connected g-Bounded f-Factor and let
(H0,Q0), . . . , (Hk,Qk) be any maximal sequence satisfying Properties (M1)–(M3). Then G
has a connected f -factor if and only if Hk is a connected f -factor of G.

MFCS 2016

41:6 On the Complexity Landscape of Connected f -Factor Problems

The above lemma shows that if we had an algorithm for constructing a maximal sequence
satisfying (M1)–(M3), then we could solve the f -factor problem by testing whether the last
f -factor in that sequence is connected. However, if the number of parts of the partitions
Qi is allowed to grow to n, then such an algorithm would eventually have to solve the
connected f -factor problem. Hence, to employ the idea for an efficient algorithm, we first
need to establish an upper bound on the number of parts in any partition Qi of a maximal
sequence. The following lemma, which shows a lower bound on the minimum degree and
hence a lower bound on the size of any part in Qi, is crucial for estabilishing such an upper
bound.

I Lemma 10. Let (H,Q), (H ′,Q′) be two consequitive pairs occuring in a sequence satisfying
properties (M1)–(M3). Then there is an f -factor H ′′ of G connecting Q′ such that |NH′′(v)∩
Q′| ≥ |NH(v)∩Q′|−2(|Q′|−1) for every Q′ ∈ Q′ and v ∈ Q′. Moreover, H ′′ can be computed
from Q′, H, and H ′ in polynomial time.

Our algorithm will employ the above lemma to construct a maximal sequence (H0,Q0),
. . . , (Hk,Qk) that satisfies the following additional property:
(M4) For every 1 ≤ i ≤ k, every Q ∈ Qi and v ∈ Q it holds that |NHi

(v)∩Q| ≥ |NHi−1(v)∩
Q| − 2(|Qi| − 1).

This property will be key for the analysis of our algorithm because it allows us to bound the
number of parts in each partition Qi. Towards this aim we require the following auxirilliary
lemma.

I Lemma 11. Let S = (H0,Q0), . . . , (Hk,Qk) be a sequence satisfying Properties (M1)–
(M4). Then |NHi

(v) ∩Q| ≥ f(v) −
∑

1≤j≤i 2(|Qj | − 1) for every i with 1 ≤ i ≤ k, Q ∈ Qi
and v ∈ Q.

We are now ready to show that the number of parts in any partition Qi in a maximal
sequence does not exceed g(n) + 1.

I Lemma 12. Let S = (H0,Q0), . . . , (Hk,Qk) be a maximal sequence satisfying Properties
(M1)–(M4). Then |Qi| ≤ g(n) + 1 for every i with 0 ≤ i ≤ k. Moreover, the length of S is
at most g(n) + 1.

We are now ready to prove the main theorem of this section.

Sketch of Proof of Theorem 7. Let (G, f) be an instance of Connected g-Bounded f-
factor. The algorithm constructs a maximal sequence satisfying Properties (M1)–(M4).
The first pair (H0,Q0) is obtained by computing an arbitrary f -factor of G and setting
Q0 = {V (G)}. The crucial ingredient of the algorithm is then a procedure that given the
i-th pair (Hi,Qi) of a maximal sequence computes a (i+1)-th pair (Hi+1,Qi+1) that can be
appended to the sequence without violating any of the Properties (M1)–(M4). Informally,
this is achieved by first setting Qi+1 to be the refinement of Qi containing one part for
every part Q ∈ Qi and every component of Hi[Q]. Then an f -factor connecting Qi+1 is
computed using the given algorithm for Partition Connector. If no such f -factor exists,
the algorithm returns failure (which is correct due to Observation 8). If such an f -factor
exists, the procedure uses the given f -factor and Lemma 10 to compute an f -factor Hi+1
connecting Qi+1 such that the pair (Hi+1,Qi+1) satisfies Property (M4). Clearly, if any of
the computed f -factors are connected f -factors of G the procedure returns the corresponding
f -factor as a solution. Otherwise, the procedure now tries to find a successor of (Hi+1,Qi+1)
in the already computed sequence satisfying (M1)–(M4). J

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:7

3.2 A Quasipolynomial Time Algorithm for Polylogarithmic Bounds
In this section, we prove Theorem 1 and Theorem 2. In fact, we prove a more general result,
from which both theorems directly follow.

I Theorem 13. For every c > 0 and function g(n) = O((logn)c), the Connected g-
Bounded f-factor problem can be solved in Õ(ng(n)) time.

We will make use of the following simple lemma.

I Lemma 14. Let G be a graph having a connected f -factor. Let Q be a partition of the
vertex set V . There exists a spanning tree T of G/Q such that for some f -factor H of G,
E(T) ⊆ E(H). Furthermore, H can be computed from T in polynomial time.

Proof. Let G′ be a connected f -factor of G. For any partition Q of the vertex set, it follows
from Theorem 8 that G′/Q is connected. Consider a spanning tree T of G′/Q. Clearly,
there exists at least one f -factor H containing E(T) and hence H/Q is connected. Once we
have E(T), H can be computed in polynomial time using Lemma 6. J

In light of Theorem 7, it now suffices to prove the following Lemma 15, from which
Theorem 13 immediately follows.

I Lemma 15. Partition Connector can be solved in time O(n2(|Q|−1)).

Proof. It follows from Lemma 14 that we can solve Partition Connector by going over
all spanning trees T of G/Q and checking for each of them whether there is an f -factor of
G containing the edges of T . The lemma now follows because the number of spanning trees
of G/Q is at most

(|E(G)|
|Q|−1

)
, which is upper bounded by O(n2(|Q|−1)), and for every such tree

T we can check the existence of an f -factor containing T in polynomial time. J

4 A Randomized Polynomial Time Algorithm for Logarithmic Bounds

In this section we prove Theorem 3. Due to Theorem 7, it is sufficient for us to provide a
randomized algorithm for Partition Connector with running time O(2|Q|nO(1)) and er-
ror probability O(g(n)2/n2). This is precisely what we do in the rest of this section (Lemma
28). As a first step, we will design an algorithm for the “existential version” of the problem
which we call ∃-Partition Connector and define as follows.

∃-Partition Connector
Input: A graph G with n vertices, f : V → N, and a partition Q of V (G).
Question: Is there an f -factor of G that connects Q?
We will then describe how to use our algorithm for this problem as a subroutine in our

algorithm to solve Partition Connector.

4.1 Solving ∃-Partition Connector in Randomized Polynomial Time
The objective of this subsection is to prove the following lemma which implies a randomized
polynomial time algorithm for ∃-Partition Connector when g(n) = O(logn).

I Lemma 16. There exists an algorithm that, given a graph G, a function f : V → N, and
a partition Q of V (G), runs in time O(2|Q||V (G)|O(1)) and outputs

NO if G has no f -factor connecting P
YES with probability at least 1− 1

n2 otherwise.

MFCS 2016

41:8 On the Complexity Landscape of Connected f -Factor Problems

We design this algorithm by starting from the exact-exponential algorithm in [14] and
making appropriate modifications. During the description, we will point out the main differ-
ences between our algorithm and that in [14]. We now proceed to the details of the algorithm.
We begin by recalling a few important definitions and known results on f -factors. These are
mostly standard and are also present in [14], but since they are required in the description
and proof of correctness of our algorithm, we will state them here.

I Definition 17 (f -Blowup). Let G be a graph and let f : V (G) → N be such that f(v) ≤
deg(v) for each v ∈ V (G). Let H be the graph defined as follows
1. For each vertex v of G, we add a vertex set A(v) of size f(v) to H.
2. For each edge e = {v, w} of G we add to H vertices ve and we and edges (u, ve) for every

u ∈ A(v) and (we, u) for every u ∈ A(w). Finally, we add the edge (ve, we).
This completes the construction. The graph H is called the f -blowup of graph G. We use
Bf (G) to denote the f -blowup of G. We omit the subscript when there is no scope for
ambiguity.

I Definition 18 (Induced f -blowup). For a subset S ⊆ V (G), we define the f -blowup of G
induced by S as follows. Let the f -blowup of G be H. Begin with the graph H and for
every edge e = (v, w) ∈ E(G) such that v ∈ S and w /∈ S, delete the vertices ve and we.
Let the graph H ′ be the union of those connected components of the resulting graph which
contain the vertex sets A(v) for vertices v ∈ S. Then, the graph H ′ is called the f -blowup
of G induced by the set S and is denoted by Bf (G)[S].

We now recall the relation between perfect matchings in the f -blowup and f -factors (see
Figure 1).

I Lemma 19 ([10]). A graph G has an f -factor if and only if the f -blowup of G has a
perfect matching.

The relationship between the Tutte matrix and perfect matchings is well-known and this
has already been exploited in the design of fixed-parameter and exact algorithms [21, 7].

I Definition 20 (Tutte matrix). The Tutte matrix of a graph G with n vertices is an n× n
skew-symmetric matrix T over the set {xij |1 ≤ i < j ≤ |V (G)|} of indeterminates whose
(i, j)th element is defined to be

T (i, j) =


xij if {i, j} ∈ E(G) and i < j

−xij if {i, j} ∈ E(G) and i > j

0 otherwise

We use T (G) to denote the Tutte matrix of the graph G.

Following terminology in [14], when we refer to expanded forms of succinct represent-
ations (such as summations and determinants) of polynomials, we use the term naive ex-
pansion (or summation) to denote that expanded form of the polynomial which is obtained
by merely writing out the operations indicated by the succinct representation. We use the
term simplified expansion to denote the expanded form of the polynomial which results after
we apply all possible simplifications (such as cancellations) to a naive expansion. We call a
monomial m which has a non-zero coefficient in a simplified expansion of a polynomial P , a
surviving monomial of P in the simplified expansion.

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:9

v

w

e

ve

we

A(v)

A(w)

Figure 1 An illustration of a graph G with a 2-factor H (the red edges) and one possible
corresponding perfect matching in B(G). It is important to note that an edge e = (v, w) is not in
H if and only if the edge (ve, we) is present in the corresponding perfect matching.

The following basic facts about the Tutte matrix T (G) of a graph G are well-known.
When evaluated over any field of characteristic two, the determinant and the permanent of
the matrix T (G) (indeed, of any matrix) coincide. That is,

det T (G) = perm(T (G)) =
∑
σ∈Sn

n∏
i=1
T (G)(i, σ(i)), (1)

where Sn is the set of all permutations of [n]. Furthermore, there is a one-to-one cor-
respondence between the set of all perfect matchings of the graph G and the surviving
monomials in the above expression for det T (G) when its simplified expansion is computed
over any field of characteristic two.

I Proposition 21 ([11]). If M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of a
graph G, then the product

∏
(ik,jk)∈M x2

ikjk
appears exactly once in the naive expansion

and hence as a surviving monomial in the sum on the right-hand side of Equation 1 when
this sum is expanded and simplified over any field of characteristic two. Conversely, each
surviving monomial in a simplified expansion of this sum over a field of characteristic two is
of the form

∏
(ik,jk)∈M x2

ikjk
where M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching

of G. In particular, det T (G) is identically zero when expanded and simplified over a field
of characteristic two if and only if the graph G does not have a perfect matching.

I Lemma 22 (Schwartz-Zippel Lemma, [17, 23]). Let P (x1, . . . , xn) be a multivariate poly-
nomial of degree at most d over a field F such that P is not identically zero. Furthermore,
let r1, . . . , rn be chosen uniformly at random from F. Then, Prob[P (r1, . . . , rn) = 0] ≤ d

|F| .

I Definition 23. For a partition of V (G), Q = {Q1, . . . , Q`} and a subset I ⊆ [`], we
denote by Q(I) the set

⋃
i∈I Qi. Furthermore, with every set ∅ 6= I ⊂ [`], we associate

a specific monomial mI which is defined to be the product of the terms x2
ij where i < j

MFCS 2016

41:10 On the Complexity Landscape of Connected f -Factor Problems

and {i, j} = {ve, we}, e = (v, w) ∈ E(G) crosses the cut (Q(I),Q(I)) and ve, we, are as in
Definition 17 of the f -blowup B(G) of G. For I = [`], we define mI = 1.

From now on, for a set X ⊆ V (G), we denote by X the set V (G) \ X. Also, since we
always deal with a fixed graph G and function f , for the sake of notational convenience,
we refer to the graph Bf (G) simply as B. We now define a polynomial PQ(x̄) over the
indeterminates from the Tutte matrix T (B) of the f -blowup of G, as follows:

PQ(x̄) =
∑

{1}⊆I⊆[`]

(det T (B[Q(I)])) · (det T (B[Q(I)])) ·mI , (2)

where if a graph H has no vertices or edges then we set det T (H) = 1. In future, we will
always deal with a fixed partition Q = {Q1, . . . , Q`} of V (G).
I Remark. The definition of the polynomial PQ(x̄) is the main difference between our al-
gorithm and the algorithm in [14]. The rest of the details are identical. The main algorithmic
consequence of this difference is the time it takes to evaluate this polynomial at a given set
of points. This is captured in the following lemma whose proof follows from the fact that
determinant computation is a polynomial time solvable problem.

I Lemma 24. Given values for the variables xij in the matrix T (B), the polynomial PQ(x̄)
can be evaluated over a field F of character 2 and size Ω(n6) in time O(2`nO(1)).

Having shown that this polynomial can be efficiently evaluated, we will now turn to the
way we use it in our algorithm. Our algorithm for ∃-Partition Connector takes as input
G, f,Q, evaluates the polynomial PQ(x̄) at points chosen independently and uniformly at
random from a field F of size Ω(n6) and characteristic 2 and returns Yes if and only if
the polynomial does not vanish at the chosen points. In what follows we will prove certain
properties of this polynomial which will be used in the formal proof of correctness of this
algorithm. We need another definition before we can state the main lemma capturing the
properties of the polynomial. Recall that for every v ∈ V (G), the set A(v) is the set of
‘copies’ of v in the f -blowup of G. Furthermore, for a set X ⊆ V (G), we say that an edge
e ∈ E(G) crosses the cut (X,X) if e has exactly one endpoint in X.

I Definition 25. We say that an f -factorH of G contributes a monomial x2
i1j1

. . . x2
irjr

to the
naive expansion of the right-hand side of Equation 2 if and only if the following conditions
hold.
1. For every e = (v, w) ∈ E(H), there is a u ∈ A(v), u′ ∈ A(w) and 1 ≤ p, q ≤ r such that
{u, ve} = {ip, jp} and {u′, we} = {iq, jq}.

2. For every e = (v, w) ∈ E(G) \ E(H), there is a 1 ≤ p ≤ r such that {ve, we} = {ip, jp}.
3. For every 1 ≤ p, q ≤ r, if {u, ve} = {ip, jp} and {u′, we} = {iq, jq} for some e ∈ E(G),

then e ∈ E(H).
4. For every 1 ≤ p ≤ r, if {ip, jp} = {ve, we} for some e ∈ E(G), then e /∈ E(H).
5. For every 1 ∈ I ⊆ [`] such that H has no edge crossing the cut (Q(I),Q(I)), there is a

pair of monomials m1 and m2 such that m1 is a surviving monomial in the simplified
expansion of det T (B[Q(I)]), m2 is a surviving monomial in the simplified expansion of
det T (B[Q(I)]), and m1 ·m2 ·mI = x2

i1j1
. . . x2

irjr
.

Having set up the required notation, we now state the main lemma which allows us to
show that monomials contributed by f -factors that do not connect Q, do not survive in the
simplified expansion of the right hand side of Equation 2.

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:11

I Lemma 26. Every monomial in the polynomial PQ(x̄) which is a surviving monomial in
the simplified expansion of the right-hand side of Equation 2 is contributed by an f -factor of
G to the naive expansion of the right-hand size of Equation 2. Furthermore, for any f -factor
of G, say H, the following statements hold.
1. If H does not connect Q then every monomial contributed by H occurs an even number of

times in the polynomial PQ(x̄) in the naive expansion of the right-hand side of Equation 2.
2. If H connects Q, then every monomial contributed by H occurs exactly once in the

polynomial PQ(x̄) in the naive expansion of the right-hand side of Equation 2.

This implies the following result, which is the last ingredient we need to prove Lemma 16.

I Lemma 27. The polynomial PQ(x̄) is not identically zero over F if and only if G has an
f -factor connecting Q.

Proof of Lemma 16. It follows from the definition of P (x̄) that its degree is O(n4) since
the number of vertices in the f -blowup of G is O(n2). As mentioned earlier, our algorithm
for ∃-Partition Connector takes as input G, f,Q, evaluates the polynomial PQ(x̄) at
points chosen independently and uniformly at random from a field F of size Ω(n6) and
characteristic 2 and returns Yes if and only if the polynomial does not vanish at the chosen
points. Due to Lemma 27, we know that the polynomial PQ(x̄) is identically zero if and
only if G has an f -factor containing Q and by the Schwartz-Zippel Lemma, the probability
that the polynomial is not identically zero and still vanishes upon evaluation is at most 1

n2 .
This completes the proof of the lemma. J

Having obtained the algorithm for ∃-Partition Connector, we now return to the
algorithm for the computational version, Partition Connector.

4.2 Solving Partition Connector in Randomized Polynomial Time
I Lemma 28. The Partition Connector problem can be solved by a randomized al-
gorithm with running time O(2|Q|nO(1)) and error probability O(1− (1− 1

n2)|Q|)).

Sketch of Proof. Consider the following algorithm A. Algorithm A takes as input an n-
vertex instance of Partition Connector with the partition Q = {Q1, . . . , Q`}, along with
a separate set of edges F which will store the edges that have been previously selected to be
included in the partition connector. Let F be initialized as ∅. As its first step, Algorithm
A checks if ` = 1; if this is the case, then it computes an arbitrary f -factor H, and outputs
H ∪ F . To proceed, let us denote the algorithm of Lemma 16 as B. If ` > 1, then A first
calls B and outputs NO if B outputs NO. Otherwise, it fixes an arbitrary ordering E≤ of
the edge set E and recursively proceeds as follows.
A constructs the set E1 of all edges with precisely one endpoint in Q1, and loops over all

edges in E1 (in the ordering given by E≤). For each processed edge e between Q1 and some
Qi with endpoints c and d, it will compute a subinstance (Ge, fe, Qe) defined by setting:

Ge = G− e, and
fe(c) = f(c)− 1, fe(d)− f(d)− 1 and fe = f for all other vertices of G, and
Qe is obtained from Q by merging Q1 and Qi into a new set; formally, Qe = (Q \
{Q1, Qi}) ∪ {Q1 ∪Qi}.

Intuitively, each such new instance corresponds to us forcing the f -factor to choose the edge
e. A then queries B on (Ge, fe,Qe). If B answers NO for each such tuple (Ge, fe,Qe)
obtained from each edge in E1, then A immediately terminates and answers NO. Otherwise
let e be the first edge where B answered YES; then A will add e into F . If |Qe| = 1 then

MFCS 2016

41:12 On the Complexity Landscape of Connected f -Factor Problems

the algorithm computes an arbitrary f -factor H of (Ge, fe) and outputs H ∪ F . On the
other hand, if |Q| > 1 then A restarts the recursive procedure with (G, f,Q) := (Ge, fe,Qe);
observe that |Qe| ≤ |Q| − 1. To complete the proof, it suffices to verify the correctness and
the running time. J

5 Classification Results

In this section, we prove Theorem 4 which we restate for the sake of completeness.

I Theorem 4. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is neither in P nor NP-hard unless the Exponential Time Hypothesis fails.

The result relies on the established Exponential Time Hypothesis, which we recall below.

I Definition 29 (Exponential Time Hypothesis (ETH), [8]). There exists a constant s > 0
such that 3-SAT with n variables and m clauses cannot be solved in time 2sn(n+m)O(1).

We first show that the problem is not NP-hard unless the ETH fails. We remark that
we can actually prove a stronger statement here by weakening the premise to “NP is not
contained in Quasi-Polynomial Time”. However, since we are only able to show the other
part of Theorem 4 under the ETH, we phrase the statement in this way.

I Lemma 30. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is not NP-hard unless the Exponential Time Hypothesis fails.

Proof. Due to Theorem 2, we know that when g(n) = Θ((logn)c), Connected g-Bounded
f-Factor can be solved in quasi-polynomial time. Hence, this problem cannot be NP-hard
unless NP is contained in the complexity-class Quasi-Polynomial Time, QP. Furthermore,
observe that NP ⊆ QP implies that the ETH is false. Hence, we conclude that Connected
g-Bounded f-Factor is not NP-hard unless the Exponential Time Hypothesis fails. J

Next, we use a reduction from Hamiltonian Cycle to obtain:

I Lemma 31. For every c > 1, for every g(n) = Θ((logn)c), Connected g-Bounded
f-Factor is not in P unless the Exponential Time Hypothesis fails.

Lemmas 30 and 31 together give us Theorem 4.

6 Concluding remarks

We obtained new complexity results for Connected f-Factor with respect to lower
bounds on the function f . As our main results, we showed that when f(v) is required
to be at least n

(logn)c , the problem can be solved in quasi-polynomial time in general and
in randomized polynomial time if c ≤ 1. Consequently, we show that the problem can be
solved in polynomial-time when f(v) is at least n

c for any constant c. We complement the
picture with matching classification results.

As a by-product we obtain a generic approach reducing Connected f-Factor to the
“simpler” Partition Connector problem. Hence future algorithmic improvements of
Partition Connector carry over to the Connected f-Factor problem. Finally, it
would be interesting to investigate the possibility of derandomizing the polynomial-time
algorithm for the case that g(n) = O(logn).

R. Ganian, N. S. Narayanaswamy, S. Ordyniak, C. S. Rahul, and M. S. Ramanujan 41:13

Acknowledgments. The authors wish to thank the anonymous reviewers for their helpful
comments.

References
1 Jin Akiyama and Mikio Kano. Factors and factorizations of graphs—a survey. Journal of

Graph Theory, 9(1):1–42, 1985.
2 F. Cheah and D. G. Corneil. The complexity of regular subgraph recognition. Discrete

Applied Mathematics, 27(1-2):59–68, 1990.
3 FRK Chung and RL Graham. Recent results in graph decompositions. London Mathem-

atical Society, Lecture Note Series, 52:103–123, 1981.
4 Kamiel Cornelissen, Ruben Hoeksma, Bodo Manthey, N.S. Narayanaswamy, and C.S.

Rahul. Approximability of connected factors. In Christos Kaklamanis and Kirk Pruhs,
editors, Approximation and Online Algorithms, volume 8447 of Lecture Notes in Com-
puter Science, pages 120–131. Springer International Publishing, 2014. doi:10.1007/
978-3-319-08001-7_11.

5 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159, 2011.

6 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

7 Gregory Gutin, Magnus Wahlström, and Anders Yeo. Parameterized rural postman and
conjoining bipartite matching problems. CoRR, abs/1308.2599, 2013. URL: http://arxiv.
org/abs/1308.2599.

8 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512 – 530, 2001.
doi:10.1006/jcss.2001.1774.

9 Tomáš Kaiser. A short proof of the tree-packing theorem. Discrete Mathematics,
312(10):1689–1691, 2012.

10 László Lovász. The factorization of graphs. ii. Acta Mathematica Academiae Scientiarum
Hungarica, 23(1-2):223–246, 1972.

11 László Lovász. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computation Theory FCT ’79, pages 565–574, Berlin, 1979. Akademie-
Verlag.

12 NS Narayanaswamy and CS Rahul. Approximation and exact algorithms for special cases
of connected f-factors. In Computer Science–Theory and Applications, pages 350–363.
Springer, 2015.

13 Julius Petersen. Die theorie der regulären graphs. Acta Mathematica, 15(1):193–220, 1891.
14 Geevarghese Philip and M. S. Ramanujan. Vertex exponential algorithms for connected

f-factors. In 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India,
pages 61–71, 2014.

15 Geevarghese Philip and MS Ramanujan. Vertex exponential algorithms for connected f-
factors. In LIPIcs-Leibniz International Proceedings in Informatics, volume 29. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

16 M. D. Plummer. Graph factors and factorization: 1985–2003: a survey. Discrete Mathem-
atics, 307(7):791–821, 2007.

17 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, October 1980.

18 W. T. Tutte. A short proof of the factor theorem for finite graphs. Canadian Journal of
Mathematics, 6(1954):347–352, 1954. doi:10.4153/CJM-1954-033-3.

MFCS 2016

http://dx.doi.org/10.1007/978-3-319-08001-7_11
http://dx.doi.org/10.1007/978-3-319-08001-7_11
http://arxiv.org/abs/1308.2599
http://arxiv.org/abs/1308.2599
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.4153/CJM-1954-033-3

41:14 On the Complexity Landscape of Connected f -Factor Problems

19 WT Tutte. The factors of graphs. Canad. J. Math, 4(3):314–328, 1952.
20 Preben Dahl Vestergaard and Mekkia Kouider. Connected factors in graphs - a survey.

Graphs and Combinatorics, 21(1):1–26, 2005.
21 Magnus Wahlström. Abusing the tutte matrix: An algebraic instance compression for the

k-set-cycle problem. In STACS, pages 341–352, 2013.
22 D. B. West. Introduction to Graph Theory. Prentice Hall, 2001.
23 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic

Computation, volume 72, pages 216–226. 1979.

	Introduction
	Preliminaries
	Basic Definitions and Graphs
	Colored Graphs, (Minimal) Alternating Circuits, and f-Factors

	A Generic Algorithm for Finding Connected g-Bounded f-Factors
	A generic algorithm for Connected g-Bounded f-Factor
	A Quasipolynomial Time Algorithm for Polylogarithmic Bounds

	A Randomized Polynomial Time Algorithm for Logarithmic Bounds
	Solving exists-Partition Connector in Randomized Polynomial Time
	Solving Partition Connector in Randomized Polynomial Time

	Classification Results
	Concluding remarks

