
An EPTAS for Scheduling on Unrelated Machines of Few
Different Types∗

Klaus Jansen Marten Maack

Department of Computer Science, University of Kiel, 24118 Kiel, Germany
{kj, mmaa}@informatik.uni-kiel.de

December 7, 2017

Abstract

In the classical problem of scheduling on unrelated parallel machines, a set
of jobs has to be assigned to a set of machines. The jobs have a processing time
depending on the machine and the goal is to minimize the makespan, that is
the maximum machine load. It is well known that this problem is NP-hard and
does not allow polynomial time approximation algorithms with approximation
guarantees smaller than 1.5 unless P=NP. We consider the case that there are
only a constant number K of machine types. Two machines have the same type
if all jobs have the same processing time for them. This variant of the problem
is strongly NP-hard already for K = 1. We present an efficient polynomial
time approximation scheme (EPTAS) for the problem, that is, for any ε > 0 an
assignment with makespan of length at most (1 + ε) times the optimum can be
found in polynomial time in the input length and the exponent is independent of
1/ε. In particular we achieve a running time of 2O(K log(K)1/ε log4 1/ε) + poly(|I|),
where |I| denotes the input length. Furthermore, we study three other problem
variants and present an EPTAS for each of them: The Santa Claus problem,
where the minimum machine load has to be maximized; the case of scheduling
on unrelated parallel machines with a constant number of uniform types, where
machines of the same type behave like uniformly related machines; and the
multidimensional vector scheduling variant of the problem where both the
dimension and the number of machine types are constant. For the Santa Claus
problem we achieve the same running time. The results are achieved, using
mixed integer linear programming and rounding techniques.

∗This work was partially supported by the German Research Foundation (DFG) project JA
612/16-1. The current article is an extended version of the conference article [20]

1

ar
X

iv
:1

70
1.

03
26

3v
2

 [
cs

.D
S]

 6
 D

ec
 2

01
7

1 Introduction
We consider the problem of scheduling jobs on unrelated parallel machines—or
unrelated scheduling for short—in which a set J of n jobs has to be assigned
to a set M of m machines. Each job j has a processing time pij for each ma-
chine i and the goal is to find a schedule σ : J → M minimizing the makespan
Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pij , i.e. the maximum machine load. The problem is

one of the classical scheduling problems studied in approximation. In 1990 Lenstra,
Shmoys and Tardos [23] showed that there is no approximation algorithm with an
approximation guarantee smaller than 1.5, unless P=NP. Moreover, they presented a
2-approximation, and closing this gap is a rather famous open problem in scheduling
theory and approximation (see e.g. [27]).

In particular, we study the special case where there is only a constant number
K of machine types. Two machines i and i′ have the same type, if pij = pi′j holds
for each job j. In many application scenarios this variant is plausible, e.g., when
considering computers which typically only have a very limited number of different
types of processing units. We denote the processing time of a job j on a machine of
type t ∈ [K] by ptj and assume that the input consist of the corresponding K × n
processing time matrix together with machine multiplicities mt for each type t,
yielding m =

∑
t∈[K]mt. Note that the case K = 1 is equivalent to the classical

scheduling on identical machines. We also study three other variants of the problem:

Santa Claus Problem. We consider the reverse objective of maximizing the
minimum machine load, i.e. Cmin(σ) = mini∈M

∑
j∈σ−1(i) pij . This problem is known

as max-min fair allocation or the Santa Claus problem. The intuition behind these
names is that the jobs are interpreted as goods (e.g. presents), the machines as
players (e.g. children), and the processing times as the values of the goods from
the perspective of the different players. Finding an assignment that maximizes the
minimum machine load, means therefore finding an allocation of the goods that is in
some sense fair (making the least happy kid as happy as possible). We will refer to
the problem as Santa Claus problem in the following, but otherwise will stick to the
scheduling terminology.

Uniform Types. Two machines i and i′ have the same uniform machine type,
if there is a scaling factor s such that pij = spi′j for each job j. While jobs behave
on machines of the same type like they do on identical machines, they behave of
machines of the same uniform type like they do on uniformly related machines. Hence,
we may assume that the input consists of job sizes ptj depending on the job j and
the uniform type t, together with uniform machine types ti and machine speeds si,
such that pij = ptij/si.

2

Vector Scheduling. In the D-dimensional vector scheduling variant of unre-
lated scheduling, a processing time vector pij = (p(1)

ij , . . . , p
(D)
ij) is given for each job

j and machine i and the makespan of a schedule σ is defined as the maximum load
any machine receives in any dimension:

Cmax(σ) = max
i∈M

∥∥∥ ∑
j∈σ−1(i)

pij
∥∥∥
∞

= max
i∈M,d∈[D]

∑
j∈σ−1(i)

p
(d)
ij

Machine types are defined correspondingly. We consider the case that both K and
D are constant and like in the one dimensional case we may assume that the input
consist of processing time vectors depending on types and jobs, together with machine
multiplicities.

Basic Concepts. We study polynomial time approximation algorithms: Given
an instance I of an optimization problem, an α-approximation A for this problem
produces a solution in time poly(|I|), where |I| denotes the input length. For the
objective function value A(I) of this solution it is guaranteed that A(I) ≤ αOPT(I),
in the case of an minimization problem, or A(I) ≥ (1/α)OPT(I), in the case of an
maximization problem, where OPT(I) is the value of an optimal solution. We call α
the approximation guarantee or rate of the algorithm. In some cases a polynomial
time approximation scheme (PTAS) can be achieved, that is, an (1+ε)-approximation
for each ε > 0. If for such a family of algorithms the running time can be bounded
by f(1/ε)poly(|I|) for some computable function f , the PTAS is called efficient
(EPTAS), and if the running time is polynomial in both 1/ε and |I| it is called fully
polynomial (FPTAS).

Related Work. It is well known that the unrelated scheduling problem admits
an FPTAS in the case that the number of machines is considered constant [16]
and we already mentioned the seminal work by Lenstra et al. [23]. Furthermore,
the problem of unrelated scheduling with a constant number of machine types is
strongly NP-hard, because it is a generalization of the strongly NP-hard problem of
scheduling on identical parallel machines. Therefore an FPTAS can not be hoped
for in this case. However, Wiese, Bonifaci and Baruah showed that there is a
PTAS [26], and Wiese and Bonifaci [6] gave an extended analysis for the vector
scheduling case where both the dimension D and K are constant. The authors
do not present a detailed analysis of the running time, however the procedures
involve guessing steps with (m+ 1)Kκ possibilities, where κ = (D/ε)O((1/ε log(D/ε))D).
Gehrke, Jansen, Kraft and Schikowski [13] presented a PTAS with an improved
running time of O(Kn) +mO(K/ε2)(log(m)/ε)O(K2) for the regular one dimensional
case of unrelated scheduling with a constant number of machine types. On the other

3

hand, Chen, Jansen and Zhang [9] showed that there is no PTAS for scheduling on
identical machines with running time 2(1/ε)1−δ for any δ > 0, unless the exponential
time hypothesis fails. Furthermore, the case K = 2 has been studied: Imreh [17]
designed heuristic algorithms with rates 2 + (m1 − 1)/m2 and 4− 2/m1, and Bleuse
et al. [5] presented an algorithm with rate 4/3 + 3/m2 and, moreover, a (faster)
3/2-approximation, for the case that for each job the processing time on the second
machine type is at most the one on the first. Moreover, Raravi and Nélis [25] designed
a PTAS for the case with two machine types.

Interestingly, unrelated scheduling is in P, if both the number of machine types
and the number of job types is bounded by a constant. This is implied by a recent
result due to Chen, Marx, Ye and Zhang [10] building upon a result by Goemans and
Rothvoss [14]. Job types are defined analogously to machine types, i.e., two jobs j, j′
have the same type, if pij = pij′ for each machine i. In this case the matrix (pij) has
only a constant number of distinct rows and columns. Note that both the number of
machine types and uniform machine types bounds the rank of this matrix. However
the case of unrelated scheduling where the matrix (pij) has constant rank turns out
to be much harder: Already for the case with rank 3 the problem is APX-hard [10]
and for rank 4 an approximation algorithm with rate smaller than 3/2 can be ruled
out, unless P=NP [11]. In a rather recent work, Knop and Koutecký [22] considered
the number of machine types as a parameter from the perspective of fixed parameter
tractability. They showed that unrelated scheduling is fixed parameter tractable
for the parameters K and max pi,j , that is, there is an algorithm with running time
f(K,max pi,j)poly(|I|) for some computable function f that solves the problem to
optimality. Chen et al. [10] extended this, showing that unrelated scheduling is fixed
parameter tractable for the parameters max pi,j and the rank of the processing time
matrix.

For the case that the number of machines is constant, the Santa Claus problem
behaves similar to the unrelated scheduling problem: there is an FPTAS that is
implied by a result due to Woeginger [28]. In the general case however, so far no
approximation algorithm with a constant approximation guarantee has been found.
The results by Lenstra et al. [23] can be adapted to show that that there is no
approximation algorithm with a rate smaller than 2, unless P=NP, and to get an
algorithm that finds a solution with value at least OPT(I)−max pi,j , as was done
by Bezáková and Dani [4]. Since max pi,j could be bigger than OPT(I), this does
not provide a (multiplicative) approximation guarantee. Bezáková and Dani also
presented a simple (n − m + 1)-approximation and an improved approximation
guarantee of O(

√
n log3 n) was achieved by Asadpour and Saberi [2]. The best rate

so far is O(nε) due to Bateni et al. [3] and Chakrabarty et al. [7], with a running
time of O(n1/ε) for any ε > 0.

4

To the best of our knowledge, unrelated scheduling with a constant number of
uniform machine types has not been studied before, but we argue that it is a natural
extension of the case with a constant number of regular machine types and also a
sensible special case of the general unrelated scheduling and the low rank case in
particular.

The vector scheduling problem has been studied for the special case of identical
machines by Chekuri and Khanna [8]. They achieve a PTAS for the case that D is
constant and an O(log2D)-approximation for the case that D is arbitrary.

Results and Methodology. The main result of this paper is the following:
Theorem 1. There is an EPTAS for both scheduling on unrelated parallel machines
and the Santa Claus problem with a constant number K of different machine types
with running time 2O(K log(K)1/ε log4 1/ε) + poly(|I|).

First we present a basic version of the EPTAS for unrelated scheduling with a
running time doubly exponential in 1/ε. For this EPTAS we use the dual approx-
imation approach by Hochbaum and Shmoys [15] to get a guess T of the optimal
makespan OPT. Then, we further simplify the problem via geometric rounding of
the processing times. Next, we formulate a mixed integer linear program (MILP)
with a constant number of integral variables that encodes a relaxed version of the
problem. The MILP can be seen as a generalization of the classical integer linear
program of configurations—or configuration ILP—for scheduling on identical parallel
machines. We solve it with the algorithm by Lenstra and Kannan [24, 21]. The
fractional variables of the MILP have to be rounded and we achieve this with a flow
network utilizing flow integrality and causing only a small error. With an additional
error the obtained solution can be used to construct a schedule with makespan
(1 +O(ε))T . This procedure is described in detail in Section 2. Building upon the
basic EPTAS we achieve the improved running time using techniques by Jansen [18]
and by Jansen, Klein and Verschae [19]. The basic idea of these techniques is to make
use of existential results about simple structured solutions of integer linear programs
(ILPs). In particular these results can be used to guess the non-zero variables of
the MILP, because they sufficiently limit the search space. We show how these
techniques can be applied in our case in Section 3. Furthermore, we present efficient
approximation schemes for several other problem variants, thereby demonstrating
the flexibility of our approach. In particular, we can adapt all our techniques to the
Santa Claus problem yielding the result stated above. This is covered in Section 4
and in Section 5 we show:
Theorem 2. There is an EPTAS for scheduling on unrelated parallel machines
with a constant number K of different uniform machine types with running time
2O(K log(K)1/ε3 log5 1/ε) + poly(|I|).

5

We achieve this with a non-trivial combination of the ideas of Section 2 with
techniques for scheduling on uniformly related machines by Jansen [18]. Finally,
in Section 6, we revisit the unrelated vector scheduling problem that was studied
by Bonifaci and Wiese [6]. We show that an additional rounding step—similar to
the one in [8]—together with a slight modification of the MILP and the rounding
procedure yield an EPTAS for this problem as well.

Theorem 3. There is an EPTAS for vector scheduling on unrelated parallel machines
with constant dimension D a constant number K of different machine types.

Note that our results may also be seen as fixed parameter tractable algorithms
for the parameters 1/ε and K (and D). In the last section we elaborate on possible
directions for future research.

2 Basic EPTAS
In this chapter we describe a basic EPTAS for unrelated scheduling with a constant
number of machine types, with a running time doubly exponential in 1/ε. Wlog. we
assume ε < 1. Furthermore log(·) denotes the logarithm with basis 2 and for k ∈ Z≥0
we write [k] for {1, . . . , k}.

First, we simplify the problem via the classical dual approximation concept
by Hochbaum and Shmoys [15]. In the simplified version of the problem a target
makespan T is given and the goal is to either output a schedule with makespan
at most (1 + αε)T for some constant α ∈ Z>0, or correctly report that there is no
schedule with makespan T . We can use a polynomial time algorithm for this problem
in the design of a PTAS in the following way. First we obtain an upper bound B
for the optimal makespan OPT of the instance with B ≤ 2OPT. This can be done
using the 2-approximation by Lenstra et al. [23]. With binary search on the interval
[B/2, B] we can find in O(log 1/ε) iterations a value T ∗ for which the mentioned
algorithm is successful, while T ∗− εB/2 is rejected. We have T ∗− εB/2 ≤ OPT and
therefore T ∗ ≤ (1 + ε)OPT. Hence the schedule we obtained for the target makespan
T ∗ has makespan at most (1 + αε)T ∗ ≤ (1 + αε)(1 + ε)OPT = (1 +O(ε))OPT. In
the following we will always assume that a target makespan T is given. Next we
present a brief overview of the algorithm for the simplified problem followed by a
more detailed description and analysis.

Algorithm 4.
(i) Simplify the input via geometric rounding with an error of εT .
(ii) Build the mixed integer linear program MILP(T̄) and solve it with the algorithm

by Lenstra and Kannan (T̄ = (1 + ε)T).

6

(iii) If there is no solution, report that there is no solution with makespan T .
(iv) Generate an integral solution for MILP(T̄ + εT + ε2T) via a flow network

utilizing flow integrality.
(v) The integral solution is turned into a schedule with an additional error of ε2T

due to the small jobs.

Simplification of the Input. We construct a simplified instance Ī with modified
processing times p̄tj . If a job j has a processing time bigger than T for a machine
type t ∈ [K] we set p̄tj =∞. We call a job big (for machine type t), if ptj > ε2T , and
small otherwise. We perform a geometric rounding step for each job j with ptj <∞,
that is we set p̄tj = (1 + ε)xε2T with x = dlog1+ε(ptj/(ε2T))e.

Lemma 5. If there is a schedule with makespan at most T for I, the same schedule
has makespan at most (1 + ε)T for instance Ī and any schedule for instance Ī can be
turned into a schedule for I without increase in the makespan.

We will search for a schedule with makespan T̄ = (1+ε)T for the rounded instance
Ī. We establish some notation for the rounded instance. For any rounded processing
time p we denote the set of jobs j with p̄tj = p by Jt(p). Moreover, for each machine
type t let St and Bt be the sets of small and big rounded processing times. Obviously
we have |St|+ |Bt| ≤ n. Furthermore |Bt| is bounded by a constant: Let N be such
that (1 + ε)Nε2T is the biggest rounded processing time for all machine type. Then
we have (1 + ε)N−1ε2T ≤ T and therefore |Bt| ≤ N ≤ log(1/ε2)/ log(1 + ε) + 1 ≤
1/ε log(1/ε2) + 1 (using ε ≤ 1).

MILP. For any set of processing times P we call the P -indexed vectors of non-
negative integers ZP≥0 configurations (for P). The size size(C) of configuration C
is given by

∑
p∈P Cpp. For each t ∈ [K] we consider the set Ct(T̄) of configurations

C for the big processing times Bt and with size(C) ≤ T̄ . Given a schedule σ, we
say that a machine i of type t obeys a configuration C, if the number of big jobs
with processing time p that σ assigns to i is exactly Cp for each p ∈ Bt. Since
the processing times in Bt are bigger than ε2T we have

∑
p∈Bt Cp ≤ 1/ε2 for each

C ∈ Ct(T̄). Therefore the number of distinct configurations in Ct(T̄) can be bounded
by (1/ε2 + 1)N < (1/ε2 + 1)1/ε log(1/ε2)+1 = 2log(1/ε2+1)1/ε log(1/ε2)+1 ∈ 2O(1/ε log2 1/ε).

We define a mixed integer linear program MILP(T̄) in which configurations are
chosen integrally and jobs are assigned fractionally to machine types. Note that we
will call a solution of a MILP integral if both the integral and fractional variables have
integral values. We introduce variables zC,t ∈ Z≥0 for each machine type t ∈ [K] and
configuration C ∈ Ct(T̄), and xj,t ≥ 0 for each machine type t ∈ [K] and job j ∈ J .

7

For p̄tj =∞ we set xj,t = 0. Besides this, the MILP has the following constraints:∑
C∈Ct(T̄)

zC,t = mt ∀t ∈ [K] (1)

∑
t∈[K]

xj,t = 1 ∀j ∈ J (2)

∑
j∈Jt(p)

xj,t ≤
∑

C∈Ct(T̄)

CpzC,t ∀t ∈ [K], p ∈ Bt (3)

∑
C∈Ct(T̄)

size(C)zC,t +
∑
p∈St

p
∑

j∈Jt(p)
xj,t ≤ mtT̄ ∀t ∈ [K] (4)

With constraint (1) the number of chosen configurations for each machine type equals
the number of machines of this type. Due to constraint (2) the variables xj,t encode
the fractional assignment of jobs to machine types. Moreover for each machine type
it is ensured with constraint (3) that the summed up number of big jobs of each size
is at most the number of big jobs that are used in the chosen configurations for the
respective machine type. Lastly, (4) guarantees that the overall processing time of
the configurations and small jobs assigned to a machine type does not exceed the
area mtT̄ . It is easy to see that the MILP models a relaxed version of the problem:

Lemma 6. If there is schedule with makespan T̄ there is a feasible (integral) solution
of MILP(T̄), and if there is a feasible integral solution for MILP(T̄) there is a schedule
with makespan at most T̄ + ε2T .

Proof. Let σ be a schedule with makespan T̄ . Each machine of type t obeys exactly
one configuration from Ct(T̄), and we set zC,t to be the number of machines of type
t that obey C with respect to σ. Furthermore for a job j∗ let t∗ be the type of
machine σ(j∗). We set xj∗,t∗ = 1 and xj∗,t = 0 for t 6= t∗. It is easy to check that all
conditions are fulfilled.

Now let (zC,t, xj,t) be an integral solution of MILP(T̄). Using (2) we can assign
the jobs to distinct machine types based on the xj,t variables. The zC,t variables can
be used to assign configurations to machines such that each machine receives exactly
one configuration using (1). Based on these configurations we can create slots for the
big jobs and for each type t we can successively assign all of the big jobs assigned to
this type to slots of the size of their processing time, because of (3). Now, for each
type, we can iterate through the machines and greedily assign small jobs. When the
makespan T̄ is exceeded due to some job, we stop assigning to the current machine
and continue with the next. Because of (4), all small jobs can be assigned in this
fashion. Since the small jobs have size at most ε2T , we get a schedule with makespan
at most T̄ + ε2T .

8

α ω

vj1

vjn

u1,p

uK,p

1

1

1

1

1

1

η1,p

ηK,p

Figure 1: A sketch of the flow network.

We have K2O(1/ε log2 1/ε) integral variables, i.e., a constant number. Therefore
MILP(T) can be solved in polynomial time, with the following classical result due to
Lenstra [24] and Kannan [21]:

Theorem 7. A mixed integer linear program with d integral variables and encoding
size s can be solved in time dO(d)poly(s).

Rounding. In this paragraph we describe how a feasible solution (zC,t, xj,t) for
MILP(T̄) can be transformed into an integral feasible solution (z̄C,t, x̄j,t) for MILP(T̄+
εT + ε2T), where the second MILP is defined using the same configurations but
accordingly changed right hand side. This is achieved via a flow network utilizing
flow integrality.

For any (small or big) processing time p let ηt,p = d
∑
j∈Jt(p) xj,te be the rounded

up (fractional) number of jobs with processing time p that are assigned to machine
type t. Note that for big job sizes p ∈ Bt, we have ηt,p ≤

∑
C∈Ct(T̄)CpzC,t, because

of (3) and because the right hand side is an integer.
Now we describe the flow network G = (V,E) with source α and sink ω. For

each job j ∈ J there is a job node vj and an edge (α, vj) with capacity 1 connecting
the source and the job node. Moreover, for each machine type t we have processing
time nodes ut,p for each processing time p ∈ Bt ∪ St. The processing time nodes
are connected to the sink via edges (ut,p, ω) with capacity ηt,p. Lastly, for each job
j and machine type t with p̄t,j < ∞, we have an edge (vj , ut,p̄t,j) with capacity 1
connecting the job node with the corresponding processing time nodes. We outline the
construction in Figure 1. Obviously we have |V | ≤ (K+ 1)n+ 2 and |E| ≤ (2K+ 1)n.

9

Lemma 8. G has a maximum flow with value n.

Proof. Since the outgoing edges from α have summed up capacity n, n is a trivial
upper bound for the maximum flow. The solution (zC,t, xj,t) for MILP(T̄) can be
used to design a flow f with value n, by setting f((α, vj)) = 1, f((vj , ut,p̄t,j)) = xj,t
and f((ut,y, ω)) =

∑
j∈Jt(y) xj,t. It is easy to check that f is indeed a feasible flow

with value n.

Using the Ford-Fulkerson algorithm, an integral maximum flow f∗ can be found
in time O(|E|f∗) = O(Kn2). Due to flow conservation, for each job j there is
exactly one machine type t∗ such that f((vj , ut∗,p̄t∗,j)) = 1, and we set x̄j,t∗ = 1
and x̄j,t = 0 for t 6= t∗. Moreover, we set z̄C,t = zC,t. Obviously (z̄C,t, x̄j,t) fulfils
(1) and (2). Furthermore, (3) is fulfilled, because of the capacities and because
ηt,p ≤

∑
C∈Ct(T̄)CpzC,t for big job sizes p. Utilizing the geometric rounding and the

convergence of the geometric series, as well as
∑
j∈Jt(p) x̄j,t ≤ ηt,p <

∑
j∈Jt(p) xj,t + 1,

we get:
∑
p∈St

p
∑

j∈Jt(p)
x̄j,t <

∑
p∈St

p
∑

j∈Jt(p)
xj,t +

∑
p∈St

p <
∑
p∈St

p
∑

j∈Jt(p)
xj,t + ε2T

1 + ε

ε

Hence, we have
∑
C∈Ct(T̄) size(C)z̄C,t +

∑
p∈St p

∑
j∈Jt,s x̄j,t < mt(T̄ + εT + ε2T) and

therefore (4) is fulfilled as well.

Analysis. The solution found for MILP(T̄) can be turned into an integral solution
for MILP(T̄ + εT + ε2T). Like described in the proof of Lemma 6 this can easily be
turned into a schedule with makespan T̄ + εT + ε2T + ε2T ≤ (1 + 4ε)T . It is easy to
see that the running time of the algorithm by Lenstra and Kannan dominates the
overall running time. Since MILP(T̄) has O(K/ε log 1/ε+ n) many constraints, Kn
fractional and K2O(1/ε log2 1/ε) integral variables, the running time of the algorithm
can be bounded by:

(K2O(1/ε log2 1/ε))O(K2O(1/ε log2 1/ε))poly((K/ε log 1/ε)|I|) = 2K2O(1/ε log2 1/ε)poly(|I|)

3 Better running time
We improve the running time of the algorithm using techniques that utilize results
concerning the existence of solutions for integer linear programs (ILPs) with a certain
simple structure. In a first step we can reduce the running time to be only singly
exponential in 1/ε with a technique by Jansen [18]. Then we further improve the
running time to the one claimed in Theorem 1 with a very recent result by Jansen,

10

Klein and Verschae [19]. Both techniques rely upon the following result about integer
cones by Eisenbrandt and Shmonin [12].

Theorem 9. Let X ⊂ Zd be a finite set of integer vectors and let b ∈ int-cone(X) =
{
∑
x∈X λxx |λx ∈ Z≥0}. Then there is a subset X̃ ⊆ X, such that b ∈ int-cone(X̃)

and |X̃| ≤ 2d log(4dM), with M = maxx∈X ‖x‖∞.

For the first improvement of the running time, this theorem is used to show:

Corollary 10. MILP(T̄) has a feasible solution, where for each machine type at
most O(1/ε log2 1/ε) of the corresponding integer variables are non-zero.

We get the better running time by guessing the non-zero variables and removing
all the others from the MILP. The number of possibilities of choosing O(1/ε log2 1/ε)
elements out of a set of 2O(1/ε log2 1/ε) elements can be bounded by 2O(1/ε2 log4 1/ε). Con-
sidering all the machine types we can bound the number of guesses by 2O(K/ε2 log4 1/ε).
The running time of the algorithm by Lenstra and Kannan with O(K/ε log2 1/ε)
integer variables can be bounded by:

O(K/ε log2 1/ε)O(K/ε log2 1/ε)poly(|I|) = 2O(K log(K)1/ε log3 1/ε)poly(|I|)

This yields a running time of:

2O(K log(K)1/ε2 log4 1/ε)poly(|I|)

In the following we first proof Corollary 10 and then introduce the technique
from [19] to further reduce the running time.

Proof of Corollary 10. We consider the so called configuration ILP for scheduling
on identical machines. Let m′ be a given number of machines, P be a set of processing
times with multiplicities kp ∈ Z>0 for each p ∈ P and let C ⊆ ZP≥0 be some finite
set of configurations for P . The configuration ILP for m′, P , k = (kp)p∈P , and C is
given by: ∑

C∈C
CpyC = kp ∀p ∈ P (5)

∑
C∈C

yC = m′ (6)

yC ∈ Z≥0 ∀C ∈ C (7)

The default case that we will consider most of the time is that C is given by a target
makespan T that upper bounds the size of the configurations.

11

Let’s assume we had a feasible solution (z̃C,t, x̃j,t) for MILP(T̄). For t ∈ [K]
and p ∈ Bt we set k̃t,p =

∑
C∈Ct(T̄)Cpz̃C,t. We fix a machine type t. By setting

yC = z̃C,t, we get a feasible solution for the configuration ILP given by mt, Bt, k̃t
and Ct(T̄). Theorem 9 can be used to show the existence of a solution for the ILP
with only a few non-zero variables: Let X be the set of column vectors corresponding
to the left hand side of the ILP and b be the vector corresponding to the right hand
side. Then b ∈ int-cone(X) holds and Theorem 9 yields that there is a subset X̃
of X with cardinality at most 2(|Bt|+ 1) log(4(|Bt|+ 1)1/ε2) ∈ O(1/ε log2 1/ε) and
b ∈ int-cone(X̃). Therefore there is a solution (y̆C) for the ILP with O(1/ε log2 1/ε)
many non-zero variables. If we set z̆C,t = y̆C and x̆j,t = x̃j,t and perform corresponding
steps for each machine type, we get a solution (z̆C,t, x̆j,t) that obviously satisfies
constraints (1),(2) and (3) of MILP(T̄). The last constraint is also satisfied, because
the number of covered big jobs of each size does not change and therefore the
overall size of the configurations does not change either for each machine type. This
completes the proof of Corollary 10.

Further Improvement of the Running Time. The main ingredient of the
technique by Jansen et al. [19] is a result about the configuration ILP, for the case
that there is a target makespan T ′ upper bounding the configuration sizes. Let C(T ′)
be the set of configurations with size at most T ′. We need some further notation.
The support of any vector of numbers v is the set of indices with non-zero entries,
i.e., supp(v) = {i | vi 6= 0}. A configuration is called simple, if the size of its support
is at most log(T ′ + 1), and complex otherwise. The set of complex configurations
from C(T ′) is denoted by Cc(T ′).

Theorem 11. Let the configuration ILP for m′, P , k, and C(T ′) have a feasible
solution and let both the makespan T ′ and the processing times from P be integral.
Then there is a solution (yC) for the ILP that satisfies the following conditions:

(i) |supp(y|Cc(T ′))| ≤ 2(|P |+ 1) log(4(|P |+ 1)T ′) and yC ≤ 1 for C ∈ Cc(T ′).
(ii) |supp(y)| ≤ 4(|P |+ 1) log(4(|P |+ 1)T ′).

We will call such a solution thin. Furthermore they argue:
Remark 12. There are at most 2O(log2(T ′)+log2(|P |)) simple configurations.

The better running time can be achieved by determining configurations that are
equivalent to the complex configurations (via guessing and dynamic programming),
guessing the support of the simple configurations, and solving the MILP with few
integral variables. The approach is a direct adaptation of the one in [19] for our case.
In the following, we explain the additional steps of the modified algorithm in more
detail, analyse the running time and present an outline of the complete algorithm.

12

We have to ensure that the makespan and the processing times are integral
and that the makespan is small. After the geometric rounding step we scale the
makespan and the processing times, such that T = 1/ε3 and T̄ = (1 + ε)/ε3

holds and the processing times have the form (1 + ε)xε2T = (1 + ε)x/ε. Next we
apply a second rounding step for the big processing times, setting p̆t,j = dp̄t,je for
p̄t,j ∈ Bt and denote the set of these processing times by B̆t. Obviously we have
|B̆t| ≤ |Bt| ≤ 1/ε log(1/ε2) + 1. We denote the corresponding instance by Ĭ. Since
for a schedule with makespan T for instance I there are at most 1/ε2 big jobs on
any machine, we get:

Lemma 13. If there is a schedule with makespan at most T for I, the same schedule
has makespan at most (1 + 2ε)T for instance Ĭ and any schedule for instance Ĭ can
be turned into a schedule for I without increase in the makespan.

We set T̆ = (1 + 2ε)T and for each machine type t we consider the set of configu-
rations Ct(bT̆ c) for B̆t with size at most bT̆ c. Rounding down T̆ ensures integrality
and causes no problems, because all big processing times are integral. Furthermore
let Cct (bT̆ c) and Cst (bT̆ c) be the subsets of complex and simple configurations. Due
to Remark 12 we have:

|Cst (bT̆ c)| ∈ 2O(log2bT̆ c+log2 |B̆t|) = 2O(log2 1/ε)) (8)

Due to Theorem 11 (using the same considerations concerning configuration ILPs like
in the last paragraph), we get that there is a solution (z̆C , x̆j,t) for MILP(T̆) (adjusted
to this case) that uses for each machine type t at most 4(|B̆t|+1) log(4(|B̆t|+1)bT̆ c) ∈
O(1/ε log2 1/ε) many configurations from Ct(bT̆ c). Moreover, at most 2(|B̆t| +
1) log(4(|B̆t|+ 1)bT̆ c) ∈ O(1/ε log2 1/ε) complex configurations are used and each of
them is used only once. Since each configuration corresponds to at most 1/ε2 jobs,
there are at most O(1/ε3 log2 1/ε) many jobs for each type corresponding to complex
configurations. Hence, we can determine the number of complex configurations mc

t for
machine type t along with the number of jobs kct,p with processing time p ∈ B̆t that are
covered by a complex configuration in (1/ε3 log2 1/ε)O(K/ε log 1/ε) = 2O(K/ε log2 1/ε) many
steps via guessing. Now we can use a dynamic program to determine configurations
(with multiplicities) that are equivalent to the complex configurations in the sense
that their size is bounded by bT̆ c, their summed up number is mc

t and they cover
exactly kct,p jobs with processing time p. The dynamic program iterates through [mc

t]
determining B̆t-indexed vectors y of non-negative integers with yp ≤ kct,p. A vector y
computed at step i encodes that yp jobs of size p can be covered by i configurations
from Ct(bT̆ c). We denote the set of configurations the program computes with C̃t and
the multiplicities with z̃C for C ∈ C̃t. It is easy to see that the running time of such a
program can be bounded byO(mc

t(
∏
p∈B̆t(k

c
t,p+1))2). Usingmc

t ∈ O(1/ε log2 1/ε) and

13

kct,p ∈ O(1/ε3 log2 1/ε) this yields a running time of K2O(1/ε log2 1/ε), when considering
all the machine types.

Having determined configurations that are equivalent to the complex configura-
tions, we may just guess the simple configurations. For each machine type, there
are at most 2O(log2 1/ε) simple configurations and the number of configurations we
need is bounded by O(1/ε log2 1/ε). Therefore, the number of needed guesses is
bounded by 2O(K/ε log4 1/ε). Now we can solve a modified version of MILP(T̆) in which
zC is fixed to z̃C for C ∈ C̃t and only variables zC′ corresponding to the guessed
simple configurations are used. The running time for the algorithm by Lenstra
and Kannan can again be bounded by 2O(K logK1/ε log3 1/ε)poly(|I|). Thus we get
an overall running time of 2O(K logK1/ε log4 1/ε)poly(|I|). Considering the two cases
2O(K logK1/ε log4 1/ε) < poly(|I|) and 2O(K logK1/ε log4 1/ε) ≥ poly(|I|) yields the claimed
running time of:

2O(K log(K)1/ε log4 1/ε) + poly(|I|)

Hence, the proof of the part of Theorem 1 concerning unrelated scheduling is complete.
We conclude this section with a summary of the complete algorithm.

Algorithm 14.
(i) Simplify the input via scaling, geometric rounding and a second rounding step

for the big jobs with an error of 2εT . We now have T = 1/ε3.
(ii) Guess the number of machines mc

t with a complex configuration for each
machine type t along with the number kct,p of jobs with processing time p
covered by complex configurations for each big processing time p ∈ B̆t.

(iii) For each machine type t determine via dynamic programming configurations
that are equivalent to the complex configurations.

(iv) Guess the simple configurations used in a thin solution.
(v) Build the simplified mixed integer linear program MILP(T̆) in which the

variables for configurations from step (iii) are fixed and only integral variables
for configurations guessed in step (iv) are used. Solve it with the algorithm by
Lenstra and Kannan.

(vi) If there is no solution for each of the guesses, report that there is no solution
with makespan T .

(vii) Generate an integral solution for MILP(T̆ + εT + ε2T) via a flow network
utilizing flow integrality.

(viii) With an additional error of ε2T due to the small jobs the integral solution is
turned into a schedule.

14

4 The Santa Claus Problem
Adapting the result for unrelated scheduling we achieve an EPTAS for the Santa
Claus problem. It is based on the basic EPTAS together with the second running
time improvement. In the following we show the needed adjustments.

Preliminaries. Wlog. we present a (1− ε)−1-approximation instead of a (1 + ε)-
approximation. Moreover, we assume ε < 1 and that m ≤ n, because otherwise the
problem is trivial.

The dual approximation method can be applied in this case as well. However,
since we have no approximation algorithm with a constant rate, the binary search is
slightly more expensive. Still we can use for example the algorithm by Bezáková and
Dani [4] to find a bound B for the optimal makespan with B ≤ OPT ≤ (n−m+ 1)B.
In O(log((n − m)/ε)) many steps we can find a guess for the optimal minimum
machine load T ∗ such that T ∗ ≤ OPT < T ∗+ εB and therefore T ∗ > (1− ε)OPT. It
suffices to find a procedure that given an instance and a guess T outputs a solution
with objective value at least (1− αε)T for some constant α.

Concerning the simplification of the input, we first scale the makespan and the
running times such that T = 1/ε3. Then we set the processing times that are bigger
than T equal to T . Next we round the processing times down via geometric rounding:
We set p̄t,j = (1− ε)xε2T with x = dlog1−ε ptj/(ε2T)e. The number of big jobs for
any machine type is again bounded by 1/ε log(1/ε2) ∈ O(1/ε log 1/ε). For the big
jobs we apply the second rounding step setting p̆t,j = bp̄t,jc and denote the resulting
big processing times with B̆t, the corresponding instance by Ĭ and the occurring
small processing times by St. The analogue of Lemma 13 holds, i.e. at the cost of
2εT we may search for a solution for the rounded instance Ĭ. We set T̆ = (1− 2ε)T .

MILP. In the Santa Claus problem it makes sense to use configurations of size
bigger than T̆ . Let P = bT̆ c + max{p̆t,j | t ∈ [K], j ∈ B̆t}. It suffices to consider
configurations with size at most P and for each machine type t we denote the corre-
sponding set of configurations by Ct(P). Again we can bound Ct(P) by 2O(1/ε log2 1/ε).
The MILP has integral variables zC,t for each such configuration and fractional
ones like before. The constraints (1) and (2) are adapted changing only the set of
configurations and for constraint (3) additionally in this case the left-hand side has
to be at least as big as the right hand side. The last constraint (4) has to be changed
more. For this we partition Ct(P) into the set Ĉt(P) of big configurations with size
bigger than bT̆ c and the set Čt(P) of small configurations with size at most bT̆ c. The

15

changed constraint has the following form:∑
C∈Čt(P)

size(C)zC,t +
∑
p∈St

p
∑

j∈Jt(p)
xj,t ≥ (mt −

∑
C∈Ĉt(P)

zC,t)T̆ ∀t ∈ [K] (9)

We denote the resulting MILP by MILP(T̆ , P) and get the analogue of Lemma 6:

Lemma 15. If there is schedule with minimum machine load T̆ , there is a feasible
(integral) solution of MILP(T̆ , P); and if there is a feasible integral solution for
MILP(T̆ , P), there is a schedule with minimum machine load at least T̆ − ε2T .

Proof. Let σ be a schedule with minimum machine load T̆ . We first consider only the
machines for which the received load due to big jobs is at most P . These machines
obey exactly one configuration from Ct(P) and we set the corresponding integral
variables like before. The rest of the integral variables we initially set to 0. Now
consider a machine of type t that receives more than P load due to big jobs. We can
successively remove a biggest job from the set of big jobs assigned to the machine
until we reach a subset with summed up processing time at most P and bigger than
bT̆ c. This set corresponds to a big configuration C ′ and we increment the variable
zC′,t. The fractional variables are set like in the unrelated scheduling case and it is
easy to verify that all constraints are satisfied.

Now let (zC,t, xj,t) be an integral solution of MILP(T̆). Again we can assign the
jobs to distinct machine types based on the xj,t variables and the configurations to
machines based on the zC,t variables such that each machine receives at most one
configuration. Based on these configurations we can create slots for the big jobs and
for each type t we can successively assign big jobs until all slots are filled. Now we can,
for each type, iterate through the machines that received small configurations and
greedily assign small jobs. When the makespan T̄ would be exceeded due to some job,
we stop assigning to the current machine (not adding the current job) and continue
with the next machine. Because of (9) we can cover all of the machines by this.
Since the small jobs have size at most ε2T we get a schedule with makespan at least
T̄ − ε2T . There may be some remaining jobs that can be assigned arbitrarily.

To solve the MILP we adapt the techniques by Jansen et al. [19], which is
slightly more complicated for the modified MILP. Unlike in the previous section in
order to get a thin solution that still fulfils (9), we have to consider big and small
configurations separately for each machine type. Note that for a changed solution
of the MILP (9) is fulfilled, if the summed-up size of the small and the summed
up number of the big configurations is not changed. Given a solution (z̃C,t, x̃j,t) for
the MILP and a machine type t, we set m̌t =

∑
C∈Čt(P) z̃C,t and m̂t =

∑
C∈Ĉt(P) z̃C,t,

and furthermore ǩt,p =
∑
C∈Čt(P)Cpz̃C,t and k̂t,p =

∑
C∈Ĉt(P)Cpz̃C,t for p ∈ B̆t. We

16

get two configuration ILPs: The first is given by m̌t, B̆t, ǩt and Čt(P) and we call
it the small ILP. The second is given by m̂t, B̆t, k̂t and Ĉt(P) and we call it the
big ILP. For the small ILP the set of configurations is given by the upper bound
bT̆ c on the configuration size and we define the simple and complex configurations
accordingly denoting them by Čs(P) and Čc(P) respectively. We can directly apply
Theorem 11 to the small ILP like before without changing the summed-up size of the
small configurations. This is not the case for the big ILP because in this case the
set of configurations is defined by an upper and lower bound for the configuration
size and hence Theorem 11 can not be applied directly. Note that considering the
set of configurations given just by the upper bound P is not an option, since this
could change the number of big configurations that are used. However, when looking
more closely into the proof of Theorem 11 given in [19], it becomes apparent that the
result can easily be adapted. For this we call a configuration C in this case simple if
|supp(C)| ≤ log(P + 1) and complex otherwise and denote the corresponding sets by
Ĉs(P) and Ĉc(P) respectively. Without going into details we give the outline how
the proof can be adjusted to this case:

The main tools in the proof are variations of Theorem 9 and the so called
Sparsification Lemma. Theorem 9 actually works with any set of configurations and
therefore we can restrict its use to big configuration. Moreover, the Sparsification
Lemma is used to exchange complex configurations that are used multiple times
with configurations that have a smaller support but the same size. Therefore big
configurations are exchanged only with other big configurations. Moreover, the
Sparsification Lemma still holds when considering a set of configurations with a lower
and upper bound for the size.

Hence, there is a thin solution for the big ILP and obviously the summed-up
number of configurations stays the same. Summarizing we get:

Corollary 16. If MILP(T̆) has a solution, there is also a solution (zC,t, xj,t) such
that for each machine type t:
(i) |supp(y|Čct (P))| ≤ 2(|B̆t| + 1) log(4(|B̆t| + 1)bT̆ c), |supp(y|Ĉct (P))| ≤ 2(|B̆t| +

1) log(4(|B̆t|+ 1)P) and zC,t ≤ 1 for C ∈ Čct (P) ∪ Ĉct (P).
(ii) |supp(zt)| ≤ 4(|B̆t|+ 1)(log(4(|B̆t|+ 1)bT̆ c) + log(4(|B̆t|+ 1)P)).

Note that like before the terms above can be bounded byO(1/ε log2 1/ε). Utilizing
this corollary we can again solve the MILP rather efficiently. For this we have to
guess the numbers m̌c

t and m̂c
t of machines that are covered by small and big complex

configurations respectively. In addition we guess like before the numbers of big
jobs corresponding to the complex configurations. With this we can determine via
dynamic programming suitable configurations. For the small configurations we can
use the same dynamic program as before and for the second one we can use a similar

17

one that guarantees that we find big configurations. In the MILP we fix the big
configurations we have determined and guess the non-zero variables corresponding to
the simple configurations. Although this procedure is a little bit more complicated
than in the unrelated machine case, the bound for the running time remains the
same.

Rounding. To get an integral solution of the MILP we build a similar flow network.
However in this case ηt,p = b

∑
j∈Jt(p) xj,tc is set to be the rounded down (fractional)

number of jobs with processing time p that are assigned to machine type t. We get
ηt,p ≥

∑
C∈C(T)C`zC,t for big processing times p. The flow network looks basically

the same, with one important difference: The (ut,p, ω) have a demand of ηt,p and
an capacity of ∞. We may introduce demands of 0 for all the other edges. The
analogue of Lemma 8 holds, that is, the flow network has a (feasible) maximum flow
with value n. Given such a flow we can build a new solution for the MILP changing
the xj,t variables based on the flow decreasing the load due to small jobs by at most
εT + ε2T .

Flow networks with demands can be solved with a two-phase approach that first
finds a feasible flow and than augments the flow until a max flow is reached. The first
problem can be reduced to a max flow problem without demands in a flow network
that is rather similar to the original one with at most two additional nodes and
O(|V |) additional edges. Flow integrality still can be used. For details we refer to
[1]. The running time again can be bounded by O(Kn2). Hence the overall running
time of the algorithm is 2O(K log(K)1/ε log4 1/ε) + poly(|I|), which concludes the proof
of Theorem 1.

5 Uniform Machinetypes
We consider the problem of unrelated scheduling with a constant number K of
uniform machine types. In this version of the problem the input is as follows: Each
job has a size ptj for each uniform machine type t and each machine i has a speed
value si and a type ti. The processing time of job j on machine i is given by
pij = ptij/si.

We present an EPTAS and it has the same basic structure as the ones presented
so far. However, both the MILP and its rounding are considerably more complicated
and can be seen as a combination of the techniques from Section 2 with ideas from [18].
Note that in this section we have taken less effort to get a small running time in
order to keep the presentation of the result less technical.

We setMt = {i ∈M| ti = t} for each t ∈ [K] and s(t)
max = max{si | i ∈Mt}. In

the following, we refer to uniform machine types as machine types or just types.

18

Preliminaries. Again, we may assume that a target makespan T for instance
I is given and we employ geometric rounding to both the job sizes and machine
speeds. More precisely, if a job j has a size bigger than Ts(t)

max for a machine type
t ∈ [K], we set p̄tj =∞. For each job j with ptj <∞, we set p̄tj = (1 + ε)xε2Ts

(t)
max

with x = dlog1+ε(ptj/(ε2Ts
(t)
max))e. Moreover, we set s̄i = s

(t)
max/(1 + ε)y with y =

dlog1+ε(s
(t)
max/si)e and call the rounded instance Ī.

Lemma 17. If there is a schedule with makespan at most T for I, the same schedule
has makespan at most (1 + ε)2T for instance Ī and any schedule for instance Ī can
be turned into a schedule for I without increase in the makespan.

Therefore, it suffices to search for a schedule for instance Ī with makespan
T̄ := (1 + ε)2T . For the sake of simplicity, we do not use the (·̄)-notation in the
following, i.e., we assume that the instance is already rounded and the makespan
properly increased.

We fix some notation: A job size p is called huge for a speed s, if p > Ts; big, if
p ≤ Ts and p > ε2Ts; and small otherwise. We will not consider assigning jobs on
machines for whose speeds they are huge. For each machine type t, we denote the set
of occurring speeds {si | i ∈Mt} by Vt; the set of machines of type t and speed s by
Mt,s; and set mt,s := |Mt,s|. For each machine type t and speed s, let St,s and Bt,s
be the sets of occurring small and big processing times. Furthermore, let Pt be the
set of all occurring job sizes for type t. Like before, we have |Bt,s| ∈ O(1/ε log 1/ε).
For any processing time p we denote the set of jobs j with ptj = p by Jt(p).

Separation of Machines. We will consider configurations for each machine type
t and speed value s ∈ Vt. However, the number of distinct speed values could be
dependent in m and we can not effort to introduce integral variables in the MILP
for each of them. Instead, we will introduce integral variables only for the fastest
speeds of each type and round the fractional variables. For the rounding approach,
we will need a constant number of machines that receive some load from the slow
speeds, and furthermore the speeds of these machines have to be faster than the slow
speeds by some constant factor. This leads to a separation of the machines into three
groups Gt,i for i ∈ [3] for each machine type t. This is done in a way, such that for
j > i the machines in group Gt,i are faster than the ones in group Gt,j . For i ∈ [3]
and opt ∈ {min,max}, we set s(t)

i,opt := opt{si | i ∈ Gt,i}. The partition is defined by
two parameters. The first parameter

κ := max{|Bt,s|+ 1 | ∀t ∈ [K], s ∈ Vt} ∈ O(1/ε log 1/ε)

controls the number of machines in the first group and the second γ := 1/ε2 the
speed-gap between the first and the third group. More precisely:

19

• Gt,1 contains the κ fastest machines of type t.

• Gt,2 contains all machines of type t that are not contained in Gt,1 and whose
speed is bigger than γs(t)

1,min.

• Gt,3 contains the rest of the machines of type t.

Note that Gt,2 and Gt,3 might be empty. We denote the occurring speeds in group
Gt,i by Vt,i and call the speeds from Vt,1 ∪ Vt,2 fast and the rest slow. With these
definitions we have (Vt,1 ∪ Vt,2) ∩ Vt,3 = ∅ and |Vt,1|, |Vt,2| ∈ O(1/ε log(1/ε)), i.e., the
fast and slow speed values are distinct and we have only a constant number of fast
speed values.

MILP. For each machine type t and speed s ∈ Vt we consider the set Ct(sT) of
configurations C for the big processing times Bt,s and with size(C) ≤ sT . Note that
|Ct(sT)| ∈ 2O(1/ε log2 1/ε) and therefore |

⋃
s∈Vt,1∪Vt,2 Ct(sT)| ∈ 2O(1/ε log2 1/ε).

The MILP formulation in this scenario follows the same basic ideas, but is more
complicated than before. We assign jobs fractionally to machines types. For the fast
machine speeds we chose configurations integrally and for the slow ones fractionally.
Furthermore, we fractionally assign job sizes to machine speeds for which they are
small. Lastly, we count the number of jobs of each job size that are assigned to
each machine type. If the job size is big on some fast machine of the machine type,
we require an integral number of jobs. More precisely, we introduce the following
variables:

• Configuration variables z(t,s)
C for each machine type t ∈ [K], occurring speed

s ∈ Vt and configuration C ∈ Ct(sT). If s is fast, we require z(t,s)
C ∈ Z≥0 and

otherwise z(t,s)
C ≥ 0.

• Job assignment variables xj,t ≥ 0 for each machine type t ∈ [K] and job j ∈ J .

• Job size assignment variables y(t)
p,s ≥ 0 for each machine type t ∈ [K], speed

s ∈ Vt and job size p ∈ St,s.

• Counting variables u(t)
p for each machine type t ∈ [K] and job size p ∈ Pt. If

there is a fast speed s ∈ Vt,1 ∪ Vt,2, such that p ∈ Bt,s we require u(t)
p ∈ Z≥0

and otherwise u(t)
p ≥ 0.

20

Now the MILP is given by the above variables and the following constraints:∑
C∈Ct(sT)

z
(t,s)
C = mt,s ∀t ∈ [K], s ∈ Vt (10)

∑
t∈[K]

xj,t = 1 ∀j ∈ J (11)

∑
j∈Jt(p)

xj,t ≤ u(t)
p ∀t ∈ [K], p ∈ Pt (12)

∑
s:p∈Bt,s

∑
C∈Ct(sT)

Cpz
(t,s)
C +

∑
s:p∈St,s

y(t)
p,s ≥ u(t)

p ∀t ∈ [K], p ∈ Pt (13)

∑
C∈Ct(sT)

size(C)z(t,s)
C +

∑
p∈St,s

py(t)
p,s ≤ mt,ssT ∀t ∈ [K], s ∈ Vt (14)

The constraints (10) and (11) are very similar to constraints for the other MILPs
that we consider. For each machine type it is ensured with the constraints (12) and
(13) that the summed up number of jobs of each size is covered by the the chosen
configurations and the small job assignments. Furthermore, (14) guarantees that the
overall processing time of the configurations and small jobs assigned to a machine
speed for each type does not exceed the available area.

Lemma 18. If there is schedule with makespan T , there is a feasible (integral)
solution of MILP(T); and if there is a feasible integral solution for MILP(T), there
is a schedule with makespan at most (1 + ε2)T .

Proof. Given a schedule σ with makespan T , each machine of type t with speed s obeys
exactly one configuration from Ct(sT) and we can set the variables zC,t accordingly.
Furthermore, we set xj,tσ(j) = 1, xj∗,t = 0 for t 6= tσ(j), u

(t)
p := |{j | tσ(j) = t, pt,j = p}|,

and y(t)
p,s := |{j | tσ(j) = t, sσ(j) = s, pt,j = p}|. It is easy to check that all conditions

are fulfilled.
Like we did in the proof of Lemma 6, given an integral solution (z, x, y, u) we

can assign the jobs to machine types, and configurations to machines. Moreover,
based one the y(t)

p,s variables we can assign jobs of size p that are assigned to type t
to machines of speed s on which they are small. Because of (12) and (13) this can
be done such that the remaining jobs of size p can be scheduled into slots provided
by configurations. At this point each unscheduled job is assigned to a type and a
speed. Utilizing (14), these jobs can be scheduled greedyly with an additive error of
ε2T .

21

Lemma 19. The MILP has O(K(n+m)) many constraints, O(Knm)+m2O(1/ε log2 1/ε)

many variables and K2O(1/ε log2 1/ε) integral variables. It can be solved in time:

2O(K log(K)1/ε3 log5 1/ε)poly(|I|)

Proof. The bounds for the number of constraints and variables are easy to verify
using the above considerations as well as |Vt| ≤ m and |Pt| ≤ n. The running time
can be achieved with the first approach presented in Section 3: Using Theorem 9,
we can argue that O(1/ε log2(1/ε)) many integral variables for each machine type
t and speed s suffice. Therefore the number of needed guesses is 2O(K/ε3 log5 1/ε).
Running the algorithm of Lenstra and Kannan with O(K/ε2 log3(1/ε)) many integral
variables takes 2O(K log(K)1/ε2 log4 1/ε)poly(|I|) time. Together we get the stated running
time.

Rounding. We present rounding approaches for all fractional variables and start
with the configuration variables.

Configuration Variables. We fix a type t and slow speed s ∈ Vt and set
kp :=

∑
C∈Ct(sT)Cpz

(t,s)
C for each p ∈ Bt,s. We have:
∑

C∈Ct(sT)
z

(t,s)
C = mt,s (15)

∑
C∈Ct(sT)

Cpz
(t,s)
C = kp ∀p ∈ Bt,s (16)

It is easy to check that, if we replace the solution of this LP with any other solution
and change the MILP solution accordingly, the resulting MILP solution will still
be feasible. We transform the solution into a basic feasible solution. This can be
done in time polynomial in 1/ε and |I|. The LP has |Bt,s|+ 1 many constraints and
therefore the solution has at most |Bt,s|+ 1 many variables greater than 0. Now the
idea, is to round down the fractional values and to assign the respective job sizes
that lost covering by the configurations to the fastest group Gt,1. More precisely,
we chose some injective mapping ξ between the configurations C with fractional
variables z(t,s)

C and the machines from Gt,1. This can be done, due to the choice of
the parameter κ that regulates the number of machines in Gt,1. Now, we round down
z

(t,s)
C to the next integral value and increase y(t)

p,sξ(C) by (z(t,s)
C − bz(t,s)

C c)Cp ≤ Cp for
each p ∈ Bt,s. We perform these steps for all types t and slow speeds s ∈ Vt. Note
that any particular variable y(t)

p,s might be increased several times for each speed value
for which p is big. Let ỹ(t)

p,s denote the resulting increased y(t)
p,s variables and z̄(t,s)

C the

22

resulting configuration variables. For (z̄, x, ỹ, u) the constraints (10)-(12) obviously
still hold and it is easy to see that this is also the case for (13), while (14) might
be violated for speeds associated with the fastest machine groups. We show that a
modified version of (14) still holds.

Consider a machine i ∈ Gt,1. For each slow speed value s ∈ Vt,3 there may be one
configuration C that is mapped to i. The summed up job sizes that are reassigned to
si because of this are bounded by sT . Summing up over all speed values s ∈ Vt,3 and
utilizing the convergence of the geometric series, the rounding of the speed values,
and the fact that s(t)

3,max ≤ γs
(t)
1,max = 1/ε2s

(t)
1,max, we get:

∑
s∈Vt,3

sT = Ts
(t)
3,max

∑
s∈Vt,3

s

s
(t)
3,max

< Ts
(t)
3,max

∞∑
i=0

1
(1 + ε)i

≤ Ts(t)
1,min(ε+ ε2) ≤ Tsi(ε+ ε2)

Hence, (14) holds if we increase the makespan on the right hand side by (ε+ ε2)T .

Counting Variables. The rounding step for the counting variables u is the
easiest: We round them up and assign the extra job sizes to the fastest machine
speed in the group, that is, for each t ∈ [K] and p ∈ Pt we set ū(t)

p = du(t)
p e and

increase ỹ(t)
p,s∗ by ū

(t)
p − u(t)

p ≤ 1, where s∗ = s
(t)
max. We denote the changed ỹ(t)

p,s∗ by
y̆

(t)
p,s∗ Again, it is easy to see that for (z̄, x, y̆, ū) the constraints (10)-(13) still hold,

while (14) is violated. However, we can bound the increase the fastest speed receives,
again utilizing the geometric series:

∑
p∈St,s∗

p(y̆(t)
p,s∗ − ỹ

(t)
p,s∗) ≤

∑
p∈St,s∗

p ≤ ε2s∗T
1 + ε

ε
= (ε+ ε2)s∗T

Hence, (14) holds if we further increase the makespan by (ε+ ε2)T .

Job Size Assignment Variables. Consider the constraint (13) for the solution
(z̄, x, y̆, ū). Note that the right hand side and the first sum on the left hand side are
both integral. Therefore, we can scale the y̆(t)

p,s variables down, such that
∑
s:p∈St,s y̆

(t)
p,s

is integral for each machine type t and job size p ∈ Pt and (13) is still fulfilled. We fix
a machine type t, set kp :=

∑
s:p∈St,s y̆

(t)
p,s for each p ∈ Pt and assume kp ∈ Z, because

of the argument above. Furthermore, we set Lt,s :=
∑
p∈St,s py̆

(t)
p,s for each s ∈ Vt.

23

With these definitions, we have:∑
s:p∈St,s

y̆(t)
p,s = kp ∀p ∈ Pt (17)

∑
p∈St,s

py̆(t)
p,s = Lt,s ∀s ∈ Vt (18)

If we replace the values y̆(t)
p,s with any other solution for the above LP, we get an

equivalent MILP solution. We can use a variation of the classical rounding approach
by Lenstra, Shmoys and Tardos [23] to transform the solution y̆(t)

p,s.
For the sake of completeness, we summarize the main ideas of the rounding. The

solution is transformed into a basic feasible one and the following bipartite graph is
considered. There are two types of nodes, some associated with sizes p and some
with speeds s. For any p or s, there can be at most one node; there are such nodes
if and only if there are fractional variable y̆(t)

p,s′ or y̆
(t)
p′,s left; and they are connected

with an edge, if there is a fractional variable y̆(t)
p,s. Using a counting argument and

some further considerations, it can be shown that this graph is a pseudoforest, i.e.,
all connected components are either trees or trees with one extra edge. Furthermore,
because kp is integral, the definition of the graph, together with the constraint (17),
yield that all the leafs are associated to speeds. Using this structure, we can define
an injective mapping ξ from the job sizes for which there is a fractional variable y̆(t)

p,s

to the speeds such that y̆(t)
p,ξ(s) is one of the fractional variables. This can be done

as follows: For each connected component there may be at most one cycle in the
graph with alternating size and speed nodes and a suitable injective mapping for the
corresponding sizes and speeds can easily be found, by going around the cycle and
appropriately mapping consecutive nodes. After removing the corresponding nodes
and edges, only trees remain in the graph. For each tree we can chose an arbitrary
leaf. The leaf corresponds to a speed and its neighbor to a size and we can map the
size to the speed and remove both corresponding nodes from the graph. Iterating
this yields the mapping ξ. All the above steps can be performed in polynomial time
in 1/ε and |I|.

We use the mapping ξ to round the variables y̆(t)
p,s and because ξ is injective we

can guarantee that each speed receives at most one extra small job. More precisely,
for each s ∈ Vt we set ȳ(t)

p,s = dy̆(t)
p,se, if ξ(p) = s and ȳ(t)

p,s = by̆(t)
p,sc otherwise. For the

solution (z̄, x, ȳ, ū) the constraints (10)-(13) still hold, while for (14) the makespan
has to be increased further by ε2T .

Job Assignment Variables. The rounding of the job assignment variables is
the same as in the regular machine types case. The only difference is that we can set

24

ηt,p = ū
(t)
p in this case. Since all the values ū(t)

p are integral in this case there is no
rounding error in this step. Let x̄j,t be the rounded version of xj,t.

Summarizing the rounding steps, for the solution (z̄, x̄, ȳ, ū) the constraints
(10)-(13) hold together with:∑

C∈Ct(sT)
size(C)z̄(t,s)

C +
∑
p∈St,s

pȳ(t)
p,s ≤ mt,ss(1 + 2ε+ 3ε2)T ∀t ∈ [K], s ∈ Vt (19)

Analysis. Summarizing the above steps, we can construct a schedule with makespan
at most (1 + ε)2(1 + 2ε+ 4ε2)T ≤ (1 + 27ε)T (assuming a schedule with makespan T
exists), by building and solving the MILP, then rounding it and lastly transforming
it into a schedule like in the proof of Lemma 18. Solving the MILP is again the most
expensive step and with a simple case analysis we get a running time of:

2O(K log(K)1/ε3 log5 1/ε) + poly(|I|)

6 Vector Scheduling
We present an EPTAS for D-dimensional unrelated vector scheduling, where both
the dimension D and the number K of machine types are constant. In this problem
variant for each job j a D-dimensional processing time vector ptj = (p(1)

tj , . . . , p
(D)
tj)

is given and the makespan is defined as the maximum load any machine receives in
any dimension, i.e., Cmax(σ) = maxi∈M ‖

∑
j∈σ−1(i) pij‖∞. We define P = {p(d)

tj | d ∈
[D], t ∈ [K], j ∈ J } and P = {ptj | t ∈ [K], j ∈ J }.

The EPTAS is a direct adaptation of the one for the one dimensional case. In
the following we briefly describe the needed extra steps and modification. Note, that
we consider this result to be a proof of concept and took little effort to optimize the
running time.

Preliminaries. We again use the dual approximation approach to get a guess T
of the makespan. As an upper bound for this we can use the schedule that we get
by assigning each job j to a machine i where

∑D
d=1 p

(d)
ij is minimal. It is easy to see

that this approach yields a Dm-approximation and we can use this result for the
dual approximation like described in Section 4.

First, we perform rounding steps similar to those for the other results. For each
ptj ∈ P with p(d)

tj > T in at least one dimension d we set p̄tj = (∞, . . . ,∞) and for
all other processing time vectors ptj we apply geometric rounding. Let θ = (ε2/D)D

be some threshold parameter. We set p̄(d)
tj = (1 + ε)xθT with x = dlog1+ε(p

(d)
tj /(θT))e

yielding a rounded vector p̄tj and a corresponding rounded instance Ī.

25

For a given processing time vector the numbers that can occur in the different
dimensions may still differ strongly. This complicates the problem, but we can reduce
the extra complexity to some degree via a second rounding step: For each p̄tj we
set p̃(d)

tj = max{p̄(d)
tj , ‖p̄tj‖∞ε/D} yielding a rounded vector p̃tj and a corresponding

rounded instance Ĩ. Similar rounding steps were used by Chekuri and Khanna [8]
and Bonifaci and Wiese [6].

Lemma 20. If there is a schedule with makespan at most T for I, the same schedule
has makespan at most (1 + ε)2T for instance Ĩ and any schedule for instance Ĩ can
be turned into a schedule for I without increase in the makespan.

Proof. Consider a schedule σ with makespan T for I. The first rounding step may
increase the makespan by a factor of (1 + ε). We fix a machine i, and a dimension d
and bound the increase in load on machine i in dimension d for instance Ĩ. Let j be a
job with σ(j) = i. If p̄(d)

ij = ‖p̄ij‖∞, then job j causes no extra load on i in dimension
d and if p̄(d′)

ij = ‖p̄ij‖∞ for some dimension d′ 6= d, there might be an increase of at
most ‖p̄ij‖∞ε/D. In fact, the summed up load machine i receives in dimension d′
might increase the load in d by an ε/D-factor in this fashion. Because the load in
dimension d′ is bounded by (1+ε)T and there are D−1 dimensions d′ 6= d, the overall
load increase in dimension d on i can be up to (D− 1)(1 + ε)Tε/D ≤ ε(1 + ε)T .

Hence, we may search for a schedule for instance Ĩ with makespan T̃ := (1 + ε)2T .
For the sake of simplicity, we do not use the (·̃)-notation in the following, i.e., we
assume that the instance is already rounded and the makespan properly increased.

In this context we call a size q ∈ P big, if q > θT and small otherwise. Further-
more, we call a processing time vector p ∈ P big, if there is a dimension d ∈ [D],
such that p(d) is big, and small otherwise. Because of the second rounding step, we
have p(d) > θTε/D for each big vector p and dimension d. Let Bt and St be the sets
of big and small processing time vectors occurring on machine type t. Note that
|Bt| ≤ (dlog1+ε(D/(θε))e)D ≤ (3D/ε log(D/ε))D. Using these definition, the bound
on the number of big jobs is much bigger than in the other cases. We chose this
definition, because in the rounding of the MILP solution, each machine may receive
a big (but constant) number of jobs for each small job size and to bound the overall
load the small jobs have to be appropriately small.

For each processing time vector p ∈ P we denote the set of jobs j with ptj = p
with Jt(p).

MILP. Similar to the one dimensional case, for any set V of processing time vectors
we call the V -indexed vectors of non-negative integers ZV≥0 configurations (for V),
set the size size(C) of a configuration C to be the corresponding vector of sizes, i.e.,

26

size(C) =
∑
p∈P Cpp, and set Ct(T) to be the set of configurations C for Bt with

size(C) ≤ TD. Note that:

|Ct(T)| ≤ (D
θε

+ 1)(3D/ε log(D/ε))D ≤ (D
ε

)3D(3D/ε logD/ε)D ≤ 2(3D/ε logD/ε)D+1

The MILP is a straight-forward adaptation of the one for the one-dimensional case
with one important difference: The jobs are fractionally assigned to configurations
belonging to a type, instead of just being assigned to machine types. More precisely,
we introduce integral variables zC,t ∈ Z≥0 for each machine type t ∈ [K] and
configuration C ∈ Ct(T), and fractional variables xj,t,C ≥ 0 for each job j ∈ J ,
machine type t ∈ [K] and configuration C ∈ Ct(T). For ptj =∞D we set xj,t,C = 0.
MILP(T) is given by:∑

C∈Ct(T)
zC,t = mt ∀t ∈ [K] (20)

∑
t∈[K]

∑
C∈Ct(T)

xj,t,C = 1 ∀j ∈ J (21)

∑
j∈Jt(p)

xj,t,C ≤ CpzC,t ∀t ∈ [K], p ∈ Bt, C ∈ Ct(T) (22)

∑
p∈St

p
∑

j∈Jt(p)
xj,t,C ≤ (TD − size(C))zC,t ∀t ∈ [K], C ∈ Ct(T) (23)

Note that the last constraint is D-dimensional. Unlike in the other cases we can
not transform an integral solution for MILP(T) directly into a schedule with only a
small increase in the makespan. However, we deal with this in the rounding step and
still have:

Lemma 21. If there is schedule with makespan T there is a feasible (integral) solution
of MILP(T).

Using the algorithm by Lenstra and Kannan we can solve MILP(T) in time
f(1/ε,D,K)poly(|I|) for some computable function f .

Rounding. Using a variation of the rounding approach for the one dimensional
case we can transform a solution (z, x) for MILP(T) into a schedule with a makespan
of at most (1 + ε+ ε2)T . The main difference is that we create nodes for pairs of
machines and processing time vectors instead of pairs of machine types and processing
times.

For each type t we assign configurations to machines of type t such that for each
configuration C ∈ Ct(T) exactly zC,t configurations get assigned. Therefore, we can

27

assume that for each machine i a configuration C(i) is given. Based on this we can
fractionally assign jobs to machines by setting xj,i = xj,t,C(i)/zC(i),t, yielding:∑

j∈J
pijxj,i ≤ TD (24)

For each machine let Pi be the set of occurring processing time vectors for machine
i, that is, for each p ∈ P, we have p ∈ Pi, iff there is a job j with pij = p and
xj,i > 0. We set ηi,p = d

∑
j∈Jt(p) xj,ie. If p is big, we have ηi,p ≤ C

(i)
p , because of

constraint (22).
Like in the one dimensional case, the flow network G = (V,E) has a source α

and sink ω, and for each job j ∈ J there is a job node vj and an edge (α, vj) with
capacity 1 connecting the source and the job node. Moreover, for each machine
i we have processing time vector nodes ui,p for each p ∈ Pi. The processing time
nodes are connected to the sink via edges (ui,p, ω) with capacity ηi,p. Lastly, for each
job j and machine type i with xj,i > 0, we have an edge (vj , ui,pi,j) with capacity 1
connecting the job node with the corresponding processing time vector nodes. The
variables xj,i yield a flow with value n that is guaranteed to be correct because of
the constraints of the MILP.

Lemma 22. G has a maximum flow with value n.

Using the Ford-Fulkerson algorithm, an integral maximum flow f∗ can be found
in time O(|E|f∗) = O(n2m). Due to flow conservation, for each job j there is exactly
one machine i∗ such that f((vj , ui∗,pi∗j)) = 1, and we set σ(j) = i∗. Analogously to
the one dimensional case, for each big processing time vector p the schedule σ assigns
at most C(i)

p many jobs j with pij = p to machine i and for each small processing
time p′ vector one additional job j with pij = p′ may be assigned to i. Because of
the choice of the parameter θ and the second rounding step, we can bound the extra
load i receives.

Lemma 23. Let q ∈ P be small and d ∈ [D]. There are at most (2dlog1+ε(D/ε)e)D−1

processing time vectors p ∈ P with p(d) = q.

Proof. Let p be such a vector, d′ 6= d and q′ = p(d′). Because of the second rounding
step we have q′ ≥ qε/D and q ≥ q′ε/D p(d′). Now, because of the first rounding step
there are only few such processing times q, more precisely at most 2dlog1+ε(D/ε)e.
Hence, there can be at most (2dlog1+ε(D/ε)e)D−1 many such processing time vectors
p.

Using this lemma and the same argumentation as in the one dimensional case,

28

we can bound the extra load machine i receives in dimension d by:

(2dlog1+ε(D/ε)e)D−1 × θT ×
∞∑
i=0

1/(1 + ε)i

≤ 2(1/ε log((D − 1)/ε) + 1)D−1 × (ε2/D)DT × (1 + ε)/ε
≤ 2(D/ε2)D−1 × (ε2/D)DT × (1 + ε)/ε
≤ ε2T × (1 + ε)/ε ≤ (ε+ ε2)T

Summarizing, we have:

Lemma 24. A solution (z, x) for MILP(T) can be transformed into a schedule with
makespan at most (1 + ε+ ε2)T in time polynomial in |I| and 1/ε.

Therefore there is an EPTAS for this case as well.

7 Conclusion
We presented efficient approximation schemes for several variants of the problem of
scheduling on unrelated parallel machines. In the following, we briefly discuss some
possible directions for further studies.

Better Running Times. The presented approximation schemes have running
times of the form f(1/ε,K) + poly(|I|) (or f(1/ε,K,D) + poly(|I|) in the vector
scheduling case). While we took some effort to optimize f at least for the first two
schemes, we did not optimize the poly(|I|) part in any of the results. Furthermore,
for the case with a constant number of uniform types, one could study whether a
quadratic or linear dependence in 1/ε (ignoring polylogarithmic dependencies) in the
exponent of the f(1/ε,K) part can be achieved, e.g. by utilizing techniques from
[18] and [19]. Lastly, the EPTAS for the vector scheduling variant is basically just a
proof of concept and we did not optimize the running time at all.

Lower Bound. Chen, Ye and Zhang [11] showed that we can not hope for an
EPTAS with a sub-linear dependency in 1/ε in the exponent, unless the exponential
time hypothesis fails. It is unclear what can be ruled out in terms of the parameter
K.

Job Types. In the introduction we mentioned the concept of job types for schedul-
ing on unrelated parallel machines: Two jobs j, j′ are of the same type, if they behave
the same on every machine i, i.e., pij = pij′ . It is unknown, whether there is a PTAS

29

for scheduling on unrelated parallel machines with a constant number of job types.
Furthermore, it is unknown, whether this problem is NP-hard. Indeed, the problem
is in P for important special cases: For scheduling on identical parallel machines
the number of job types is equal to the number of distinct processing times and
for the case of the restricted assignment problem—where each job j has a size pj
and its processing time pij on machine i is either pj or ∞—the number of distinct
processing times is bounded by the number of job types and a constant number of
job types implies a constant number of machine types. Both problems can be solved
in polynomial time, if the number of distinct processing times is constant.

Acknowledgements. We thank Florian Mai and Jannis Mell for helpful discussions
on the problem.

References
[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows:

theory, algorithms, and applications. 1993.

[2] Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair
allocation of indivisible goods. SIAM Journal on Computing, 39(7):2970–2989,
2010.

[3] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami.
Maxmin allocation via degree lower-bounded arborescences. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 543–
552. ACM, 2009.

[4] Ivona Bezáková and Varsha Dani. Allocating indivisible goods. ACM SIGecom
Exchanges, 5(3):11–18, 2005.

[5] Raphael Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and
Denis Trystram. Scheduling independent tasks on multi-cores with gpu accelera-
tors. Concurrency and Computation: Practice and Experience, 27(6):1625–1638,
2015.

[6] Vincenzo Bonifaci and Andreas Wiese. Scheduling unrelated machines of few
different types. arXiv preprint arXiv:1205.0974, 2012.

[7] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating
goods to maximize fairness. In Foundations of Computer Science, 2009. FOCS’09.
50th Annual IEEE Symposium on, pages 107–116. IEEE, 2009.

30

[8] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems.
SIAM journal on computing, 33(4):837–851, 2004.

[9] Lin Chen, Klaus Jansen, and Guochuan Zhang. On the optimality of ap-
proximation schemes for the classical scheduling problem. In Proceedings of
the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
657–668. SIAM, 2014.

[10] Lin Chen, Dániel Marx, Deshi Ye, and Guochuan Zhang. Parameterized and
approximation results for scheduling with a low rank processing time matrix.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 66. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[11] Lin Chen, Deshi Ye, and Guochuan Zhang. An improved lower bound for rank
four scheduling. Operations Research Letters, 42(5):348–350, 2014.

[12] Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer
cones. Operations Research Letters, 34(5):564–568, 2006.

[13] Jan Clemens Gehrke, Klaus Jansen, Stefan EJ Kraft, and Jakob Schikowski. A
ptas for scheduling unrelated machines of few different types. In International
Conference on Current Trends in Theory and Practice of Informatics, pages
290–301. Springer, 2016.

[14] Michel X Goemans and Thomas Rothvoß. Polynomiality for bin packing with
a constant number of item types. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 830–839. Society for
Industrial and Applied Mathematics, 2014.

[15] Dorit S Hochbaum and David B Shmoys. Using dual approximation algorithms
for scheduling problems theoretical and practical results. Journal of the ACM
(JACM), 34(1):144–162, 1987.

[16] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for schedul-
ing nonidentical processors. Journal of the ACM (JACM), 23(2):317–327, 1976.

[17] Csanad Imreh. Scheduling problems on two sets of identical machines. Computing,
70(4):277–294, 2003.

[18] Klaus Jansen. An eptas for scheduling jobs on uniform processors: using an
milp relaxation with a constant number of integral variables. SIAM Journal on
Discrete Mathematics, 24(2):457–485, 2010.

31

[19] Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for
makespan scheduling via sparsification techniques. In 43rd International Collo-
quium on Automata, Languages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy, pages 72:1–72:13, 2016.

[20] Klaus Jansen and Marten Maack. An EPTAS for scheduling on unrelated
machines of few different types. In Algorithms and Data Structures - 15th
International Symposium, WADS 2017, St. John’s, NL, Canada, July 31 -
August 2, 2017, Proceedings, pages 497–508, 2017. URL: https://doi.org/10.
1007/978-3-319-62127-2_42, doi:10.1007/978-3-319-62127-2_42.

[21] Ravi Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of operations research, 12(3):415–440, 1987.

[22] Dušan Knop and Martin Kouteckỳ. Scheduling meets n-fold integer programming.
arXiv preprint arXiv:1603.02611, 2016.

[23] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical programming, 46(1-
3):259–271, 1990.

[24] Hendrik W Lenstra Jr. Integer programming with a fixed number of variables.
Mathematics of operations research, 8(4):538–548, 1983.

[25] Gurulingesh Raravi and Vincent Nélis. A ptas for assigning sporadic tasks
on two-type heterogeneous multiprocessors. In Real-Time Systems Symposium
(RTSS), 2012 IEEE 33rd, pages 117–126. IEEE, 2012.

[26] Andreas Wiese, Vincenzo Bonifaci, and Sanjoy Baruah. Partitioned edf schedul-
ing on a few types of unrelated multiprocessors. Real-Time Systems, 49(2):219–
238, 2013.

[27] David P Williamson and David B Shmoys. The design of approximation algo-
rithms. Cambridge university press, 2011.

[28] Gerhard J Woeginger. When does a dynamic programming formulation guaran-
tee the existence of a fully polynomial time approximation scheme (FPTAS)?
INFORMS Journal on Computing, 12(1):57–74, 2000.

32

https://doi.org/10.1007/978-3-319-62127-2_42
https://doi.org/10.1007/978-3-319-62127-2_42
http://dx.doi.org/10.1007/978-3-319-62127-2_42

	1 Introduction
	2 Basic EPTAS
	3 Better running time
	4 The Santa Claus Problem
	5 Uniform Machinetypes
	6 Vector Scheduling
	7 Conclusion

