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Abstract. We study the NodeTrix planarity testing problem for flat
clustered graphs when the maximum size of each cluster is bounded by
a constant k. We consider both the case when the sides of the matrices
to which the edges are incident are fixed and the case when they can be
chosen arbitrarily. We show that NodeTrix planarity testing with fixed

sides can be solved in O(k3k+
3
2 · n) time for every flat clustered graph

that can be reduced to a partial 2-tree by collapsing its clusters into
single vertices. In the general case, NodeTrix planarity testing with fixed
sides can be solved in O(n) time for k = 2, but it is NP-complete for any
k > 2. NodeTrix planarity testing remains NP-complete also in the free
sides model when k > 4.

1 Introduction

Motivated by the need of visually exploring non-planar graphs, hybrid planarity
is one of the emerging topics in graph drawing (see, e.g., [2,4,6,15]). A hybrid
planar drawing of a non-planar graph suitably represents in restricted geomet-
ric regions those dense subgraphs for which a classical node-link representation
paradigm would not be visually effective. These regions are connected by edges
that do not cross each other. Different representation paradigms for the dense
subgraphs give rise to different types of hybrid planar drawings.

Angelini et al. [2] consider hybrid planar drawings where dense portions of the
graph are represented as intersection graphs of sets of rectangles and study the
complexity of testing whether a non-planar graph admits such a representation.
In the context of social network analysis, Henry et al. [15] introduce NodeTrix
representations, where the dense subgraphs are represented as adjacency matri-
ces (see Fig. 1 for a NodeTrix representation drawn by the online prototype [1]).
Batagelj et al. [4] study the question of minimizing the size of the matrices in a
NodeTrix representation of a graph while guaranteeing the planarity of the edges
that connect different matrices. While Batagelj et al. can choose the subgraphs
to be represented as matrices, Da Lozzo et al. [6] consider the problem of testing
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Fig. 1. A NodeTrix representation with many crossings drawn with the online editor [1]
(courtesy of the authors of [6]).

whether a flat clustered graph (i.e. a graph with clusters and no sub-clusters)
admits a NodeTrix planar representation. In the paper of Da Lozzo et al. each
cluster must be represented by a different adjacency matrix and the inter-cluster
edges are represented as non-intersecting simple Jordan arcs. They prove that
NodeTrix planarity testing for flat clustered graphs is NP-hard even in the con-
strained case where for each matrix it is specified which inter-cluster edges must
be incident on the top, on the left, on the bottom, on the right side.

Motivated by these hardness results, in this paper we study whether Node-
Trix planarity testing can be efficiently solved when the size of the clusters is
not “too big”. More precisely, we consider flat clustered graphs whose clusters
have size bounded by a fixed parameter k and we want to understand whether
the NodeTrix planarity testing problem is fixed parameter tractable, i.e. it can
be solved in time O(f(k)nc), where c is a constant and f(k) is a computable
function that depends only on k. Note that, in some contexts, k is commonly
used to denote the number of clusters in a clustered graph; we remark that in
the following we denote by k the size of clusters. Our main results can be listed
as follows:

– We describe an O(k3k+
3
2 ·n)-time algorithm to test NodeTrix planarity with

fixed sides for every n-vertex flat clustered partial 2-tree G. Informally, a
flat clustered partial 2-tree is a flat clustered graph such that by collapsing
every cluster into a single vertex we obtain a partial 2-tree. We recall that
partial 2-trees include series-parallel graphs, which are a classical subject of
investigation in graph theory and graph drawing, see, e.g., [10,20,21,22].

– When the flat clustered graph is not a partial 2-tree, NodeTrix planarity
testing with fixed sides can still be solved in O(n) time for k = 2, but it
becomes NP-complete for any larger value of k.

– Finally, we extend the above hardness result to the free sides model and
we show that NodeTrix planarity testing remains NP-complete when the
maximum cluster dimension is larger than four.



From a technical point of view, our linear-time algorithms solve special types
of planarity testing problems, where the order of the edges around the vertices
is suitably constrained to take into account the fact that each vertex of a ma-
trix M has four copies along the four sides of M . It may be worth recalling
that Gutwenger et al. [13] considered a similar problem. Namely, they studied
planarity testing of non-clustered graphs with the additional constraint that the
order of the edges around the vertices may not be arbitrarily permuted. The solu-
tion by Gutwenger et al. [13] is based on modeling the embedding constraints as
suitable gadgets of polynomial size that are added to the input graph so to form
an enriched graph. The graph has a constrained planar embedding if and only
if the enriched graph is planar. For NodeTrix planarity testing and k = 2, we
extend the approach of Gutwenger et al. [13] by adding a new gadget, and show
that a flat clustered graph is NodeTrix planar if and only if the enriched graph
is planar. The gadget that we introduce models an “embedding synchronization
constraint” between vertices of different triconnected components. Very infor-
mally, this constraint expresses the fact that in a NodeTrix planar embedding
there are matrices that influence each other in their order of rows and columns
and that an order for the rows of a matrix implies a same order for its columns.
By means of this gadget we can express the NodeTrix planarity testing problem
for k = 2 as a 2SAT problem.

For matrices of size k > 2, however, it is unclear how to efficiently solve
NodeTrix planarity testing by means of gadgets of polynomial size. This char-
acteristic associates NodeTrix planarity testing for k > 2 with other known
variants of planarity testing, including clustered planarity, where the use of gad-
gets of polynomial size has been so far an elusive goal. In fact, our linear-time
solution for k > 2 and flat clustered graphs that are partial 2-trees does not use
a 2SAT formulation and it is based on an efficient visit of the block-cut-vertex
decomposition tree of the graph.

The rest of the paper is organized as follows. Preliminary definitions are in
Section 2. Sections 3 and 4 describe a linear-time algorithm for clustered partial
2-trees with bounded cluster size. In Section 5 we show that for general flat
clustered graphs and fixed sides NodeTrix planarity testing can be solved in
linear time for k = 2, but it is NP-complete for k > 2. In Section 6 we extend
this completeness result to NodeTrix planarity testing of flat clustered graphs
with free sides. Finally, conclusions and open problems can be found in Section 7.

2 Preliminaries

We assume familiarity with basic definitions of graph theory and graph drawing
(see, e.g., [7,14]).

A flat clustered graph G = (V,E, C) is a simple graph with vertex set V , edge
set E, and a partition C of V into sets V1, . . . , Vh, called clusters; see Fig. 2(a).
An edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj is an intra-cluster edge if i = j and
it is an inter-cluster edge if i 6= j.



(a) (b)

Fig. 2. (a) A flat clustered graph G that is not light. Clusters are represented with
different colors. (b) A NodeTrix planar representation of G.

A NodeTrix representation of a flat clustered graph G is such that: (i) Each
cluster Vi with |Vi| = 1 (called trivial cluster) is represented as a distinct point
in the plane. (ii) Each cluster Vi with |Vi| > 1 (called non-trivial cluster) is
represented by a symmetric adjacency matrix Mi (with |Vi| rows and columns),
where Mi is drawn in the plane so that its boundary is a square with sides
parallel to the coordinate axes. (iii) There is no intersection between two distinct
matrices or between a point representing a vertex and a matrix. (iv) Each intra-
cluster edge of a cluster Vi is represented by the adjacency matrix Mi. (v) Each
inter-cluster edge (u, v) with u ∈ Vi and v ∈ Vj is represented by a simple
Jordan arc connecting a point on the boundary of matrix Mi with a point on
the boundary of matrix Mj , where the point on Mi (on Mj) belongs to the
column or to the row of Mi (resp. of Mj) associated with u (resp. with v). We
remark that we require the adjacency matrices to be symmetric, consistently
with previous papers that studied the NodeTrix model [4,6,15].

A NodeTrix representation of a flat clustered graph G is planar if there is
no intersection between any two inter-cluster edges (except possibly at common
end-points) nor an intersection between an inter-cluster edge and a matrix. A flat
clustered graph is NodeTrix planar if it admits a planar NodeTrix representation.
Fig. 2(b) shows a NodeTrix planar representation of the flat clustered graph of
Fig. 2(a).

A formal definition of the problem investigated in the paper is as follows. Let
G = (V,E, C) be a flat clustered graph with n vertices and let k be the maximum
cardinality of a cluster in C. Clustered graph G is NodeTrix planar with fixed
sides if it has a NodeTrix planar representation where for each inter-cluster
edge, the sides of matrices it attaches to is specified as part of the input; G is
NodeTrix planar with free sides if the sides of the matrices to which inter-cluster
edges attach can be chosen arbitrarily.



Let Mi be the matrix representing cluster Vi in a NodeTrix representation
of G; let v be a vertex of Vi and let (u, v) be an inter-cluster edge. Edge (u, v)
can intersect the boundary of Mi in four points pv,t, pv,b, pv,l, and pv,r since the
row and column that represent v in Mi intersect the four sides of the boundary
of Mi. We call these points the top copy, bottom copy, left copy, and right copy
of v in Mi, respectively.

A side assignment for Vi ∈ C specifies for each inter-cluster edge whether the
edge must attach to the matrixMi representing Vi in its top, left, right, or bottom
side. More precisely, a side assignment is a mapping φi:

⋃
j 6=iEi,j → {t,b, l,r},

where Ei,j is the set of inter-cluster edges between the clusters Vi and Vj (Vi
and Vj are adjacent if Ei,j 6= ∅). A side assignment for C is a set Φ of side
assignments for each Vi ∈ C.

We denote as G = (V,E, C, Φ) a flat clustered graph G = (V,E, C) with a
given side assignment Φ = {φ1, φ2, . . . , φ|C|}. Let Γ be a NodeTrix representation
of G such that, for every inter-cluster edge e = (u, v) ∈ E with u ∈ Vi and v ∈ Vj ,
the incidence points of e with the matrices Mi and Mj representing Vi and Vj in
Γ are exactly the points pu,φi(e) and pv,φj(e), respectively. We call Γ a NodeTrix
representation of G consistent with Φ. We say that G = (V,E, C, Φ) is NodeTrix
planar if it admits a NodeTrix planar representation consistent with Φ.

A flat clustered graph is light if no inter-cluster edge has both its end-vertices
belonging to non-trivial clusters and no trivial cluster has more than one inter-
cluster edge incident to the same non-trivial cluster. Note that a light flat clus-
tered graph can contain an inter-cluster edge that has both its end-vertices
belonging to trivial clusters. A 1-subdivision of an inter-cluster edge e = (u, v)
of a flat clustered graph G = (V,E, C) replaces e by a path u0 = u, u1, u2 = v
and defines a new flat clustered graph G′ = (V ′, E′, C′), where V ′ = V ∪ {u1},
E′ = E \ e ∪ {(u0, u1), (u1, u2)}, and C′ = C ∪ {u1}. The light reduction of G
is the flat clustered graph G′ obtained by performing a 1-subdivision of every
inter-cluster edge of G. Fig. 3(a) illustrates the light reduction G′ of the flat
clustered graph G in Fig. 2(a).

A consequence of Theorem 1 in [9] about the edge density of NodeTrix planar
graphs, is that the light reduction G′ of a NodeTrix planar flat clustered graph
G has O(|V |) vertices and O(|V |) inter-cluster edges.

Property 1. A flat clustered graph G is NodeTrix planar if and only if its light
reduction G′ is NodeTrix planar.

Based on Property 1, in the remainder we shall assume that flat clustered
graphs are always light and we call them clustered graphs, for short.

The frame of a clustered graph G = (V,E, C) is the graph F obtained by
collapsing each cluster Vi ∈ C, with |Vi| > 1, into a single vertex ci of F , called
the representative vertex of Vi in F . Let ci and cj be the two representative
vertices of Vi and Vj in F , respectively. For every inter-cluster edge connecting
a vertex of Vi to a vertex of Vj in G there is an edge in F connecting ci and cj .
Observe that the frame graph F of G is in general a multigraph; however, F is
simple when G is light. Fig. 3(b) shows the frame of the graph in Fig. 3(a).



(a) (b)

Fig. 3. (a) The light reduction G′ of the graph G in Fig. 2(a). (b) The frame F of G′.

Since the NodeTrix planarity of a clustered graph implies the planarity of
its frame graph, we will test NodeTrix planarity only on those clustered graphs
that have a planar frame.

A 2-tree is a graph recursively defined as follows: (i) an edge is a 2-tree; (ii)
the graph obtained by adding a vertex v to a 2-tree G and by connecting v to
two adjacent vertices of G is a 2-tree. A (planar) graph is a partial 2-tree if it is
a subgraph of a (planar) 2-tree. A biconnected partial 2-tree is a series-parallel
graph. A clustered graph is a partial 2-tree if its frame is a partial 2-tree. We
will sometimes talk about series-parallel clustered graphs when their frames are
series parallel.

In our testing algorithm we will make use of block-cut-vertex trees and of
SPQR-trees. We thus conclude this section by recalling their definitions. The
block-cut-vertex tree of a connected graph G is a tree whose nodes are the blocks
(i.e. the biconnected components) and the cut-vertices of G. There exists an edge
between a block B and a cut-vertex v if v belongs to B.

SPQR-tree. Let G be a simply biconnected graph. A separation pair is a pair
of vertices whose removal disconnects G. A split pair is either a separation pair
or a pair of adjacent vertices. A split component of a split pair {u, v} is either
an edge (u, v) or a maximal subgraph Guv ⊂ G such that {u, v} is not a split
pair of Guv. Vertices {u, v} are the poles of Guv. A split pair {s′, t′} of G is
maximal with respect to a different split pair {s, t} of G, if for every other
split pair {s∗, t∗} of G, there is a split component that includes the vertices
s′, t′, s, t. The SPQR-tree T of G with respect to an edge e is a rooted tree that
describes a recursive decomposition of G induced by its split pairs [8]. In what
follows, we call nodes the vertices of T , to distinguish them from the vertices
of G. The nodes of T are of four types S, P, Q, or R. Each node µ of T has
an associated biconnected multigraph called the skeleton of µ and denoted as
skel(µ), which contains a distinguished edge, called the reference edge, between
the two poles of the corresponding split component. At each step, given the



current split component Gµ, its split pair {s, t}, and a node ν in T , the node µ
of the tree corresponding to Gµ is introduced and attached to its parent vertex ν,
while the decomposition possibly recurs on some split component of Gµ. Graph
Gµ is called the pertinent graph of µ. At the beginning of the decomposition
the parent of µ is a Q-node corresponding to e = (u, v), Gµ = G \ e, and
{s, t} = {u, v}.

Base case: Gµ consists of a single edge between s and t. Then, µ is a Q-node
whose skeleton is Gµ itself plus the reference edge between s and t.

Parallel case: The split pair {s, t} has G1, . . . , Gk (k ≥ 2) as split compo-
nents. Then, µ is a P-node whose skeleton is a set of k+1 parallel edges between
s and t, one for each split component Gi plus the reference edge between s and
t. The decomposition recurs on G1, . . . , Gk with µ as parent node.

Series case: Gµ is not biconnected and it has at least one cut-vertex (a
vertex whose removal disconnects Gµ). Then, µ is an S-node whose skeleton is
defined as follows. Let v1, . . . , vk−1, where k ≥ 2, be the cut vertices of Gµ. The
skeleton of µ is a path consisting of the edges e1, . . . , ek, where ei = (vi−1, vi),
v0 = s and vk = t, plus the reference edge between s and t which makes the
path a cycle. The decomposition recurs on the split components corresponding
to e1, . . . , ek with µ as parent node.

Rigid case: None of the other cases is applicable. Let {s1, t1}, . . . , {sk, tk}
be the maximal split pairs of G with respect to {s, t} (k ≥ 1) such that {si, ti}
belongs to Gµ, for i = 1, . . . , k. Then µ is an R-node whose skeleton is the
graph obtained from Gµ as follows. Connect each pair {si, ti} with an edge if
not already adjacent, connect the poles s and t, and finally remove all vertices
other than the poles and the pairs {si, ti}. The decomposition recurs on each Gi
with µ as parent node.

3 NodeTrix Representations and Wheel Reductions

The linear-time algorithms described in Sections 4 and 5 are based on decompos-
ing the planar frame F of a clustered graph G = (V,E, C, Φ) into its biconnected
components and storing them into a block-cut-vertex tree. We process each block
of F by using an SPQR decomposition tree that is rooted at a reference edge
and visited from the leaves to the root. For each visited node µ of the decom-
position tree of a block of F , we test whether the subgraph of G whose frame
is the pertinent graph of µ satisfies the planar constraints imposed by the side
assignment on the inter-cluster edges. A key ingredient to efficiently perform the
test at µ is the notion of wheel replacement.

Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ and let Vi ∈
C be a cluster with k > 1 vertices. Vi admits k! permutations of its vertices and we
associate a suitable graph to each such permutation. Let πi = v0, v1, . . . , vk−1 be
a permutation of the vertices of Vi. The wheel of Vi consistent with πi is the wheel
graph consisting of a vertex v of degree 4k adjacent to the vertices of an oriented
cycle v0,t, v1,t, . . . , vk−1,t, v0,r, v1,r, . . . , vk−1,r, vk−1,b, vk−2,b, . . . , v0,b, vk−1,l,
vk−2,l, . . . , v0,l where each edge of the cycle is oriented forward. Intuitively, this



oriented cycle will be embedded clockwise to encode the constraints induced by
a matrix Mi representing Vi when its left-to-right order of columns is πi. More
precisely, a wheel replacement of cluster Vi consistent with πi is the clustered
graph obtained as follows: (i) remove Vi and all the inter-cluster edges incident
to Vi; (ii) insert the wheel Wi of Vi consistent with πi; and (iii) for each inter-
cluster edge e = (u, vj), with vj ∈ Vi, insert edge (u, vj,φi(e)) incident to Wi. We
call edge (u, vj,φi(e)) the image of edge e = (u, vj).

Let G = (V,E, C, Φ,Π) be a clustered graph with side assignment Φ where
Π is a set of permutations {π1, π2, . . . , π|C|}, one for each cluster Vi (with i =
1, . . . , |C|). We call Π the permutation assignment of G and we say that G
is NodeTrix planar with side assignment Φ and permutation assignment Π if
G admits a NodeTrix planar representation with side assignment Φ where for
each matrix Mi the permutation of its columns is πi. The wheel reduction of G
consistent with Π is the graph obtained by performing a wheel replacement of
Vi ∈ C consistent with πi for each i = 1, . . . , |C|.

Theorem 1. Let G = (V,E, C, Φ,Π) be a clustered graph with side assignment
Φ and permutation assignment Π. G is NodeTrix planar if and only if the planar
wheel reduction of G admits a planar embedding where the external oriented cycle
of each wheel Wi is embedded clockwise.

Proof. If G is NodeTrix planar, we construct a planar embedding of a wheel
reduction of G where the external oriented cycle of each wheel is embedded
clockwise as follows. Let Γ be a NodeTrix planar representation of G. We replace
each matrix Mi representing a cluster Vi ∈ C by the wheel Wi of Vi consistent
with the permutation πi ∈ Π of Vi. Also Wi is embedded in such a way that a
forward traversal of its external cycle is a clockwise traversal of the cycle. Every
inter-cluster edge e = (u, vj), with vj ∈ Vi, is incident to the vertex vj,φi(e) of
the wheel Wi. Also, for all j = 0, 1, . . . , k − 1 and for all x ∈ {t,b, l,r}, the
cyclic order of the inter-cluster edges incident to vj,x in Wi is the same as the
cyclic order of the inter-cluster edges incident to pvj ,x in Mi. It is immediate to
see that, since no two inter-cluster edges cross in Γ , no two edges cross in the
constructed embedding of the wheel reduction of G.

Conversely, suppose that we are given a planar embedding of the wheel reduc-
tion of G where the external oriented cycle of each wheel is embedded clockwise.
We show how to construct a NodeTrix planar representation of G. For each wheel
Wi we remove the center vertex of the wheel and insert a matrix Mi inside the
created face. We now morph every vertex vj,φi(e) of the external cycle of Wi to
point pvj ,φi(e) in Mi and maintain around pvj ,φi(e) the cyclic order of the inter-
cluster edges incident to vj,φi(e) in the planar embedding of the wheel reduction.
�

Fig. 4(a) and Fig. 4(b) show respectively a NodeTrix planar representation
of the flat clustered graph in Fig. 3(a) and the corresponding wheel reduction
with its planar embedding.

Based on Theorem 1, we can test the graph G = (V,E, C, Φ) for NodeTrix
planarity by exploring the space of the possible permutation sets Π and the cor-
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Fig. 4. (a) A NodeTrix planar representation of the graph in Fig. 3(a). (b) The planar
embedding of the corresponding wheel reduction.

responding wheel reductions in search of a NodeTrix planar G = (V,E, C, Φ,Π).
Note that, if the maximum size of a cluster is given as a parameter k, every
cluster Vi can be replaced by k! wheel graphs, one for each possible permutation
of the vertices of Vi. In order to test planarity, for any such wheel replacement
Wi, the cyclic order of the inter-cluster edges incident to the same vertex of
Wi can be arbitrarily permuted. While each wheel reduction yields an instance
of constrained planarity testing that can be solved with the linear-time algo-
rithm described in [13], a brute-force approach that repeats this algorithm on
each possible wheel reduction may lead to testing planarity on (k!)|C| different
instances. Instead, for each visited node µ of the decomposition tree T we com-
pute a succinct description of the possible NodeTrix planar representations of
the subgraph Gµ of G represented by the subtree of T rooted at µ. This is done
by storing for the poles of µ those pairs of wheel graphs that are compatible
with a NodeTrix planar representation of Gµ. How to efficiently compute such
a succinct description will be the subject of the next sections.

4 Testing NodeTrix Planarity for Partial 2-Trees

In this section we prove that NodeTrix planarity testing with fixed sides can be
solved in linear time for a clustered graph G = (V,E, C, Φ) when the maximum
size of any cluster of C is bounded by a constant and the frame graph is a partial
2-tree. This contrasts with the NP-hardness of NodeTrix planarity testing with
fixed sides proved in [6] in the case where the size of the clusters is unbounded.

We first study the case of a clustered graph whose frame graph is a series-
parallel graph, i.e., it is biconnected and its SPQR decomposition tree only has
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Fig. 5. (a) The frame graph F of the graph G in Fig. 3(a). The pertinent graph Fµ
of a node µ and its poles sµ and tµ are highlighted. Intra- and extra-component edges
are colored blue and red, respectively. (b) The SPQ decomposition tree T of F rooted
at edge e. The subtree of T rooted at µ is highlighted.

Q-, P-, and S-nodes. We refer to such trees as SPQ decomposition trees. We then
consider the case of partial 2-trees, i.e., graphs whose biconnected components
are series-parallel.

4.1 Series-Parallel Frame Graphs

In this section we prove that NodeTrix planarity testing with fixed sides can
be solved in O(k3k+

3
2 · n) time for clustered graphs whose frame graphs are

series-parallel and have cluster size at most k.
Let G = (V,E, C, Φ) be a series-parallel clustered graph with side assignment

Φ and let F be its frame graph. Let T be the SPQ decomposition tree of F
rooted at any Q-node; see Fig. 5(a) and Fig. 5(b) for an example. To simplify
the description and without loss of generality, we assume that every S-node of T
has exactly two children. Let µ be a node of T , and let sµ and tµ be the poles of
µ (refer to Fig. 5). Consider the pertinent graph Fµ represented by the subtree
of T rooted at µ and let vµ be a pole of µ (vµ ∈ {sµ, tµ}). Pole vµ in the frame
graph F may correspond to a non-trivial cluster Vi of C. In this case, we call
vµ a non-trivial pole of µ and cluster Vi the pertinent cluster of vµ. The edges
of Fµ incident to vµ are the intra-component edges of vµ. The other edges of F
incident to vµ are the extra-component edges of vµ. The intra-component edges
of tµ are colored blue in Fig. 5(a), while the extra-component edges of tµ are
colored red. Each intra-component (extra-component) edge of vµ corresponds
to an inter-cluster edge e′ of G incident to one vertex of the pertinent cluster
Vµ of vµ. We call e′ an intra-component edge (extra-component edge) of Vµ. We
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Fig. 6. (a) The wheel reduction of graph G′ in Fig. 3(a); the complete internal and
external sequences for a pair of poles are also highlighted. (b) Labeling of the vertices
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associate k! wheel graphs to each non-trivial pole vµ of µ. Each of them is a
wheel replacement of the pertinent cluster of vµ, consistent with one of the k!
permutations of its vertices.

Let vµ be a non-trivial pole of µ, let Vµ be the pertinent cluster of vµ, let πµ
be a permutation of the vertices of Vµ, and let Wµ be the wheel replacement of
Vµ consistent with πµ. Every edge e incident to Wµ such that e is the image of
an inter-cluster edge e′ of G is labeled either int or ext, depending on whether
e′ is an intra-component or an extra-component edge of Vµ. A vertex w of the
external cycle of Wµ is assigned one label of the set {void, int, ext, int-ext}
as follows. Vertex w is labeled void if no edge incident to w is the image of
an inter-cluster edge. Vertex w is labeled int (resp. ext) if we have a label
int (resp. ext) on every edge e incident to w such that e is the image of an
inter-cluster edge. Otherwise, vertex w is labeled int-ext. See Fig. 6(b) for an
example concerning the wheel Wtµ of Fig. 6(a); the dashed curve of Fig. 6(a)
shows the subgraph of the wheel reduction corresponding to the pertinent graph
Fµ of Fig. 5(a).

A clockwise sequence v0, v1, . . . , vj of vertices of the external cycle of Wµ

is an external sequence of pole vµ consistent with πµ if v0 and vj are labeled
either ext or int-ext and all the other vertices of the sequence are labeled
either void or ext. An external clockwise sequence of pole vµ is complete if it
contains all the vertices of Wµ that are labeled ext and int-ext. Note that a
complete external sequence may contain many void vertices but no int vertex.
Internal and complete internal sequences of pole vµ are defined analogously;
see Fig. 6 for an illustration. Observe that a complete internal sequence and



a complete external sequence of vµ may not exist when vertices labeled int

and vertices labeled ext alternate more than twice when traversing clockwise
the external cycle of Wµ, or when three vertices are labeled int-ext. A special
case is when Wµ has exactly two vertices w1 and w2 labeled int-ext and all
other vertices are void. In this case, the clockwise sequence from w1 to w2 and
the clockwise sequence from w2 to w1 are both complete internal and complete
external sequences.

In order to test G = (V,E, C, Φ) for NodeTrix planarity, we implicitly take
into account all possible permutation assignments Π by considering, for each
non-trivial pole wµ of each node µ of T , its k! possible wheels and by computing
their complete internal and complete external sequences. We visit the SPQ de-
composition tree T from the leaves to the root and equip each node µ of T with
information regarding the complete internal and complete external sequences of
its non-trivial poles. Let µ be an internal node of T , let vµ be a non-trivial pole
of µ, let πvµ be a permutation of the pertinent cluster Vµ of vµ, and let Wµ be
the wheel of Vµ consistent with πvµ . We denote as ISeq(µ, vµ, πvµ) the complete
internal sequence of vµ consistent with πvµ in pole µ and as ESeq(µ, vµ, πvµ) the
complete external sequence of vµ consistent with πvµ in pole µ. We distinguish
between the different types of nodes of T .

Node µ is a Q-node. Since G is light, at most one of its poles is non-trivial.
Let e be an edge of F that is the pertinent graph of µ. One end-vertex of e is
the representative vertex in F of the pertinent cluster of the non-trivial pole vµ.
In fact, edge e corresponds to an edge e′ = (u, z) of G such that u ∈ Vµ and z
is a trivial cluster. The side assignment φvµ defines whether e is incident to the
top, bottom, left, or right copy uW of u in the wheel Wµ of Vµ. For any possible
permutation πvµ we have ISeq(µ, vµ, πvµ) = uW . If uW is labeled int-ext, then
ESeq(µ, vµ, πvµ) is the external cycle of Wµ starting at uW and ending at uW .
Otherwise, traverse the external cycle of Wµ starting at uW and following the
direction of the edges; ESeq(µ, vµ, πvµ) consists of all the encountered vertices
from the first labeled ext to the last labeled ext.

Node µ is a P-node. Let ν0, ν1, . . . , νh−1 be the children of µ. Observe that
vµ is a non-trivial pole also for the children ν0, ν1, . . . , νh−1 of µ. We consider
every permutation πvµ such that ν0, ν1, . . . , νh−1 have both a complete inter-
nal sequence and a complete external sequence compatible with πvµ . The com-
plete internal sequence of vµ consistent with πvµ is the union of the complete
internal sequences of the children ν0, ν1, . . . , νh−1, that is ISeq(µ, vµ, πvµ) =

∪h−1i=0 ISeq(νi, vµ, πvµ).
To determine the complete external sequence of vµ consistent with πvµ we

consider the intersection of the complete external sequences of the children of
µ. If this intersection consists of exactly one sequence of consecutive vertices,
then ESeq(µ, vµ, πvµ) = ∩h−1i=0 ESeq(νi, vµ, πvµ). Otherwise (i.e., the intersection
is empty or it consists of more than one sequence of consecutive vertices), vµ
does not have a complete external sequence consistent with πvµ .

Node µ is an S-node. Let ν be the child of µ that shares the pole vµ with µ.
We consider every permutation πvµ such that ν has both ISeq(ν, vµ, πvµ) and



ESeq(ν, vµ, πvµ). The complete internal (external) sequence of vµ consistent with
πvµ is ISeq(µ, vµ, πvµ) = ISeq(ν, vµ, πvµ) (ESeq(µ, vµ, πvµ) = ESeq(ν, vµ, πvµ)).

To test G for NodeTrix planarity we execute a bottom-up traversal of T
and, for each node µ with poles sµ and tµ, we check whether each possible pair
(πsµ , πtµ) induces complete internal and external sequences for sµ and tµ that
are ‘compatible’ with a planar embedding of the wheel reduction of G. If this is
the case, by Theorem 1, G is NodeTrix planar, otherwise we reject G.

More formally, let πsµ (πtµ , respectively) be a permutation such that sµ (tµ,
respectively) has both a complete internal sequence and a complete external
sequence compatible with πsµ (πtµ , respectively). We say that (πsµ , πtµ) is a
compatible pair of permutations for µ if either one of the poles is a trivial pole
or one of the following cases applies.

Node µ is a Q-node. In this case all k! possible pairs of permutations for sµ
or tµ (recall that only one of them is non-trivial) are compatible for µ.

Node µ is a P-node. Let ν0, ν1, . . . , νh−1 be the children of µ. Consider a pair
of permutations (πsµ , πtµ); we recall that, for i = 0, . . . , h−1, each νi has poles sµ
and tµ. A first condition for pair (πsµ , πtµ) to be a compatible pair for µ is that
(πsµ , πtµ) is also a compatible pair for νi, with i = 0, . . . , h−1. A second condition
asks that the pair (πsµ , πtµ) defines opposite orders on the poles of µ. Namely, let
W s
µ (resp., W t

µ) be the wheel of Vsµ (resp., Vtµ) consistent with πsµ (resp., πtµ).
Traversing clockwise the external cycle of W s

µ starting from the first vertex of
ESeq(µ, sµ, πsµ), let ISeq(ν0, sµ, πsµ), ISeq(ν1, sµ, πsµ), . . . , ISeq(νh−1, sµ, πsµ)
be the order by which the internal sequences are encountered. Pair (πsµ , πtµ)
defines opposite orders on the poles of µ if, traversing clockwise the external
cycle of W t

µ starting from the first vertex of ESeq(µ, tµ, πsµ), the order by which
we encounter the internal sequences of ν0, ν1, . . . , νh−1 is the opposite one, i.e.,
the order is ISeq(νh−1, tµ, πtµ), ISeq(νh−2, tµ, πtµ), . . . , ISeq(ν0, tµ, πtµ).

Node µ is an S-node. Let ν0 and ν1 be the children of µ such that sν0 = sµ,
tν0 = sν1 , and tν1 = tµ. A pair (πsµ , πtµ) is a compatible pair for µ if there exists
a permutation πtν0 such that the pair (πsµ , πtν0 ) is compatible for ν0 and the
pair (πtν0 , πtµ) is compatible for ν1.

Fig. 6(a) suggests that a NodeTrix planar representation of a clustered graph
G defines a permutation assignment Π such that, for every node µ of T , pair
(πsµ , πtµ) is a compatible pair for µ.

Lemma 1. Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ
and let T be the SPQ decomposition tree of the frame graph of G. Graph G is
NodeTrix planar if and only if there exists a permutation assignment Π such that,
for every node µ of T with poles sµ and tµ, we have that permutation πsµ ∈ Π
and permutation πtµ ∈ Π form a compatible pair of permutations for µ.

Proof. We prove first that, if G = (V,E, C, Φ) is NodeTrix planar, then there
exists a permutation assignment Π such that, for every node µ of T with poles
sµ and tµ, the pair (πsµ , πtµ) is compatible for µ.

Let Γ be a NodeTrix planar representation of G with side assignment Φ
and let M0,M1, . . . ,Mh−1 be the matrices representing the non-trivial clusters



of G. For each matrix Mi (i = 0, . . . , h − 1) of Γ , let πi = v0, v1, . . . , vk−1
be the left to right order of the columns of Mi. We replace Mi with a wheel
Wi consisting of a vertex wi of degree 4k adjacent to all vertices of a cycle
v0,t, v1,t, . . . , vk−1,t, v0,r, v1,r, . . . , vk−1,r, vk−1,b, vk−2,b, . . . , v0,b, vk−1,l, vk−2,l,
. . . , v0,l. For all j = 0, 1, . . . , k − 1 and for all x ∈ {t,b, l,r}, vertex vj,x is
drawn at the point pvj ,x, that represents the attachment of the inter-cluster
edges incident to vertex vj on the side x of matrix Mi. The edges of the external
cycle of Wi are drawn along the external boundary of Mi. Every inter-cluster
edge e = (u, vj), with vj ∈ Mi, is incident to the vertex vj,φi(e) of the wheel
Wi. Also, for all j = 0, 1, . . . , k − 1 and for all x ∈ {t,b, l,r}, the cyclic order
of the inter-cluster edges incident to vj,x in Wi is the same as the cyclic order
of the inter-cluster edges incident to pvj ,x in Mi. It is straightforward to verify
that the computed drawing defines a planar embedding for the wheel reduction
of G = (V,E, C, Φ) consistent with Π = {π1, π2, . . . , π|C|}. From the planarity
of the wheel reduction of G it follows that each non-trivial pole vµ of the frame
graph F has a complete internal and a complete external sequence consistent
with πvµ and that for every node µ of the SPQ decomposition tree of F having
poles sµ and tµ, the pair (πsµ , πtµ), with πsµ , πtµ ∈ Π, is compatible for µ. An
example of the above described procedure is illustrated in Fig. 6(a).

We now show that, if there exists a permutation assignment Π such that for
every node µ of T with poles sµ and tµ we have that permutation pair (πsµ , πtµ) is
compatible for µ, then G = (V,E, C, Φ) is NodeTrix planar with side assignment
Φ. We construct a planar embedding of the wheel reduction of G consistent with
Π such that all external cycles of the wheels are embedded clockwise which, by
Theorem 1, implies that G is NodeTrix planar. Let Wsµ and Wtµ be the two
wheels consistent with πsµ and πtµ of sµ and tµ, respectively. We visit T from
the leaves to the root and incrementally construct the desired planar embedding
of the wheel reduction of G.

If the visited node µ is a Q-node, at most one of its poles is non-trivial
because G is light; assume, without loss of generality, that the non-trivial pole
of µ is sµ and let Vsµ be the cluster of G represented by sµ in the frame graph
of G. We embed the wheel Wsµ of Vsµ consistent with πsµ ∈ Π such that,
when traversing the edges of the external cycle of Wsµ in the forward direction,
the cycle is traversed clockwise. We embed tµ in the external face of Wsµ and
planarly connect the top, bottom, left, or right copy of its end-vertex on Wsµ as
specified by Φ.

Suppose now µ is an S-node and let ν0 and ν1 be the children of µ such that
sν0 = sµ, tν0 = sν1 , and tν1 = tµ. The planar embedding of the wheel reduction
at node µ is obtained by composing the planar embedding of the wheel reduction
at node ν0 with the planar embedding of the wheel reduction at ν1. This is done
by identifying the planar embedding of the wheel Wtν0

consistent with πtν0 with
the planar embedding of the wheel Wsν1

consistent with πsν1 . Note that this is
possible because πtν0 is the same as πsν1 , (πsµ , πtν0 ) is a compatible pair for ν0,
and (πsν1 , πtµ) is a compatible pair for ν1.



Finally, assume µ is a P-node and let ν0, ν1, . . . , νh−1 be the children of µ.
Similarly to the case of the S-node, the planar embedding of the wheel reduc-
tion at node µ is obtained by composing the planar embeddings of the wheel
reductions at nodes ν0, ν1, . . . , νh−1. Since pair (πsµ , πtµ) is compatible for µ, it
defines opposite orders on the poles of µ. These opposite circular orders corre-
spond to a planar embedding of the wheel reduction at µ obtained by combining
the planarly embedded wheel reductions at its children ν0, ν1, . . . νh−1. It follows
that G = (V,E, C, Φ) is NodeTrix planar with permutation assignment Π. �

Lemma 2. Let G = (V,E, C, Φ) be a flat clustered series-parallel graph with side
assignment Φ. Let k be the maximum size of any cluster in C and let n be the
cardinality of V . There exists an O(k3k+

3
2 · n)-time algorithm that tests whether

G is NodeTrix planar with side assignment Φ and if so, it computes a NodeTrix
planar representation of G consistent with Φ.

Proof. Let F be the frame graph of G. We construct the SPQ decomposition tree
T of G rooted at an arbitrary Q-node. We visit T from the leaves to the root and
test whether G has a permutation assignment Π such that G = (V,E, C, Φ,Π)
is NodeTrix planar. We first equip each non-trivial pole vµ of every node µ
of T with its possible complete internal and complete external sequences. The
maximum number of complete internal sequences of vµ is k!. The same is true for
the complete external sequences. Each complete (internal or external) sequence
of pole vµ is encoded by means of the permutation πvµ and by the first and last
vertex of the sequence in the clockwise order around Wvµ . It follows that the
intersection or the union of two complete internal or external sequences of the
same permutation πvµ can be computed in constant time. Therefore, all complete
internal and external sequences for each non-trivial pole of T can be computed
in O(k!) time. Hence, the whole bottom-up traversal to equip all non-trivial
poles with every possible complete internal/external sequence can be executed
in O(k! ·n) time. We now test whether there exists a permutation assignment Π
such that any node µ of T has a compatible pair of permutations. To this aim,
we look at the complete internal and external sequences for the pair of poles
of the children of µ. For each pair (πsµ , πtµ) of permutations of the poles of µ
we equip µ with the information about whether such a pair is compatible for µ.
This requires O(k!2) space.

If µ is a Q-node, every pair of permutations (πsµ , πtµ) is compatible for µ.
It follows that all compatible pairs for µ can be computed in O(k!) time (recall
that one between sµ and tµ is non-trivial) and, hence, in O(k! · n) time for all
the Q-nodes of T .

If µ is a P-node with children ν0, ν1, . . . , νh−1, πsµ is one of the permutations
that equip sµ, and πtµ is one of the permutations that equip tµ, testing whether
the pair (πsµ , πtµ) is a compatible pair for µ can be executed in O(h) time. It
follows that all compatible pairs for µ can be computed in O(k!2 · h) time and,
hence, in O(k!2 · n) time for all P-nodes of T .

If µ is an S-node with children ν0 and ν1, πsµ is one of the permutations
that equip sµ, and πtµ is one of the permutations that equip tµ, testing whether



the pair (πsµ , πtµ) is a compatible pair for µ can be executed in O(k!) time,
corresponding to choosing all possible permutations for the pole shared between
ν0 and ν1. It follows that all compatible pairs for µ can be computed in O(k!3)
time and, hence, in O(k!3 · n) time for all S-nodes of T .

Hence, the overall cost of the above described algorithm is O(k!3 · n). It

remains to prove that O(k!3 · n) = O(k3k+
3
2 · n). By Stirling’s approximation,

k! ∼
√

2πk(ke )k and thus a series-parallel clustered graph G with n vertices, side
assignment Φ, and maximum cluster size k can be tested for NodeTrix planarity
in O(k3k+

3
2 · n) time. Note that the compatible pair of permutations stored at

each node µ of T implicitly define a planar embedding of a wheel reduction of G.
It can be shown that it is possible to construct a NodeTrix planar representation
of G in time proportional to the number of edges of G, which is O(n ·k) [9]. The
statement of the lemma follows. �

4.2 Partial 2-Trees

We now consider clustered graphs whose cluster size is at most k and such that
their frame graph is a partial 2-tree, i.e., it is a planar graph whose biconnected
components are series-parallel. We handle this case by decomposing the frame
graph into its blocks and we store them into a block-cut-vertex tree. The follow-
ing theorem generalizes the result of Lemma 2.

Theorem 2. Let G = (V,E, C, Φ) be a flat clustered partial 2-tree with side
assignment Φ. Let k be the maximum size of any cluster in C and let n be the
cardinality of V . There exists an O(k3k+

3
2 · n)-time algorithm that tests whether

G is NodeTrix planar with side assignment Φ and if so, it computes a NodeTrix
planar representation of G consistent with Φ.

Proof. We compute a block-cut-vertex tree Tbcv of the frame graph of G, we
root it at a block Broot and perform a post-order traversal of Tbcv. Let Bi be
the currently visited block and let c be the parent cut-vertex of Bi in Tbcv. We
execute the testing algorithm of Lemma 2 by rooting the SPQ decomposition
tree of Bi at an arbitrary Q-node. If the test fails at any block of Tbcv, we
conclude that G is not NodeTrix planar with the given side assignment. Oth-
erwise, we test whether, among the permutation assignments computed for the
blocks B0, B1, . . . , Bh−1 that are children of a same cut-vertex c, there exists a
set {Π0, Π1, . . . ,Πh−1} such that: (i) π0,c = π1,c = · · · = πh−1,c with πj,c ∈ Πj ,
for j = 0, 1, . . . , h− 1, and (ii) the complete internal sequence of c for the block
Bj and for the permutation assignment πj,c does not overlap with the complete
internal sequence of c for the block Bi and the permutation assignment πi,c,
with i 6= j, i, j = 0, . . . , h − 1. We equip c with all the permutations that pass
this test. Let B′ be the block that is the parent of c in Tbcv. When testing B′

for NodeTrix planarity, we consider for c only the permutations that have been
computed when processing blocks B0, B1, . . . , Bh−1 and check that the complete
internal sequences of c in Bj , j = 0, . . . , h − 1, do not intersect with the com-
plete internal sequences of c in B′. Let nB be the number of vertices of a block



B. By using Lemma 2, the procedure described above can be executed in time
O(k3k+

3
2 · nB) for block B. Therefore, the post-order traversal of Tbcv can be

computed in O(k3k+
3
2 · n) time. �

5 General Planar Frame Graphs

In this section we study the problem of extending Theorem 2 to planar frame
graphs that may not be partial 2-trees. We prove that NodeTrix planarity testing
with fixed sides can be solved in linear time for maximum cluster size k = 2
(Subsection 5.1). However, the problem becomes NP-complete with fixed sides
for k > 2 (Subsection 5.2).

5.1 Linearity for k = 2

In [11] we showed that NodeTrix planarity testing with fixed sides is polynomial
for maximum cluster size k = 2. However, the proof is rather long and the
proposed algorithm is cubic. Here we show a simpler linear algorithm that solves
the same problem.

In order to prove linearity for NodeTrix planarity with fixed sides when k = 2,
we extend the set of planarity constraints of [13] with a new constraint that we
call “synchronized mirror constraint”. According to [13], given a graph G =
(V,E), an embedding constraint at a vertex v ∈ V is a rooted, ordered tree
Tv such that its leaves are exactly the edges incident to v. The inner nodes of
Tv are of three types: oc-nodes (stands for “oriented constraint-nodes”) whose
children have fixed clockwise order; mc-nodes (stands for “mirror constraint-
nodes”) whose children have a fixed order up to a flip; and gc-nodes (stands for
“grouping constraint-nodes”), whose children may be permuted. Since Tv is an
ordered tree, it imposes an order on its leaves and thus on the edges incident
to v. Tree Tv for a vertex v without any constraint has only the root, which is a
gc-node.

In [13] it is shown how these embedding constraints can be handled in lin-
ear time by replacing each vertex with a gadget representing the embedding
constraint Tv. Namely, each vertex v is replaced by a construction reproducing
the nodes and edges of tree Tv, where each oc-node and mc-node is replaced by
a wheel graph and each gc-node is replaced by a regular node. The obtained
auxiliary graph, that we denote by HG, can be constructed in time O(n), where
n is the number of vertices of G [13, Lemma 1]. Graph HG is tested for pla-
narity. If HG is planar, a planar embedding is constructed such that for every
wheel graph corresponding to a constraint, its external cycle does not contain
any vertex other than the center of the wheel in its interior. The algorithm ter-
minates by checking whether the rigid components of the SPQR decomposition
tree of the biconnected components of HG can be flipped in such a way that all
the wheels representing oc-nodes have the same clockwise order as specified by
the corresponding constraints. From the obtained planar embedding of HG, by



contracting each tree to a vertex, a planar embedding of G satisfying the input
constraints can be constructed (see also [13] for more details).

We extend the approach of [13] by introducing a fourth type of node in
the definition of tree Tv. Namely, an smc-node (which stands for “synchronized
mirror constraint-node”) has, in addition to a circular order of its children, also
a color (an integer). A synchronized mirror constraint is satisfied if the children
of all smc-nodes with the same color all appear in the clockwise order fixed
by the constraints or if they all appear in counter-clockwise order. Intuitively,
smc-nodes generalize mc-nodes, allowing to reverse the order of the neighbors
of some vertices in a synchronized way. If an smc-node has a color that is not
shared with other smc-nodes, then the constraint represented by such a node
is equivalent to that represented by an mc-node. Fig. 7 shows an example of a
constraint tree Tv containing two smc-nodes. Fig. 7(a) shows a vertex v and its
incident edges. Fig. 7(b) represents a set of constraints for the edges incident to
v. Fig. 7(c) shows the replacement of the constraints with suitable gadgets in
the auxiliary graph HG.
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Fig. 7. An example to illustrate the constrained embedding of the smc-node: (a) A
vertex v and its incident edges. (b) The embedding constraints for v described by its
constraint tree Tv with oc-, mc-, gc-nodes, and two smc-nodes with the same color x.
(c) The replacement of the constraints with suitable wheels.

Fig. 8(a) shows an example of a planar graph that does not admit a planar
embedding if the clockwise order of the edges incident to v1 is “synchronized”
with the clockwise order of the edges incident to v2, as described by Fig. 8(b).
More precisely, the graph has no planar embedding if one requires that either the
clockwise order of the vertices adjacent to v1 is v3, v2, v4 and the clockwise order
of the vertices adjacent to v2 is v1, v4, v3 or that both these clockwise orders are
reversed, as depicted in Figs. 8(c) and 8(d).

We now show how to take into account the constraints represented by smc-
nodes. In its more general setting the graph G has vertices constrained by trees
that contain oc-, mc-, gc-, and smc-nodes. Construct the auxiliary graph HG by
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Fig. 8. An example of unsatisfiable planarity constraints involving smc-nodes: (a) A
small graph G; (b) two synchronized embedding constraints on two vertices of the
graph; (c) and (d) two non-planar drawings of the auxiliary graph HG.

first replacing each vertex v of G with its associated tree Tv and then replacing
each oc-node, mc-node, and smc-node of Tv with a suitable wheel graph. In
general, graph HG may have several connected components. Consider the block-
cut-vertex tree for each such component. Note that each wheel subgraph of HG

is entirely contained inside a single block. Each block can be associated with an
SPQR-tree and each wheel subgraph is entirely contained in the skeleton of an
R-node of some SPQR-tree (see Observation 1 of [13]).

Let Γ (HG) be an arbitrary planar embedding of HG and let µ be an R-
node of some SPQR-tree associated with a block of the block-cut-vertex tree of
HG. We associate skel(µ) with a Boolean variable xµ and we say that, in an
embedding Γ ′(HG) of HG, xµ is true if skel(µ) is embedded as in Γ (HG), while
xµ is false otherwise.

Let µ be an R-node whose skeleton skel(µ) entirely contains the wheel graph
corresponding to an oc-node. The presence of the oc-node imposes a constraint
on the two possible embeddings of skel(µ). Namely, only the embedding of skel(µ)
where the wheel graph is embedded clockwise satisfies the oc-node constraint.
This implies a truth value (true or false) for the associated variable xµ. Note
that, if two oc-nodes are contained in the same skel(µ) and they assign oppo-
site values to xµ, then G does not admit an embedding that satisfies the given
constraints.

Let µ be an R-node whose skeleton skel(µ) entirely contains the wheel graph
W corresponding to an smc-node with color c. Consider any other skeleton
skel(µ′) containing a wheel graph W ′ corresponding to an smc-node with the
same color c. If in Γ (HG) the wheels W and W ′ are both oriented either clock-
wise or counter-clockwise, then xµ = xµ′ . Otherwise, xµ = xµ′ .

The above constraints easily translate to suitable 2SAT clauses. Namely,
xµ = xµ′ can be expressed as (xµ ∨ xµ′) ∧ (xµ ∨ xµ′), while xµ = xµ′ can be
expressed as (xµ∨xµ′)∧(xµ∨xµ′). Therefore, any solution of the 2SAT instance
corresponds to an embedding of HG that satisfies the given constraints.

The assignments that satisfy the 2SAT formula correspond bijectively to the
planar embeddings of HG that satisfy the constraints on the ordering of the
edges around the vertices expressed by the oc-, mc-, gc-, and smc-nodes. In



particular, it suffices to have one arbitrary satisfying assignment to construct
such an embedding. The embedding of graph G is obtained by contracting all
the edges of HG that are not edges of G, analogously to [13]. The discussion
above implies the following.

Theorem 3. Let G be an n-vertex graph with embedding constraints C modeled
by oc-, mc-, gc-, and smc-nodes. Then, we can test in time O(n) whether G
admits a planar embedding satisfying all constraints in C. In the affirmative
case, one such planar embedding can be computed in time O(n).

Proof. Graph HG can be constructed in linear time from G and C as described
above. Connected, biconnected and triconnected components of HG can be com-
puted in linear time [17,16]. In particular, the structure of the triconnected com-
ponents of each block can be described by an SPQR decomposition tree of linear
size [8]. Let Γ (HG) be an arbitrary planar embedding of HG. We now use the
technique of [5, Lemma 6] in order to construct in linear time the 2SAT formula
ϕ that describes the constraints on the planar embedding of HG. In particular,
this technique allows us to identify in overall linear time, for each wheel W , the
R-node µW that contains W and the orientation of W in the embedding Γ (HG).
Since 2SAT satisfiability can be tested in linear time [3,12], it follows that test-
ing whether HG admits a planar embedding satisfying the constraints in C can
be done in linear time. A planar embedding Γ ′(HG) of HG that satisfies the
constraints in C can be constructed from a truth assignment that satisfies ϕ by
orienting the skeletons of each R-node µ as specified by the value of xµ. Finally,
the embedding of G that satisfies the constraints in C is found from Γ ′(HG) in
linear time by contracting all the edges of HG that are not edges of G. �
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Fig. 9. The χi gadget used to represent a cluster Vi = {v′, v′′}. (a) The vertices and
edges of χi. (b) The embedding constraints for the vertices of χi.

We now use Theorem 3 to prove that NodeTrix planarity testing with fixed
sides is linear for maximum cluster size k = 2. We construct an auxiliary graph



G′ by replacing each cluster Vi = {v′, v′′} of size 2 with a suitable gadget χi
and a set of constraints associated with χi. Gadget χi consists of a tree with 13
vertices. Refer to Fig. 9. Tree χi has a vertex vc of degree 4 adjacent to vertices
vl, vr, vt, and vb. Also, vc has an embedding constraint represented by an oc-
node that forces vertices vt, vr, vb, and vl to appear in this clockwise order in
the planar embedding of χi. For x ∈ {l,r,t,b}, vertex vx has degree 3 and
is adjacent to two leaves v′x, v′′x . For x ∈ {t,r}, vertex vx has an embedding
constraint represented by an smc-node with color i that forces vertices vc, v′x,
and v′′x to appear either in this clockwise order or in the reverse clockwise order
(i.e., vc, v′′x , and v′x) in any planar embedding of χi. For x ∈ {b, l}, vertex
vx has an embedding constraint represented by an smc-node with color i that
forces vertices vc, v′′x , and v′x to appear either in this clockwise order or in the
reverse clockwise order (i.e., vc, v′x, and v′′x ) in any planar embedding of χi.
Each inter-cluster edge e incident to v′ (to v′′, respectively) for which φi(e) = x
(x ∈ {l,r,t,b}) is incident to v′x (to v′′x , respectively).

Fig. 10(a) and Fig. 10(b) depict the two possible planar embeddings of χi
satisfying the above described constraints.
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Fig. 10. The two possible embeddings of gadget χi and their effects on the circular
order of the inter-cluster edges incident to Vi = {v′, v′′}. (a) The embedding of χi that
corresponds to πi = v′, v′′. (b) The embedding of χi that corresponds to πi = v′′, v′.

Based on the discussion above we can prove the following theorem.

Theorem 4. Let G = (V,E, C, Φ) be an n-vertex clustered graph with side as-
signment Φ such that the maximum size of any cluster in C is two. There exists
an O(n)-time algorithm that tests whether G is NodeTrix planar with the given
side assignment and if so, it computes a NodeTrix planar representation of G
consistent with Φ.

Proof. We construct a graph G′ by replacing each cluster Vi ∈ C with a gad-
get χi and its associated constraints as described above. Since every gadget χi
has constant size, G′ has O(n) vertices and edges. We test G′ for constrained
planarity by means of the procedure in Theorem 3. If the test is positive, let



Γ (G′) be the planar embedding of G′ constructed by Theorem 3. We construct
an embedded graph Γ (G′′) from Γ (G′) as follows. Let χi be the gadget of G′

corresponding to cluster Vi = {v′, v′′} of G. Assume that the clockwise order of
the vertices adjacent to vt in Γ (G′) is vc, v′t, and v′′t (if the order is opposite the
proof is analogous). We replace χi in Γ (G′) with an embedded wheel graph Wi

centered at vc and having as external boundary v′t, v′′t , v′r, v′′r , v′′b , v′b, v′′l , and v′l,
appearing in this clockwise order around vc. Since there is no inter-cluster edge
incident to vertices vc, vt, vr, vb, and vl of χi, replacing χi with Wi does not
introduce any edge crossings. It follows that Γ (G′′) is a planar embedded graph
and that it is a wheel reduction of G. Therefore, we can construct a NodeTrix
planar representation Γ (G) of G as in the proof of Theorem 1. To conclude the
proof observe that both the construction of Γ (G′′) and of Γ (G) can be executed
in constant time per cluster, which implies that the overall complexity is linear.
�

5.2 NP-Completeness for k > 2

The linear-time result of Theorem 4 can not be extended to the case when
k > 2. The following theorem extends the result of [6] and proves that NodeTrix
planarity testing with fixed sides is NP-complete even when the maximum size
of the clusters is three. The proof is based on a reduction from (non-planar)
NAE3SAT.

Theorem 5. NodeTrix planarity testing with fixed sides and cluster size at most
k is NP-complete for any k > 2.

Proof. NodeTrix planarity testing with fixed sides is trivially in NP. In fact,
given a clustered graph G = (V,E, C, Φ), all possible permutations assignments
Π could be non-deterministically computed and the problem of deciding whether
a clustered graph G = (V,E, C, Φ,Π) admits a NodeTrix planar representation
with side assignment Φ and permutation assignment Π is solvable in linear
time [6].

In order to prove its NP-hardness, we reduce NAE3SAT to it. An instance
of NAE3SAT consists of a collection of clauses on a set of Boolean variables,
where each clause consists of exactly three literals. The problem asks whether
there exists a truth assignment to the variables so that each clause has at least
one true literal and at least one false literal. This problem has been shown to be
NP-complete by Thomas J. Schaefer [19]. However, it is known to be polynomial
when the graph of the adjacencies of the variables and clauses is planar [18].

Starting from a (non-planar) instance of NAE3SAT with variables x1, x2,
. . . , xn and clauses C1, C2, . . . , Cm, we construct an instance G = (V,E, C, Φ) of
NodeTrix planarity testing with fixed sides as follows. First, we obtain a (non-
planar) drawing Γ of the graph of its variables and clauses like the one in Fig. 11:
The clause vertices are vertically aligned, the variable vertices are horizontally
aligned, and each edge is drawn as an L-shape (i.e. an orthogonal polyline with
one bend). Clearly this drawing can be computed in polynomial time and has a
polynomial number of crossings.
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Fig. 11. A non-planar drawing of an instance of NAE3SAT. The small plus and minus
signs represent direct and negated occurrences of the variables in the clauses, respec-
tively.

Then, we replace each vertex representing a variable with a variable gad-
get. The variable gadget for a variable of degree h is composed by h size-two
clusters connected together as depicted in Fig. 12(a) and 12(b). Namely, let
Vv,1, Vv,2, . . . , Vv,h be the h clusters of C composing the variable gadget of vari-
able v and let {ui,1, ui,2} be the nodes of Vv,i, with i = 1, . . . , h. We may encode
a truth value with each one of the two possible representations of cluster Vi: If
in the matrix Mi representing Vi the column corresponding to the vertex ui,1
precedes the column corresponding to the vertex ui,2, we say that Mi is true.
Otherwise, we say that Mi is false. Correspondingly, we say that πi = ui,1, ui,2
is the true permutation of cluster Vi and that πi = ui,2, ui,1 is its false per-
mutation. In order to connect the clusters composing the variable gadget for v,
we add to E, for i = 1, . . . , h − 1, the inter-cluster edges ei,1 = (ui,1, ui+1,1)
and ei,2 = (ui,2, ui+1,2) and set φi(ei,1) = r, φi+1(ei,1) = b, φi(ei,2) = r,
φi+1(ei,2) = b. It is immediate that in any NodeTrix planar representation of
G, all Mi, i = 1, . . . , h, are either simultaneously true or simultaneously false.
Correspondingly, we say that the variable gadget is true or false. Fig. 12(a)
and 12(b) show an example of a true and of a false drawing of a variable
gadget.

Each edge e attaching to a variable v in the drawing Γ (refer to Fig. 11)
corresponds to two ‘parallel’ inter-cluster edges e1 and e2 attached to one of
the clusters composing the variable gadget of v. Let Vj be such a cluster. We
set φj(e1) = t and φj(e2) = t. Observe that the order in which e1 and e2 exit
Mj depends on the truth value encoded by Mj and, hence, on the truth value
encoded by the variable gadget for v.

Fig. 13 depicts the gadget we use to replace crossings in Γ , consisting of a
cluster Vx of size three. From the figure it is apparent that, in any representation
of Vx, the left-to-right order of the edges entering Mx from the bottom side is
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Fig. 12. (a) The true configuration of a variable gadget for a variable of degree four.
(b) The false configuration. (c) The not gadget transforming an encoded true value
into a false value. (d) The not gadget transforming an encoded false value into a
true value.

the same as the left-to-right order of the edges exiting Mx from the top side. An
analogous consideration holds for the top-to-bottom order of the edges entering
Mx from the right side and the top-to-bottom order of the edges exiting Mx from
the left side. This implies that the truth value encoded by the edges entering
Mx is the same as the truth value encoded by the edges exiting it.

We now describe the clause gadget. We assume that three pairs of edges,
encoding the truth value of the variables occurring in the clause, arrive to the
clause gadget. Let v1, v2, and v3 be the three variables whose literals l1, l2, and
l3 occur in clause C. Before entering the clause gadget, if literal li is a directed
literal (i.e., if li = vi) we introduce a size-two cluster that receives the truth
value from vi from the bottom and transmits it to the clause gadget from the
top. Otherwise, if literal li is a negated literal of variable v (i.e., if li = vi)
then we attach the edges coming from vi to a not gadget, depicted in Fig. 12(c)
and 12(d), and use the edges exiting the not gadget instead of the edge coming
directly from variable vi. This has the effect that all the three pairs of edges
entering the clause gadget encode a truth value that is true if the literal is true
and false if the literal is false. In the following, therefore, we will consider the
truth values of the literals, rather than the truth values of the variables.

The clause gadget, depicted in Fig. 14, is composed by three clusters V1, V2,
and V3 of size three, each having vertices {ui,a, ui,b, ui,c, }, i = 1, 2, 3. The three
clusters are connected together in such a way that, in any NodeTrix planar
representation of G, their permutations πi, i = 1, 2, 3, always present the same
sequence of the labels a, b, c. For example, if π1 = u1,c, u1,a, u1,b, then also π2 =
u2,c, u2,a, u2,b and π3 = u3,c, u3,a, u3,b.

For i = 1, . . . , 3, the edges encoding the truth value of literal li attach to
cluster Vi, where the prescribed side is the right side of matrix Mi. The two edges
e1,1 and e1,2 encoding the truth value of the literal l1 attach to u1,a and u1,b,
respectively. The two edges e2,1 and e2,2 encoding the truth value of the literal l2
attach to u2,b and u2,c, respectively. Finally, the two edges e3,1 and e3,2 encoding
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Fig. 13. The six possible configurations of a crossing gadget.
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Fig. 14. The clause gadget.

the truth value of the literal l3 attach to u3,c and u3,a, respectively. Hence, if
literal l1 is true, matrix M1 must have a permutation of its columns such that
column a precedes column b, while if literal l1 is false, matrix M1 must have a
permutation of its columns such that column a follows column b. Analogously,
the truth value of literal l2 determines whether in matrix M2 column b precedes
or follows column c, and the truth value of literal l3 determines whether in matrix
M3 column c precedes or follows column a.

It follows that, if all three literals are true, then they induce unsatisfiable
constraints on the ordering of the columns of the matrices, since column a should
precede column b, b should precede column c, and c should precede a. The same
holds if all three literals are false. It can be easily checked that, for any other
combination of truth values of the literals, there exists an ordering of the columns
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Fig. 15. A non-planar drawing of an instance of NAE3SAT such that, by replacing
crossings with dummy nodes, a planar and triconnected graph is obtained.

of matrices M1, M2, and M3 that makes a planar drawing of the edges possible.
Therefore, the constructed instance of NodeTrix planarity with fixed sides admits
a planar NodeTrix representation if and only if the original instance of NAE3SAT
admits a solution. �

6 The Free Sides Scenario

In this section we extend the hardness result of Theorem 5 to the free sides
model and show that NodeTrix planarity testing remains NP-complete when
the maximum cluster dimension is larger than four.

Theorem 6. NodeTrix planarity testing with free sides and cluster size at most
k is NP-complete for any k > 4.

Proof. The proof is based on a reduction from NAE3SAT. Starting from an in-
stance ϕ of NAE3SAT, we first build the instance Gfix of NodeTrix planarity
with fixed sides by a construction that is similar to the one in the proof of Theo-
rem 5. Namely, instead of starting from a drawing of ϕ like the one in Fig. 11, we
start from a drawing Γ like the one in Fig. 15. The difference is that one variable
xi (the leftmost one) and one clause Cj (the bottommost one) are placed at the
opposite side with respect to all the other variables and clauses, respectively.
Moreover, their incident edges are not drawn as an L-shape, but as a polyline
with three or five bends. More precisely, each edge that connects xi to a clause
different from Cj is drawn with three bends; each edge that connects Cj to a
variable different from xi is also drawn with three bends; the edge (xi, Cj), if
it exists, is drawn with five bends. Clearly Γ can be computed in polynomial



(a) (b)

Fig. 16. The extra-edges added to instance Gfix to ensure that it has a triconnected
frame-graph. (a) A clause gadget with two negated literal and a directed one. (b) The
cycle connecting all variable gadgets.

time and has a polynomial number of crossings. Gfix is obtained by replacing
variables, clauses, and crossings of Γ with the same (variable, not, crossing, and
clause) gadgets as in the proof of Theorem 5. Clearly, Gfix, which is an instance
of NodeTrix planarity with fixed sides, admits a planar NodeTrix representation
if and only if the original instance ϕ of NAE3SAT admits a solution. Further-
more, while the construction of Theorem 5 may lead to separation pairs in the
planarized drawing Γ (shown with dashed arrows in the example of Fig. 11) the
modified technique described above guarantees that Γ is triconnected. In fact,
it consists of a subgraph of an orthogonal grid (shown with blue thick edges in
Fig. 15) together with edges that pairwise cross at most once.

Observe that, although ϕ is triconnected and the planarization of Γ yields
a triconnected graph, the insertion of not gadgets and variable gadgets in Gfix

introduces clusters that are adjacent to only two other clusters, producing a
degree-two vertex in the frame graph of Gfix. Consider a clause gadget (refer
to Fig. 16(a)). We add extra edges to connect the size-two clusters of the same
clause gadget in a cycle as shown in Fig. 16(a), in such a way that each size-two
cluster has now at least three inter-cluster edges connecting it to other three
distinct clusters.

The same strategy is used for variable gadgets, where all the variable gadgets
can be linked together in a cycle enclosing the whole instance (see Fig. 16(b)).
Again, after the addition of extra edges each size-two cluster of the variable
gadgets has at least three inter-cluster edges connecting it to other three distinct
clusters. It can be checked that, after the above described changes to Gfix, the
frame graph of Gfix has no separation pair, i.e., it is triconnected.

The modified construction of Γ used to construct Gfix guarantees that the
frame graph of Gfix is triconnected. This is a consequence of the fact that ϕ is
triconnected and that inserting crossing gadgets is equivalent to planarizing Γ .
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Fig. 17. (a) A cluster Vi of size three of the instance of NodeTrix planarity with fixed
sides. (b) The gadget used to replace Vi in the instance of NodeTrix planarity with free
sides. (c) The wheel graph of the frame graph of Gfree corresponding to Vi.

We now construct an instance Gfree of NodeTrix planarity with free sides by
replacing each cluster of maximum size three of Gfix with the gadget depicted
in Fig. 17(b) that uses exclusively clusters of size 5. The gadget consists of nine
clusters such that the corresponding nodes in the frame graph of Gfree form
a wheel graph with an external cycle of eight nodes all connected to a central
one (see Fig. 17(c)). Since the wheel has only one embedding (up to a flip), the
gadget admits a NodeTrix planar representation only if the hub of the wheel is
drawn inside the cycle formed by the other eight clusters. Also, the edges that
in the instance Gfix are constrained to attach to a specific side of a matrix due
to the side assignment Φ, are now all incident to the same cluster of the wheel.
In other words, although the free model allows to attach these edges to any side
of the matrix they are incident to, the gadget forces these edges to attach to a
specific side of the gadget itself. Since Gfree has a triconnected frame graph, the
embedding of the frame graph is fixed, and a NodeTrix planar representation
with fixed sides of Gfix exists if and only if a NodeTrix planar representation
with free sides of Gfree exists. �

7 Conclusions and Open Problems

This paper concerns NodeTrix planarity testing of flat clustered graphs with
clusters of size at most k, where k is a given parameter. The main focus is
on the fixed sides scenario, which assumes the side of the matrix to which an
edge is incident to be fixed as a part of the input. In this scenario it is proved
that NodeTrix planarity testing can be solved in linear time for k = 2, but it
becomes NP-complete for k > 2. The reasons of the problem complexity reside
in the rigid components of the SPQR-tree that decomposes the graph obtained
by collapsing its clusters into vertices. Namely, when the decomposition tree
does not have R-nodes we prove that NodeTrix planarity testing of flat clustered
graphs is solvable in linear time for any fixed k > 2. The hidden multiplicative
factor in the linear time complexity of our algorithm is exponential in k.



In addition to the above results, we study NodeTrix planarity testing in the
free sides scenario, i.e. assuming that the side of the matrix to which an edge is
incident is not given as a part of the input. We show that NodeTrix planarity
testing in the free sides scenario remains NP-complete for values of k such that
k > 4.

We conclude the paper by mentioning some open problems that are naturally
suggested by the research in this paper.

1. Study the complexity of the NodeTrix planarity testing problem in the free
sides scenario for values of k such that 2 ≤ k ≤ 4.

2. For values of k > 4, study families of clustered graphs for which NodeTrix
planarity testing is fixed parameter tractable in the free sides scenario.

3. Study whether other types of hard hybrid planarity testing problems such as,
for example, planar intersection-link representability [2], admit a polynomial
time solution when the size of the clusters is bounded by a constant.

4. What is the complexity of NodeTrix planarity testing when edges cannot be
attached to the top side of the matrices? This would allow, for example, to
equip the matrices with labels and it is, therefore, a natural restriction of
the model addressed in this paper.

5. In our definition we require that the clusters are represented by symmet-
ric adjacency matrices. This is consistent with all previous papers that use
NodeTrix representations. One could however study a different model in
which rows and columns can be permuted independently.
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