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Abstract

Tree comparison metrics have proven to be an invaluable aide in the recon-
struction and analysis of phylogenetic (evolutionary) trees. The path-length dis-
tance between trees is a particularly attractive measure as it reflects differences
in tree shape as well as differences between branch lengths. The distance equals
the sum, over all pairs of taxa, of the squared differences between the lengths of
the unique path connecting them in each tree. We describe an O(n logn) time for
computing this distance, making extensive use of tree decomposition techniques
introduced by Brodal et al. [2].
keywords Phylogeny; Tree comparison metrics; Path-length metric; Tree decom-
position.
Mathematics subject classification (2010) 68Q25 · 92D15 · 05CO5

1 Introduction
A phylogenetic tree is a tree describing the evolution of a set of entities X (species,
genes etc.), which will be called taxa from now onwards. Degree-one nodes are called
leaves and a bijective function associates each taxon to a leaf. Internal nodes represent
putative ancestral taxa and branch lengths quantify the evolutionary distances between
nodes.

Tree comparison metrics provide a quantitative measure of the similarity or dif-
ference between two phylogenetic trees. They have proven invaluable for statistical
testing (e.g. [11, 9, 13]), for visualisation [8], and for the construction of consensus
trees [14, 3, 10]. By far the most well-known tree comparison metric is the Robinson-
Foulds metric [12], which equals the number of bipartitions1that are in one tree and
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1A bipartition A|B with A∪B = X is in a phylogenetic tree T = (V,E) if there exists an edge e ∈ E such

that its removal creates two trees with taxon sets A and B.
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not the other. However many other different metrics have also been proposed, each one
based on a different characteristic of the trees being compared.

Here we consider pairs of trees on the same set of taxa. Also, our trees are binary,
i.e. each internal node has degree three. The path-length between two taxa in a phylo-
genetic tree is the sum of the branch lengths along the unique path between them. The
path-length distance between two trees T1 and T2 is given by

∆(T1,T2) = ∑
i j
(pi j−qi j)

2, (1)

where pi j is the path length between taxa i and j in the first tree and qi j is the path length
in the second tree. We note that

√
∆(T1,T2) is a metric in the mathematical sense. The

first explicit description of the metric appears in [11] (without branch lengths) and [10]
(with branch lengths), though closely related ideas appear much earlier (e.g. [7, 6, 15]).

Given a phylogeny with n leaves, it takes O(n2) time to construct the set of all path-
lengths p12, p13, . . . , p(n−1)n, using the dynamic programming algorithm presented in
[4]. Hence the path-length distance can be easily computed in O(n2) time. Our main
contribution in this paper is to show that we can compute this distance in O(n logn)
time, which is almost, but not quite, linear in the size of the problem input.

Expanding (1) gives

∆(T1,T2) = ∑
i j
(pi j)

2 +∑
i j
(qi j)

2−2∑
i j

pi jqi j. (2)

The first two terms can be evaluated in linear time using dynamic programming, as
outlined in Section 2. To compute the second term efficiently we first introduce a tree
decomposition technique (Section 3) allowing the sum to be evaluated in O(n logn)
time (Section 4). Both the tree decomposition and algorithm of Section 4 draw heavily
on an algorithm of [2] for computing the quartet distance between two trees.

2 Sums of squared distances
In this section we show how to compute the sum of squared distances ∑i j p2

i j in a tree
in linear time. We begin by introducing some notation that will be used in the rest of
the paper.

Select an arbitrary leaf ρ and consider both T1 and T2 as rooted trees with root ρ .
We think of ρ being at the top of the tree and the other leaves being at the bottom of
the tree. For any two edges e,e′ we write e� e′ if the path from e to ρ passes through
e′. We write e ≺ e′ if e � e′ and e 6= e′. Hence if e is the edge incident with the root
ρ then e′ ≺ e for all other edges e′. We say that e is external if it is incident to a leaf
other than ρ; otherwise e is internal. When e is internal let eL and eR denote the edges
incident and immediately below e.

We will use e,e′ to denote edges in T1 and f , f ′ to denote edges in T2. We let xe
denote the length of an edge e in T1 and y f the length of an edge f in T2. Let Ai j denote
the set of edges on the path from i to j in T1 and let Bi j denote the corresponding set in
T2. Hence

pi j = ∑
e∈Ai j

xe qi j = ∑
f∈Bi j

y f .
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Let n(e) denote the number of leaves ` such that the path from ` to ρ passes through e.
Define

α(e) = ∑
e′�e

n(e′)xe′ .

Proposition 1.

∑
i j
(pi j)

2 = ∑
e internal

[
xe(n−n(e))(2α(e)−n(e)xe)+2α(eL)α(eR)

]
.

Proof. Given two edges e1,e2 we let

χ(e1,e2) = |{pairs i j : e1,e2 ∈ Ai j}|, (3)

the number of pairs having both e1 and e2 on the path between them. Then

∑
i j
(pi j)

2 = ∑
i j

(
∑

e1∈Ai j

xe1

)(
∑

e2∈Ai j

xe2

)
= ∑

i j
∑

e1,e2∈Ai j

xe1xe2 (4)

= ∑
e1

∑
e2

∑
i j:e1,e2∈Ai j

xe1 xe2 (5)

= ∑
e1

∑
e2

xe1xe2 χ(e1,e2) (6)

If e1 ≺ e2 then χ(e1,e2) = n(e1)(n−n(e2)). Hence, for any e2 we have

∑
e1:e1≺e2

xe1xe2 χ(e1,e2) = xe2(n−n(e2)) ∑
e1:e1≺e2

xe1 n(e1)

= xe2(n−n(e2))(α(e2)−n(e2)xe2).

If e1 6� e2 and e2 6� e1 then χ(e1,e2) = n(e1)n(e2). Furthermore there is an edge e
with children eL,eR such that, without loss of generality, e1 � eL and e2 � eR. For such
an edge e we have

∑
e1:e1�eL

∑
e2:e2�eR

xe1xe2 χ(e1,e2) = ∑
e1:e1�eL

∑
e2:e2�eR

xe1xe2n(e1)n(e2)

= α(eL)α(eR).

Summing up over all e1,e2 in (6) we have

∑
i j
(pi j)

2 = ∑
e1

∑
e2

xe1xe2 χ(e1,e2)

= 2∑
e2

∑
e1≺e2

xe1xe2 χ(e1,e2)+2∑
e

∑
e1�eL

∑
e2�eR

xe1xe2 χ(e1,e2)+∑
e

xexeχ(e,e)

= 2∑
e2

xe2(n−n(e2))(α(e2)−n(e2)xe2)+2∑
e

α(eL)α(eR)+∑
e

xexen(e)(n−n(e))

and the result follows.
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Proposition 2. The sum ∑i j(pi j)
2 can be computed in linear time.

Proof. If e is external, n(e) = 1 and α(e) = xe. Otherwise

n(e) = n(eL)+n(eR)

α(e) = α(eL)+α(eR)+n(e)xe.

Hence with a post-order traversal of the tree we can compute n(e) and α(e) for all
edges e in O(n) time. Computing the sum takes a further O(n) time by Proposition 1.
∑i j(qi j)

2 can be computed in the same way.

3 Segment decomposition
In this section we introduce a hierarchical decomposition of the edge set of T2 that
forms the structure used in our dynamical programming algorithm in Section 4.

Let Q be a connected subset of E(T2), the set of edges of T2. We define the bound-
ary of Q to be the set of vertices incident both to edges within Q and to edges outside
Q:

∂Q = {v : there are e ∈ Q, e′ 6∈ Q incident with v }.

The degree of Q is the cardinality of ∂Q. A segment of T2 is a connected subset of
E(T2) with degree at most two.

A segment decomposition for T2 is a binary tree TD such that

(D1) The leaves of TD correspond to edges in E(T2) (i.e. minimal segments);

(D2) Each node of TD corresponds to a segment of T2;

(D3) The segment corresponding to an internal node of TD equals the disjoint union
of the segments corresponding to its children.

An example of segment decomposition is given in Figure 1.
The main result in this section is that we can, in linear time, construct a segment

decomposition for T with height O(logn).

a b c d e f g
e2

e3
e4

e8

e7

e5

e13

e12

e11e10

e9

e1

e6

ρ
e2 e3 e4 e8e7e5 e13e12e11e10e9e1 e6

(a) (b)

Figure 1: (a) A phylogenetic tree and (b) a segment decomposition for it.
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The definition of a segment decomposition is based on the tree decomposition used
by [2] to compute quartet-based distances, which in turn are based on techniques for
efficient parsing of expressions [1, 5]. The main difference with [2] is that the segment
decomposition is based on partitioning the set of edges, rather that the set of vertices,
and that we were able to obtain a tighter bound on the height.

Our algorithm for constructing TD is agglomerative: we start with a degree one
vertex for each edge in E(T2); these form the leaves of TD. Each iteration, we identify
pairs of maximal nodes corresponding to pairs of segments which can be combined
to give new segments. We make the nodes in each pair children of a new node. The
process continues until one node remains and TD is complete.

The following Proposition shows that in any partition of E(T2) into segments we
can always find a large number of pairs of disjoint segments which can be merged to
give other segments.

Proposition 3. Let T be a binary tree. Let M be a collection of segments which
partition E(T ). Then there are at least |M |4 non-overlapping pairs (A,B) such that
A,B ∈M and A∪B is a segment of T .

Proof. Let GM = (VM ,EM ) be the graph with vertex set

VM =
⋃

A∈M
∂A

and edge set
EM = {{u,v} : ∂A = {u,v} for some A ∈M } .

Decompose GM into maximal paths P1,P2, . . . ,Pκ which contain no degree three ver-
tices in their interiors. For each i, let Mi be the set of elements A ∈M such that
∂A⊆ Pi. The sets Mi partition M .

Fix one path Pi = v1,v2. . . . ,v`. We order the elements of Mi lexicographically with
respect to the indices of their boundary vertices. In other words, if A,B ∈Mi satisfy
∂A = {v j,vk} and ∂B = {v`,vm} (where we might have j = k or `= m) then we write
A < B if max( j,k) < max(`,m) or max( j,k) = max(`,m) and min( j,k) < min(`,m).
With this ordering, if Ak and Ak+1 are adjacent then (Ak ∪Ak+1) is connected and has
degree at most two. Hence by pairing off A1 and A2, A3 and A4, and so on, we can
construct bMi

2 c disjoint pairs. An example is given in Figure 2.
The total number of pairs we obtain this way is given by ∑

κ
i=1b

|Mi|
2 c. We will

determine a lower bound for this sum. Let d be the number of degree three vertices in
GM . Since GM is connected and acyclic there are d+2 paths Pi which contain a degree
one vertex in GM and d− 1 paths which do not. If Pi contains a degree one vertex
then Mi contains at least one component with degree two and another component with
boundary equal to the degree one vertex, so |Mi| ≥ 2. If Pi contains no degree one
vertices then |Mi| is at least one. Let x denote the number of paths Pi which contain a
degree one vertex and for which |Mi| is odd (and hence at least three). We have

|M |=
κ

∑
i=1
|Mi| ≥ 3x+2(d +2− x)+(d−1) = x+3d +3

5
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e3
e4
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e13

e12

e11e10

e9

e1

e6

ρ

(a) (b)
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q
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Figure 2: (a) A phylogenetic tree with the segment decomposition M =
{{e1,e2,e3,e7},{e4,e5,e6},{e8},{e9,e13},{e10,e11,e12}} drawn on it, with boundary
sets respectively {t,s},{t, t},{s,s},{s,q},{q,q}. (b) The corresponding GM . For this
decomposition, there is a single maximal path P1 = t,s,q := v1,v2,v3 and boundary sets
become respectively {v1,v2},{v1,v1},{v2,v2},{v2,v3},{v3,v3}. Thus, the ordering of
M is {{e4,e5,e6},{e1,e2,e3,e7},{e8},{e9,e13},{e10,e11,e12}}.

as well as 0≤ x≤ d +2 and d ≥ 0.
We have that |Mi| is even for at least (d + 2)− x paths ending in a degree one

vertex, and for these paths |Mi|
2 = b |Mi|

2 c. Thus

|M |
2
−

κ

∑
i=1
b |Mi|

2
c ≤ x

2
+

d−1
2

.

To bound the right hand side, note that the linear program

max x+d

subj. to x−d ≤ 2
x+3d ≤ |M |−3

has solution d = |M |−5
4 , x = |M |+3

4 and so x+d ≤ 2|M |−2
4 . Hence

|M |
2
−

κ

∑
i=1
b |Mi|

2
c ≤ |M |

4
− 3

4

and ∑
κ
i=1b

|Mi|
2 c, the number of pairs, is bounded below by |M |4 .

We can now state the algorithm for constructing TD. Initially TD is a set of isolated
vertices. As the algorithm progresses, vertices are combined into larger trees, so that
each iteration TD is a forest. The algorithm terminates when TD contains a single tree.

At each iteration let M denote the partition of the edge set of E(T ) into segments
corresponding to the maximal elements of the incomplete tree TD. Rather than store this
partition explicitly, we maintain a linked list B of boundary nodes. For each element v
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in the list we maintain pointers to maximal nodes TD corresponding to segments in M
having v in their boundaries. In addition, we maintain pointers from each node in TD
to the boundary nodes of the corresponding segments.

1. Initialize TD with a forest of degree-one vertices corresponding to each edge of
E(T2). Hence we initialise B with one element for each vertex in V (T2), with
the associated pointers. At this point, M is the partition of E(T2) putting each
edge into a separate block.

2. While TD is disconnected do

(a) Using the construction in Proposition 3 determine a set of at least k ≥ |M |4
pairs (A1,B1), . . . ,(Ak,Bk) of disjoint elements of M such that A j ∪B j has
at most two boundary points.

(b) For each pair (Ai,Bi), i = 1,2, . . . ,k, create a new node of TD corresponding
to Ai∪Bi and with children corresponding to Ai and Bi.

(c) Update the list B of boundary vertices and the associated pointers.

Theorem 4. We can construct a segment decomposition tree TD for T2 with height
O(logn) in O(n) time.

Proof. We only merge nodes if the union of their corresponding segments is also a
segment. Hence TD will be a segment decomposition tree. It remains to prove the
bound on height and running time.

We note that |M | reduces by a factor of 3
4 each iteration. Hence the number of

iterations is at most log 4
3
(2n−3), which is also a bound on the height of the tree.

Using the list of boundary points B we can construct construct GM and iden-
tify pairs, in O(|M |) time each iteration. Thus the total running time is at most
O(n(∑i=0

( 3
4

)i
)) = O(n) time.

We can strengthen the height bound. We say that a tree is k-locally balanced if, for
all nodes v in the tree, the height of the subtree rooted at v is at most k · (1+ log|v|).
As the algorithm can be applied recursively on each node of TD we have that the global
height bound applies to each node. Hence

Corollary 5. The segment decomposition TD is (1/log 4
3 )- locally balanced.

4 Computing the inner product
In this section we show that ∑i j pi jqi j can be computed in O(n logn) time, so that the
main result follows from Eq. (2).

A (taxon) colouring is an assignment c of the colors black and white to the taxa.
For each edge e of T1 we let ce denote a coloring assigning black to those taxa on one
side of e and white to those on the other. For each edge f in E(T2) and each colouring
c of the set of taxa, we let χ̃(c, f ) denote the number of pairs of taxa i j such that i and
j have different colours and they label leaves on different sides of f .

7



Lemma 6.
∑
i j

pi jqi j = ∑
e∈E(T1)

∑
f∈E(T2)

xey f χ̃(ce, f ) (7)

Proof.

∑
i j

pi jqi j = ∑
i j

(
∑

e:e∈Ai j

xe

)(
∑

f : f∈Bi j

y f

)
= ∑

i j
∑

e∈Ai j

∑
f∈Bi j

xey f (8)

= ∑
e∈E(T1)

∑
f∈E(T2)

xey f χ̃(ce, f ). (9)

For the remainder of this section we will assume that the vertices in T2 are indexed
v1,v2, . . . ,v2n−3. The actual ordering does not matter; it is only used to help presenta-
tion.

Let TD be the segment decomposition tree constructed for T2 using the Algorithm
in Section 3. For each node v of TD we let Qv ⊆ E(T2) denote corresponding seg-
ment in T2. The overall strategy at this point is to compute values for each node in
TD which will allow us to: (i) compute, for an initial choice of e ∈ E(T1), the sum
∑ f∈E(T2) xey f χ̃(ce, f ) in linear time, and (ii) update this computation efficiently as we
iterate in a particular way through edges e of T1.

We will store three pieces of information at every non-root node v of TD, the exact
type of information stored being dependent on the degree of the segment Qv corre-
sponding to v.
If Qv is degree one then we store:

◦ Two integer counts wv,bv

◦ A description (e.g. coefficients) for a quadratic polynomial φv(·, ·) with two vari-
ables.

If Qv has degree two then we store:

◦ Two integer counts wv,bv

◦ A description (e.g. coefficients) for a quadratic polynomial φv(·, ·, ·, ·) with four
variables.

We now show how the values bv,wv and φv are computed using a colouring c of the
taxa. We start at the leaves of TD and work upwards towards the root.

Suppose that v is a leaf of TD, so that Qv contains a single edge f of T2. There are
two cases.

1. The edge f is incident with a leaf u of T2, so Qv has degree one. If c(u) is black
then bv = 1 and wv = 0, while if c(u) is white we have wv = 1 and bv = 0. In
either case

φv(b,w) = y f (b ·wv +w ·bv). (10)

8



2. The edge f is not incident with a leaf of T2, so Qv has degree two. Then bv =
wv = 0 and

φv(b1,w1,b2,w2) = (b1w2 +b2w1)y f . (11)

Now suppose that v is an internal vertex of TD. Once again there are several cases,
however in all cases we have

bv = bvL +bvR

wv = wvL +wvR .

3. Suppose QvL and QvR have degree one. Then

φv(b,w) = φvL(b+bvR ,w+wvR)+φvR(b+bvL ,w+wvL). (12)

4. Suppose QvL has degree two and QvR has degree one, where ∂QvL = {vi,v j} and
QvR = {v j}.

(a) If Qv has degree one and i < j then

φv(b,w) = φvL(b,w,bvR ,wvR)+φvR(b+bvL ,w+wvL); (13)

(b) If Qv has degree one and i > j then

φv(b,w) = φvL(bvR ,wvR ,b,w)+φvR(b+bvL ,w+wvL); (14)

(c) If Qv has degree two and i < j then

φv(b1,w1,b2,w2) = φvL(b1,w1,b2 +bvR ,w2 +wvR)+φvR(b1 +b2 +bvL ,w1 +w2 +wvL);
(15)

(d) If Qv has degree two and i > j then

φv(b1,w1,b2,w2) = φvL(b1 +bvR ,w1 +wvR ,b2,w2)+φvR(b1 +b2 +bvL ,w1 +w2 +wvL).
(16)

5. The case when QvL has degree one and QvR has degree two is symmetric.

6. Suppose that QvL and QvR have degree two, that ∂QvL = {vi,v j} and ∂QvR =
{v j,vk}. We can assume that i < k since the alternative case follows by symme-
try. This leaves three possibilities:

(a) If i < j and j < k then

φv(b1,w1,b2,w2) = φvL(b1,w1,b2 +bvR ,w2 +wvR)+φvR(b1 +bvR ,w1 +wvR ,b2,w2);
(17)

9



(b) If i < j and j > k then

φv(b1,w1,b2,w2) = φvL(b1,w1,b2 +bvR ,w2 +wvR)+φvR(b2,w2,b1 +bvL ,w1 +wvL);
(18)

(c) If j < i and (hence) j < k then

φv(b1,w1,b2,w2) = φvL(b1 +bvR ,w1 +wvR ,b1,w1)+φvR(b1 +bvR ,w1 +wvR ,b2,w2).
(19)

An illustration for several of these cases can be found in Figure 3 below.

v1 v1

+ =

v1

v1

v2

v2

+ =
v1

v2

v1

v2

v2

+ =
v1

v1

v2

v2

v3

+ =
v1

v3

(a) Case 3 (a) Case 4(a)

(a) Case 4(c) (a) Case 6(a)

Figure 3: Cartoons of segment merging for several cases discussed in the main text.

Lemma 7. Suppose that bv,wv and φv have been computed as above for all nodes of
TD except the root. Let vL and vR be the children of the root of TD. Then

∑
f∈E(T2)

χ̃(c, f )y f = φVL(bvR ,wvR)+φVR(bvL ,wvL).

Proof. For any node v of TD we let Lv denote the set of leaves of T2 not incident with
an edge of Qv. If Qv has degree two and boundary {vi,v j}, i < j, then we let L(1)

v be
the leaves in Lv which are closest to vi and L(2)

v the leaves in Lv which are closest to v j.
Let c̃ be any colouring of the leaves of T2, possibly distinct from c. Let B and W be the
sets of leaves that c̃ colours black and white respectively.

We will establish the following claims for all nodes v in TD, using induction on the
height of the node.

(C1) bv and wv are the number of leaves incident with edges in Qv which are coloured
black and white by c (and hence by c̃).

(C2) If Qv has degree one, b = |B∩Lv| and w = |W ∩Lv| then

∑
f∈Qv

χ̃(c̃, f )y f = φv(b,w).

10



(C3) If Qv has degree two, b1 = |B∩L(1)
v |, w1 = |W ∩L(1)

v |, b2 = |B∩L(2)
v |, and w2 =

|B∩L(2)
v | then

∑
f∈Qv

χ̃(c̃, f )y f = φv(b1,w1,b2,w2).

We start by considering any leaf v of TD. In this case, Qv contains a single edge f .
If f is an edge incident to a leaf coloured white then bv = 0, wv = 1 as required, and
χ̃(c̃, f ) equals the number of leaves coloured black by c̃, so

χ̃(c̃, f )y f = |B∩Lv|y f = (bwv +wbv)y f = φv(b,w).

The same holds if the leaf is coloured black.
If the edge f is internal then bv = wv = 0, and χ̃(c̃, f ) is equal to the number of paths
crossing f connecting leaves with different colours, or

|B∩L(1)
v ||W ∩L(2)

v |+ |W ∩L(1)
v ||B∩L(2)

v |= b1w2 +w1b2,

so χ̃(c̃, f )y f = φv(b1,w1,b2,w2).
Now consider the case when v is an internal node of TD, other than the root. Let vL

and vR be the two children of v. Note that Qv is the disjoint union of QvL and QvR , so
bv = bvL +bvR and wv = wvL +wvR , proving (C1).
Furthermore, we have

∑
f∈Qv

χ̃(c̃, f ) = ∑
f∈QvL

χ̃(c̃, f )+ ∑
f∈QvR

χ̃(c̃, f ).

If QvL has degree one then, by the induction hypothesis,

∑
f∈QvL

χ̃(c̃, f ) = φvL(b
′,w′)

where b′ and w′ are the numbers of leaves coloured black and white that are not incident
with edges in QvL . Similarly, if QvL has degree two then, by the induction hypothesis,

∑
f∈QvL

χ̃(c̃, f ) = φvL(b
′
1,w
′
1,b
′
2,w
′
2)

where b′1 and w′1 are the numbers of leaves coloured black and white that are not inci-
dent with edges in QvL and are closer to the boundary vertex of QvL with the smallest
index, while b′2 and w′2 are the numbers of leaves coloured black and white that are not
incident with edges in QvL and are closer to the boundary vertex of QvL with the largest
index. The symmetric result holds for QvR .
The different cases in Eq. (12) to Eq. (19) now correspond to the different counts for
b′,w′ or for b′1,w

′
1,b
′
2,w
′
2 depending on whether QvL and QvR have degree one or two,

and whether the boundary vertices in common had the highest or lower index for each
segment.

Now suppose that vL and vR are the children of the root of TB. Then ∂ (QvL ∪QvR) =
/0 so QvL and QvR must both have degree one. We have that E(T2) is the disjoint union
of QvL and QvR . Any leaf not incident to a leaf in QvL is incident to a leaf in QvR and
vice versa. Hence as required.
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Evaluating Eq. (12) to Eq. (19) takes constant time and space per each node of
TD, since we manipulate and store a constant number of polynomials with at most four
variables and total degree at most two. Thus, evaluating Eq. (12) to Eq. (19) takes
O(n) time and space for each colouring, and since we want to sum this quantity over
all colourings ce from edges e ∈ E(T1) a naive implementation would still take O(n2)
time. The key to improving this bound is in the use of efficient updates.

Lemma 8. Suppose that we have computed bv, wv and the functions φv for all v ∈ TD,
using a leaf colouring c. Let c̃ be a colouring which differs from c at k leaves. Then we
can update the values bv, wv and the functions φv in O(k+ k log(n/k) time.

Proof. Let F ′ be the set of edges of T2 which are incident to a leaf for which c and c̃
have a different colour, so |F ′|= k. The only nodes v in TD which need to updated are
those with f ∈ Qv for some f ∈ F ′. This is a union of the paths from k leaves of TD to
the root of TD, and so by Lemma 2 of [2] , it has size O(k+ k · log( n

k )).

The final step is to show that we can navigate the edges in E(T1) so that the total
number of changes in the colourings is bounded appropriately. Suppose that T1 is
rooted at the leaf ρ (the same as T2). For each internal node u in T1 we let Small(u)
denote the child of u with the smallest number of leaf descendants and let Large(u)
denote the child with the largest number of leaf descendants, breaking ties arbitrarily.

The following recursive procedure returns the sum of

∑
f∈E(T2)

xey f χ̃(ce, f )

over all edges e ∈ E(T1). Initially we let e be the edge incident with the root ρ . Let c
be the colouring where ρ is black and all other leaves white. We initialise TD and fill
out the values bv, wv and φv for all nodes v of TD using the colouring c. We then call
SUM(u) where u is the unique internal node adjacent to ρ .

We see that the algorithm makes a pre-order traversal of T1, evaluating the sum

∑
f∈E(T2)

xey f χ̃(ce, f )

for each edge e and accumulating the total. Thus by Lemma 6, the algorithm returns
∑i j pi jqi j.

The running time is dominated by the time required to update TD. For each leaf,
the update is made after only one leaf changes colour, so this takes O(n logn) summed
over all leaves. For every other node u in the tree, the number of nodes of TD to update
is O(k+ k log(n/k)) where k is the number of leaves in the subtree rooted at Small(u).

Lemma 9. Let T be a rooted binary tree with n leaves and for each internal node u of
T let ku denote the number of leaves in the smallest subtree rooted at a child of u. Then

∑
u internal

ku log(n/ku)≤ n logn.

Proof. This is a restatement of Lemma 7 in [2].

Theorem 10. Algorithm SUM computes ∑i j pi jqi j in O(n logn) time. Hence the path
length distance between T1 and T2 can be computed in O(n logn) time.

12



procedure SUM(u)
Let e be the edge connecting u to its parent (in T1).
x← ∑

f∈E(T2)

xey f χ̃(c, f ), computed using TD.

if u is a leaf then
Color u black and update TD
return x

else
Color the leaves in the subtree of T1 rooted at Small(u) in black and update TD
y← SUM(Large(u))
Color the leaves in the subtree of T1 rooted at Small(u) in white and update TD
z← SUM(Small(u))
return x + y + z

end if
end procedure

Figure 4: Recursive algorithm SUM
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