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Abstract
Ailon et al. (SICOMP 2011) proposed a self-improving sorter that tunes its performance to
the unknown input distribution in a training phase. The distribution of the input numbers
x1, x2, . . . , xn must be of the product type, that is, each xi is drawn independently from an
arbitrary distribution Di, and the Di’s are independent of each other. We study two extensions
that relax this requirement. The first extension models hidden classes in the input. We consider
the case that numbers in the same class are governed by linear functions of the same hidden
random parameter. The second extension considers a hidden mixture of product distributions.
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1 Introduction

Self-improving algorithms proposed by Ailon et al. [1] can tune their computational per-
formance to the input distribution. There is a training phase in which the algorithm learns
certain input features and computes some auxiliary structures. After the training phase, the
algorithm uses these auxiliary structures in the operation phase to obtain an expected time
complexity that is no worse and possibly better than the best worst-case complexity known.
The expected time complexity in the operation phase is called the limiting complexity.

This computational model addresses two issues. First, the worst-case scenario may
not happen, and so the worst-case optimal performance may not be the best possible.
Second, previous efforts for mitigating the worst-case scenarios often consider average-case
complexities, and the input distributions are assumed to be simple distributions like Gaussian,
uniform, Poisson, etc. whose parameters are given beforehand. In contrast, Ailon et al. only
assume that individual input items are independently distributed, while the distribution of
an input item can be arbitrary. No other information is needed.

The problems of sorting and two-dimensional Delaunay triangulation are studied by
Ailon et al. [1]. The sorting problem input I has n numbers. The i-th number is drawn
from a hidden distribution Di, and the Di’s are independent from each other. The joint
distribution

∏n
i=1Di is called a product distribution. Let π(I) denote the sequence of the

ranks of the xi’s, which is a permutation of [n]. It is shown that for any ε ∈ (0, 1), there
is a self-improving algorithm with limiting complexity O(ε−1(n + Hπ)), where Hπ is the

1 Supported by Research Grants Council, Hong Kong, China (project no. 16200317).
2 Part of the work was conducted while the author was at HKUST and supported by the Hong Kong

PhD Fellowship.

© Siu-Wing Cheng and Lie Yan;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 63; pp. 63:1–63:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:scheng@cse.ust.hk
https://orcid.org/0000-0002-3557-9935
mailto:lieyan@yahoo.com
https://doi.org/10.4230/LIPIcs.ISAAC.2018.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


63:2 Extensions of Self-Improving Sorters

entropy of the distribution of π(I). By Shannon’s theory [3], any comparison-based sorting
algorithm takes Ω(n+Hπ) expected time. The self-improving sorter requires O(n1+ε) space.
The training phase processes O(nε) input instances in O(n1+ε) time, and it succeeds with
probability at least 1− 1/n, i.e., the probabiliy of achieving the desired limiting complexity
is at least 1− 1/n. For two-dimensional Delaunay triangulation, Ailon et al. also obtained
an optimal limiting complexity for product distributions.

Subsequently, Clarkson et al. [2] developed self-improving algorithms for two-dimensional
coordinatewise maxima and convex hull, assuming that the input comes from a product
distribution. The limiting complexities for the maxima and the convex hull problems are
O(OptM + n) and O(OptC + n log logn), where OptM and OptC are the expected depths of
optimal linear decision trees for the maxima and convex hull problems, respectively.

On one hand, the product distribution requirement is very strong; on the other hand,
Ailon et al. showed that Ω(2n logn) bits of storage are necessary for optimal sorting if the n
numbers are drawn from an arbitrary distribution. We study two extensions of the input
model that are natural and yet possess enough structure for efficient self-improving algorithms
to be designed.

The first extension models the situations in which some input elements depend on each
other. We consider a hidden partition of the input I = (x1, · · · , xn) into classes Sk’s such
that all xi’s in a class Sk are distinct linear functions of the same hidden random parameter
zk, and the distributions of the zk’s are arbitrary and independent of each other.3 We call
this model a product distribution with hidden linear classes. Choose any ε ∈ (0, 1). Our
self-improving sorter has an O(n/ε + Hπ/ε) limiting complexity, uses O(n2) space, and
requires a training phase that processes O(nε) input instances in O(n2 log3 n) time with a
success probability at least 1− 1/n.

In the second extension, the distribution of I is a mixture
∑κ
q=1 λqDq, where κ and the

λq’s are hidden, and every Dq is a hidden product distribution of n real numbers. In other
words, over a large collection of input instances, for all q ∈ [1, κ], a fraction λq of them
are expected to be drawn from Dq. We assume that an upper bound m ≥ κ is given. We
call this model a hidden mixture of product distributions. For any ε ∈ (0, 1), our sorter
has an O(n log log(mn) + (n/ε) log κ+Hπ/ε) limiting complexity4, uses O(mn+mεn1+ε)
space, and requires a training phase that processes O(m(logm+ logn) + nε) instances in
O(mn(logm+ logn)2 +mεn1+ε) time with a success probability at least 1− 1/n.

2 Hidden linear classes

There is a hidden partition of [n] into classes. For every i ∈ [1, n], the distribution of xi is
degenerate if xi is equal to a fixed value. Each such xi will be recognized in the training
phase and i will be put in a class by itself. For the remaining i’s, the distributions of xi’s
are non-degenerate, and we use S1, · · · , Sg to denote the hidden classes formed by them.
Numbers in the same class Sk are generated by linear functions of the same hidden random
parameter zk. Different classes are governed by different random parameters. We know that
the functions are linear, but no other information is given to us.

Let Dk denote the distribution of zk. There is a technical condition that is required of
the Dk’s: there exists a constant ρ ∈ (0, 1) such that for every k ∈ [1, g] and every c ∈ R,
Pr [zk = c] ≤ 1 − ρ. This condition says that Dk does not over-concentrate on any single
value, which is quite a natural phenonmeon. Our algorithm does not need to know ρ.

3 There is a technical condition required of the input distribution to be explained in Section 2.
4 A less sophisticated method replaces n log log(mn) by mn which is beneficial for m = o(log log n).
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2.1 Training phase

2.1.1 Learn the linear classes
We learn the classes and the linear functions using the first 3 ln2 n input instances. Denote
these instances by I1, I2, · · · , I3 ln2 n. Let x

(a)
i denote the i-th input number in Ia. We first

recognize the degenerate distributions by checking which x(a)
i is fixed for a ∈ [1, 3 ln2 n].

I Lemma 1. Assume that n ≥ e2/(3ρ). It holds with probability at least 1− 1/n that for all
i ∈ [1, n], if x(a)

i is the same for all a ∈ [1, 3 ln2 n], the distribution of x(a)
i is degenerate.

Proof. Let ci be the observed value of x(a)
i for a ∈ [1, 3 ln2 n]. If the distribution of x(a)

i is
not degenerate, the probability of x(a)

i = ci for all a ∈ [1, 3 ln2 n] is at most (1− ρ)3 ln2 n ≤
e−3ρ ln2 n ≤ e−2 lnn = n−2. Applying the union bound establishes the lemma. J

Assume that the degenerate distributions are taken out of the consideration. If i and j
belong to the same class Sk, then x(a)

i and x(a)
j are linearly related as a varies. Conversely,

if i and j belong to different classes, it is highly unlikely that x(a)
i and x(a)

j remain linearly
related as a varies because they are governed by independent random parameters. We check
if the triples of points (x(a−2)

i , x
(a−2)
j ), (x(a−1)

i , x
(a−1)
j ), and (x(a)

i , x
(a)
j ) are collinear for each

Ia, a ∈ [3, 3 ln2 n], and every distinct pair of i and j from [1, n]. We quantify this intuition in
the following result.

I Lemma 2. Let i and j be two distinct indices in [1, n] that belong to different classes. For
every a ∈ [3, 3 ln2 n], let E(a)

ij denote the event that the points (x(a−2)
i , x

(a−2)
j ), (x(a−1)

i , x
(a−1)
j ),

and (x(a)
i , x

(a)
j ) are not collinear. For any n ≥ e3/ρ2 , Pr

[⋃3 ln2 n
a=3 E

(a)
ij

]
≥ 1− n−3.

Proof. We first prove a lower bound for E(3a)
ij for a ∈ [1, ln2 n]. It is well known [4] that the

points (x(3a−2)
i , x

(3a−2)
j ), (x(3a−1)

i , x
(3a−1)
j ), and (x(3a)

i , x
(3a)
j ) are collinear if and only if∣∣∣∣∣∣∣

x
(3a−2)
i x

(3a−2)
j 1

x
(3a−1)
i x

(3a−1)
j 1

x
(3a)
i x

(3a)
j 1

∣∣∣∣∣∣∣ = 0. (1)

Assume that x(3a−2)
i = c1 and x(3a−1)

i = c2 for two fixed values c1 and c2. Since i and j are
in different classes, x(b)

i and x(b′)
j are independent for all b and b′. Second, xj in one instance

Ib does not influence xj in a different instance Ib′ . So there is no dependence among x(3a)
i ,

x
(3a−2)
j , x(3a−1)

j , and x(3a)
j .

Suppose that c1 6= c2. If E(3a)
ij does not occur, then by (1), we can express x(3a)

j as a
function f(c1, c2, x

(3a)
i , x

(3a−2)
j , x

(3a−1)
j ). Hence,

Pr
[
E

(3a)
ij |x

(3a−2)
i = c1 ∧ x(3a−1)

i = c2 ∧ c1 6= c2

]
=

∑
c3,c′

1,c
′
2

Pr
[
x

(3a)
i = c3 ∧ x(3a−2)

j = c′1 ∧ x
(3a−1)
j = c′2

]
· Pr

[
x

(3a)
j 6= f(c1, c2, c3, c

′
1, c
′
2)
]

≥
∑

c3,c′
1,c

′
2

Pr
[
x

(3a)
i = c3 ∧ x(3a−2)

j = c′1 ∧ x
(3a−1)
j = c′2

]
· ρ

= ρ.
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If c1 = c2, then (1) becomes (x(3a)
i − x(3a−1)

i )(x(3a−1)
j − x(3a−2)

j ) = 0. Thus,

Pr
[
E

(3a)
ij |x

(3a−2)
i = c1 ∧ x(3a−1)

i = c2 ∧ c1 = c2

]
= Pr

[
x

(3a−2)
j 6= x

(3a−1)
j

]
· Pr

[
x

(3a)
i 6= c1

]
≥

(
1− Pr

[
x

(3a−2)
j = x

(3a−1)
j

])
· ρ

= ρ ·

(
1−

∑
c

Pr
[
x

(3a−2)
j = c

]
· Pr

[
x

(3a−1)
j = c

])

≥ ρ ·

(
1− (1− ρ)

∑
c

Pr
[
x

(3a−2)
j = c

])
= ρ2.

The above shows that the probability of E(3a)
ij conditioned on some fixed values of x(3a−2)

i and
x

(3a−1)
i is at least ρ2. Hence, Pr

[
E

(3a)
ij

]
≥ ρ2 ·

∑
c1,c2

Pr
[
x

(3a−2)
i = c1 ∧ x(3a−1)

i = c2

]
= ρ2.

The events in
⋃lnn
a=1 E

(3a)
ij are independent of each other. Therefore,

Pr

3 ln2 n⋃
a=3

E
(a)
ij

 ≥ Pr

ln2 n⋃
a=1

E
(3a)
ij

 = 1−
ln2 n∏
a=1

Pr
[
E

(3a)
ij

]
≥ 1− (1− ρ2)ln2 n.

Since n ≥ e3/ρ2 , we get (1−ρ2)ln2 n ≤ e−ρ2 ln2 n ≤ e−3 lnn = n−3, establishing the lemma. J

By Lemma 2, we keep a dictionary that stores (i, j, bij) for all i 6= j and i, j ∈ [1, n] such
that the distributions of xi and xj are non-degenerate. Initially, bij = 1 for all (i, j). For
each Ia where a ∈ [3, 3 ln2 n], we perform the following. For every (i, j), we check the event
E

(a)
ij in O(1) time, set a bit variable β = 0 if E(a)

ij occurs and β = 1 otherwise, and then
update bij := bij ∧ β. After going through all 3 ln2 n input instances, we put xi and xj in the
same class if and only if bij = 1. By Lemmas 1 and 2 and the union bound, the classification
is correct with probability at least 1− 1/n. The processing time needed is O(n2 log3 n).

2.1.2 Structures for the operation phase
After we obtain the classes, for each class Sk, we fix an arbitrary index sk ∈ Sk. Then, we
compute the equation of the line `i that expresses xi as a linear function in xsk for each
i ∈ Sk \ {sk}. This can be done by picking any two input instances Ia and Ib, and then
computing the equation of the support line through (x(a)

sk , x
(a)
i ) and (x(b)

sk , x
(b)
i ) in O(1) time.

The processing time needed over all classes is O(n).
Take another lnn input instances. Sort all numbers in these instances into one sorted list

L. Form the V -list (v0, v1, · · · , vn, vn+1), where v0 = −∞, vn+1 =∞, and vi has rank i lnn
in the list L. The V -list requires O(n) space and can be computed in O(n log2 n) time. Note
that if the distribution of xi is degenerate, the same xi appears lnn times in the sorted list
L, which implies that xi must be selected to be an element of the V -list.

The V -list induces n horizontal lines at y-coordinates v1, v2, · · · , vn. Let Ak denote the
arrangement of the lines `i computed for i ∈ Sk \ {sk}. We overlay these horizontal lines
on top of Ak. We draw vertical lines through the intersections between these horizontal
lines and the lines in Ak. We also draw vertical lines through the vertices of Ak. The plane
is divided into a set W of vertical slabs, where |W | = O(n|Sk|). Within each slab in W ,
each line `i in Ak lies strictly between two consecutive values vr and vr+1, i.e., vr is the
predecessor of `i in the V -list.
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By a plane sweep over Ak and the n horizontal lines, we can figure out the predecessor of
`i within each slab inW . For each slab inW , we store a list of the `i’s in bottom-to-top order,
and each line in the list stores its predecessor in the V -list. The lists for two consecutive
slabs differ by either swapping two lines in Ak or changing the predecessor of a line in Ak.
Therefore, the |W | lists can be stored in O(|W |+ |Sk|) = O(n|Sk|) space using a persistent
lists data structure [5]. These persistent lists can be generated by a plane sweep over Ak
and the n horizontal lines in O(n|Sk| logn) time.

We need to provide fast access to a particular slab inW after specifying xsk . Take another
nε input instances for any choice of ε ∈ (0, 1). Record the frequencies of xsk falling into the
slabs in W among these nε instances. We build a binary search tree on these slabs whose
expected search time is asymptotically optimal with respect to the recorded frequencies. Let
Tk denote this asymptotically optimal binary search tree. There are O(n|Sk|) nodes in Tk.
At each node of Tk, we store the persistent list of lines in Ak in bottom-to-top order within
the slab corresponding to that node. The size of Tk is O(n|Sk|), and it can be constructed
in O(n|Sk|) time [6, 8]. Very low frequencies cannot give good estimate of the probability
distribution of xsk , so navigating down Tk to a node of very low frequency may be too
time-consuming. Thus, if a search of Tk reaches a node at depth below ε

3 log2 n, we abort
and perform a binary search among the slabs in W , which takes O(log |W |) = O(logn) time.

The last ingredient is to allow the predecessor of xsk in the V -list to be quickly located
for all k ∈ [1, g]. We record the frequencies of xsk falling to the intervals [vr, vr+1) among the
nε instances. Then, we build an asymptotically optimal binary search tree T̂k with respect to
these frequencies. The tree T̂k uses O(n) space, and it can be constructed in O(n) time [6, 8].
As in the case of Tk, if a search of T̂k reaches a node at depth below ε

3 log2 n, we abort and
perform a binary search in the V -list, which takes O(logn) time.

2.2 Operation phase

Given an input instance I = (x1, · · · , xn), for each class Sk, we query Tk with xsk to retrieve
the sorted list σk of numbers belonging to the class Sk. Precisely, Tk gives fast access to the
sorted sequence σk \ {xsk}, and then we spend O(|σk|) time to insert xsk into σk \ {xsk}.
The numbers in σk \ {xsk} are already stored with their predecessors in the V -list. We query
T̂k to obtain the predecessor of xsk in the V -list.

Initialize an empty set Zr of lists for each interval [vr, vr+1). For each xi that is
degenerately distributed, add xi to Zr where vr = xi. For each k ∈ [1, g], if σk ∩ [vr, vr+1) is
non-empty, add σk ∩ [vr, vr+1) to Zr. Distributing σk to the Zr’s takes O(|σk|) = O(|Sk|)
time. Merge all lists in Zr into one sorted list. The merging is facilitated by a min-heap that
stores the next element from each list in Zr to be considered for the next output number
for the merged list. Thus, each step of the merging takes O(log |Zr|) time. Finally, we
concatenate in O(n) time the merged lists for all Zr’s to form the output sorted list.

Correctness is obvious. The limiting complexity has two main components. First, the sum
of expected query times of Tk and T̂k for k ∈ [1, g]. Second, the total time spent on merging
the lists in Zr for r ∈ [0, n]. The remaining processing time is O(n +

∑g
k=1 |Sk|) = O(n).

We give the analysis in the next section to show that the first two components sum to
O(n/ε+Hπ/ε). Recall that π(I) is the sequence of the ranks of numbers in I, which is a
permutation of [n], and Hπ is the entropy of the distribution of π(I).

ISAAC 2018
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2.3 Analysis
Assign labels 0 to n+ 1 to v0, v1, · · · , vn, vn+1 in this order. Similarly, assign labels n+ 2 to
2n+ 1 to the input numbers x1, · · · , xn in this order.

Define the random variable BV to be the permutation of the labels that appear from left
to right after sorting {v0, · · · , vn+1} ∪ {x1, · · · , xn} in increasing order.

For each k ∈ [1, g], define a random variable BVk to be the permutation of the labels that
appear from left to right after performing the following operations: (1) sort {v0, · · · , vn+1} ∪
{xi : i ∈ Sk \ {sk}} in increasing order, and (2) remove all vr’s that do not immediately
precede some xi’s in the sorted list. Let HV

k denote the entropy of the distribution of BVk .
Determining the sorted order σk \ {xsk} and these numbers’ predecessors in the V -list takes
at least HV

k expectd time.
For each k ∈ [1, g], define a random variable B̂Vk to be the label of the predecessor of

xsk in the V -list. Let ĤV
k denote the entropy of the distribution of B̂Vk . Determining the

predecessor of xsk in the V -list takes at least ĤV
k expected time.

Our algorithm queries Tk and T̂k for k ∈ [1, g], constructs σk for k ∈ [1, g] in O(
∑g
k=1 |σk|)

time, and then perform mergings in O(n+
∑n
r=0

∑g
k=1 |σk ∩ [vr, vr+1)| log |Zr|) time. The

additive O(n) term takes care of every interval that contains only one xi that is degenerately
distributed. Recall that |Zr| is the number of classes that have numbers falling into [vr, vr+1).
If Tk and T̂k were the ideal binary search trees, querying them would take HV

k and ĤV
k

expected time, respectively. The total expected running time would then be

O

(
n+

g∑
k=1

HV
k +

g∑
k=1

ĤV
k

)
+O

(
E
[

n∑
r=0

g∑
k=1
|σk ∩ [vr, vr+1)| log |Zr|

])
. (2)

We prove in the rest of this section that both
∑g
k=1 H

V
k and

∑g
k=1 Ĥ

V
k are O(n+Hπ), and

that E [
∑n
r=0

∑g
k=1 |σk ∩ [vr, vr+1)| log |Zr|] = O(n). Moreover, although Tk and T̂k are not

ideal binary search trees, their expected query complexities are O(HV
k /ε) and O(ĤV

k /ε),
respectively, as shown in [1, Lemma 3.4]. Therefore, the total expected running time is
O(n/ε+Hπ/ε).

We need two technical results.

I Lemma 3 ([3, Theorem 2.5.1]). Let H(X1, · · · , Xn) be the joint entropy of independent
random variables X1, · · · , Xn. Then H(X1, · · · , Xn) =

∑n
i=1 H(Xi).

I Lemma 4 ([1, Lemma 2.3]). Let X : U → X and Y : U → Y be two random variables
obtained with respect to the same arbitrary distribution over the universe U . Suppose that
the function f : (I,X(I)) 7→ Y (I), I ∈ U , can be computed by a comparison-based algorithm
with C expected comparisons, where the expectation is over the distribution on U . Then,
H(Y ) ≤ C +O(H(X)).

We show that both
∑g
k=1 H

V
k and

∑g
k=1 Ĥ

V
k are O(n+Hπ).

I Lemma 5.
(a)

∑g
k=1 H

V
k = O

(
n+H(BV )

)
= O (n+Hπ),

(b)
∑g
k=1 Ĥ

V
k = O(n+Hπ).

Proof. Consider (a). Suppose that we are given a setting of BV , i.e., the permutation of
labels from left to right in the sorted order of {v0, · · · , vn+1} ∪ {x1, · · · , xn}. We scan the
sorted list from left to right. We maintain the most recently scanned vr. Suppose that we
see a number xi. Let Sk be the class to which xi belongs. If this is the first time that we
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encounter an index in Sk, we initialize an output list for BVk that contains the label of vr
followed by the label of xi. If this is not the first time that we encounter an index in Sk, we
append the label of xi to the output list for BVk . There is an exception that when i = sk; we
do not output the label of xsk . Clearly, we obtain the settings of all BVk ’s correctly from
BV . The number of comparisons needed is O(n). Therefore, Lemmas 3 and 4 imply that∑g
k=1 H

V
k = H(BV1 , · · · , BVg ) = O(n+H(BV )).

Given (I, π(I)), we use π(I) to sort I and then merge the sorted order with (v0, · · · , vn+1).
Afterwards, we scan the sorted list to output the labels of the numbers. This gives the setting
of BV . Clearly, O(n) comparisons suffice, and so Lemma 4 implies that H(BV ) = O(n+Hπ).
This completes the proof of (a).

The settings of B̂V1 , · · · , B̂Vg can be derived similarly by using π(I) to sort I, merging
the sorted sequence with (v0, · · · , vn+1), and then scanning the merged sequence. Then,
Lemmas 3 and 4 imply that

∑g
k=1 Ĥ

V
k = H(B̂V1 , · · · , B̂Vg ) = O(n+Hπ), establishing (b). J

We will show that it holds with high probability that E[|Zr|] = O(1) for all r ∈ [0, n]
simultaneously. It implies that E

[
maxr∈[0,n] |Zr|

]
= O(1) with high probability. Then,

E
[

n∑
r=0
|σk ∩ [vr, vr+1)| log |Zr|

]
≤ E

[
max
r∈[0,n]

|Zr| ·
n∑
r=0
|σk ∩ [vr, vr+1)|

]

= |σk| · E
[

max
r∈[0,n]

|Zr|
]

= O(|σk|).

Hence,

E
[

n∑
r=0

g∑
k=1
|σk ∩ [vr, vr+1)| log |Zr|

]
=

g∑
k=1

E
[

n∑
r=0
|σk ∩ [vr, vr+1)| log |Zr|

]

≤ O

(
g∑
k=1
|σk|

)
= O(n).

The second term in (2) can thus be replaced by O(n).
Our proof of E[|Zr|] = O(1) for all r ∈ [0, n] with high probability is modeled after the

proof of a similar result in [1]. There is a small twist due to the handling of the classification.

I Lemma 6. It holds with probability at least 1−O(1/n) that for all r ∈ [0, n], E[|Zr|] = O(1).

Proof. Let I1, · · · , Ilnn denote the input instances used in the training phase for building
the V -list. Let y1, y2, · · · , yn lnn denote the sequence formed by concatenating I1, · · · , Ilnn
in this order. We adopt the notation that for each α ∈ [1, n lnn], yα belongs to the class Skα
and the input instance Iaα .

Fix any distinct index pairs α, β ∈ [1, n lnn] such that yα ≤ yβ . Let J βα be the set of
index pairs {(a, k) : a ∈ [1, lnn], k ∈ [1, g]} \ {(aα, kα), (aβ , kβ)}. For any (a, k) ∈ J βα , let
Y βα (a, k) be an indicator random variable such that if some element of the input instance Ia,
a ∈ [1, lnn], belongs to Sk and falls into [yα, yβ), then Y βα (a, k) = 1; otherwise, Y βα (a, k) = 0.
Define Y βα =

∑
(a,k)∈J βα Y

β
α (a, k).

Among the (a, k)’s in J βα , the random variables Y βα (a, k) are independent from each other.
By Chernoff’s bound, for any µ ∈ [0, 1],

Pr
[
Y βα ≤ (1− µ)E[Y βα ]

]
≤ e−µ

2E[Y βα ]/2.
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Setting µ =
√

35 − 5 ≈ 0.9161 shows that if E[Y βα ] > 1
6−
√

35 lnn, then Y βα > lnn with
probability at least 1− n−5. Since the above statement holds for any fixed choices of α and
β such that yα ≤ yβ , we can apply the union bound to the O(n2 log2 n) possible choices of α
and β and conclude that:

It holds with probability at least 1−O(n−2) that for any distinct index pairs α, β ∈
[1, n lnn] such that yα ≤ yβ , if E[Y βα ] > 1

6−
√

35 lnn, then Y βα > lnn.

For every r ∈ [0, n + 1], let yαr denote vr, where yα0 = −∞ and yαn+1 = ∞. Fix a
particular r ∈ [0, n+ 1]. By construction, there are lnn numbers among I1, · · · , Ilnn that fall
in [vr, vr+1), which guarantees the event of Y αr+1

αr ≤ lnn. Our previous conclusion implies
that E[Y αr+1

αr ] ≤ 1
6−
√

35 lnn with probability at least 1−O(n−2).
We relate E[Y αr+1

αr ] to E[|Zr|] as follows. Let Xkr be the indicator random variable
such that if some element of the input instance belongs to Sk and falls into [vr, vr+1), then
Xkr = 1; otherwise, Xkr = 0. Then

∑g
k=1 Xkr = |Zr|, implying that

∑g
k=1 E[Xkr] = E[|Zr|].

The random process that generates the input instances is oblivious of the training phase. It
follows that E[Y αr+1

αr ] should be the same as
∑lnn
a=1

∑g
k=1 E[Xkr], except that the index pairs

(aαr , kαr ) and (aαr+1 , kαr+1) are excluded from J αr+1
αr but these two cases are considered in∑lnn

a=1
∑g
k=1 E[Xkr]. Therefore,

E[Y αr+1
αr ] ≥

( lnn∑
a=1

g∑
k=1

E[Xkr]
)
− 2 = lnn · E[|Zr|]− 2. (3)

We have shown previously that E[Y αr+1
αr ] ≤ 1

6−
√

35 lnn with probability at least 1−O(n−2).
It follows that E[|Zr|] = O(1) with probability at least 1−O(n−2). Since the above statement
holds for every fixed r ∈ [0, n], by the union bound, it holds with probability at least
1−O(1/n) that E[|Zr|] = O(1) for all r ∈ [0, n]. J

It remains to show that the expected query complexities of Tk and T̂k are O(HV
k /ε) and

O(ĤV
k /ε), respectively. The argument is based on Chernoff’s bound and the fact that if a

search in Tk or T̂k reaches a pruned node, it means that the search requires Ω(ε logn) time.
The exact same arguments have been made by Ailon et al. [1, Lemma 3.4].

I Theorem 7. For any ε ∈ (0, 1), there exists a self-improving sorter of O(n/ε + Hπ/ε)
limiting complexity for any product distribution with hidden linear classes. The storage needed
is O(n2). The training phase processes O(nε) input instances in O(n2 log3 n) time, and it
succeeds with probability at least 1− 1/n.

3 Mixture of product distributions

Let κ be the number of product distributions in the mixture. Although κ is hidden, we are
given an upper bound m ≥ κ. Let Dq, q ∈ [1, κ], be the hidden product distributions in the
mixture. In each Dq, the i-th input number is drawn from Dq,i, i.e., Dq =

∏n
i=1Dq,i. The

input distribution is
∑κ
q=1 λqDq for some hidden positive λq’s such that

∑κ
q=1 λq = 1.

3.1 Training phase
Take m (lnm+ lnn) input instances and sort all of these numbers in increasing order. Select
the numbers in the sorted list of ranks lnm+ ln, 2 (lnm+ lnn), · · · , mn (lnm+ lnn). The
selected numbers induce a doubly linked list V of intervals: (−∞, v1), [v1, v2), · · · , [vmn,∞).
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We denote these intervals as [vr, vr+1) for r ∈ [0,mn], where v0 = −∞, vmn+1 =∞, and we
abuse the notation slightly to take [v0, v1) to mean (−∞, v1).

We organize a balanced binary search tree TV whose nodes correspond to intervals in V .
Use another O(mεnε) input instances to record the frequency fir that xi falls into

[vr, vr+1). Then, for every i ∈ [1, n], build an asymptotically optimal binary search tree
Ti with respect to the fir’s on the intervals with positive frequencies. This can be done
in O(mεnε) time [6, 8]. The size of Ti is O(mεnε). If a search of Ti reaches a node at
depth below ε

3 log2(mn) or is unsuccessful, we answer the query by searching TV which takes
O(log(mn)) time

We also need a fast dictionary data structure that can be built in O(mn) time and space.
But we defer its description until we explain the need for it in the operation phase.

The total space required is O(mn+mεn1+ε). The total time spent in the training phase
is O(mn(logm+ logn)2 +mεn1+ε).

3.2 Operation phase
We first give a naive method that is slow to illustrate the overall strategy. Given an input
instance I = (x1, · · · , xn), for each i ∈ [1, n], we search Ti to place xi in the interval [vr, vr+1)
that contains it. For each r ∈ [0,mn], the entry [vr, vr+1) in V keeps a list Nr of xi’s that
fall into it. We sort each Nr in O(|Nr| log |Nr|) time. Then, we concatenate the sorted Nr’s
in increasing order of r to form the output sorted list.

Let ti denote the expected time to query Ti with xi. Assume that we can prove as in [1]
that E[|Nr|2] = O(1). Then, sorting each Nr takes only O(1) expected time. Therefore, the
total time for processing I is O(mn+

∑n
i=1 ti). This is too slow unless m = o(logn). The

O(mn) term arises from scanning the list V in order to concatenate the sorted Nr’s in the
right order.. However, at most n of these mn+ 1 intervals are “useful” because there are
only n input numbers. We describe an improvement below.

We maintain a dictionary U that is initially empty. For each i ∈ [1, n], Ti leads us to the
interval [vr, vr+1) that contains xi. We find vr in U . If vr is present in U , we simply add xi
to Nr. Otherwise, we insert vr to U and initialize Nr to contain xi alone. After seeing all
n input numbers, we find the minimum element in U and then find successors iteratively.
This allows us to visit the non-empty Nr’s in increasing order of r. So we can concatenate
the sorted Nr’s in O(n) time. At the end, we delete all elements from U in preparation for
sorting the next input instance.

The van Emde Boas tree [9] supports dictionary operations in O(log logN) worst-case
time each, where N is the size of the universe. It means O(log log(mn)) time in our case. In
the training phase, we construct a van Emde Boas tree with universe V . It uses O(mn) space
and can be built in O(mn) time.5 The asymptotical storage and processing time required by
the training phase is unaffected.

In all, the running time is reduced to O(n log log(mn) +
∑n
i=1 ti).

3.3 Analysis
We first show that sorting all Nr’s takes O(n) expected time.

I Lemma 8. It holds with probability at least 1− 1/n that E [
∑mn
r=0 |Nr| log |Nr|] = O(n).

5 The space usage according to the description in [9] is O(mn log log(mn)), but it can be improved to
O(mn) as mentioned in [7].
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Proof. We first prove that E[|Nr|] = O(1) for all r ∈ [0,mn] are satisfied simultaneously
with probability at least 1− 1/n.

As a shorthand, let γ = lnm+ lnn. Let I1, · · · , Imγ denote the input instances used in
the training phase for building the list V . Let y1, y2, · · · , ymnγ denote the sequence formed
by concatenating I1, · · · , Imγ in this order. We adopt the notation that for each α ∈ [1,mnγ],
yα belongs to Iaα , and yα is drawn from Dqα,iα .

Fix any distinct index pairs α, β ∈ [1,mnγ] such that yα ≤ yβ . For every q ∈ [1, κ], let
J βα (q) be the set of index triples {(a, q, i) : a ∈ [1,mγ], i ∈ [1, n]} \ {(aα, qα, iα), (aβ , qβ , iβ)}.
For any (a, q, i) ∈ J βα (q), let Y βα (a, q, i) be the indicator random variable such that if Ia ∼ Dq
and xi in Ia falls into [yα, yβ), then Y βα (a, q, i) = 1; otherwise, Y βα (a, q, i) = 0. Define
Y βα (q) =

∑
(a,q,i)∈J βα (q) Y

β
α (a, q, i).

Among the (a, q, i)’s in J βα (q), the random variables Y βα (a, q, i)’s are independent from
each other. By Chernoff’s bound, for any µ ∈ [0, 1], Pr

[
Y βα (q) ≤ (1− µ)E[Y βα (q)]

]
≤

e−µ
2E[Y βα (q)]/2. Setting µ =

√
35 − 5 ≈ 0.9161 shows that if E[Y βα (q)] > 1

6−
√

35γ, then
Y βα (q) > γ with probability at least 1 − m−5n−5. Since the above statement holds for
any fixed choices of q, α and β such that yα ≤ yβ , we can apply the union bound to the
O(κm2n2(logm+ logn)2) possible choices of q, α and β and conclude that:

It holds with probability at least 1 − O(m−1n−2) that for any q ∈ [1, κ] and any
α, β ∈ [1,mnγ] such that yα ≤ yβ , if E[Y βα (q)] > 1

6−
√

35γ, then Y
β
α (q) > γ.

For every r ∈ [0,mn+ 1], let yαr denote vr, where yα0 = −∞ and yαmn+1 = ∞. Fix a
particular r ∈ [0,mn]. By construction, there are γ numbers among I1, · · · , Imγ that fall
in [vr, vr+1), which guarantees the event of Y αr+1

αr (q) ≤ γ for all q ∈ [1, κ]. By our previous
conclusion, it holds with probability at least 1−O(m−1n−2) that E[Y αr+1

αr (q)] ≤ 1
6−
√

35γ for
all q ∈ [1, κ]. Let Y αr+1

αr =
∑κ
q=1 Y

αr+1
αr (q). It follows that:

E[Y αr+1
αr ] = O(κγ) holds with probability at least 1−O(m−1n−2). (4)

Let Xir be the indicator random variable such that if xi falls into the interval [vr, vr+1),
then Xir = 1; otherwise, Xir = 0. Then

∑n
i=1 Xir = |Nr|. Note that Y αr+1

αr counts every xi’s
in Ia that falls into [vr, vr+1), except for the two cases of (a, i) = (aαr , iαr ) ∧ Ia ∼ Dqαr and
(a, i) = (aαr+1 , iαr+1)∧Ia ∼ Dqαr+1

. The random process that generates the input is oblivious
of the training phase. Therefore, E[Y αr+1

αr ] is expected to be the same as
∑mγ
a=1

∑n
i=1 E[Xir],

except that the cases of (a, i) = (aαr , iαr )∧Ia ∼ Dqαr and (a, i) = (aαr+1 , iαr+1)∧Ia ∼ Dqαr+1

are excluded from J αr+1
αr , but these two cases are considered in

∑mγ
a=1

∑n
i=1 E[Xir]. Hence,

E[Y αr+1
αr ] ≥

(
mγ ·

n∑
i=1

E[Xir]
)
− 2 = (mγ · E[|Nr|])− 2.

Substituting (4) into the above inequality shows that E[|Nr|] = O(1). The O(1) bounds on
E[|Nr|] hold for a fixed r with probability at least 1−O(m−1n−2). Applying the union bound
over r ∈ [0,mn] establishes the claim that E [|Nr|] = O(1) for all r ∈ [0,mn] are satisfied
simultaneously with probability at least 1− 1/n. It follows that E

[
maxr∈[0,mn] |Nr|

]
= O(1)

with probability at least 1− 1/n.
The expected total time to sort the Nr’s is

E
[
mn∑
r=0
|Nr| log |Nr|

]
= E

[
mn∑
r=0

n∑
i=1

Xir log |Nr|
]
≤

n∑
i=1

E
[

max
r∈[0,mn]

|Nr| ·
mn∑
r=0

Xir

]
.

Observe that
∑mn
r=0 Xir = 1 because xi falls into exactly one of the mn+ 1 intervals. As a

result, it holds with probability at least 1− 1/n that E [
∑mn
r=0 |Nr| log |Nr|] = O(n). J
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Next, we bound
∑n
i=1 ti. Let µiqr denote the probability of xi ∈ [vr, vr+1) conditioned

on xi ∼ Dq,i. Define µir to be the the probability of xi ∈ [vr, vr+1), and therefore, µir =∑κ
q=1 λqµiqr.
Let HV

i be the entropy of the distribution of the predecessor of xi in V . So HV
i =∑mn

r=0 µir log(1/µir). As shown in [1, Lemma 3.4], Ti has an expected search time of

O

(
HV
i

ε

)
= O

(
1
ε

mn∑
r=0

µir log(1/µir)
)

= O

(
1
ε

mn∑
r=0

(
κ∑
q=1

λqµiqr

)
log
(

1∑κ
q=1 λqµiqr

))
.

Observe that log
(

1/
∑κ
q=1 λqµiqr

)
≤ log 1

λqµiqr
for any q. Therefore,

HV
i ≤

κ∑
q=1

(
mn∑
r=0

λqµiqr log 1
λqµiqr

)

=
κ∑
q=1

mn∑
r=0

λqµiqr log 1
λq

+
κ∑
q=1

mn∑
r=0

λqµiqr log 1
µiqr

.

Note that
∑mn
r=0 λqµiqr = λq as

∑mn
r=0 µiqr = 1. Then,

∑κ
q=1

∑mn
r=0 λqµiqr log(1/λq) =∑κ

q=1 λq log(1/λq), which is at most log κ. Then,

n∑
i=1

ti = O

(
1
ε

n∑
i=1

HV
i

)

= O
(n
ε

log κ
)

+O

(
1
ε

n∑
i=1

κ∑
q=1

mn∑
r=0

λqµiqr log 1
µiqr

)

= O
(n
ε

log κ
)

+O

(
1
ε

κ∑
q=1

λq

(
n∑
i=1

mn∑
r=0

µiqr log 1
µiqr

))
.

Let HV
q,i =

∑mn
r=0 µiqr log(1/µiqr), the entropy of the distribution of the predecessor

of xi in V conditioned on xi ∼ Dq,i. Then,
∑n
i=1
∑mn
r=0 µiqr log(1/µiqr) =

∑n
i=1 H

V
q,i. By

Lemma 5(b) and setting g = n, we obtain
∑n
i=1 H

V
q,i = O(n+Hπ,q), where Hπ,q is the entropy

of π(I) conditioned on I ∼ Dq. It is well-known that an unconditional entropy is greater than
or equal to its conditioned counterpart, so Hπ ≥ Hπ,q. Therefore,

∑n
i=1 H

V
q,i = O(n+Hπ).

Thus,
∑n
i=1 ti = O

(
n
ε log κ+ 1

ε

∑κ
q=1 λq(n+Hπ)

)
= O ((n/ε) log κ+Hπ/ε).

I Theorem 9. For any constant ε > 0, there exists a self-improving sorter of limiting
complexity O (n log log(mn) + (n/ε) log κ+Hπ/ε) for any hidden mixture of κ product distri-
bution. The parameter κ is hidden, but an upper bound m ≥ κ is given. The storage needed is
O(mn+mεn1+ε). The training phase processes O(m(logm+ logn) +mεnε) input instances
in O(mn(logm+ logn)2 +mεn1+ε) time, and it succeeds with probability at least 1− 1/n.

4 Conclusion

There are several possible directions for future research. One is to extend the hidden
classification to allow the xi’s in the same class Sk to be some fixed-degree polynomial in
the random parameter zk. Linear functions in zk have the nice property that any xi and
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xj in the same class are linearly related. This helps us to learn the hidden classes. We lose
this property in the case of fixed-degree polynomials. Another direction is to improve the
limiting complexity in the case of a hidden mixture of product distributions. Can the term
O(n log log(mn) + (n/ε) log κ) be reduced? If the upper bound m of κ is not too far off, then
n log log(mn) ≈ n log log κ+ n log logn, which means that our limiting complexity becomes
O(n log logn + (n/ε) log κ + Hπ/ε). Although n log logn is o(n logn), it would be nice to
eliminate it or reduce it further. It is also unclear whether the factor log κ is necessary.

It would also be interesting to design self-improving algorithms for other problems and
possibly other input settings as well.
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