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On the Relation of Strong Triadic Closure and

Cluster Deletion⋆

Niels Grüttemeier and Christian Komusiewicz

Abstract We study the parameterized and classical complexity of two problems
that are concerned with induced paths on three vertices, called P3s, in undirected
graphs G = (V,E). In Strong Triadic Closure we aim to label the edges in E as
strong and weak such that at most k edges are weak and G contains no induced P3

with two strong edges. In Cluster Deletion we aim to destroy all induced P3s by
a minimum number of edge deletions. We first show that Strong Triadic Closure

admits a 4k-vertex kernel. Then, we study parameterization by ℓ := |E| − k and
show that both problems are fixed-parameter tractable and unlikely to admit a
polynomial kernel with respect to ℓ. Finally, we give a dichotomy of the classical
complexity of both problems on H-free graphs for all H of order at most four.

1 Introduction

We study two related graph problems arising in social network analysis and data
clustering. Assume we are given a social network where vertices represent agents
and edges represent relationships between these agents, and want to predict which
of the relationships are important. In online social networks for example, one
could aim to distinguish between close friends and spurious relationships. Sin-
tos and Tsaparas [28] proposed to use the notion of strong triadic closure for
this problem. This notion goes back to Granovetter’s sociological work [10]. Infor-
mally, it is the assumption that if one agent has strong relationships with two other
agents, then these two other agents should have at least a weak relationship. The
aim in the computational problem is then to label a maximum number of edges of
the given social network as strong while fulfilling this requirement. Formally, we
are looking for an STC-labeling defined as follows.

⋆ A preliminary version of this work appeared in Proceedings of the 44th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG ’18) held in Cottbus,
Germany in June 2018 [11]. The long version contains full proofs of all statements, an improved
running time for the kernelization, and a slightly extended dichotomy for H-free graphs.

Fachbereich für Mathematik und Informatik, Philipps-Universität Marburg, Germany
E-mail: {niegru,komusiewicz}@informatik.uni-marburg.de

http://arxiv.org/abs/1803.00807v3


Definition 1 A labeling L = (SL,WL) of an undirected graph G = (V,E) is a
partition of the edge set E. The edges in SL are called strong and the edges in WL

are called weak. A labeling L = (SL,WL) is an STC-labeling if there exists no pair
of strong edges {u, v} ∈ SL and {v, w} ∈ SL such that {u, w} 6∈ E.

For any weak (strong) edge {u, v} we refer to u as a weak (strong) neighbor of v.
The computational problem described informally above is now the following.

Strong Triadic Closure (STC)

Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an STC-labeling L = (SL,WL) with |WL| ≤ k?

We call an STC-labeling L optimal for a graph G, if the number |WL| of weak
edges is minimal. The STC-labeling property can also be stated in terms of induced
subgraphs: For every induced P3, the path on three vertices, of G at most one edge
is labeled strong. Therefore, as observed previously [16], STC is closely related to
the problem of destroying induced P3s by edge deletions. Since the graphs without
an induced P3 are exactly the disjoint union of cliques, this problem is usually
formulated as follows.

Cluster Deletion (CD)

Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Can we transform G into a cluster graph, that is, a disjoint
union of cliques, by at most k edge deletions?

More precisely, any set D of at most k edge deletions that transform G into a
cluster graph, directly implies an STC-labeling (E \ D,D) with at most k weak
edges. There are, however, graphs G where the minimum number of weak edges
in an STC-labeling is strictly smaller than the number of edge deletions that are
needed in order to transform G into a cluster graph [16]. Due to the close relation
between the two problems, there are graph classes where any minimum-cardinality
solution for Cluster Deletion directly implies an optimal STC-labeling [16].

In this work, we study the parameterized complexity of STC and Cluster

Deletion and the classical computational complexity of both problems in graph
classes that can be described by one forbidden induced subgraph of order at most
four.

Known Results. STC is NP-hard [28], even when restricted to graphs with maxi-
mum degree four [16] or to split graphs [17]. In contrast, STC is solvable in poly-
nomial time when the input graph is bipartite [28], subcubic [16], a proper interval
graph [17], or a cograph, that is, a graph with no induced P4 [16]. STC can be
solved in O(1.28k+nm) time and admits a polynomial kernel when parameterized
by k. These two results follow from a parameter-preserving reduction to Vertex

Cover, which asks if it is possible to delete at most k vertices of a given graph such
that the remaining graph does not contain any edge. This parameter-preserving
reduction [28] computes the so-called Gallai graph [18,29] of the input graph and
directly gives the above-mentioned running time bound. The existence of a kernel
for parameter k is implied by two facts: First, Vertex Cover admits a polynomial
kernel for the number k of vertices to delete [6,7]. Second, Vertex Cover is in NP
and STC is NP-hard. Hence, the Vertex Cover instance of size poly(k) which we
obtain by first reducing from STC to Vertex Cover and then applying the kernel-
ization can be transformed into an equivalent STC instance by a polynomial-time
reduction. The STC instance then has size poly(k).
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Table 1 The parameterized complexity of STC and Cluster Deletion for parameters k

and ℓ := |E| − k.

Parameter STC Cluster Deletion

k O(1.28k + nm)-time algo [28] O(1.42k +m)-time algo [1]
4k-vertex kernel (Thm. 1) 4k-vertex kernel [12]

ℓ ℓO(ℓ) · n-time algo (Thm. 5) O(9ℓ · ℓn)-time algo (Thm. 4)
No poly kernel (Thm. 3) No poly kernel (Cor. 1)

Table 2 Complexity Dichotomy and correspondence of STC and Cluster Deletion on H-
free graphs.

STC CD correspondent
H ∈ {3K1,K4, 4K1, C4, 2K2, claw, NP-h NP-h NO

co-claw, co-diamond, co-paw}
H = diamond NP-h NP-h YES
H ∈ {K3, P3, K2K1,paw, P4} P P YES

Cluster Deletion is NP-hard [27], even when restricted to graphs with max-
imum degree four [15] or to (2K2, 3K1)-free graphs [8], and solvable in polynomial
time on cographs [8] and in time O(1.42k +m) on general graphs [1].

Our Results. We provide the first linear-vertex kernel for STC parameterized by k.
More precisely, we show that in O(nm) time we can reduce an arbitrary instance
of STC to an equivalent instance with at most 4k vertices.

Second, we initiate the study of the parameterized complexity of STC and
Cluster Deletion with respect to the parameter ℓ := |E| − k. Hence, in STC

we are searching for an STC-labeling with at least ℓ strong edges and in Cluster

Deletion we are searching for a cluster graph G′ that is a subgraph of G and that
has at least ℓ edges; we call these edges the cluster edges of G′. While we present
fixed-parameter algorithms for both problems and the parameter ℓ, we also show
that, somewhat surprisingly, both problems do not admit a polynomial kernel
with respect to ℓ, unless NP ⊆ coNP/poly. Our result is obtained by polynomial
parameter transformations fromClique parameterized by the size of a vertex cover
of the input graph to Multicolored Clique parameterized by the sum of the sizes
of all except one color class to STC and Cluster Deletion parameterized by ℓ.
The Multicolored Clique variant may be of independent interest as a suitable
base problem for polynomial parameter transformations. Table 1 gives an overview
of the parameterized complexity.

Finally, we extend the line of research studying the complexity of Cluster

Deletion [8] and STC [16] on H-free graphs where H is a graph of order at most
four. We present a complexity dichotomy between polynomial-time solvable and
NP-hard cases for all possibilities for H. Moreover, we show for all such graphs H
whether STC and Cluster Deletion correspond onH-free graphs, that is, whether
every STC-labeling with at most k weak edges implies a Cluster Deletion solu-
tion with at most k edge deletions. These results are shown in Table 2.

Related Work. Independent from our work, Golovach et al. [9] showed that STC

parameterized by ℓ has no polynomial kernel unless NP ⊆ coNP/poly, even when
the input graph is a split graph. Moreover, they discuss the Strong F -Closure
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problem—a generalization of STC. For an arbitrary graph F , the Strong F -

Closure problem asks for a labeling L = (SL,WL) of a graph G such that there is
no induced subgraph F in G that contains only strong edges under L and where the
number of strong edges is maximum under this property. Among other results, it is
shown that Strong F -Closure admits a polynomial kernel for the parameter k [9].

Several further problems that are closely related to STC have been studied re-
cently. Sintos and Tsaparas [28] introduced Multi-STC, a generalization of STC
where the labeling is allowed to have c different strong colors and for each in-
duced P3 in G, the edges of G must be labeled by different strong colors or one
of the edges must be labeled weak. This variant is harder than STC in the sense
that for all c ≥ 3, Multi-STC is NP-hard even if k = 0 [5]. A further approach for
predicting strong relationships based on strong triadic closure asks for an STC-
labeling of G = (V,E) such that each community Xi ⊆ V of a set of given commu-
nities {X1, . . . , Xt} is internally connected via strong links [25]. This problem has
been shown to be a special case of a facility location problem [30].

2 Preliminaries

Graph Theory. We consider undirected simple graphs G = (V,E) where n := |V |
and m := |E|. For any vertex v ∈ V , the open neighborhood of v is denoted by
NG(v), the closed neighborhood is denoted by NG[v]. The set of vertices in G which
have a distance of exactly 2 to v is denoted by N2

G(v). For any two vertex sets
V1, V2 ⊆ V , we let EG(V1, V2) := {{v1, v2} ∈ E | v1 ∈ V1, v2 ∈ V2} denote the set of
edges between V1 and V2. For any vertex set V ′ ⊆ V , we let EG(V

′) := EG(V
′, V ′)

be the set of edges between the vertices of V ′. We may omit the subscript G if the
graph is clear from the context. For any V ′ ⊆ V , G[V ′] := (V ′, E(V ′)) denotes the
subgraph of G induced by V ′.

A clique in a graph G is a set K ⊆ V of vertices such that G[K] is complete.
A cut C = (V1, V2) is a partition of the vertex set into two parts. The cut-set

EC := EG(V1, V2) is the set of edges between V1 and V2. A matching M ⊆ E is a
set of pairwise disjoint edges. A matching in a graph G is maximal if adding any
edge to M does not give a matching and maximum if G has no larger matching. A
graph G is H-free if it does not contain an induced subgraph that is isomorphic to
the graph H. The small graphs used in this work are shown in Fig. 1. For further
background on graph classes and their definition via forbidden induced subgraphs
refer to http://graphclasses.org or to the monograph by Brandstädt et al. [4].

Parameterized Algorithmics. In parameterized algorithmics [6, 7], one analyzes the
complexity of problems depending on the input size n and a problem parame-
ter k. For a given problem, the aim is to obtain fixed-parameter tractable (FPT)
algorithms, which are algorithms with running time f(k) · poly(n) for some com-
putable function f .

An important tool in the development of parameterized algorithms is prob-

lem kernelization, which is a polynomial-time preprocessing by data reduction rules

yielding a problem kernel. Herein, the goal is, given any problem instance I with
parameter k, to produce an equivalent instance I ′ with parameter k′ in polynomial
time such that k′ ≤ k and the size of I ′ is bounded from above by some function g

only depending on k. The function g is called the kernel size. If g is a polynomial,

4

http://graphclasses.org


K3 P3 K2 +K1 3K1 P4

diamond C4 paw clawK4

co-diamond 2K2 co-paw co-claw4K1

Fig. 1 The small graphs H considered in this work.

we say that the problem has a polynomial kernel. The equivalence of the instances is
defined as follows: (I, k) is a yes-instance if and only if (I ′, k′) is a yes instance. A
reduction rule is safe if it produces an equivalent instance. An instance is reduced

with respect to a set of data reduction rules if each of the data reduction rules has
been exhaustively applied.

Some parameterized problems that are fixed-parameter tractable are unlikely
to admit a polynomial kernel [6,7]. Precisely, these problems do not admit a polyno-
mial kernel unless NP ⊆ coNP/poly. By using polynomial parameter transformations

we can transfer these kernel lower bounds to other problems [2, 3]. A polynomial
parameter transformationmaps any instance (I, k) of some parameterized problem
L in polynomial time to an equivalent instance (I ′, k′) of a parameterized problem
L′ such that k′ ≤ p(k) for some polynomial p.

3 On Problem Kernelizations

We now discuss problem kernelizations for STC parameterized by k and ℓ. First,
we give a 4k-vertex kernel and an O(ℓ ·2ℓ)-vertex kernel. Then, we show that there
is no polynomial problem kernel for ℓ unless NP ⊆ coNP/poly. An important
concept for our kernelizations are weak cuts which are defined as follows.

Definition 2 Let L = (SL,WL) be an STC-labeling for a graph G = (V,E). A
weak cut for G under L is a cut C such that EC ⊆ WL.

Proposition 1 Let L = (SL,WL) be an STC-labeling for a graph G = (V,E). If

there is a weak cut C = (V1, V2) with cut-set EC , then there is an STC-labeling L′ =
(SL′ ,WL′) for G′ = (V,E \EC) such that |SL′ | = |SL|.

Proof Define L′ := (SL,WL\EC). Obviously, |SL′ | = |SL| holds. It remains to show
that L′ still satisfies the STC property. Assume there are edges {u, v}, {v, w} ∈ SL
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such that {u,w} 6∈ E \ EC . Since L satisfies STC, we have {u,w} ∈ EC . Without
loss of generality we assume that u ∈ V1 and w ∈ V2. The fact that there is still a
path from u to v in E \ EC contradicts the property that EC is a cut-set. ⊓⊔

3.1 A 4k-Vertex Kernel for Strong Triadic Closure

We now show that STC parameterized by k admits a kernel with at most 4k
vertices. In the kernelization, we make use of the concepts of critical cliques and
critical clique graphs as introduced in [24]. These concepts were also used for a
kernelization for Cluster Editing which directly gives a 4k-vertex kernel for CD,
even though this is not claimed explicitly [12].

Definition 3 A critical clique in a graph G = (V,E) is a cliqueK where the vertices
of K all have the same neighbors in V \K, and K is maximal under this property.

Obviously, for a given graph G = (V,E) there exists a partition K of the vertex
set V such that every K ∈ K is a critical clique in G. The critical clique graph is
then defined as follows.

Definition 4 Given a graph G = (V,E), let K be the collection of its critical
cliques. The critical clique graph C of G is the graph (K, EC) with {Ki,Kj} ∈ EC ⇔
∀u ∈ Ki, v ∈ Kj : {u, v} ∈ E .

For a critical clique K we let N (K) :=
⋃

K′∈NC(K) K
′ denote the union of its

neighbor cliques in the critical clique graph and N 2(K) :=
⋃

K′∈N2
C
(K) K

′ denote

the union of the critical cliques at distance exactly two from K. The critical clique
graph can be constructed in O(n + m) time [14]. Note that the edges within a
critical clique K are not part of any P3. It is known that this kind of edges is
labeled as strong in every optimal solution for STC [28].

In the following, we will distinguish between two types of critical cliques. We
say that a critical clique K is open if N (K) does not form a clique in G, and
that K is closed if N (K) forms a clique in G. We will see that the number of
vertices in open critical cliques is bounded for every yes-instance of STC. The
main step of the kernelization is to delete large closed critical cliques. Before we
give the concrete rule we provide two useful properties of closed critical cliques.

Proposition 2 If K1 and K2 are closed critical cliques, then {K1,K2} 6∈ EC.

Proof Assume there is an edge {K1,K2} ∈ EC. The inclusions K1 ⊆ N (K2) and
K2 ⊆ N (K1) obviously hold.

First, we consider the case

N (K1) \K2 = N (K2) \K1.

In this case, all vertices in K1 ∪ K2 have the same neighbors in V \ (K1 ∪ K2),
which is a contradiction to the maximality of K1 and K2 since K1 ∪ K2 forms a
bigger critical clique.

Second, we consider the case

N (K1) \K2 6= N (K2) \K1.

6



Without loss of generality, assume that there exists a vertex v ∈ N (K1) \K2 with
v 6∈ N (K2)\K1. Then, for any w ∈ K2, the vertices v and w are contained in N (K1)
but not adjacent in G. This is a contradiction to the fact that K1 is closed. ⊓⊔

The following proposition has been proven already for both types of critical
cliques [17]. Since we only need it for closed critical cliques we provide here a
simple proof for those.

Proposition 3 Let K be a closed critical clique, v ∈ N (K) and let L = (SL,WL) be

an optimal STC-labeling for G. Then E({v},K) ⊆ SL or E({v},K) ⊆ WL.

Proof Assume L has a weak edge {v, w1} ∈ E({v},K) and a strong edge {v, w2} ∈
E({v},K). We define the following labeling L+ := (SL ∪ {{v, w1}},WL \ {{v, w1}})
for G. We prove that L+ satisfies STC by showing that there is no strong P3

containing {v, w1}. Let e be an edge that shares exactly one endpoint with {v, w1}.
Case 1: e ∈ E(K ∪ N (K)). Since K is closed, K ∪ N (K) forms a clique.

Then {v, w1} and e are edges between the vertices of a clique, so they do not
form an induced P3.

Case 2: e ∈ E(N (K),N 2(K)). Since w1 ∈ K it holds that e = {v, u} for some
u ∈ N 2(K). Then e is weak under L+. Otherwise, e and {v, w2} form a strong P3

under L which contradicts the fact that L is an STC-labeling. Hence, {v, w1} and
e do not form a strong P3.

The fact that L+ is an STC-labeling for G with |WL|−1 weak edges contradicts
the fact that L is an optimal STC-labeling for G. ⊓⊔

Proposition 3 tells us, that for a closed critical cliques K the vertices in N (K)
are either strong neighbors or weak neighbors of every v ∈ K. We will use this fact
to conclude that, whenever a closed critical clique K is larger than the number of
edges between its first and second neighborhood, K ∪N (K) forms a strong clique
under an optimal STC-labeling. Moreover, we show that there is no strong edge
connecting K ∪N (K) with the rest of the graph. We formulate the reduction rule
as follows.

Rule 1 If G has a closed critical clique K with |K| > |EG(N (K),N 2(K))|, then

remove K and N (K) from G and decrease k by |EG(N (K),N 2(K))|.

Proposition 4 Rule 1 is safe.

Proof Let K be a closed critical clique in G with |K| > |EG(N (K),N 2(K))| and
let G′ be the reduced graph after deleting K and N (K) from G. We show that G

has an STC-labeling L = (SL,WL) with |WL| ≤ k if and only if G′ has an STC-
labeling L′ = (SL′ ,WL′) with |WL′ | ≤ k − |EG(N (K),N 2(K))|.

First, let L′ = (SL′ ,WL′) be an STC-labeling for G′ such that |WL′ | ≤ k −
|EG(N (K),N 2(K))|. We define a labeling L = (SL,WL) with |WL| ≤ k for G by
setting

SL := SL′ ∪EG(K ∪N (K)) and WL := WL′ ∪EG(N (K),N 2(K)).

It remains to show that L is an STC-labeling. Since the edges in SL′ do not have
a common endpoint with the edges in EG(K∪N (K)) it suffices to show that there
is no induced P3 containing two edges e1, e2 ∈ SL′ or e1, e2 ∈ EG(K ∪ N (K)).

7



If e1, e2 ∈ SL′ , then the edges do not form a strong P3 since L′ is an STC-labeling.
If e1, e2 ∈ EG(K∪N (K)), then e1 and e2 are edges between vertices of a clique since
K is a closed critical clique. Hence, e1 and e2 do not form an induced P3. Since
there is no strong P3 under L, it follows that L is an STC-labeling with |WL| ≤ k.

Conversely, let L = (SL,WL) be an optimal STC-labeling for G with |WL| ≤ k.
We prove the safeness by using Proposition 1. To this end, we show that C =
(K ∪N (K), V \ (K ∪N (K))) is a weak cut under L.

Assume towards a contradiction that there is a vertex v ∈ N (K) that has a
strong neighbor w ∈ N 2(K). Then, for each u ∈ K, the edge {u, v} is weak under L.
Otherwise, {u, v} and {v, w} would form a strong P3, which contradicts the fact
that L is an STC-labeling. Then, we have exactly |K| weak edges in EG({v},K)
and at most |EG(N (K),N 2(K))| strong edges in EG({v},N 2(K)). We define a new
labeling L+ = (SL+ ,WL+) by

SL+ := SL ∪ EG({v},K) \ EG({v},N 2(K)),

WL+ := WL ∪EG({v},N 2(K)) \EG({v},K).

From |V (K)| > |EG(N (K),N 2(K))| we get that |WL+ | < |WL|. It remains to
show that L+ is an STC-labeling, which contradicts the fact that L is an optimal
STC-labeling.

Since we add edges {u, v} with u ∈ K to SL+ we need to show that no such
edge is part of a strong P3 under L+. Let ({u, v}, e) with u ∈ K be a pair of edges
that share exactly one endpoint. Consider the case e ∈ E(N (K),N 2(K)). It follows
that e ∈ W+

L
by the construction of L+. Hence, {u, v} and e do not form a strong

P3 under L+. Otherwise, e ∈ E(K ∪ N (K)). Then {u, v} and e do not form an
induced P3 since K ∪N (K) is a clique by the definition of closed critical cliques.

Since there is no strong P3 under L+, it follows that L+ is an STC-labeling.
In combination with the fact that |WL+ | < |WL|, we conclude that L+ is an STC-
labeling for G with fewer weak edges than L which contradicts the fact that L is an
optimal STC-labeling. This contradiction implies that there is no vertex in N (K)
that has a strong neighbor in N 2(K) under L. Consequently, C = (K ∪N (K), V \
(K ∪ N (K))) is a weak cut under L. By using Proposition 1, we conclude that
there exists an STC-labeling L′ = (SL′ ,WL′) with |WL′ | ≤ k−|EG(N (K),N 2(K))|
in G′, proving the safeness of Rule 1. ⊓⊔

Proposition 5 Rule 1 can be applied exhaustively in O(n ·m) time.

Proof We describe how to apply Rule 1 exhaustively in four steps.
Step 1: As a first step, we compute the critical clique graph G of G and save

the size |K| for each critical clique K. This can be done in O(n+m) time [14].
Step 2: Next, we mark the closed critical cliques. To this end, we define deficit

values d
{u,v}
u and d

{u,v}
v for every edge {u, v} ∈ E by

d
{u,v}
u := |{w ∈ V \ {u} | {v, w} ∈ E and {u,w} 6∈ E}|.

The deficit values can be computed in O(n ·m) time. Observe that a critical clique

K ∈ K is closed if and only if for every v ∈ K and u ∈ N (K) it holds that d
{u,v}
u = 0.

Step 3: Now, we mark those closed critical cliques K that satisfy |K| >

|EG(N (K),N 2(K))|. We compute the size of N (K) by |N (K)| = deg(v)− |K|+ 1

8



for some arbitrary v ∈ K. The value of |EG(N (K),N 2(K))| can be computed by
evaluating the sum

∑

u∈N (K)

(deg(u)− |K| − |N (K)|+ 1).

This can be done in O(n) time.
Step 4: Finally, we apply Rule 1 on every critical clique that was identified in

the previous steps. Afterwards, we update the deficit values in the following way.
Let e be an edge that was deleted by the application of Rule 1. Then, at most
one of the endpoints of e remains in the graph after the application. Let v be this

endpoint. We update the deficit values d
{u,v}
u for every u ∈ N(v) that was not

deleted. For a fixed edge e, this can be done in O(n) time.
Afterwards, we re-identify the closed critical cliques. For each critical clique K

whose vertices are incident with a deleted edge e, we need to check whether it

satisfies d
{u,v}
u = 0 for every v ∈ K and u ∈ N (K) and mark it as closed. If two

marked cliques K1 and K2 are adjacent in G, we merge them to a critical clique
consisting of the vertices in K1 ∪K2, since closed critical cliques are not adjacent
in G by Proposition 2. This can be done in O(n) time.

We repeat Steps 3 and 4 until no more application of Rule 1 is possible. Since
we can delete at most m edges, the overall running time of those steps is O(n ·m).
⊓⊔

Theorem 1 STC admits a 4k-vertex-kernel, which can be computed in O(n ·m)-time.

Proof From Proposition 5 we know that we can produce a reduced STC instance
regarding Rule 1 in O(n·m)-time. It remains to show that the number of vertices in
a reduced instance is at most 4k or it is a no-instance for STC. Let (G = (V,E), k)
be a reduced STC instance. We first show that the overall number of vertices in
open critical cliques is bounded by 2k. Let K be an open critical clique. Since N (K)
does not form a clique in G by definition, there are two vertices u,w ∈ N (K)
with {u,w} 6∈ E. So, for every vertex v ∈ K, the edges {u, v} and {v, w} form an
induced P3. It follows that each vertex in any open critical clique must have at
least one weak neighbor. Consequently, if the overall number of vertices in open
critical cliques is bigger than 2k, there must be more than k weak edges in any
STC-labeling.

Now, let K denote the set of all vertices in closed critical cliques and let
L = (SL,WL) be an optimal STC-labeling. We prove that |K| ≤ 2k if |WL| ≤ k.
Intuitively, we show that there is a correspondence between the weak edges of L
and all vertices in K such that for every weak edge under L there are at most two
distinct vertices in K. Formally, we give a mapping Φ : K → WL such that for
each e ∈ WL we have |Φ−1(e)| ≤ 2, where Φ−1(e) := {v ∈ K | Φ(v) = e} ⊆ K. If
|WL| ≤ k, this implies

|K| ≤
∑

e∈WL

|Φ−1(e)| ≤ k · 2.

First, consider those closed critical cliques whose vertices have at least one
weak neighbor under L. By Proposition 3, every weak neighbor of such a clique
has weak edges to every vertex of the clique. So each vertex w in such a clique is
the endpoint of some weak edge e ∈ WL and we define Φ(w) := e.

9



Second, consider those closed critical cliques whose vertices have only strong
neighbors under L. Since G is a reduced graph, for each such clique K it holds
that |E(N (K),N 2(K))| ≥ |K|. Thus, for each v in such a clique we can define a
set Λv := {{v, w}, {w, u}} with w ∈ N (K) and u ∈ N 2(K) such that Λv1 ∩ Λv2 = ∅
if v1 and v2 are different vertices of the same critical clique K.

Observe that v1 6= v2 implies Λv1 6= Λv2 : If v1 and v2 lie in the same clique K

it follows directly from the definition of Λv1 and Λv2 . So let v1 ∈ K1 and v2 ∈ K2

with K1 6= K2. Assume that Λv1 = Λv2 = {{v1, w}, {w, v2}}. By Proposition 2,
E(K1,K2) = ∅. Then, the edges {v1, w} and {w, v2} form a strong P3 under L

which contradicts the fact that L is an STC-labeling.

Obviously every Λv forms an induced P3, so at least one ev ∈ Λv is weak
under L. We define Φ(v) := ev . Since Φ is now defined for each v ∈ K, it remains
to check that |Φ−1(e)| ≤ 2 for every e ∈ WL.

Case 1: Let e = {w, u} ∈ WL such that one endpoint w lies in K. By Proposi-
tion 2, we get that u 6∈ K. Moreover, there is at most one v ∈ K such that e ∈ Λv:
Assume there are two distinct vertices v1, v2 ∈ K such that {w, u} ∈ Λv1 ∩ Λv2 .
By Λv1 ∩ Λv2 6= ∅ we know from the definition of those sets, that v1 and v2 lie
in two different closed critical cliques K1 and K2 and have only strong neighbors
under L. Since w ∈ K and vertices from different closed critical cliques are not
adjacent, we conclude that v1 and v2 are both adjacent to u. Since {v1, v2} 6∈ E,
the edges {v1, u} and {u, v2} form a strong P3 under L, which contradicts the fact
that L satisfies STC. Since e has at most one endpoint in K and lies in at most
one Λv, we conclude that |Φ−1(e)| ≤ 2.

Case 2: Let e = {w, u} ∈ WL such that u,w 6∈ K. We show that e lies in at most
two sets Λv1 , Λv2 . Assume {w, u} ∈ Λv1∩Λv2∩Λv3 . From Λv1∩Λv2∩Λv3 6= ∅ we know
that v1, v2, and v3 lie in three different cliques K1, K2, and K3, which are closed
critical cliques and have only strong neighbors under L. Without loss of generality
assume that all vertices of K1 and K2 are adjacent to u. From Proposition 2 we
know that E(K1,K2) = ∅. Then, the edges {v1, u} and {v2, u} form a strong P3

under L which contradicts the fact that L satisfies the STC property. Since e has
no endpoint in K and lies in at most two Λv , we conclude that |Φ−1(e)| ≤ 2.

Since for all e ∈ WL it holds that |Φ−1(e)| ≤ 2, it follows that |K| ≤ 2k as
described above. Hence, G has at most 2k + 2k = 4k vertices or there is no STC-
labeling with at most k weak edges. ⊓⊔

3.2 An O(ℓ · 2ℓ)-Vertex Kernel for Strong Triadic Closure

We show that STC parameterized by ℓ := |E| − k admits a kernel with O(ℓ · 2ℓ)
vertices. Let G = (V,E) be a graph and let M ⊆ E be a maximum matching in G.
Note that, if |M | ≥ ℓ, then G has an STC-labeling L = (M,E \ M) with |M | ≥ ℓ

strong edges. Hence, we may assume that the size of a maximum matching in G

is smaller than ℓ. The intuitive idea behind our kernelization is to delete vertices
from the independent set that is formed by the vertices that are not incident with
any edge in M . We partition the vertices of G into

• VM := {v ∈ V | v is an endpoint of some e ∈ M},
• I2 := {v ∈ V \ VM | ∃{u, w} ∈ M : u and w are both neighbors of v}, and
• I1 := V \ (I2 ∪ VM ).
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Note that since M is maximal, I1 ∪ I2 is an independent set. We will see that the
number of vertices in I2 is upper-bounded by ℓ in every STC instance. The main
step of the kernelization is to delete superfluous vertices form I1.

We will say that two vertices v1, v2 ∈ I1 are members of the same family F if
N(v1) = N(v2). Given a family F , we will refer to the neighborhood of the vertices
in F as N(F ) := N(v) for some v ∈ F .

Rule 2 For every family F of vertices in I1: If |F | > |N(F )| then delete |F | − |N(F )|
of the vertices in F and decrease k by (|F | − |N(F )|) · |N(F )|.

Note that Rule 2 decreases the value of k by the number of deleted edges.
Hence, the value of the parameter ℓ does not change.

Proposition 6 Rule 2 is safe.

Proof Let G′ be the reduced graph after applying Rule 2. We prove that there is
an STC-labeling L′ = (SL′ ,WL′) for G′ with |SL′ | ≥ ℓ if and only if there is an
STC-labeling L = (SL,WL) with |SL| ≥ ℓ for G.

Let L′ = (SL′ ,WL′) be an STC-labeling for G′ with |SL′ | ≥ ℓ. It is easy to see
that we can define an STC-labeling L for G from L′ by adding the edges that were
deleted during the reduction to WL′ .

Now, let L = (SL,WL) be an STC-labeling for G with |SL| ≥ ℓ. Let F =
{u1, . . . , u|F |} be a family of vertices in I1 such that |F | > |N(F )| and N(F ) :=
{v1, v2, . . . , v|N(F )|} ⊆ VM . Then, since I1 is an independent set, for every j =
1, . . . , |N(F )| there is at most one i = 1, . . . , |F | such that {ui, vj} ∈ SL. Otherwise,
{ui1 , vj} and {ui2 , vj} form a strong P3. It follows that there are at least |F |−|N(F )|
nodes in F that have only weak neighbors. Consequently, each of these nodes u

forms a weak cut ({u}, V \ {u}) under L. By applying Proposition 1 on each of
those |F | − |N(F )| weak cuts, we conclude that there is an STC-labeling L′ with
|SL′ | ≥ ℓ for G′. ⊓⊔

Theorem 2 STC admits a kernel with O(ℓ · 2ℓ) vertices that can be computed in

time O(
√
nm).

Proof By Proposition 6, Rule 2 is safe. It remains to show that the number of
vertices in a reduced STC instance is O(ℓ · 2ℓ).

Let (G = (V,E), k) be a reduced instance. Recall that VM is the set of all ver-
tices that are endpoints of some e ∈ M . As argued above, any instance with |M | ≥ ℓ

is a yes-instance, and hence we assume |M | < ℓ in the following. Therefore, VM
has less than 2ℓ vertices.

Recall that I2 is the set of vertices that are adjacent to both endpoints of some
edge {u,w} ∈ M . For each edge {u, w} ∈ M we will find at most one vertex in I2
that is adjacent to u and w. Otherwise, if there were two such vertices v and v′, we
could define a bigger matching by M+ := M ∪{{u, v}, {w, v′}}\{{u, w}} which is a
contradiction to the property that M is a maximum matching. Thus, from |M | < ℓ

we conclude |I2| ≤ ℓ.

It remains to show that the size of I1 is upper-bounded after applying Rule 2.
We start with the following observation:

Observation 1 Every edge {u,w} ∈ M has at most one endpoint with neighbors in I1.

11



Proof Assume that there are edges {u, v1} and {w, v2} for some v1, v2 ∈ I1. By the
fact that v1 ∈ I1 and therefore v1 6∈ I2 it holds that v1 6= v2. We define a matching
M+ := M ∪ {{u, v1}, {w, v2}} \ {{u, w}} that is bigger than M , which contradicts
the fact that M is a maximum matching. ♦

Also, there is no edge from some vertex in I1 to some vertex in I2, since I1∪ I2
is an independent set. Since |M | < ℓ, there are less than ℓ vertices with neighbors
in I1. Thus, there are less than 2ℓ different families F of vertices in I1. Since G is a
reduced graph with respect to Rule 2, the size of each family is at most ℓ. Hence,
|I1| ≤ ℓ · 2ℓ, which delivers a problem kernel with O(ℓ · 2ℓ) vertices.

Finally, the running time can be seen as follows. Computing a maximummatch-
ing can be done in O(

√
nm) time [19] and all other steps including the exhaustive

application of Rule 2 can be performed in linear time. ⊓⊔

If we do not distinguish between I1 and I2, we can compute a problem kernel
of size O(ℓ · 4ℓ) in linear time: In this case, we only need to compute a maximal
matching instead of a maximum matching which leads to 22·ℓ different families of
vertices in I1 ∪ I2, increasing the kernel size to O(ℓ · 4ℓ).

3.3 A Kernel Lower Bound for the Parameter ℓ

Above, we gave an exponential-size problem kernel for STC parameterized by the
number of strong edges ℓ. Now we prove that STC does not admit a polynomial
kernel for the parameter ℓ unless NP ⊆ coNP/poly by reducing from Clique.

Clique

Input: G = (V,E), t ∈ N

Question: Is there a clique on t vertices in G?

Clique parameterized by the size s of a vertex cover does not admit a polyno-
mial kernel unless NP ⊆ coNP/poly [2]. Our proof gives a polynomial parameter
transformation [3] from Clique parameterized by s to STC parameterized by ℓ in
two steps. The first step is a reduction to the following problem.

Restricted Multicolored Clique

Input: A properly t-colored graph G = (V,E) with color classes
C1, . . . , Ct ⊆ V such that |C1| = |C2| = . . . = |Ct−1|.
Question: Is there a clique containing one vertex from each color in G?

Proposition 7 Restricted Multicolored Clique parameterized by |C1 ∪ . . . ∪
Ct−1| does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof We give a polynomial parameter transformation from Clique parameterized
by the size s of a vertex cover to Restricted Multicolored Clique parameterized
by |C1 ∪ . . . ∪ Ct−1|.

Let (G, t) be a Clique instance with a size-s vertex cover S = {v1, . . . , vs} and
let I := V \S be the remaining independent set. Since I is an independent set, the
maximal value for the clique size t is s+1. Otherwise (G, t) is a trivial no-instance.
We construct an instance G′ for Restricted-Multicolored-Clique as follows.

First, we define t color classes C1, . . . , Ct. We replace every vertex vi ∈ S with
t copies vi,1, . . . , vi,t such that vi,1 ∈ C1, vi,2 ∈ C2, . . . , vi,t ∈ Ct. We also add all
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K1,1 K2,1

C1

K1,2 K2,2

C2

K1,3 K2,3

C3

C4

K1,1 K2,1 K1,2 K2,2 K1,3 K2,3

Fig. 2 An example for the construction of G′ described in the proof of Theorem 3 with t = 4
color classes. The top of the picture shows color classes C1, C2, and C3 of size z = 3 and their
attached cliques. The bottom shows color class C4. The edges between the color classes are
the edges from G. The dotted edges correspond to the weak edges of an optimal STC-labeling
for G′.

vertices of I to Ct. Now, the classes C1, . . . , Ct−1 contain exactly s elements and
the class Ct contains s+ |I | elements. If two vertices vi and vj are adjacent in S,
we connect all copies of vi with all copies of vj , except those that are in the same
color class. For the first (t− 1) classes C1, . . . , Ct−1 we do the following: For every
edge {vi, w} with vi ∈ S and w ∈ I, we add edges {vi,j , w} for each copy vi,j of vi.
Since C1, . . . , Ct are all independent sets, G

′ is a properly t-colored graph with t−1
color classes of the same size s. Hence, G′ is a feasible instance for Restricted-

Multicolored-Clique. Note that t ≤ s+1 implies |C1∪. . .∪Ct−1| = (t−1) ·s ≤ s2.
To prove that the transformation from (G, t) into (G′, C1, C2, . . . , Ct) is a polyno-
mial parameter transformation, it remains to show that G′ has a multicolored
clique if and only if G has a clique of size t.

Let K be a clique of size t in G. Since I is an independent set we can assume
that t− 1 vertices of K lie in S and one vertex u of K lies in S ∪ I. Without loss of
generality, we assume that K = {v1, . . . , vt−1, u}. If u ∈ S, it holds that u = vi for
some i ≥ t. Then there is a copy vi,t ∈ Ct of vi and the vertices v1,1, . . . , vt−1,t−1, vi,t
form a multicolored clique in G′. If u ∈ I, it follows that u ∈ Ct and the vertices
v1,1, . . . , vt−1,t−1, u form a multicolored clique in G′.

Now let G′ have a multicolored clique {vi1,1, vi2,2, . . . , vi(t−1),t−1, u} with u ∈ Ct.
Note that the indices i1, . . . , i(t−1) are pairwise distinct by construction. If u ∈ I,
the vertices vi1 , vi2 , . . . , vi(t−1)

, u form a clique of size t in G. Otherwise, if u 6∈ I,
we can assume that u = vit,t for some it that is different from i1, . . . , it−1. Then,
the vertices vi1 , vi2 , . . . , vi(t−1)

, vit form a clique of size t in G. ⊓⊔

The next step to prove the kernel lower bound is to give a polynomial parameter
transformation from Restricted-Multicolored-Clique to STC.

Theorem 3 STC parameterized by the number of strong edges ℓ does not admit a

polynomial kernel unless NP ⊆ coNP/poly.
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Proof We give a polynomial parameter transformation from Restricted Mul-

ticolored Clique to STC. Let G = (V,E) be a properly t-colored graph with
color classes C1 = {v1,1, v2,1, . . . , vz,1}, C2 = {v1,2, v2,2, . . . , vz,2}, . . . , Ct−1 =
{v1,t−1, v2,t−1, . . . , vz,t−1}, each of size z, and Ct. We now describe how to con-
struct an STC instance (G′ = (V ′, E′), k) from G such that there is an STC-labeling
L = (SL,WL) with |WL| ≤ k for G′ if and only if G has a multicolored clique.

For each of the first (t − 1) classes Cr, r = 1, . . . , t − 1, we define a family Kr

of z − 1 vertex sets K1,r,K2,r, . . . ,Kz−1,r, each of size t, and we add edges such
that each K ∈ Kr becomes a clique. Throughout this proof, those vertex sets will
be called attached cliques. For every fixed i = 1, . . . , z − 1 we also add edges {u, v}
from all u ∈ Ki,r to all v ∈ Cr. Fig. 2 shows an example of this construction.

Setting k := |E|−
(

(t2) + (t− 1)(z − 1)(t+1
2 )
)

gives us ℓ = (t2)+(t− 1)·(z− 1)(t+1
2 ).

Obviously, ℓ is polynomially bounded in |C1 ∪ . . . ∪ Ct−1| = (t− 1) · z.
We now prove that the construction of (G′, k) from (G,C1, C2, . . . , Ct) is a

correct polynomial parameter transformation, which means that there is an STC-
labeling L = (SL,WL) with |WL| ≤ k (or equivalently |SL| ≥ ℓ) for G′ if and only
if G has a multicolored clique.

(⇒) Let M be a multicolored clique in G′. Without loss of generality we can
assume that M = {vz,1, . . . , vz,t−1, u} with u ∈ Ct. Consider the following label-
ing L = (SL,WL) for G′. We set SL := EM ∪ EK ∪EC to be the disjoint union of
the following edge sets:

EM := E(M),

EK :=
⋃

i=1,...,z−1
r=1,...,t−1

E(Ki,r), and

EC :=
⋃

i=1,...,z−1
r=1,...,t−1

E({vi,r},Ki,r).

The set EM is the set of all edges between vertices of M , EK contains all edges
between the vertices of the attached cliques, and EC contains all edges between
vertices vi,r , i < z and the vertices in the corresponding attached clique Ki,r.

It remains to show that L := (SL, E
′ \ SL) is an STC-labeling with |SL| ≥

(t2) + (t− 1)(z − 1)(t+1
2 ). The size of SL is easy to check:

|SL| = |EM |+ |EK|+ |EC |

=

(

t

2

)

+ (t− 1)(z − 1)

(

t

2

)

+ (t− 1)(z − 1)t

=

(

t

2

)

+ (t− 1)(z − 1)

(

t+ 1

2

)

.

Hence, we need to check that there is no strong P3 under L. Let e1, e2 ∈ SL.
Case 1: e1, e2 ∈ EM or e1, e2 ∈ EK:

In this case, all endpoints of e1 and e2 lie in the same clique in G′, so e1 and e2
do not form an induced P3.

Case 2: e1, e2 ∈ EC :
If e1 and e2 share exactly one endpoint, they have the form e1 = {vi,r, w1}, e2 =
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{vi,r , w2} with w1, w2 ∈ Ki,r for some i = 1, . . . , z − 1 and r = 1, . . . , t − 1 by the
definition of EC . Then, there exists an edge {w1, w2} by the construction of G′, so
e1 and e2 do not form an induced P3.

Case 3: (e1 ∈ EM and e2 ∈ EK) or (e1 ∈ EM and e2 ∈ EC):
In this case, e1 and e2 do not share an endpoint by the construction of G′, so they
do not form an induced P3.

Case 4: e1 ∈ EK and e2 ∈ EC :
If e1 and e2 share exactly one endpoint, they have the form e1 = {vi,r, w1}, e2 =
{w1, w2} with w1, w2 ∈ Ki,r for some i = 1, . . . , z − 1 and r = 1, . . . , t − 1. Then,
there exists an edge {vi,r , w2} by the construction of G′, so e1 and e2 do not form
an induced P3.

We have thus shown that there is no strong P3 under L. Hence, the labeling L

is an STC-labeling with |SL| = (t2) + (t− 1)(z − 1)(t+1
2 ).

(⇐) Conversely, assume that there is an STC-labeling L = (SL,WL) with a
maximal number of strong edges for G′ such that |SL| ≥ (t2) + (t− 1)(z − 1)(t+1

2 ).
Consider a color class Cr for fixed r = 1, . . . , t−1. Let v ∈ Cr be some vertex in Cr.
We can make the following important observations that follow directly from the
construction of G′.

Observation 2 Every pair ({v, u}, {v, w}) of edges with u ∈ K for some K ∈ Kr and

w ∈ Cr′ , r′ 6= r, forms a P3. Hence, {u, v} or {v, w} is weak under L.

Observation 3 For fixed v ∈ Cr, there are at most t− 1 strong edges under L of the

form {v, w} with w ∈ Cr′ , r
′ 6= r. If v has exactly t − 1 strong neighbors, v has

exactly one strong neighbor in each other color class.

Observation 4 For fixed v ∈ Cr, there are up to t strong edges under L of the

form {v, w}, w ∈ ⋃K∈Kr
K. If there are exactly t strong edges of such form, v forms

a strong (t+ 1)-clique with one of the attached cliques K ∈ Kr.

Now, consider an attached clique K ∈ Kr for some r = 1, . . . , t − 1. Note that
K is a critical clique as defined in Section 3.1. Hence, all edges between vertices
in K are strong under L. Without loss of generality, we can make the following
assumption for K.

Assumption 1 For fixed K ∈ Kr, there is at most one j = 1, . . . , z such that there

are strong edges {w, vj,r} ∈ E(K,Cr) under L.

Proof (of Assumption 1) If there was another strong edge {w′, vj′,r} ∈ E(Ki,r, Cr)
with j′ 6= j, then w′ 6= w as otherwise {w′, vj′,r} and {w, vj,r} form a strong P3

under L. We can thus define an STC-labeling L+ := (SL+ ,WL+) with |SL+ | = |SL|
by

SL+ := SL ∪ {{w′, vj,r}} \ {{w′, vj′,r}}.

It is easy to check that L+ still satisfies STC. ♦

Assumption 1 leads to the following two observations.

Observation 5 If some v ∈ Cr has a strong neighbor under L in one clique K ∈ Kr

it holds that E({v},K) ⊆ SL.
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Proof (of Observation 5) If there were weak and strong edges under L in E({v},K),
we could define a new STC-labeling L+ by adding all of E({v},K) to SL. Then,
L+ has more strong edges than L. Because of Assumption 1, v is the only strong
neighbor of the vertices in K under L+, and because of Observation 2, the vertices
of K are the only strong neighbors of v under L+. Hence, L+ satisfies STC. This
contradicts the fact that L is an STC-labeling with a maximal number of strong
edges. ♦

Observation 6 There are z − 1 vertices in Cr that form a strong clique under L of

size t+ 1 with one of the attached cliques K ∈ Kr.

Proof (of Observation 6) Assume that there are at least two vertices v, w ∈ Cr that
do not form a strong clique with some K ∈ Kr . From Observation 5, we conclude
that v and w do not have any strong neighbor in

⋃

K∈Kr
K. From Assumption 1

we conclude that there is at least one K ∈ Kr such that the vertices in K have no
strong neighbors in Cr. Then, we can define a new labeling L+ = (SL+ ,WL+) by

SL+ := SL ∪ E({v},K) \E({v},
⋃

j=1,...,t
j 6=r

Cj).

From Observation 3 and Observation 4 we conclude that |SL+ | > |SL|. Since every
vertex in K has only weak neighbors in Cr \ {v} and v has only weak neighbors
in V ′ \ K under L+, the labeling L+ satisfies STC, which contradicts the fact
that L is an STC-labeling with a maximal number of strong edges. ♦

From Observation 6 we know that there are (t− 1) · (z− 1) · (t+1
2 ) strong edges

under L in those strong cliques of size t+ 1. Since |SL| ≥ (t2) + (t− 1)(z − 1)(t+1
2 ),

there are at least (t2) further edges that are strong under L. In the following, we
describe how we can find a multicolored clique in G′ using these (t2) strong edges.

Let R := {v1,1, v1,2, . . . , v1,t−1} ⊆ C1 ∪ . . . ∪ Ct−1 be the set of vertices that
do not form a strong clique with any attached K. Since Ct is an independent set,
each v ∈ R has at most one strong neighbor in Ct. Hence, there are at most t− 1
strong edges in E(R,Ct). Since (t2) − (t − 1) = (t−1

2 ), there must be (t−1
2 ) strong

edges between the vertices in R. Hence, G′[R] is a complete subgraph, and R is a
strong clique under L.

Now let U ⊆ Ct be the subset of vertices in Ct that have a strong neighbor
in R. The set U is not empty since |SL| ≥ (t2) + (t − 1)(z − 1)(t+1

2 ). Each u ∈ U

must have edges to each v ∈ R. Otherwise, if {u, v} ∈ E′ and {u, w} 6∈ E′ for some
v, w ∈ R, the edges {u, v} and {w, v} form a strong P3 under L. Hence R ∪ {u} is
a multicolored clique in G′ which proves the correctness of the reduction. ⊓⊔

The proof of Theorem 3 also implies that CD has no kernel with respect to
the parameter ℓ := |E| − k: The strong edges in the STC-labeling obtained in the
forward direction of the proof form a disjoint union of cliques and the converse
direction follows from the fact that a cluster subgraph with at least ℓ cluster edges
implies an STC-labeling with at least ℓ strong edges which then implies that the
Multicolored Clique instance is a yes-instance.

Corollary 1 CD parameterized by the number of cluster edges ℓ := |E| − k does not

admit a polynomial kernel unless NP ⊆ coNP/poly.
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4 Fixed-Parameter Algorithms for the Parameterization by the Number

of Strong Edges or Cluster Edges

For CD, we obtain a fixed-parameter algorithm by a simple dynamic programming
algorithm.

Theorem 4 CD can be solved in O(9ℓ · ℓn) time.

Proof The first step of the algorithm is to compute a maximal matching M in G.
If |M | ≥ ℓ, then answer yes. Otherwise, since M is maximal, the endpoints of M are
a vertex cover of size less than 2ℓ. Let C denote this vertex cover and let I := V \C
denote the independent set consisting of the vertices that are not an endpoint
of M . We now decide if there is a cluster subgraph with at least ℓ cluster edges
using dynamic programming over subsets of C. Assume in the following that I :=
{1, . . . , n− |C|}. The dynamic programming table T has entries of the type T [i,C′]
for all i ∈ {0, 1, . . . , n − |C|} and all C′ ⊆ C. Each entry stores the maximum
number of cluster edges in a clustering of G[C′ ∪ {1, . . . , i}]. After filling this table
completely, we have a yes-instance if T [n−|C|, C] ≥ ℓ and a no-instance otherwise.
The entries are computed for increasing values of i and subsets C′ of increasing
size. Note that the entry for i = 0 corresponds to the clusterings that contain no
vertices of I. The recurrence to compute an entry for i = 0 is

T [0, C′] = max
C′′⊆C′:C′′is a clique

T [0, C′ \ C′′] +

(

|C′′|
2

)

.

The recurrence to compute an entry for i ≥ 1 is

T [i,C′] = max
C′′⊆C′:C′′∪{i}is a clique

T [i− 1, C′ \ C′′] +

(

|C′′|+ 1

2

)

.

The correctness follows from the observation that we consider all cases for the
clique containing i since i is not adjacent to any vertex j < i.

The running time of the algorithm can be seen as follows. A maximal matching
can be computed in linear time. If the matching has size less than ℓ, we fill the
dynamic programming table as defined above. For each i, the number of terms
that are evaluated in the recurrences is 3|C| as each term corresponds to one
partition of C into C \C′, C′ \C′′, and C′′. For each term one needs to determine
in O(ℓ2) time whether C′′ ∪{i} is a clique. Hence, the overall time needed to fill T
is O(32ℓ · ℓn) = O(9ℓ · ℓn). ⊓⊔

For STC, we combine a branching on the graph that is induced by a maximal
matching with a dynamic programming over the vertex sets of this graph.

Theorem 5 STC can be solved in ℓO(ℓ) · n time.

Proof The initial step of the algorithm is to compute a maximal matching M

in G. If |M | ≥ ℓ, then answer yes. Otherwise, the endpoints of M are a vertex
cover of size less than 2ℓ since M is maximal. Let C denote this vertex cover and
let I := V \ C denote the independent set consisting of the vertices that are not
an endpoint of M . The algorithm now has two further main steps. First, try all
STC-labelings of G[C] with at most ℓ strong edges. If there is one STC-labeling
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with ℓ strong edges, then answer yes. Otherwise, compute for each STC-labeling
of G[C] with fewer than ℓ edges, whether it can be extended to an STC-labeling
of G with ℓ strong edges by labeling sufficiently many edges of E(C, I) as strong.

Observe that G[C] has ℓO(ℓ) STC-labelings with at most ℓ strong edges and that
they can be enumerated in ℓO(ℓ) time: The graph G[C] has less than (2ℓ2 ) = O(ℓ2)
edges and we enumerate all subsets of size at most ℓ of this set. Now consider one
such set SC . In O(ℓ2) time, we can check whether (SC , E(C) \SC) is a valid STC-
labeling. If this is not the case, then discard the current set. Otherwise, compute
whether this labeling can be extended into a labeling of G with at least ℓ strong
edges by using dynamic programming over subsets of C. Assume in the following
that I := {1, . . . , n − |C|}. The dynamic programming table T has entries of the
type T [i,C′] for all i ∈ {1, . . . , n − |C|} and all C′ ⊆ C. Each entry stores the
maximum number of strong edges in an STC-labeling of G[C ∪{1, . . . , i}] in which
the strong edges of E(C) are exactly those of SC and in which the strong neighbors
of the vertices in {1, . . . , i} are exactly from C′. Observe that the set of strong
neighbors NS(i) of each vertex i has to fulfill three properties:

– NS(i) is a clique.
– No vertex of NS(i) has a strong neighbor in C \N(i).
– No vertex of NS(i) has a strong neighbor in I \ {i}.

We call a set that fulfills the first two properties valid for i. We ensure the third
property by the recurrence in the dynamic programming.

After filling this table completely, we have a yes-instance if T [n− |C|, C] ≥ ℓ.
Otherwise, the current STC-labeling for G[C] cannot be extended to an STC-
labeling for G with at least ℓ strong edges. If T [n − |C|, C] < ℓ for every choice
of an STC-labeling for G[C] we have a no-instance. The entries are computed for
increasing values of i and subsets C′ of increasing size. The basic entry is T [0, ∅]
which is set to |SC |. The recurrence to compute an entry for i ≥ 1 is

T [i, C′] = max
C′′⊆C′:C′′is valid for{i}

T [i− 1, C′ \ C′′] + |C′′|.

The correctness follows from the observation that we consider all valid sets for
strong neighbors and that in the optimal solution for G[i − 1, C′ \ C′′] no vertex
from {1, . . . , i− 1} has strong neighbors in C′′.

The running time of the algorithm can be seen as follows. A maximal matching
can be computed greedily in linear time. If the matching has size less than ℓ,
we fill the dynamic programming table as defined above. The number of partial
labelings SC is ℓO(ℓ). For each of them, inO(22ℓ·ℓn) time, we can compute for each i

the subsets of C which are valid for i. The number of terms that are subsequently
evaluated in the recurrences is 3|C| as each term corresponds to one partition of C
into C \ C′, C′ \ C′′, and C′′. For each term, one needs to evaluate the equation
in O(1) time. Hence, the overall time needed to fill T for one partial labeling SC

is O(32ℓ · n) = O(9ℓ · n); the overall running time follows. ⊓⊔

5 Strong Triadic Closure and Cluster Deletion on H-free graphs

Recall that every solution for CD provides an STC-labeling L = (SL,WL) by
defining SL as the set of edges inside the cliques in the resulting graph. We call
such L a cluster labeling. However, this labeling is not necessarily optimal [17].
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a) b) c)

Fig. 3 Two graphs where no cluster labeling is an optimal STC-labeling. Column a) shows
the input graph, column b) shows an optimal cluster labeling, and column c) shows the strong
edges in an optimal STC-labeling.

In this section we discuss the complexity and the solution structure if the
input for STC and CD is limited to H-free graphs, that is, graphs that do not
have an induced subgraph H. We give a dichotomy for all classes of H-free graphs,
where H is a graph on three or four vertices.

5.1 The Correspondence between Strong Triadic Closure and Cluster Deletion
on H-Free Graphs

We say that the two problems correspond on a graph class Π if for every graph
in Π we can find a cluster labeling that is an optimal STC-labeling. In this case
we call the labeling an optimal cluster labeling.

Fig. 3 shows two examples, where a cluster labeling is not an optimal solution
for STC. The upper example, provided by Konstantinidis and Papadopoulos [17],
is C4-, 2K2-, co-paw-, and co-diamond-free; an optimal STC-labeling has eight
strong edges, while the best cluster labeling has only seven cluster edges. The
second example is the complement of a C7. It is 3K1-, K4-, 4K1-, claw-, and co-
claw free; the optimal STC-labeling has seven strong edges, while the best cluster
labeling has six cluster edges. The examples give the cases where STC and CD do
not correspond.

Theorem 6 The problems CD and STC

• do not correspond on the class of H-free graphs, for H ∈ {3K1, C4, 2K2, co-paw,

co-diamond,K4, 4K1, claw, co-claw}, and
• correspond on the class of H-free graphs, for H ∈ {K3, P3,K2 +K1, P4, diamond,

paw}.

Proof The examples in Fig. 3 show that CD and STC do not correspond on H-
free graphs for H ∈ {3K1, C4, 2K2, co-paw, co-diamond,K4, 4K1, claw, co-claw}. It
remains to show the correspondence for H ∈ {K3, P3,K2+K1, P4,diamond, paw}.
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Case 1: H = K3. On triangle-free graphs, the strong edges of an optimal STC-
labeling correspond to the edges of a maximum matching, which is obviously an
optimal cluster labeling.

Case 2: H = P3. On P3-free graphs, every edge is labeled as strong in an
optimal STC-labeling [28]. Since P3-free graphs are cluster graphs, this labeling
clearly is a cluster labeling.

Case 3: H = P4. There is an optimal cluster labeling on P4-free graphs [16].
Case 4: H = paw. It is known that every component of a paw-free graph is

triangle-free or complete multipartite [21]. Complete multipartite graphs are P4-
free, so it follows by the Cases 1 and 3 that there is an optimal cluster labeling on
paw-free graphs.

Case 5: H = K2 +K1. Every K2 +K1-free graph is paw-free, so it follows by
Case 4 that there is an optimal cluster labeling on K2 +K1-free graphs.

Case 6: H = diamond. Let G = (V,E) be a diamond-free graph. We prove that
there is an optimal cluster labeling for G. It is known that the class of diamond-
free graphs can be characterized as strictly clique irreducible graphs [23]. A graph is
called strictly clique irreducible if every edge in the graph lies in a unique maximal
clique.

To show that there is an optimal cluster labeling, it is sufficient to prove
that there is an optimal STC-labeling L = (SL,WL) such that there is no tri-
angle u1, u2, u3 ∈ V with {u1, u2}, {u2, u3} ∈ SL and {u1, u3} ∈ WL.

Let v ∈ V be some vertex of G. Since G is strictly clique irreducible, we can
partition N [v] into maximal cliques K1,K2, . . . ,Kt such that Ki ∩ Kj = {v} for
i 6= j. Let L = (SL,WL) be an optimal STC-labeling for G such that v has a strong
neighbor w1 in K1 under L. We prove that v does not have a strong neighbor in any
of the other maximal cliques, which means E({v}, N(v) \K1) ⊆ WL. Assuming v

has a strong neighbor wj ∈ Kj for some j 6= 1, there must be an edge {w1, wj} ∈ E

since L satisfies STC. Then, there is a clique K+ ⊆ N [v] containing v, w1, and wj ,
which contradicts the fact that G is strictly clique irreducible.

Now assume that there is a triangle u1, u2, u3 ∈ V such that {u1, u2}, {u2, u3} ∈
SL and {u1, u3} ∈ WL. Since every vertex can only have strong neighbors in one
maximal clique, u1, u2, and u3 are elements of the same maximal clique K. Since
u1 and u3 do not have any strong neighbors in V \K, we do not produce a strong P3

by adding {u1, u3} to SL, which contradicts the fact that L is an optimal STC-
labeling. ⊓⊔

5.2 The Complexity of Strong Triadic Closure and Cluster Deletion
on H-Free Graphs

We first identify the cases where both problems are solvable in polynomial time.

Lemma 1 If H ∈ {K3, P3,K2+K1, P4, paw}, STC and CD are solvable in polynomial

time on H-free graphs.

Proof STC and CD are solvable in polynomial time on P4-free graphs [16]. On
triangle-free graphs, we can solve both problems by computing a maximal match-
ing, which can be done in polynomial time [19]. On P3-free graphs we can find a
trivial solution by labeling every edge strong. It is known that every component
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of a paw-free graph is triangle-free or complete multipartite and thus P4-free [21].
Hence, we can use the polynomial-time algorithm on the P4-free components and a
polynomial-time algorithm to find a maximum matching on the triangle-free com-
ponents. Since K2+K1-free graphs are paw-free, we can use the same polynomial-
time algorithm on these graphs. ⊓⊔

In all other possible cases for H, both problems remain NP-hard on H-free graphs.
For the case H ∈ {3K1, 4K1, 2K2, claw, co-diamond, co-paw} we give a reduction
from Clique that has been previously used to show certain hardness results
for CD [20]. For the case H = co-claw we provide a slightly more complicated
reduction. The remaining cases H ∈ {C4,diamond,K4} follow from previous re-
sults [15]. Consider the following construction.

Definition 5 Let G = (V,E) be a graph. The expanded graph G̃ of G is the graph
obtained by adding a clique K̃ = {v1, . . . , v|V |3} and edges such that every v ∈ V

is adjacent to all vertices in K̃.

Obviously, we can construct G̃ from G in polynomial time. We use this con-
struction to give a reduction from Clique to STC and CD. The construction also
transfers certain H-freeness properties from G to G̃.

Lemma 2 Let (G = (V,E), t) be a Clique instance.

(a) There is a clique of size at least t in G if and only if there is an STC-labeling

L = (SL,WL) for G̃ such that |SL| ≥ (n
3

2 ) + t · n3.

(b) There is a clique of size at least t in G if and only if G̃ has a solution for CD with

at least (n
3

2 ) + t · n3 cluster edges.

Proof (a) Let V ′ ⊆ V be a clique on t vertices in G. Then we obtain an STC-

labeling L = (SL,WL) for G̃ with at least (n
3

2 ) + t · n3 strong edges by defin-
ing SL := E(V ′∪K̃). Note that L is a cluster labeling, so it obviously satisfies STC.

From |K̃| = n3 we also get that |SL| = (t2) + (n
3

2 ) + t · n3 ≥ (n
3

2 ) + t · n3.

Conversely, let there be an STC-labeling L = (SL,WL) for G̃ with at least (n
3

2 )+
t ·n3 strong edges. We show that there is a clique V ′ of size at least t in G. Observe

that, since |E
G̃
(K̃)| = (n

3

2 ), there are at least t · n3 edges in SL \ E
G̃
(K̃).

We will call two vertices v1, v2 ∈ K̃ member of the same family F , if v1 and v2
have the exact same strong neighbors in V . For each family F , the set of strong
neighbors of F forms a clique. Otherwise, if there were two non-adjacent strong
neighbors u and w of any v ∈ F , the edges {u, v} and {v, w} form a strong P3

under L. Let KF denote the set of strong neighbors of a family F .
Let F1, . . . , Fp 6= ∅ be the families of vertices in K̃. It holds that

|SL \ (E
G̃
(K̃) ∪ E)| =

p
∑

i=1

|Fi| · |KFi
| ≤ max

i
|KFi

| ·
p
∑

i=1

|Fi| = max
i

|KFi
| · n3.

Since |E| ≤ (n2) it holds that (t − 1) · n3 < t · n3 − (n2) ≤ |SL \ (E
G̃
(K̃) ∪ E)|. We

conclude that (t− 1) < maxi |KFi
|. Hence, there is a clique of size at least t in G.

(b) Let V ′ ⊆ V be a clique on t vertices in G. Since the labeling L from the
proof of Claim (a) is a cluster labeling, there must be a solution for CD on G̃ with

at least (n
3

2 ) + t · n3 cluster edges.
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Now, let there be a solution for CD on G̃ such that there are at least (n
3

2 )+t ·n3

cluster edges. We define an STC-labeling L = (SL,WL) for G̃ by defining SL as
the set of cluster edges in the solution. Then, there is an STC-labeling with at

least (n
3

2 )+ t ·n3 strong edges. It then follows by (a), that G has a clique of size at
least t, which completes the proof. ⊓⊔

Lemma 3 Let H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1}. If a graph G is H-free, then

the expanded graph G̃ is H-free as well.

Proof Note that each H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1} is disconnected.
Assume G̃ has H as an induced subgraph. Since G is H-free and we do not add
any edges between vertices of G during the construction of G̃, at least one of the
vertices of this induced subgraph lies in K̃. By construction, each vertex in K̃ is
adjacent to every other vertex in G̃, which contradicts the fact that the induced
subgraph is disconnected. ⊓⊔

We next use Lemmas 2 and 3 to obtain NP-hardness results for STC and CD.
Note that in case of H ∈ {3K1, 2K2} the NP-hardness for CD is already known [8].
Moreover, in case of H ∈ {2K2, C4}, the NP-hardness of STC on H-free graphs is
implied by the NP-hardness of STC on split graphs [17].

Lemma 4 STC and CD remain NP-hard on H-free graphs if

H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1, claw, C4, diamond,K4}.

Proof Case 1: H ∈ {3K1, 2K2, co-diamond, co-paw, 4K1}. Clique remains NP-
hard on 3K1-,2K2-, co-diamond-, co-paw- and 4K1-free graphs since Independent

Set is NP-hard on the complement graphs: K3-, C4-, diamond-, paw-, and K4-free

graphs [22]. By Lemma 2, (G, k) 7→ (G̃,m − ((n
3

2 ) + k · n3)) is a polynomial-time
reduction from Clique to STC and CD. From Lemma 3 we know that if G is
3K1-, 2K2-, co-diamond-, co-paw- or 4K1-free, so is G̃. Thus, STC and CD remain
NP-hard on H-free graphs.

Case 2: H = claw. Since both problems are NP-hard on 3K1-free graphs due
to Case 1, it follows, that they are NP-hard on claw-free graphs.

Case 3: H ∈ {C4,diamond,K4}. There is a reduction from 3Sat to CD pro-
ducing a C4-, K4-, and diamond-free CD instance [15]. By Theorem 6, there is an
optimal cluster labeling for STC on diamond-free graphs, so the reduction works
also for STC. Thus, STC and CD remain NP-hard on C4-, K4-, and diamond-free
graphs. ⊓⊔

It remains to show NP-hardness on co-claw-free graphs. Since Independent Set

can be solved in polynomial time on claw-free graphs [26], we can solve Clique on
co-claw-free graphs in polynomial time. Hence, we cannot reduce from Clique as
in the proof of Lemma 4. Instead, we reduce from the following problem.

3-Clique Cover

Input: A graph G = (V,E)
Question: Can V be partitioned into three cliques K1,K2, and K3?

3-Clique Cover is NP-hard on co-claw-free graphs, since 3-Colorability is
NP-hard on claw-free graphs [13].
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Lemma 5 STC and CD remain NP-hard on co-claw-free graphs.

Proof We give a reduction from 3-Clique Cover on co-claw-free graphs to STC

and CD on co-claw free graphs. Let G = (V,E) be a co-claw-free instance for 3-

Clique Cover. We construct a co-claw-free STC instance (G′ = (V ′, E′), k), which
is an equivalent CD instance, as follows.

We define three vertex sets K1,K2, and K3. Every Ki consists of exactly n3

vertices v1,i, . . . , vn3,i. We set V ′ := V ∪K1 ∪K2 ∪K3. Moreover, we define edges
from every vertex in K1 ∪ K2 ∪ K3 to every vertex in V and edges of the form
{vc,i, vd,j}, where c 6= d. The set E′ is the union of those edges and E. Note that

this makes each Ki a clique of size n3. We set k := |E′| − (3 · (n
3

2 ) + n4), and
let K := K1 ∪K2 ∪ K3 denote the union of these cliques. It remains to prove the
following three claims.

(a) G′ is co-claw-free.
(b) G 7→ (G′, k) is a correct reduction from 3-Clique Cover to STC.
(c) G 7→ (G′, k) is a correct reduction from 3-Clique Cover to CD.

(a) A co-claw consists of a triangle and an isolated vertex. Assume that G′

has a co-claw as an induced subgraph. Then there is a triangle on some vertices
u1, u2, u3 ∈ V ′ and a vertex w such that w has no edge to one of the ui.

Case 1: w ∈ K. Without loss of generality we assume w = vp,1 for some
p = 1, . . . , n3. By the construction of G′, the vertex w has edges to every other
vertex of G′ except vp,2 and vp,3. Hence, there cannot be three vertices in G′, which
are not adjacent to w, which contradicts the fact that w is the isolated vertex of
an induced co-claw.

Case 2: w ∈ V . Since G has no induced co-claw, we assume without loss of
generality that u1 lies in K. Then, by construction of G′ there is an edge {w, u1} ∈
E′, which contradicts the fact that w is the isolated vertex of an induced co-claw.

(b) To show that G 7→ (G′, k) is a correct reduction from 3-Clique Cover to
STC, we prove that G has a clique cover of size three if and only if there is an

STC-labeling L = (SL,WL) for G′ with |SL| ≥ 3 · (n
3

2 ) + n4.
Let G have a clique cover of size three. Then, there are three disjoint cliques

V1, V2, V3 in G such that V1∪V2∪V3 = V . We define an STC-labeling L = (SL,WL)

on G′ with at least (3 · (n
3

2 )+n4) strong edges by setting SL :=
⋃3

i=1 EG′(Ki ∪Vi).
Since all Ki ∪ Vi are disjoint cliques, L is an STC-labeling. Moreover, there are at

least (3 · (n
3

2 ) + n4) edges in SL since

3
∑

i=1

|EG′(Vi ∪Ki)| =
3
∑

i=1

((

|Vi|
2

)

+

(

n3

2

)

+ |Vi| · n3

)

≥ 3 ·
(

n3

2

)

+ n3
3
∑

i=1

|Vi|

= 3 ·
(

n3

2

)

+ n4.

Conversely, let L = (WL, SL) be an STC-labeling for G′ with |SL| ≥ 3 ·(n
3

2 )+n4.
Assume towards a contradiction that G does not have a clique cover of size three
or less. We start with the following observation.
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Observation 7 There are at most 3 · (n
3

2 ) strong edges in EG′(K).

Proof (of Observation 7) We first show that each vertex v ∈ K has at most n3 − 1
strong neighbors in K. Without loss of generality assume that v = v1,1 ∈ K1.
By the construction of G′, the vertex v1,1 has exactly 3 · (n3 − 1) neighbors in K
since it is adjacent to all of K except v1,2, v1,3 and itself. Assuming v1,1 has more
than n3 − 1 strong neighbors, it follows by the pigeonhole principle that there is
a number d = 2, . . . , n3 such that two vertices vd,i and vd,j with i 6= j are strong
neighbors of v1,1. Since {vd,i, vd,j} 6∈ E′, the edges {vd,i, v1,1} and {v1,1, vd,j} form
a strong P3 under L, which contradicts the fact that L satisfies STC.

Since |K| = 3 · n3 and each vertex of K has at most n3 − 1 strong neighbors

in K, there are at most 3n3·(n3−1)
2 = 3 · (n

3

2 ) strong edges between vertices of K. ♦

Observation 8 There are at most n4 − n3 strong edges in EG′(K, V ).

Proof (of Observation 8) For vc,i ∈ K, let N (vc,i) = {w ∈ V | {vc,i, w} ∈ SL} be the
set of strong neighbors of vc,i that lie in V . Obviously, each N (vc,i) forms a clique,
since otherwise there would be a strong P3 under L.

Consider a triple of vertices vc,1, vc,2, vc,3 ∈ V for some fixed c = 1, . . . , n3. By
the construction of G′, those three vertices are pairwise non-adjacent. It follows
that N (vc,1), N (vc,2) and N (vc,3) are pairwise disjoint. Otherwise, if there is a
vertex w ∈ N (vc,1) ∩ N (vc,2), the edges {vc,1, w} and {w, vc,2} form a strong P3

under L.

Since N (vc,1), N (vc,2), and N (vc,3) are disjoint cliques in V , the assumption
that there is no clique cover of size at most three leads to the fact that for each triple
vc,1, vc,2, vc,3 we can find a vertex w ∈ V such that w 6∈ N (vc,1)∪N (vc,2)∪N (vc,3).
It follows, that there are at most n − 1 strong edges in EG′(V, {vc,1, vc,2, vc,3}).
Since K consists of exactly n3 such triples, there are at most n3 · (n− 1) = n4 − n3

strong edges in EG′(K, V ). ♦

Observations 7 and 8 together with the fact that |EG′(V )| = |E| = (n2) < n3 gives
us the following inequality:

|SL| = |SL ∩EG′(K)|+ |SL ∩EG′(K, V )|+ |SL ∩EG′(V )|

≤ 3 ·
(

n3

2

)

+ (n4 − n3) +

(

n

2

)

< 3 ·
(

n3

2

)

+ n4.

This inequality contradicts the fact that |SL| ≥ 3 · (n
3

2 )+n4. Hence, G has a clique
cover of size three or less, which proves the correctness of the reduction.

(c) To show that G 7→ (G′, k) is a correct reduction from 3-Clique Cover to
CD we need to prove that G has a clique cover of size three if and only if there is

a cluster-subgraph G′ = (V ′, E ′) of G′ such that |E ′| ≥ 3 · (n
3

2 ) + n4.
Let G have a clique cover of size three. Since the labeling L from the proof

of (b) is a cluster labeling, there must be a solution for CD with at least 3 ·(n
3

2 )+n4

cluster edges.
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Now, let G′ = (V ′, E ′) be a cluster subgraph of G′ such that |E ′| ≥ 3 · (n
3

2 )+ n4.
We define an STC-labeling L = (WL, SL) for G′ by SL := E ′. Then, there is an

STC-labeling for G′ with at least 3 · (n
3

2 ) + n4 strong edges. By (b), G has a clique
cover of size three or less, which proves the correctness of the reduction.

From (a), (b), and (c) we conclude that STC and CD remain NP-hard on
co-claw free graphs. ⊓⊔

From Lemmas 1, 4, and 5 we obtain the following theorem.

Theorem 7 The problems CD and STC are

• solvable in polynomial time on H-free graphs, if H ∈ {K3, P3,K2 +K1, P4, paw},
and

• NP-hard on H-free graphs, if H ∈ {3K1,K4, 4K1, C4, 2K2, diamond, co-diamond,

claw, co-claw, co-paw}.

6 Outlook

Many open questions remain. For example, it is open whether Strong Triadic

Closure can be solved in 2O(ℓ) · poly(n) time. Even an algorithm with running
time 2O(n) is not known at the moment. For a generalization of STC, where each
vertex has a list of possible incident strong colors, there is no algorithm that solves

the problem in 2o(n
2) time if the exponential time hypothesis (ETH) is true [5]. It

is open if this lower bound can be transferred to STC.
Furthermore, it is open whether we can solve Strong Triadic Closure faster

than inO(1.28k+nm), the running time that is implied by the parameter-preserving
reduction to Vertex Cover. It seems that any faster algorithm would need to use
new insights into Strong Triadic Closure. Moreover, a complete characteriza-
tion of the graphs in which no optimal Cluster Deletion solution is an optimal
solution for Strong Triadic Closure is open. Such a characterization would be
also interesting from the application point of view as it would describe when tri-
adic closure gives a different model than clustering. Concerning approximability, a
factor-2 approximation for minimizing the number of weak edges in Strong Tri-

adic Closure is implied by the reduction to Vertex Cover. It is open whether
there is a polynomial-time approximation algorithm with a factor smaller than 2.
It is also open whether optimal solutions for Cluster Deletion give a constant-
factor approximation for the minimization variant of Strong Triadic Closure.
Finally, we restate the following open question of Golovach et al. [9]: is Strong Tri-

adic Closure fixed-parameter tractable when parameterized by ℓ − |M |, where ℓ

is the number of strong edges and M is a maximum matching in the input graph?
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3. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint
cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.

25
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