
Extended Learning Graphs for Triangle Finding∗

Titouan Carette1, Mathieu Laurière2, and Frédéric Magniez3

1Ecole Normale Supérieure de Lyon, Lyon, France
2NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, China

3CNRS, IRIF, Univ Paris Diderot, Paris, France

Abstract

We present new quantum algorithms for Triangle Finding improving its best previously known quan-
tum query complexities for both dense and spare instances. For dense graphs on n vertices, we get a
query complexity of O(n5/4) without any of the extra logarithmic factors present in the previous al-
gorithm of Le Gall [FOCS’14]. For sparse graphs with m ≥ n5/4 edges, we get a query complexity
of O(n11/12m1/6

√
log n), which is better than the one obtained by Le Gall and Nakajima [ISAAC’15]

when m ≥ n3/2. We also obtain an algorithm with query complexity O(n5/6(m log n)1/6 + d2
√
n)

where d2 is the variance of the degree distribution.
Our algorithms are designed and analyzed in a new model of learning graphs that we call extended

learning graphs. In addition, we present a framework in order to easily combine and analyze them. As
a consequence we get much simpler algorithms and analyses than previous algorithms of Le Gall et al
based on the MNRS quantum walk framework [SICOMP’11].

1 Introduction

Decision trees form a simple model for computing Boolean functions by successively reading the input bits
until the value of the function can be determined. In this model, the query complexity is the number of
input bits queried. This allows us to study the complexity of a function in terms of its structural properties.
For instance, sorting an array of size n can be done using O(n log n) comparisons, and this is optimal for
comparison-only algorithms.

In an extension of the deterministic model, one can also allow randomized and even quantum compu-
tations. Then the speed-up can be exponential for partial functions (i.e. problems with promise) when we
compare deterministic with randomized computation, and randomized with quantum computation. The case
of total functions is rather fascinating. For them, the best possible gap can only be polynomial between each
models [20, 4], which is still useful in practice for many problems. But surprisingly, the best possible gap
is still an open question, event if it was improved for both models very recently [3, 1]. In the context of
quantum computing, query complexity captures the great algorithmic successes of quantum computing like
the search algorithm of Grover [13] and the period finding subroutine of Shor’s factoring algorithm [22],
while at the same time it is simple enough that one can often show tight lower bounds.
∗This work has been partially supported by the European Commission project Quantum Algorithms (QALGO) and the French

ANR Blanc project RDAM.

1

ar
X

iv
:1

60
9.

07
78

6v
2

 [
qu

an
t-

ph
]

 1
1

O
ct

 2
01

6

Reichardt [21] showed that the general adversary bound, formerly just a lower bound technique for
quantum query complexity [14], is also an upper bound. This characterization has opened an avenue for
designing quantum query algorithms. However, even for simple functions it is challenging to find an optimal
bound. Historically, studying the query complexity of specific functions led to amazing progresses in our
understanding of quantum computation, by providing new algorithmic concepts and tools for analyzing
them. Some of the most famous problems in that quest are Element Distinctness and Triangle Finding [10].
Element Distinctness consists in deciding if a function takes twice the same value on a domain of size n,
whereas Triangle Finding consists in determining if an n-vertex graph has a triangle. Quantum walks were
used to design algorithms with optimal query complexity for Element Distinctness. Later on, a general
framework for designing quantum walk based algorithms was developed with various applications [18],
including for Triangle Finding [19].

For seven years, no progress on Triangle Finding was done until Belovs developed his beautiful model of
learning graphs [5]. Learning graphs can be viewed as the minimization form of the general adversary bound
with an additional structure imposed on the form of the solution. This additional structure makes learning
graphs easier to reason about without any background on quantum computing. On the other hand, they may
not provide always optimal algorithms. Learning graphs have an intuitive interpretation in terms of electrical
networks [7]. Their complexity is directly connected to the total conductance of the underlying network and
its effective resistance. Moreover this characterization leads to a generic quantum implementation which is
time efficient and preserves query complexity.

Among other applications, learning graphs have been used to design an algorithm for Triangle Find-
ing with query complexity O(n35/27) [6], improving on the previously known bound Õ(n1.3) obtained
by a quantum walk based algorithm [19]. Then the former was improved by another learning graph us-
ing O(n9/7) queries [16]. This learning graph has been proven optimal for the original class of learning
graphs [9], known as non-adaptive learning graphs, for which the conductance of each edge is constant.
Then, Le Gall showed that quantum walk based algorithms are indeed stronger than non-adaptive learning
graphs for Triangle Finding by constructing a new quantum algorithm with query complexity Õ(n5/4) [11].
His algorithm combines in a novel way combinatorial arguments on graphs with quantum walks. One of
the key ingredient is the use of an algorithm due to Ambainis for implementing Grover Search in a model
whose queries may have variable complexities [2]. Le Gall used this algorithm to average the complexity of
different branches of its quantum walk in a quite involved way. In the specific case of sparse graphs, those
ideas have also demonstrated their advantage for Triangle Finding on previously known algorithms [12].

The starting point of the present work is to investigate a deeper understanding of learning graphs and
their extensions. Indeed, various variants have been considered without any unified and intuitive framework.
For instance, the best known quantum algorithm for k-Element Distinctness (a variant of Element Distinct-
ness where we are now checking if the function takes k times the same value) has been designed by several
clever relaxations of the model of learning graphs [5]. Those relaxations led to algorithms more powerful
than non-adaptive learning graphs, but at the price of a more complex and less intuitive analysis. In Sec-
tion 3, we extract several of those concepts that we formalize in our new model of extended learning graphs
(Definition 3.1). We prove that their complexity (Definition 3.2) is always an upper bound on the query
complexity of the best quantum algorithm solving the same problem (Theorem 3.3). We also introduce the
useful notion of super edge (Definition 3.4) for compressing some given portion of a learning graph. We use
them to encode efficient learning graphs querying a part of the input on some given index set (Lemmas 3.7
and 3.8). In some sense, we transpose to the learning graph setting the strategy of finding all 1-bits of some
given sparse input using Grover Search.

In Section 4, we provide several tools for composing our learning graphs. We should first remind the

2

reader that, since extended learning graphs cover a restricted class of quantum algorithms, it is not possible
to translate all quantum algorithms in that model. Nonetheless we succeed for two important algorithmic
techniques: Grover Search with variable query complexities [2] (Lemma 4.1), and Johnson Walk based
quantum algorithms [19, 18] (Theorem 4.2). In the last case, we show how to incorporate the use of
super edges for querying sparse inputs.

We validate the power and the ease of use of our framework on Triangle Finding in Section 5. First,
denoting n is the number of vertices, we provide a simple adaptive learning graph with query complexity
O(n5/4), whose analysis is arguably much simpler than the algorithm of Le Gall, and whose complexity is
cleared of logarithmic factors (Theorem 5.1). This also provides the first natural separation between non-
adaptive and adaptive learning graphs. Then, we focus on sparse input graphs and develop extended learning
graphs. All algorithms of [12] could be rephrased in our model. But more importantly, we show that one
can design more efficient ones. For sparse graphs with m ≥ n5/4 edges, we get a learning graph with query
complexity O(n11/12m1/6

√
log n), which improves the results of [12] when m ≥ n3/2 (Theorem 5.2). We

also construct another learning graph with query complexity O(n5/6(m log n)1/6 + d2
√
n), where d2 is the

variance of the degree distribution (Theorem 5.3). To the best of our knowledge, this is the first quantum
algorithm for Triangle Finding whose complexity depends on this parameter d2.

2 Preliminaries

We will deal with Boolean functions of the form f : Z → {0, 1}, where Z ⊆ {0, 1}N . In the query
model, given a function f : Z → {0, 1}, the goal is to evaluate f(z) by making as few queries to the z as
possible. A query is a question of the form ‘What is the value of z in position i ∈ [N]?’, to which is returned
zi ∈ {0, 1}.

In this paper we will discuss functions whose inputs are themselves graphs. Then z will encode an
undirected graph G on vertex set [n], that is N =

(
n
2

)
in order to encode the possible edges of G. Then

zij = 1 iff ij is an edge of G.
In the quantum query model, these queries can be asked in superposition. We refer the reader to the

survey [15] for precise definitions and background on the quantum query model. We denote by Q(f) the
number of queries needed by a quantum algorithm to evaluate f with error at most 1/3. Surprisingly, the
general adversary bound, that we define below, is a tight characterization of Q(f).

Definition 2.1. Let f : Z → {0, 1} be a function, with Z ⊆ {0, 1}N . The general adversary bound
Adv±(f) is defined as the optimal value of the following optimization problem:

minimize: max
z∈Z

∑
j∈[n]

Xj [z, z] subject to:
∑

j∈[n] :xj 6=yj

Xj [x, y] = 1, when f(x) 6= f(y),

Xj � 0, ∀j ∈ [N],

where the optimization is over positive semi-definite matrices Xj with rows and columns labeled by the
elements of Z, and Xj [x, y] is used to denote the (x, y)-entry of Xj .

Theorem 2.2 ([14, 17, 21]). Q(f) = Θ(Adv±(f)).

3 Extended learning graphs

Consider some fixed Boolean function f : Z → {0, 1}, where Z ⊆ {0, 1}N . The set of positive inputs (or
instances) will be usually denoted by Y = f−1(1). Remind that a 1-certificate for f on y ∈ Y is a subset
I ⊆ [N] of indices such that f(z) = 1 for every z ∈ Z with zI = yI .

3

3.1 Model and complexity

Intuitively, learning graphs are simply electric networks of a special type. The network is embedded in a
rooted directed acyclic graph, which has few similarities with decision trees. Vertices are labelled by subsets
S ⊆ [N] of indices. Edges are basically from any vertex labelled by, say, S to any other one labelled S∪{j},
for some j 6∈ S. Such an edge can be interpreted as querying the input bit xj , while xS has been previously
learnt. The weight on the edge is its conductance: the larger it is, the more flow will go through it. Sinks of
the graph are labelled by potential 1-certificates of the function we wish to compute.

Thus a random walk on that network starting from the root (labelled by ∅), with probability transitions
proportional to conductances, will hit a 1-certificate with average time proportional to the product of the
total conductance by the effective resistance between the root of leaves having 1-certificates [7].

If weights are independent of the input, then the learning graph is called non-adaptative. When they
depend on previously learned bits, it is adaptative. But in quantum computing, we will see that they can
also depend on both the value of the next queried bit and the value of the function itself! We call them
extended learning graphs.

Formally, we generalize the original model of learning graphs by allowing two possible weights on each
edge: one for positive instances and one for negative ones. Those weights are linked together as explained
in the following definition.

Definition 3.1 (Extended learning graph). Let Y ⊆ Z be finite sets. An extended learning graph G is 5-tuple
(V, E ,S, {wbz : z ∈ Z, b ∈ {0, 1}}, {py : y ∈ Y }) satisfying

• (V, E) is a directed acyclic graph rooted in some vertex r ∈ V;

• S is a vertex labelling mapping each v ∈ V to S(v) ⊆ [N] such that S(r) = ∅ and S(v) = S(u)∪{j}
for every (u, v) ∈ E and some j 6∈ S(u);

• Values wbz(u, v) are in R≥0 and depend on z only through zS(v), for every (u, v) ∈ E;

• w0
x(u, v) = w1

y(u, v) for all x ∈ Z \ Y, y ∈ Y and edges (u, v) ∈ E such that xS(u) = yS(u) and
xj 6= yj with S(v) = S(u) ∪ {j}.

• py : E → R≥0 is a unit flow whose source is the root and such that py(e) = 0 when w1
y(e) = 0, for

every y ∈ Y .

We say that G is a learning graph for some function f : Z → {0, 1}, when Y = f−1(1) and each sink of py
contains a 1-certificate for f on y, for all positive input y ∈ f−1(1).

We also say that G is an adaptive learning graph when w0
z = w1

z for all z ∈ Z. If furthermore w0
z is

independent of z, we say that G is a non-adaptive learning graph. In the sequel, unless otherwise specified,
by learning graph we mean extended learning graph.

When there is no ambiguity, we usually define S by stating the label of each vertex. We also say that an
edge e = (u, v) loads j when S(v) = S(u) ∪ {j}.

The complexity of extended learning graphs is defined similarly to the one of other learning graphs by
choosing the appropriate weight function for each complexity terms.

Definition 3.2 (Extended learning graph complexity). Let G be an extended learning graph for a function
f : Z → {0, 1}. Let x ∈ Z \ Y , y ∈ Y , and F ⊆ E . The negative complexity of F on x and the positive

4

complexity of F on y (with respect to G) are respectively defined by

C0(F , x) =
∑
e∈F

w0
x(e) and C1(F , y) =

∑
e∈F

py(e)
2

w1
y(e)

.

Then the negative and positive complexities of F are C0(F) = maxx∈f−1(0)C
0(F , x) and C1(F) =

maxy∈f−1(1)C
1(F , y). The complexity of F is C(F) =

√
C0(F)C1(F) and the complexity of G is

C(G) = C(E). Last, the extended learning graph complexity of f , denoted LGext(f), is the minimum
complexity of an extended learning graph for f .

Most often we will split a learning graph into stages F , that is, when the flow through F has the same
total amount 1 for every positive inputs. This allows us to analyze the learning graph separately on each
stage.

As for adaptive learning graphs [6, 8], the extended learning graph complexity is upper bounding the
standard query complexity.

Theorem 3.3. For every function f : Z → {0, 1}, we have Q(f) = O(LGext(f)).

Proof. We assume that f is not constant, otherwise the result holds readily. The proof follows the lines of
the analysis of the learning graph for Graph collision in [5]. We already know that Q(f) = O(Adv±(f))
by Theorem 2.2. Fix any extended learning graph G for f . Observe from Definition 2.1 that Adv±(f) is
defined by a minimization problem. Therefore finding any feasible solution with objective value C(G, f)
would conclude the proof. Without loss of generality, assume that C0(G) = C1(G) (otherwise we can
multiply all weights by

√
C1(G)/C0(G)). Then both complexities become

√
C0(G)C1(G) and the total

complexity remains C(G).
For each edge e = (u, v) ∈ E with S(v) = S(u)∪{j}, define a block-diagonal matrixXe

j =
∑

α(Y e
j)α,

where the sum is over all possible assignments α on S(u). Each (Y e
j)α is defined as (ψ0ψ

∗
0 +ψ1ψ

∗
1), where

for each z ∈ {0, 1}n and b ∈ {0, 1}

ψb[z] =


pe(z)/

√
w1
z(e) if zS(u) = α, f(z) = 1 and zj = 1− b,√

w0
z(e) if zS(u) = α, f(z) = 0 and zj = b,

0 otherwise.

Define now Xj =
∑

eX
e
j where the sum is over all edges e loading j. Fix any x ∈ f−1(0) and

y ∈ f−1(1). Then we have Xe
j [x, x] = w0

x(e) and Xe
j [y, y] = (pe(y))2/w1

y(e). So the objective value is

max
z∈{0,1}n

∑
j∈[n]

Xj [z, z] = max

 max
x∈f−1(0)

∑
j

Xj [x, x], max
y∈f−1(1)

∑
j

Xj [y, y]


= max

{
C0(G), C1(G)

}
= C(G).

Fix now x ∈ f−1(0) and y ∈ f−1(1). Consider the cut F over G of edges (u, v) ∈ E such that
S(v) = S(u)∪{j} and xS(u) = yS(u) but xj 6= yj . Then each edge e ∈ F loading j satisfiesw0

x(e) = w1
y(e)

and therefore Xe
j [x, y] = pe(y). Thus,

∑
j:xj 6=yj Xj [x, y] =

∑
e∈F pe(y) = 1. Hence constraints of

Definition 2.1 are satisfied.

5

3.2 Compression of learning graphs into super edges

We will simplify the presentation of our learning graphs by introducing a new type of edge encoding specific
learning graphs as sub-procedures. Since an edge has a single ‘exit’, we can only encode learning graphs
whose flows have unique sinks.

Definition 3.4 (Super edge). A super edge e is an extended learning graph Ge such that each possible flow
has the same unique sink. Then its positive and negative edge-complexities on input x ∈ Z \ Y and y ∈ Y
are respectively c0(e, x) = C0(Ge, x) and c1(e, y) = C1(Ge, y).

Since an edge is also a super edge with unit flow, we will also use the notion of positive and negative
edge-complexities for edges for simplifying further notations. Observe that in particularC0(e, x) = c0(e, x)
and C1(e, y) = py(e)

2 × c1(e, y), which we now use in order to define the complexity of learning graphs
with super edges.

Indeed, one can now consider learning graphs with super edges. They are equivalent to learning graphs
without super edges by doing recursively the following replacement for each super edge: (1) replace it by its
underlying learning graph, plugging the root to all incoming edges and the unique flow sink to all outgoing
edges; (2) root the incoming flow accordingly to the plugged learning graph. Let us call this learning graph
the expansion of the original one with super edges. Then, a direct inspection leads to the following result
that we will use in order to compute complexities directly on our original learning graphs.

Lemma 3.5. Let G be a learning graph with super edges for some function f . Then the expansion of G is
also a learning graph for f . Moreover, let exp(F) be the expansion of F ⊆ E . Then exp(F) has positive
and negative complexities

C0(exp(F), x) =
∑
e∈F

c0(e, x) and C1(exp(F), y) =
∑
e∈F

py(e)
2 × c1(e, y).

Fix some stage F ⊆ E of G, that is such that the flow through F has the same total amount 1 for
every positive inputs. We will use the following lemma, that we adapt from non-adaptive learning graphs,
to assume that a learning graph has positive complexity at most 1 on F . The parameter T involved in this
result is usually called the speciality of F .

Lemma 3.6 (Speciality [5]). Let G be a learning graph for a function f : Z → {0, 1}. Let F ⊆ E be a
stage of G whose flow always uses the same ratio 1/T of transitions and is uniform on them. Then there are
alternative weights for edges in F such that the new weighted edges in F̃ satisfy for every x ∈ f−1(0) and
y ∈ f−1(1)

C0(F̃ , x) ≤ T Exp
e∈F

[
c0(e, x)c1(e)

]
and C1(F̃ , y) ≤ 1.

Proof. Let ntotal be the number of transitions in F and nused the number of them used by each flow (i.e.
with positive flow). Therefore T = ntotal/nused. By assumption, the flow on each edge is either 0 or
1/nused. For each edge e in F , let λe = c1(e)/nused. For every input z, we multiply wbz(e) by λe, and we
name F̃ the set F with the new weights.

Then for any x ∈ f−1(0), C0(F̃ , x) =
∑

e∈F̃ λec
0(e, x) = T Exp

e∈F̃
[
c0(e, x)c1(e)

]
. Similarly, for

any y ∈ f−1(1), C1(F̃ , y) =
∑

e∈F̃ py(e)
2c1(e, y)/λe ≤ 1, since terms in the sum are positive only for

edges with positive flow.

6

3.3 Loading sparse inputs

We study a particular type of super edges, that we will use repeatedly in the sequel. To construct a learning
graph for a given function, one often needs to load a subset S of the labels. This can be done by a path of
length |S| with negative and positive complexities |S|, which, after some rebalancing, leads directly to the
following lemma.

Lemma 3.7. For any set S, there exists a super edge denoted DenseLoadS loading S with the following
complexities for any input z ∈ {0, 1}N :

c0(DenseLoadS , z) = |S|2 and c1(DenseLoadS , z) = 1.

When the input is sparse one can do significantly better as we describe now, where |zS | denotes the
Hamming weight of zS .

Lemma 3.8. For any set S, there exists a super edge denoted SparseLoadS loading S with the following
complexities for any input z ∈ {0, 1}N :

c0(SparseLoadS , z) ≤ 6|S|(|zS |+ 1) log(|S|+ 1) and c1(SparseLoadS , z) ≤ 1.

Proof. Let us assume for simplicity that N = |S| and S = {1, . . . , N}. We define the learning graph
SparseLoadS as the path through edges e1 = (∅, {1}), e2 = ({1}, {1, 2}), . . . , eN = ({1, . . . , N − 1}, S).
The weights are defined as, for b ∈ {0, 1} and z ∈ Z,

wbek(z) =

{
3 · (|z[j−1]|+ 1) · log(N + 1) if zj = b,

3N · log(N + 1) if zj = 1− b,

When |z| > 0, let us denote i0 = 0, i|z|+1 = N + 1 and (ik)k=1,...,|z| the increasing sequence of indices
j such that zj = 1. Then, for k = 1, . . . , |z| + 1, we define mk as the number of indices j ∈ (ik−1, ik)
such that zj = 0. More precisely, mk = ik − ik−1 − 1 for 1 ≤ k ≤ |z| and m|z|+1 = N − i|z|. So∑|z|+1

k=1 mk = N − |z|. Then, for any input z,

C0(SparseLoadS , z) =

{
3N · log(N + 1) if |z| = 0,

3 ·
(
|z|N +

∑|z|+1
i=1 i×mi

)
· log(N + 1) otherwise,

which is bounded above by 6N · (|z|+ 1) · log(N + 1). Moreover, using
∑|z|+1

i=1
1
i ≤ log(|z|+ 1) + 1, we

get

C1(SparseLoadS , z) =
1

3 · log(N + 1)

(N − |z|) 1

N
+

|z|+1∑
i=1

1

i

 ≤ 1.

4 Composition of learning graphs

To simplify our presentation, we will use the term empty transition for an edge between two vertices repre-
senting the same set. They carry zero flow and weight, and they do not contribute to any complexity.

7

4.1 Learning graph for OR

Consider n Boolean functions f1, . . . , fn with respective learning graphs G1, . . . ,Gn. The following lemma
explains how to design a learning graph GOR for f =

∨
i∈[n] fi whose complexity is the squared mean of

former ones. We will represent GOR graphically as

∅ Gii

This result is similar to the one of [2], where a search procedure is designed for the case of variable query
costs, or equivalently for a search problem divided into subproblems with variable complexities.

Lemma 4.1. Let G1, . . . ,Gn be learning graphs for Boolean functions f1, . . . , fn over Z. Assume further
that for every x such that f(x) = 1, there is at least k functions fi such that fi(x) = 1. Then there is a
learning graph G for f =

∨
i∈[n] fi such that for every z ∈ Z C0(G, z) ≤ n

k
× Exp

i∈[n]

(
C0(Gi, z)C1(Gi)

)
when f(z) = 0,

C1(G, z) ≤ 1 when f(z) = 1.

Proof. We define the new learning graph G by considering a new root ∅ that we link to the roots of each Gi.
In particular, each Gi lies in a different connected component. For n = 3, the graph is displayed below:

∅

G1 G2 G3
Then, we rescale the original weights of edges in each component Gi by λi = C1(Gi)/k.

The complexity C0(G, x) for a negative instance x is

C0(G, x) =
n∑
i=1

λiC
0(Gi, x) =

n

k
× Exp

i

(
C0(Gi, x)C1(Gi)

)
.

Consider now a positive instance y. Then y is also a positive instance for at least k functions fi. Without
loss of generality assume further that these k functions are f1, f2, . . . , fk. We define the flow of G (for y) as
a flow uniformly directed from ∅ to Gi for i = 1, 2, . . . , k. In each component Gi, the flow is then routed as
in Gi. Therefore we have

C1(G, y) =
k∑
i=1

1

k2
× C1(Gi, y)

λi
≤ 1.

Finally, observe that by construction the flow is directed to sinks having 1-certificates, thus GOR indeed
computes f =

∨
i∈[n] fi.

4.2 Learning graph for Johnson walks

We build a framework close to the one of quantum walk based algorithms from [19, 18] but for extended
learning graphs. To avoid confusion we encode into a partial assignment the corresponding assigned loca-
tion, that is, zS = {(i, zi) : i ∈ S}.

Fix some parameters r ≤ k ≤ n. We would like to define a learning graph GJohnson for f =
∨
A fA,

where A ranges over k-subsets of [n] and fA are Boolean functions over Z, but differently than in
Lemma 4.1. For this, we are going to use a learning graph for fA when the input has been already

8

partially loaded, that is, loaded on I(A) for some subset I(A) ⊆ [N] depending on A only. Namely,
we assume we are given, for every partial assignment λ, a learning graph GA,λ defined over inputs
Zλ = {z ∈ Z : z(I(A)) = λ} for fA restricted to Zλ.

Then, instead of the learning graph of Lemma 4.1, our learning graph GJohnson factorizes the load of
input z over I(A) for |A| = k and then uses GA,zI(A)

. This approach is more efficient when, for every
positive instance y, there is a 1-certificate I(Ty) for some r-subset Ty, and A 7→ I(A) is monotone. This is
indeed the analogue of a walk on the Johnson Graph.

We will represent the resulting learning graph GJohnson graphically using r + 1 arrows: one for the first
load of (k − r) elements, and r smaller ones for each of the last r loads of a single element. For example,
when r = 2 we draw:

∅ GA,xI(A)

A

In the following, LoadS denotes any super edge loading the elements of S, such as DenseLoad or
SparseLoad that we have defined in Lemmas 3.7 and 3.8.

Theorem 4.2. For every subset S ⊆ [N], let LoadS be any super edge loading S with c1(LoadS) ≤ 1. Let
r ≤ k ≤ n and let f =

∨
A fA, where A ranges over k-subsets of [n] and fA are Boolean functions over Z.

Let I be a monotone mapping from subsets of [n] to subsets of [N] with the property that, for every
y ∈ f−1(1), there is an r-subset Ty ⊆ [n] whose image I(Ty) is a 1-certificate for y.

Let S,U > 0 be such that every x ∈ f−1(0) satisfies

Exp
A′⊂[n] : |A′|=k−r

(
C0(LoadI(A′), z)

)
≤ S2 ; (1)

Exp
A′⊂A′′⊆[n] : |A′|=|A′′|−1=i

(
C0(LoadI(A′′)\I(A′), z)

)
≤ U2, for k − r ≤ i < k . (2)

Let GA,λ be learning graphs for functions fA on Z restricted to inputs Zλ = {z ∈ Z : z(I(A)) = λ},
for all k-subsets A of [n] and all possible assignments λ over I(A). Let finally C > 0 be such that every
x ∈ f−1(0) satisfies

Exp
A⊆[n] : |A|=k

(
C0(GA,xI(A)

, x)C1(GA,xI(A)
, f)
)
≤ C2. (3)

Then there is a learning graph GJohnson for f such that for every z ∈ Z C0(GJohnson, z) = O
(
S2 +

(n
k

)r (
k ×U2 + C2

))
when f(z) = 0,

C1(GJohnson, z) = 1 when f(z) = 1.

Proof. Construction. We define GJohnson by emulating a walk on the Johnson graph J(n, k) for searching
a k-subset A having an r-subset Ty such that I(Ty) is a 1-certificate for y. In that case, by monotonicity of
I , the set I(A) will be also a 1-certificate for y.

Our learning graph GJohnson is composed of (r + 2) stages (that is, layers whose total incoming flow is
1), that we call Stage `, for ` = 0, 1, . . . , r + 1. An example of such a learning graph for n = 4, k = 3 and
r = 1 is represented below:

9

∅

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

Stage 0 of GJohnson consists in
(

n
(k−r)

)
disjoint paths, all of same weights, leading to vertices labelled

by some (k − r)-subset A′ and loading I(A′). They can be implemented by the super edges LoadI(A′). For
positive instances y, the flow goes from ∅ to subsets I(A′) such that I(A′) ∩ Ty = ∅.

For ` = 1, . . . , r, Stage ` consists in (n− (k−r)− `+1) outgoing edges to each node labeled by a (k−
r+`−1)-subsetA′. Those edges are labelled by (A′, j) where j 6∈ A′ and load I(A′∪{j})\I(A′). They can
be implemented by the super edges LoadI(A′∪{j})\I(A′). For positive instances y, for each vertex A′ getting
some positive flow, the flow goes out only to the edge (A′, j`), with the convention Ty = {j1, . . . , jr}.

The final Stage (r + 1) consists in plugging in nodes A the corresponding learning graph GA,xI(A)
, for

each k-subset A. We take a similar approach than in the construction of GOR above. The weights of the
edges in each component GA,zI(A)

are rescaled by a factor λA = C1(GA,xI(A)
)/
(
n−r
k−r
)
. For a positive instance

y, the flow is directed uniformly to each GA,yI(A)
such that T (y) ⊆ A, and then according to GA,yI(A)

.
Observe that by construction, on positive inputs the flow reaches only 1-certificates of f . Therefore

GJohnson indeed computes f .
Analysis. Remind that the positive edge-complexity of our super edge Load is at most 1.
At Stage 0, the

(
n

(k−r)
)

disjoint paths are all of same weights. The flow satisfies the hypotheses of
Lemma 3.6 with a speciality of O(1). Therefore, using inequality (1), the complexity of this stage is O(S2)
when f(x) = 0, and at most 1 otherwise.

For ` = 1, . . . , r, at Stage ` consists of (n − (k − r) − ` + 1) outgoing edges to each node labeled by
a (k − r + ` − 1)-subset. Take a positive instance y. Recall that, for each vertex A′ getting some positive
flow, the flow goes out only to the edge (A′, j`). By induction on `, the incoming flow is uniform when
positive. Therefore, the flow on each edge with positive flow is also uniform, and the speciality of the stage
is O((nk)` · k). Hence, by Lemma 3.6 and using inequality 2, the cost of each such stage is O((nk)` · k ·U2).
The dominating term is thus O

(
(nk)r · k ·U2

)
.

The analysis of the final stage (Stage (r + 1)) is similar to the proof of Lemma 4.1. For a negative
instance x, the complexity of this stage is:∑

A

λAC
0(GA,xI(A)

, x) =

(
n
k

)(
n−r
k−r
) Exp

A

(
C0(GA,xI(A)

, x)C1(GA,xI(A)
)
)

= O

((n
k

)r
× Exp

A

(
C0(GA,xI(A)

, x)C1(GA,xI(A)
)
))

.

Similarly, when f(y) = 1, we get a complexity at most 1.

5 Application to Triangle Finding

5.1 An adaptive Learning graph for dense case

We start by reviewing the main ideas of Le Gall’s algorithm in order to find a triangle in an input graph G
with n vertices. More precisely, we decompose the problem into similar subproblems, and we build up our

10

adaptive learning graph on top of it. Doing so, we get rid of most of the technical difficulties that arise in
the resolution of the underlying problems using quantum walk based algorithms.

Let V be the vertex set of G. For a vertex u, let Nu be the neighborhood of u, and for two vertices u, v,
let Nu,v = Nu ∩Nv. Figure 1 illustrates the following strategy for finding a potential triangle in some given
graph G.

First, fix an x-subsetX of vertices. Then, eitherG has a triangle with one vertex inX or each (potential)
triangle vertex is outside X . The first case is quite easy to deal with, so we ignore it for now and we only
focus on the second case. Thus there is no need to query any possible edge between two vertices u, v
connected to the same vertex in X . Indeed, if such an edge exists, the first case will detect a triangle.
Therefore one only needs to look for a triangle edge in ∆(X) = {(u, v) ∈ V 2 : Nu,v ∩X = ∅}.

t

w

∆(X,B,w)

B2

A2N2
t

u

v

X2

Figure 1: Sets involved in Le Gall’s algorithm.

Second, search for an a-subset A with two triangle vertices in it. For this, construct the set ∆(X,A) =
A2 ∩∆(X) of potential triangle edges in A2. The set ∆(X,A) can be easily set once all edges between X
and A are known.

Third, in order to decide if ∆(X,A) has a triangle edge, search for a vertex w making a triangle with an
edge of ∆(X,A).

Otherwise, search for a b-subset B of A such that w makes a triangle with two vertices of B. For this
last step, we construct the set ∆(X,B,w) = (Nw)2 ∩∆(X,B) of pairs of vertices connected to w. If any
of such pairs is an actual edge, then we have found a triangle.

We will use learning graphs of type GOR for the first step, for finding an appropriate vertex w, and for
deciding weither ∆(X,B,w) has an edge; and learning graphs of type GJohnson for finding subsets A and
B.

More formally now, let Triangle be the Boolean function such that Triangle(G) = 1 iff graph input G
has a triangle. We do the following decomposition. First, observe that Triangle =

∨
X : |X|=x(hX∨fX) with

hX(G) = 1 (resp. fX(G) = 1) iff G has a triangle with a vertex in X (resp. with no vertex in X). Then, we
pursue the decomposition for fX(G) as fX(G) =

∨
A : |A|=a fX,A(G) and fX,A(G) =

∨
w∈V fX,A,w(G),

for A ⊆ V and w ∈ V , where

• fX,A(G) = 1 iff G has a triangle between two vertices in A \X and a third one outside X;

• fX,A,w(G) = 1 iff w 6∈ X and G has a triangle between w and two vertices in A \X .

Last, we can write fX,A,w(G) =
∨
B⊂A, |B|=b fX,B,w(G).

With our notations introduced in Section 4, our adaptative learning graph G for Triangle Finding can be
represented as in Figure 2.

Using adaptive learning graphs instead of the framework of quantum walk based algorithms from [18]
simplifies the implementation of the above strategy because one can consider all the possible subsets X
instead of choosing just a random one. Then one only needs to estimate the average complexity over all

11

∅ X

t uv

A w B ∆(X,B,w)

Figure 2: Learning graph for Triangle Finding with complexity O(n5/4).

possible X . Such an average analysis was not considered in the framework of [18]. In addition, we do not
need to estimate the size of ∆(X,A,w) at any moment of our algorithm. As a consequence, our framework
greatly simplifies the combinatorial analysis of our algorithm as compared to the one of Le Gall, and lets us
shave off some logarithmic factors. See Appendix A for the proof of the following theorem.

Theorem 5.1. The adaptive learning graph of Figure 2 with |X| = x, |A| = a, |B| = b, and using
Load = DenseLoad, has complexity

O

(√
xn2 + (ax)2 +

(n
a

)2(
a · x2 + n

(
b2 +

(a
b

)2(
b+

b2

x

))))
.

In particular, taking a = n3/4 and b = x =
√
n leads to Q(Triangle) = O(n5/4).

5.2 Sparse graphs

In the sparse case we now show to use extended learning graphs in order to get a better complexity than the
one of Theorem 5.1. Proofs of this section are deferred to Appendix B.

First, the same learning graph of Theorem 5.1 has a much smaller complexity for sparse graphs when
SparseLoad is used instead of DenseLoad.

Theorem 5.2. The learning graph of Figure 2, using Load = SparseLoad, has complexity over graphs with
m edges

O

(√(
xm+ (ax)2 · m

n2
+
(n
a

)2(
a · x2 · m

n2
+ n

(
b2 · m

n2
+
(a
b

)2(
b+

b2

x

))))
log n

)
.

In particular, taking a = n3/4 and b = x =
√
n/(m/n2)1/3 leads to a complexity of O(n11/12m1/6

√
log n)

when m ≥ n5/4.

We now end with an even simpler learning graph whose complexity depends on its average of squared
degrees. It is very simple. See Figure 3 for the illustration. It consists in searching for a triangle vertex w.
In order to check if w is such a vertex, we search for a b-subset B with an edge connected to w. For this
purpose, we first connect w to B, and then check if there is an edge in (Nw ∩B)2.

Formally, we do the decomposition Triangle =
∨
w∈V fw, with fw(G) = 1 iff w is a triangle vertex

in G. Then, we pursue the decomposition with fw(G) =
∨
B⊆V : |B|=b fw,B(G) where fw,B(G) = 1 iff

G has a triangle formed by w and two vertices of B. Using our notations, the resulting learning graph is
represented by the diagram in Figure 4.

We prove in Appendix B the following theorem, where d2 =
√

Expv
[
|Nv|2

]
denotes the variance of

the degrees.

12

B2

(Nw ∩B)2 w

v

u

Figure 3: Sets involved in the sparse decomposition.

w B (Nw ∩B)2

Figure 4: Learning graph for Triangle Finding with complexity Õ((n5/6m1/6 + d2
√
n) log n).

Theorem 5.3. Let b ≥ n2/m. The learning graph of Figure 4, using SparseLoad for the first stage of
GJohnson and DenseLoad otherwise, has complexity over graphs with m edges

O

(√
n

(
b2
m

n2
log n+

n2

b2

(
b+

b2(d2)2

n2

)))
.

Taking b = n4/3/(m log n)1/3 leads to a complexity of O(n5/6(m log n)1/6 + d2
√
n).

References

[1] S. Aaronson, S. Ben-David, and R. Kothari. Separations in query complexity using cheat sheets. In
Proceedings of 48th ACM Symposium on Theory of Computing, pages 863–876, 2016.

[2] A. Ambainis. Quantum search with variable times. Theory of Computing Systems, 47(3):786–807,
2010.

[3] A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha, and J. Smotrovs. Separations in query com-
plexity based on pointer functions. In Proceedings of 48th ACM Symposium on Theory of Computing,
pages 800–813, 2016.

[4] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials.
Journal of the ACM, 48(4):778–797, 2001.

[5] A. Belovs. Learning-graph-based quantum algorithm for k-distinctness. In Prooceedings of 53rd IEEE
Symposium on Foundations of Computer Science, pages 207–216, 2012.

[6] A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings of 44th
Symposium on Theory of Computing Conference, pages 77–84, 2012.

[7] A. Belovs, A. Childs, S. Jeffery, R. Kothari, and F. Magniez. Time-efficient quantum walks for 3-
distinctness. In Proceedings of 40th International Colloquium on Automata, Languages and Program-
ming, pages 105–122, 2013.

13

[8] A. Belovs and T. Lee. Quantum algorithm for k-distinctness with prior knowledge on the input. Tech-
nical Report arXiv:1108.3022, arXiv, 2011.

[9] A. Belovs and A. Rosmanis. On the power of non-adaptive learning graphs. In Proceedings of 28th
IEEE Conference on Computational Complexity, pages 44–55, 2013.

[10] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and R. de Wolf. Quantum
algorithms for element distinctness. SIAM Journal on Computing, 34(6):1324–1330, 2005.

[11] F. Le Gall. Improved quantum algorithm for triangle finding via combinatorial arguments. In Proceed-
ings of 55th IEEE Foundations of Computer Science, pages 216–225, 2014.

[12] F. Le Gall and S. Nakajima. Quantum algorithm for triangle finding in sparse graphs. In Proc. of 26th
International Symposium Algorithms and Computation, pages 590–600, 2015.

[13] L. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th ACM
Symposium on the Theory of Computing, pages 212–219, 1996.

[14] P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proceedings of 39th
ACM Symposium on Theory of Computing, pages 526–535, 2007.

[15] P. Høyer and R. Špalek. Lower bounds on quantum query complexity. Bulletin of the European
Association for Theoretical Computer Science, 87, 2005.

[16] T. Lee, F. Magniez, and M. Santha. Improved quantum query algorithms for triangle finding and
associativity testing. Algorithmica, 2015. To appear.

[17] T. Lee, R. Mittal, B. Reichardt, R. Špalek, and M. Szegedy. Quantum query complexity of state
conversion. In Proceedings of 52nd IEEE Symposium on Foundations of Computer Science, pages
344–353, 2011.

[18] F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. SIAM Journal on Com-
puting, 40(1):142–164, 2011.

[19] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem. SIAM Journal
on Computing, 37(2):413–424, 2007.

[20] N. Nisan. Crew prams and decision trees. SIAM Journal on Computing, 20(6):999–1007, 1991.

[21] B. Reichardt. Reflections for quantum query algorithms. In Proceedings of 22nd ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 560–569, 2011.

[22] P. Shor. Algorithms for quantum computation: Discrete logarithm and factoring. SIAM Journal on
Computing, 26(5):1484–1509, 1997.

A Learning graph analysis for dense graphs

Proof of Theorem 5.1. From now on, fix some input graph G = (V,E) (with or without a triangle). We
compute the complexity C(G, G) of G onG using Lemmas 4.1 and 4.2. From the decomposition of Triangle
one can already check that the resulting learning graph computes the function Triangle.

14

Also all complexities for positive instances will be at most 1. Therefore, we only compute the complexity
of negative instances, and drop multiplicative factors corresponding to the complexity of a learning graph
on positive instances.

We decompose the analysis in stages as in Figure 5, and we compute their respective negative complex-
ities on some given graph G.

∅ X

t uv

A w B ∆(X,B,w)

1 2 3 4 5 6

Figure 5: Adaptive learning graph for Triangle Finding with its corresponding stages.

Stage 1. G consists in the combination of learning graphs GX , whereX is a x-subset of [n], as in Lemma 4.1.
The particularity of GX is that they all compute Triangle.
Stage 2. Each GX is again a combination of two learning graphsFX andHX as in Lemma 4.1. The learning
graph FX , described in the remaining stages, computes fX , whereas HX computes hX . Observe that HX
consists in a very simple non-adaptative learning graph with negative complexity xn2. Therefore we can
already deduce that

C0(G, G) ≤ Exp
X

(C0(FX , G)) + xn2.

In the sequel we focus on the analysis of FX .
Stage 3. FX is decomposed using Lemma 4.2 with LoadS = DenseLoadS and parameters n = |V |, k = a,
r = 2. Therefore

C0(EX , G) = O

(
(SG,X)2 +

(n
a

)2 (
a · (UG,X)2 + (CG,X)2

))
where we take

(SG,X)2 = Exp
A′⊂V : |A′|=a−2

(
|IX(A′)|2

)
,

(UG,X)2 = max
a−2≤i<a

(
Exp

A′⊂A′′⊆V : |A′|=|A′′|−1=i

(
|IX(A′′)\IX(A′)|2

))
,

(CG,X)2 = Exp
A⊆V : |A|=a

(
C0(FX,A, G)

)
,

with IX(A′) = X × A, GIX(A′) is the set of edges between X and A′ in the graph G, and FX,A is the
learning graph for fX,A that we describe in the remaining stages.
Stage 4. We use Lemma 4.1 and w stands for the third triangle vertex. Therefore,

C0(FX,A, G) ≤ n× Exp
w

(C0(FX,A,w, G)),

where w ∈ [n] and FX,A,w is the learning graph for fX,A,w described below.

15

Stage 5. Next, we use Lemma 4.2 with LoadS = DenseLoadS and parameters n′ = a, k′ = b, r′ = 2.
Therefore

C0(FX,A,w, G) = O

(
(SG,X,A,w)2 +

(a
b

)2 (
b · (UG,X,A,w)2 + (CG,X,A,w)2

))
where we take

(SG,X,A,w)2 = Exp
B′⊂A : |B′|=b−2

(
|Iw(B′)|2

)
,

(UG,X,A,w)2 = max
b−2≤i<b

(
Exp

B′⊂B′′⊆V : |B′|=|B′′|−1=i

(
|Iw(B′′)\Iw(B′)|2

))
,

(CG,X,A,w)2 = Exp
B⊆A : |B|=b

(
C0(EX,A,w,B, G)

)
,

with Iw(B′) = {w} × B′, GIw(B′) is the set of edges linking w to B′ in the graph G, and FX,A,w,B is the
learning graph for fX,A,w,B described in the last stage.
Stage 6. The last stage consists in the learning graph obtained by Lemma 4.1, with negative complexity of
order |∆(X,B,w)|, for searching a potential edge in ∆(X,B,w).

In order to conclude, we observe that for anyw ∈ V and any set of vertices V1 ⊆ V , we have |IX(V1)| =
x|V1| and |Iw(V1)| = |V1|. Applying this for V1 = A and V1 = B we obtain

SG,X ≤ ax, UG,X ≤ x, SG,X,A,w ≤ b, UG,X,A,w ≤ 1.

We therefore get that C0(G, G) has order

xn2 + (ax)2 +
(n
a

)2(
a · x2 + n

(
b2 +

(a
b

)2(
b+ Exp

X,w,B

[
|∆(X,B,w)|

])))
.

We now conclude using Lemma A.1 with V1 = V , and C(G) =
√
C0(G) since C1(G) ≤ 1.

Lemma A.1. Let x, b be positive integers. Let G be a graph on a vertex set V of size n and let B ⊆ V be a
b-subset. Then

Exp
X,w

[
|∆(X,B,w)|

]
≤ b2

x
,

where the expectation is taken over x-subsets X ⊆ V and vertices w ∈ V .

Proof. Let ∆(X) be the set of pairs of vertices which are not both neighbors of any vertex inX . LetB ⊆ V
of size b, the expectation on X and w is:

Exp
X,w

[
|∆(X,B,w)|

]
=

∑
(u,v)∈B2

Pr
X,w

((u, v) ∈ ∆(X,B,w)). (4)

In order to bound the probability events of the right hand side, fix (u, v) ∈ B2 and let Nu,v be the
intersection of the neighborhoods of u and v in V . Then

Pr
X,w

((u, v) ∈ ∆(X,B,w)) = Pr
X,w

(w ∈ Nu,v and (u, v) ∈ ∆(X)).

16

The two events of the right hand side are independent, therefore with t = |Nu,v| and n = |V | we get

Pr
X,w

((u, v) ∈ ∆(X,B,w)) =
t

n

(
1− t

n

)x
.

Renaming α = tx
n leads to

Pr
X,w

((u, v) ∈ ∆(X,B,w)) =
α

x

(
1− α

x

)x
≤ αe−α

x
≤ 1

x
.

Finally, combining the above bound with equation (4) gives the result.

B Learning graph analyses for sparse graphs

B.1 Proof of Theorem 5.2

We reuse the notations introduced in the proof of Theorem 5.1. In addition we let d = 2m/n the average
degree of the input graph.

Here HX has complexity O(xdn log n + x(d2)
2) = O(xdn log n) on any negative instance, where

d2 =
√

Expv(|Nv|2). Indeed, fix any negative instance. For each v ∈ X , we learn Nv by loading {v} × V
with negative complexity |Nv|(n + 1) log(n + 1). Then we load Nv × Nv simply using DenseLoad with
negative complexity |Nv|2. So summing those complexities for every v ∈ X and taking the expectation on
x-subsets X ⊆ V , the average negative complexity becomes

Exp
X⊆V,|X|=x

[∑
v∈X

(
|Nv|(n+ 1) log(n+ 1) + |Nv|2

)]
= x× Exp

v∈V

(
|Nv|(n+ 1) log(n+ 1) + |Nv|2

)
= xd(n+ 1) log(n+ 1) + x(d2)

2.

For the first step of the Johnson walk in FX , we now get using SparseLoad

Exp
X

(
(SG,X)2

)
= Exp

X
Exp

A′⊆V : |A′|=a−2

(
|IX(A′)| · log(|IX(A′)|+ 1) · (|GIX(A′)|+ 1)

)
≤ ax log(ax+ 1) Exp

X
Exp

A′⊆V : |A′|=a−2
(|E(X,A′)|+ 1)

= O

((ax
n

)2
m log(ax+ 1)

)
,

where for the second step we used that |IX(A′)| = |X × A′| ≤ ax, and for the last one Lemma B.2 below
with X and Y = A. Similarly, using the fact that |IX(A′′)\IX(A′)| = |X × (A′′\A′)| = x, we obtain

Exp
X

(
(UG,X)2

)
= Exp

X

(
x · log(x+ 1) · max

a−2≤i<a

(
Exp

A′⊂V : |A′|=i

(
Exp
v∈V \A′

(|E(X, v)|+ 1)

)))

= O

(
Exp
X

(
x · log(x+ 1) ·

(
Exp
v∈V

(|E(X, v)|+ 1)

)))
= O

(
x2m

n2
· log(x+ 1)

)
,

17

where the second equality holds by Lemma B.2 below with X and Y = {v}.
For the second step of the walk, since |Iw(B′)| = |{w} × B′| ≤ b, we have by Lemma B.1, with

x = b− 2, V1 = A and N = Nw ∩A:

(SG,X,A,w)2 ≤ b log(b+ 1) Exp
B′⊂A : |B′|=b−2

(
|E(B′, w)|+ 1

)
= O

(
b2|Nw ∩A|

a
log(b+ 1)

)
.

Moreover, again by Lemma B.1 below but this time with x = a, V1 = V and N = Nw, we get

Exp
w∈V

Exp
A⊆V : |A|=a

(|Nw ∩A|) =
a

n
Exp
w∈V
|Nw ∩ V | =

ad

n
.

So,

Exp
A⊆V : |A|=a

(
(SG,X,A,w)2

)
= O

(
b2 · d

n
log(b+ 1)

)
.

Last, since |Iw(B′′)\Iw(B′)| = |{w} × (B′′\B′)| = 1, we directly obtain:

U2
G,X,A,w = O(1).

Thus, the total negative complexity is of order[
xdn+ (ax)2 · d

n
+
(n
a

)2(
a · x2 · d

n
+ n

(
b2 · d

n
+
(a
b

)2(
b+

b2

x

)))]
︸ ︷︷ ︸

Kn

× log(n). (5)

Denoting t = d
n ≤ 1, we have:

Kn = n2 + t

(
xn2 + a2x2 +

n2

a2
(
ax2 + nb2

))
+
n3

b

(
1 +

b

x

)
.

If x = b ≤ a ≤ n, we have xn2 ≥ x2n2/a and n3

b ≥ n2, hence :

Kn = O

(
t

(
xn2 + a2x2 +

n3b2

a2

)
+
n3

b

)
.

Taking a = n3/4 and b = x =
√
n/t1/3, leads to:

Kn = O

(
tb2n3/2 +

n3

b

)
= O

(
n5/2t1/3

)
.

Going back to (5), this yields a negative complexity of order:

n5/2t1/3 × log(n),

and thus a total complexity of order:

n5/4t1/6 · log(n)1/2 = n11/12m1/6 log(n)1/2.

This complexity is valid until
√
n/t1/3 ≤ n3/4, that is when t ≥ 1/n3/4, i.e. d ≥ n1/4. This concludes the

proof of the theorem.

18

Lemma B.1. Let 1 ≤ x ≤ |V | and N ⊆ V1 ⊆ V . Then

Exp
X⊆V1, |X|=x

|N ∩X| = x|N |
|V1|

.

Proof. Let 1X be the indicator function of X . Then observe that the left hand side can be rewritten as

Exp
X
|N ∩X| = Exp

X

(∑
u∈N

1X(u)

)
=
∑
u∈N

Exp
X

(1X(u)) .

Then we conclude by observing that each term of the sum on the right hand side satisfies ExpX(1X(u)) =
x
|V1| , independently of u ∈ V1.

Lemma B.2. Let 1 ≤ x, y ≤ |V |. Let E(X,Y) denote the set of edges between X and Y . Then

Exp
X,Y⊆V, |X|=x, |Y |=y

|E(X,Y)| = 2xym

n2
,

Proof. For any v ∈ V we denote Nv ⊆ V its neighbors. We prove the equality by decomposition the
expectation term:

Exp
X,Y
|E(X,Y)| = Exp

X,Y

∑
v∈Y
|E(X, {v})|

= Exp
X

∑
v∈V
|E(X, {v})| × Pr

Y
(v ∈ Y)

=
y

n
×
∑
v∈V

Exp
X
|Nv ∩X|

=
xy

n2
×
∑
v∈V
|Nv| by Lemma B.1 with k = 1, V1 = V and N = Nv

=
2xym

n2
.

B.2 Proof of Theorem 5.3

Let us denote G the learning graph of Figure 4. It can be seen as a special case of the one of Figure 2 with
X = ∅ and A = V (i.e. x = 0 and a = n). That is we start at Stage 5, and in our case ∆(X,B,w) =
(Nw ∩ B)2. Moreover we are going to use DenseLoad everywhere except for the first part, where we use
SparseLoad in order to minimize the term (SG,X,A,w)2.

Therefore we can duplicate the analysis in the proof of Theorem 5.2 starting from Stage 4 and replacing
∆(X,B,w) by (Nw ∩B). Then we get that the negative complexity for any graph G satisfies

C0(G, G) = O

(
n

(
b2d

n
· log(b+ 1) +

(n
b

)2(
b+ Exp

w,B

(
|Nw ∩B|2

))))
.

19

Then, the last piece of the proof is provided by Lemma B.3 below which gives, with x = b, V1 = V ,
and N = Nw,

Exp
w∈V,B⊆V : |B|=b

(
|Nw ∩B|2

)
≤ 2

(
Exp
w

(
b2|Nw|2
n2

))
≤ 2

(
b2(d2)

2

n2

)
,

where d2 =
√

Expv
[
|Nv|2

]
.

This concludes the proof of the theorem.

Lemma B.3. Let 1 ≤ x ≤ |V | and N ⊆ V1 ⊆ V be such that x|N | ≥ |V1|. Then

Exp
X⊆V1, |X|=x

(
|N ∩X|2

)
≤ 2

(
x|N |
|V1|

)2

.

Proof. Similarly to the proof of Lemma B.1, let 1X be the indicator function of X . Then

Exp
X

(
|N ∩X|2

)
= Exp

X

(∑
u∈N

1X(u)

)2
 =

∑
u,v∈N

Exp
X

(1X(u)1X(v)) .

Observe that 1X(u) and 1X(v) are independent for u 6= v, and that (1X(u))2 = 1X(u). Therefore

Exp
X

(
|N ∩X|2

)
=

∑
u,v∈N, u6=v

(
Exp
X

1X(u)

)(
Exp
X

1X(v)

)
+
∑
u∈N

Exp
X

1X(u).

Remind that for all u ∈ V1, ExpX 1X(u) = x
|V1| . Thus

Exp
X

(
|N ∩X|2

)
= |N |(|N | − 1)

(
x

|V1|

)2

+ |N | x|V1|
.

Using x|N | ≥ |V1|, we finally get

Exp
X

(
|N ∩X|2

)
≤ |N |(|N | − 1)

(
x

|V1|

)2

+

(
|N | x|V1|

)2

≤ 2

(
|N | x|V1|

)2

.

20

	1 Introduction
	2 Preliminaries
	3 Extended learning graphs
	3.1 Model and complexity
	3.2 Compression of learning graphs into super edges
	3.3 Loading sparse inputs

	4 Composition of learning graphs
	4.1 Learning graph for OR
	4.2 Learning graph for Johnson walks

	5 Application to Triangle Finding
	5.1 An adaptive Learning graph for dense case
	5.2 Sparse graphs

	A Learning graph analysis for dense graphs
	B Learning graph analyses for sparse graphs
	B.1 Proof of Theorem ??
	B.2 Proof of Theorem ??

