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Abstract

Stochastic dominance is a technique for evaluating the performance of online algorithms that
provides an intuitive, yet powerful stochastic order between the compared algorithms. Accord-
ingly this holds for bijective analysis, which can be interpreted as stochastic dominance assuming
the uniform distribution over requests. These techniques have been applied in problems such as
paging, list update, bin coloring, routing in array mesh networks, and in connection with Bloom
filters, and have provided a clear separation between algorithms whose performance varies sig-
nificantly in practice. However, despite their appealing properties, there are situations in which
they are not readily applicable. This is due to the fact that they stipulate a stringent relation
between the compared algorithms that may be either too difficult to establish analytically, or
worse, may not even exist.

In this paper we propose remedies to both of these shortcomings. First, we establish sufficient
conditions that allow us to prove the bijective optimality of a certain class of algorithms for a wide
range of problems; we demonstrate this approach in the context of well-studied online problems
such as weighted paging, reordering buffer management, and 2-server on the circle. Second, to
account for situations in which two algorithms are incomparable or there is no clear optimum, we
introduce the bijective ratio as a natural extension of (exact) bijective analysis. Our definition
readily generalizes to stochastic dominance. This renders the concept of bijective analysis (and
that of stochastic dominance) applicable to all online problems, is a broad generalization of the
Max/Max ratio due to Ben-David and Borodin, and allows for the incorporation of other useful
techniques such as amortized analysis. We demonstrate the applicability of the bijective ratio
to one of the fundamental online problems, namely the continuous k-server problem on metrics
such as the line, the circle, and the star. Among other results, we show that the greedy algorithm
attains bijective ratios of O(k) consistently across these metrics. These results confirm extensive
previous studies that gave evidence of the efficiency of this algorithm on said metrics in practice,
which, however, is not reflected in competitive analysis.

*This work was supported by project ANR-11-BS02-0015 “New Techniques in Online Computation” (NeTOC).
The second author is supported in part by the European Research Council under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 648032).


http://arxiv.org/abs/1607.06132v1

1 Introduction

Competitive analysis provides a simple yet effective framework for evaluating the performance of
online algorithms. Given a cost-minimization problem, the competitive ratio of the online algorithm
A is defined as sup, %(8)’ where A(o) and OPT(0) denote the cost of A and the optimal cost
on a request sequence o, respectively. This concept of comparing the worst-case performance of
an online algorithm (with no advance knowledge of the sequence) to an optimal solution (with
full access to the sequence) was first used by Graham in 1966 [24] to analyze algorithms for the
job shop scheduling problem. Following the seminal work of Sleator and Tarjan in 1985 [44],
competitive analysis became the standard yardstick in the evaluation of online algorithms, and
it has been instrumental in shaping online computing into a well-established field of theoretical
computer science. Overall, competitive analysis is broadly applicable and gives valuable insight
into the performance of online algorithms.

Notwithstanding the undeniable success of competitive analysis, certain drawbacks have long
been known. Most notably, due to its pessimistic (i.e., worst-case) evaluation of algorithms, it
often fails to distinguish between algorithms for which experimental evidence (or even plain in-
tuition) would show significant differences in terms of performance. One definitive illustration of
this undesirable situation is the well-known paging problem; here, paging strategies that are very
efficient in practice, such as Least-Recently-Used have the same competitive ratio as extremely
naive and costly strategies, such as Flush-When-Full [44]. Generally, competitive analysis is par-
ticularly meaningful when the obtained ratios are small; however, when the ratios are large (and
even more so, in the case of an unbounded ratio) it risks no longer reflecting what is observed in
practice. Such disconnects between the empirical and the theoretical performance evaluation have
motivated a substantial line of research on measures alternative to the competitive ratio. Some
of the known approaches are: the Maz-Mazx ratio [11]; the diffuse adversary model [32] [48] [49];
loose competitiveness [4T, 50]; the random order ratio [30]; the relative worst-order ratio [15, [14];
the accommodation function model [17]; and stochastic dominance as well as bijective and average
analysis 28] 18, 19, [42] 36}, B4, [3, 25, 4. 5]. We refer the reader to the surveys [23] 27] for an
in-depth discussion of such techniques.

Of particular interest in this work is (first order) stochastic dominance which defines a partial
order on random variables. A random variable X is stochastically dominated by a random vari-
able Y if, for all ¢ € R, we have Pr[X < ¢] > Pr[Y < ¢]. Clearly, if X is stochastically dominated
by Y, then E(X) < E(Y); however a much stronger conclusion can be drawn, namely that, for
the cumulative distribution functions of the distributions from which X and Y are drawn, denoted
by F' and G respectively, F'(¢) > G(c) for all c¢. That is, informally, F' has more probability mass
towards lower values than G. Moreover, it can be shown that E(h(X)) < E(h(Y)) for every increas-
ing function h. If we think of A as a utility function, then stochastic dominance provides a kind
of unanimity rule which informally states that X should be preferred to Y under any monotone
utility function (assuming these variables denote costs). For this reason, stochastic dominance has
been very useful in the context of decision theory and microeconomics, with applications varying
from portfolio selection to measuring income inequality in society. For a comprehensive discussion,
see Chapters 4 and 5 in the textbook [45].

Hiller and Vredeveld [25] applied the concept of stochastic dominance in the context of online
computing. More precisely, an algorithm A is stochastically no worse than an algorithm B with
respect to a given distribution over the request sequences if the random variable corresponding
to the cost of A is stochastically dominated by that of B. In particular, assuming the uniform



distribution over all request sequences of a given size, stochastic dominance is equivalent to bijective
analysis [27]. This latter notion was first introduced in [3] in the context of the paging problem
and was shown to be consistent with some natural, “to-be-expected” properties of efficient online
algorithms (e.g., the effect of locality of reference as well as lookahead) which competitive analysis
fails to yield. For a further discussion of the appealing aspects of bijective analysis, see [3, [5].

Definition 1 ([3]). Let Z,, denote the set of all request sequences of size n. The online algorithm
A is no worse than the online algorithm B on inputs of size n according to bijective analysis if
there exists a bijection 7 : I,, — T, satisfying A(o) < B(w(o)) for each o € I,,. Moreover, A is
bijectively optimal if the above holds for all online algorithms B.

The bijective ratio of online algorithms. Despite the appealing properties of bijective analy-
sis, its biggest deficiency is a rather serious one: given two online algorithms it may be very difficult
to compare them, in that it may be very hard to prove analytically the existence of the required
bijection; even worse, such a bijection may not even exist. Thus, this analysis technique may deem
algorithms incomparable across a wide variety of problems, and, in this sense, it does not give rise
to a real performance measure. This drawback implies that bijective analysis (and by extension,
stochastic dominance more generally) lacks the most desirable property of the competitive ratio;
namely the amenability of any given online problem to analysis. Such an observation could also
help explain why these techniques did not become as popular as competitive analysis, even though
the fundamentals and some limited applications can be traced to work contemporary of competitive
analysis. Calderbank et al. [I8] point towards such difficulties when observing in the context of
the k-server problem that “The prospects for successful analysis would seem to be better for the
circle. However, even in this case optimization questions may well be intractable since rules of the
simplicity of the [greedy] rule are unlikely to be optimal” (see also the discussion in Section [2)). For
this reason, [3] introduced a substantially weaker technique termed average analysis that compares
the average cost of two algorithms over requests of the same length. In particular, we say that A
is no worse than B on inputs of size n according to average analysis if > . A(o) <> .7 B(0).
Note that, if A is no worse than B according to bijective analysis, then the same relation holds for
average analysis; however the opposite is not necessarily true.

In this paper, we propose (and apply) an extension of bijective analysis that makes the technique
applicable to any given online problem: this extension gives rise to a performance measure which we
call the bijective ratio. This is equivalent to an approximate stochastic dominance under a uniform
distribution and can be readily generalized to the stochastic dominance ratio for any distribution.

Definition 2. Given an online algorithm A and an algorithm B, and n € NT, we say that the
bijective ratio of A against B is at most p if there exists a bijection © : I, — 1, satisfying
A(o) < p- B(n(0)) for all n > ng. We denote this by A <y p- B. The bijective ratio of an online
algorithm A is at most p if, for every algorithm B, the bijective ratio of A against B is at most p.
The bijective ratio of an online cost-minimization problem is the minimum p for which there exists
an online algorithm with bijective ratio at most p.

We note that, in Definition B, one may allow B to be either an online, or an offline algorithm
(and in particular, the offline optimum). We can thus distinguish between the bijective ratio of an
online algorithm against online or offline algorithms. We clarify that unless explicitly specified, “the
bijective ratio of an algorithm A” assumes a comparison against the offline optimum.



The above distinction is motivated similarly to the Max/Max ratio introduced by Ben-David
and Borodin [I1], which is defined as the ratio of the maximum-cost sequence for algorithm A over
the maximum-cost sequence for algorithm B (which may be online or offline), for a given sequence
length. We emphasize that the bijective ratio is a strong generalization of the Max/Max ratio;
namely it implies that the cost of the i-th most expensive sequence of A is at most p times the cost
of the i-th most expensive sequence of B for all i, and not just for the most expensive sequences
of A and B.

Definition 2l is a natural extension of bijective optimality in the spirit of measures such as the
competitive and the approximation ratio. It also upholds the essential aspect of bijective analysis
in that every sequence for which A incurs a certain cost can be bijectively mapped to a sequence on
which B is at most p times as costly. Furthermore, a bijective ratio of p implies that the average-cost
ratio of the two algorithms is at most p, but also the far stronger conclusion that the contribution
of sequences to the average costs of the two algorithms can be attributed in a local manner, as
argued above. This aspect extends to any stochastic dominance ratio for any distribution. Both
properties are desired extensions of bijective optimality, in the sense that they provide a much
stronger comparison than the one induced by average-case analysis.

Last, we note that in the above definitions, the performance ratios are strict; however, as with
the competitive ratio, one can easily define asymptotic ratios. For instance, the asymptotic ratio of
A against B is at most p if there exists a constant ¢ such that A(o) < p-B(w(o)) + ¢ for all n > ny.

Contribution. Our main objective is to expand the applicability of stochastic dominance and,
more specifically, bijective analysis. We accomplish this in two ways: first, by giving general,
sufficient conditions for bijectively optimal algorithms; second, by applying the measure of bijective
ratio to one of the canonical online problems, namely the k-server problem, as a case study.

We begin our study of bijective analysis in Section [3] in which we extend the techniques applied
in [5] so as to prove the bijective optimality of certain types of greedy algorithms for a much wider
class of problems than paging and list update. In particular, we identify some essential conditions
under which a certain subclass of greedy-like algorithms (as formally defined in [I3]) are optimal.
We then apply this general framework to the 2-server problem on the continuous circle, the weighted
paging problem, and the reordering buffer management problem. The above are all widely studied
problems in online computing. In particular, the result for the 2-server problem on the continuous
circle improves on the result of Calderbank et al. [I8] which holds for the average case only. We also
note that Anagnostopoulos et al. [2] studied the steady state of a stochastic version of the k-server
problem on the circle, and reproved the optimality, in the average case, of the greedy algorithm
when k£ = 2.

Our second contribution addresses the situation in which, according to stochastic dominance
or bijective analysis, optimal algorithms may not necessarily exist. More precisely, we demonstrate
the applicability of the bijective ratio in the analysis of the continuous k-server problem on the line,
circle, and star metrics. Our main focus is on the performance of the greedy algorithm which is
motivated by several factors. First, and most importantly, there is ample experimental evidence that
in practice the greedy algorithm performs well in several settings [I8, 10, 40, [41]. However, these
results are in stark contrast with competitive analysis since the greedy algorithm has an unbounded
competitive ratio even on the line. As noted in [40], “the [experimental] results demonstrate that
[Work Function Algorithm (WFA)] performs similarly or only slightly better than a simple heuristic
such as the greedy algorithm, although according to theory it should perform much better”. In



this sense, there is a big disconnect between theoretical and practical behaviour which, perhaps
surprisingly, has not received as much attention from the theoretical computer science community
as other problems such as the paging problem. Our results demonstrate that bijective analysis can
help bridge this gap. More precisely, we show that the greedy algorithm has bijective ratio O(k)
in the considered metric spaces. Note that, for the k-server problem on the circle, we obtain a
bijective ratio of k, while the best-known competitive ratio is 2k — 1 by the analysis of the wra [12].

Another appealing property of the greedy algorithm for the k-server problem, which is also true
for the other online problems we study, is that they are among the simplest memoryless algorithms
one can devise. Memoryless algorithms are very desirable, in general, and are particularly important
for paging problems [39], and controlling disk heads [I8]. In the context of the k-server problem, in
particular, it is known that WFA is prohibitive in practice as it requires a full history of the requests
and is much more complicated to implement than the simple greedy algorithm [10, 40, 41]. Our
result on the bijective optimality of a greedy policy concerning the weighted paging problem is of
note given that [20] showed that no deterministic memoryless algorithm has bounded competitive
ratio for this problem.

In Section [, we first show that the greedy algorithm (denoted by GREEDY) is not an optimal
online algorithm for 2-server on the line, even for average-case analysis (which implies the same
result for bijective analysis). This improves on a result of Calderbank et al. [I8] that showed that
there exists a semi-online algorithm (that knows the length of the sequence) that outperforms
GREEDY only on the last two requests. We also show that no online algorithm has a strict bijective
ratio better than 2 for this problem. This immediately raises the question: How good (or bad) is
GREEDY? We address this question by showing that GREEDY has a strict bijective ratio of at most
k and 2k for the circle and the line, respectively; for the line, we also obtain an asymptotic bijective
ratio at most 4k/3. This analysis is almost tight, since we show that the asymptotic bijective
ratio of GREEDY is at least k/3 — € and k/2 — ¢, for the circle and the line, respectively. We also
consider the algorithm K-CENTER [I1], which anchors its servers at k points of the metric so as to
minimize the maximum distance of any point in the metric to a server; it then serves each request
by moving the closest server which subsequently returns to its anchor position. In contrast to the
results for GREEDY, K-CENTER has an asymptotic bijective ratio of 2 for the line and the circle
which generalizes the known bound on the Max/Max ratio of this algorithm [IT]. In terms of a
direct comparison of online algorithms, we obtain that GREEDY has a bijective ratio of at most 2k /3
against K-CENTER. It is worth mentioning that our results expand the work of Boyar et al. [16]
who showed that GREEDY is bijectively optimal for the 2-server problem on a very simple, albeit
discrete metric consisting of three colinear points (termed the baby server problem).

Last, in Section [B] we consider the continuous k-server problem on star-like metrics. Here, we
show that the bijective ratio of the greedy algorithm is at most 4k. On the negative side, we
show that K-CENTER is unbounded for such metrics. This raises an interesting contrast between
the bijective ratio and the Max/Max ratio: while K-CENTER has Max/Max ratio at most 2k for
k-server on any bounded metric space, when considering the bijective ratio (which, as noted earlier,
generalizes the Max/Max ratio), this algorithm becomes very inefficient.

In terms of techniques, the transition from exact to approximate bijective analysis necessitates
a new approach that combines bijective analysis and amortization arguments. In particular, we
note that all previous work that establishes the bijective optimality of a given algorithm [3| 4] [5] [16]
is based on inductive arguments which do not immediately carry over to the bijective ratio. For
instance [5] crucially exploits the fact that for p =1, if A <, p- B and B =} p-C, then A <;, C. This



obviously only holds for p = 1, i.e., for optimality. We thus follow a different approach that is based
on a decoupling of the costs incurred by the compared algorithms (stated formally in Lemmas [I7]
and [I8]) by formulating two desirable properties: the first property captures the “local” efficiency of
the greedy algorithm (but also potentially other good algorithms), while the second property allows
us to define best and worst server configurations (or approximations thereof) that provide insights
into the choice of the appropriate bijection. Combining these properties yields the desired results.
For line and star metrics, in particular, we resort to amortized analysis using explicit potential
functions which is the first example of a combination of bijective and amortized analysis.

We conclude this section with two observations. First, we use the bijective ratio both to compare
algorithms against the optimal offline algorithm (similar to the competitive ratio) and to directly
and indirectly compare online algorithms. As an example of indirect comparison, Theorem
implies that K-CENTER has a bijective ratio of at most 2 against GREEDY, which, in combination
with Theorem [I6] implies that GREEDY has a bijective ratio of Q(k) against K-CENTER for the
line and the circle. The latter is asymptotically tight due to a direct-comparison result (stated
in Theorem 25]). Second, while our focus is mainly on the greedy algorithm for reasons argued
earlier, our techniques (in particular the decoupling Lemmas [I7 and [I8]) are not tied to GREEDY or
K-CENTER, and are potentially applicable to a wider class of algorithms.

2 Related work and preliminaries

Related work. Stochastic dominance (cf. [43 37, [45, 27]) is a widely established concept in
decision theory. Optimal algorithms, assuming certain pertinent distributions, have been identified
for various online problems such as the paging problem [3| 5] 26], the list update problem [4} [5],
routing in array mesh networks [36], bin colouring [25] and in the online construction of Bloom
filters [34]. The first application of stochastic dominance for the analysis of online algorithms can
be traced back to [28,[42] in the context of the two-headed disk problem. This problem is related to
the k-server problem but with a different cost function. Given k mobile servers on a metric space,
request appear on the points of the metric space and the goal is to minimize the distance travelled
to serve these requests. During the time a request is being served, the other servers can re-position
themselves at no cost. This renders the decision of which server to use trivial (it will always be the
closer server) and puts focus on the question of where to place the other servers. Hofri showed that
the natural greedy algorithm for this problem on the line is optimal in average and conjectured that
it is stochastically dominated by every other algorithm under a uniform distribution [28] which was
proven by Seshadri and Rotem [42].

The k-server problem , originally proposed by Manasse et al. [35], involves k mobile servers
over a metric space. Upon a request to a node, a server must be moved to it. The incurred cost is
the overall distance traversed by the servers. The k-server problem generalizes the paging problem
and has motivated an outstanding body of research (see the surveys [22] and [31]). In general
metric spaces, the Work Function Algorithm (WFA) of Koutsoupias and Papadimitriou is (2k — 1)-
competitive [33]; the best-known lower bound on the deterministic competitive ratio is k [35].
WFA is also known to be k-competitive on the line [9] as well as for two servers in general metric
spaces [22], and it is the best known algorithm for the circle [12]. Chrobak and Larmore showed
that the algorithm Double Coverage, which moves certain servers at the same speed in the direction
of the request until a server reaches the requested point, is k-competitive for the tree metric [21].
Calderbank et al. studied the 2-server problem on the line and circle [18], and the n-dimensional



sphere [19]. They focused on the average case and, in particular, calculated the expected cost
of GREEDY on the circle. Moreover, [I8] presents experimental data that show that GREEDY is
relatively close in performance to the offline optimal algorithm on the line. Similar experiments,
for a variety of metric spaces and algorithms, including GREEDY, are presented in [10} 40} 41]. In
a related work, Anagnostopoulos et al. [2] studied the steady-state distribution of GREEDY for the
k-server problem on the circle.

Boyar et al. [I6] provided a systematic study of several measures for a simple version of the
k-server problem, namely, the two server problem on three colinear points. In particular, they
showed that GREEDY is bijectively optimal. Concerning the Max/Max ratio, [I1] showed that the
algorithm K-CENTER is asymptotically optimal up to a factor of 2 among all online algorithms and
up to a factor of 2k from the optimal offline algorithm.

Preliminaries. We denote by o a sequence of requests, and by Z,, the set of all request sequences
of size n. Following [5], we denote by o[, j] the subsequence o[i]...o[j]. We also use sometimes
o; to refer to the i-th request of o, namely oli]. For the k-server problem, we denote the distance
between two points x,y by d(x,y). Unless otherwise noted, we assume that both the line and the
circle have unit lengths.

Since, for continuous metrics, Z,, is infinite, one needs to be careful about the allowable bijec-
tions. We model the continuous k-server problem using discrete metrics in which nodes are placed
in an equispaced manner; as the number of nodes approaches infinity, this model provides a sat-
isfactory approximation of the continuous problem. For instance, we approximate the continuous
line (resp. circle) by a path (resp. cycle) in which vertices are uniformly spaced, i.e., all edges have
the same length which may be arbitrarily close to zero. However, we note that the techniques we
use in this paper are applicable even for the formal definition of the continuous problem, i.e., even
when the set of all request sequence of size n is infinite. However, in this case one needs to be
careful about the allowable bijections. For instance, we should not allow bijections that map the
unit line to segments of measure strictly smaller than one. For this reason, we restrict the allowable
bijections to interval exchange transformations [29]. These transformations induce bijections of the
continuous space [0, 1] to itself that preserve the Lebesgue measure. Note that an interval exchange
transformation is continuous with the exception of a finite number of points. In particular, we
apply such transformations when constructing the bijection request-by-request.

Given an online algorithm A, we say that the configuration of A after serving any sequence of
requests o is the state of the algorithm immediately after serving o, where the notion of “state”
will be implicit in the definition of the online problem. For example, in the k-server problem, this
would be the position of the servers in the metric space.

3 A sufficient condition for optimality of greedy-like algorithms

In this section, we show how the techniques of [5] can be applied in a variety of online problems, so
as to prove that certain greedy algorithms are bijectively optimal among all online algorithms. To
this end, we first need a criterion that establishes, in a formal manner, the greedy characteristic.
More precisely, consider an online algorithm that must serve request o; after having served the
sequence o[l,i — 1]. We say that an algorithm is greedy-like if it serves each request o; in a way
that minimizes the cost objective, assuming this request o; is the final request. This definition



is motivated by a similar characterization of “greediness” in the context of priority algorithms as
defined by Borodin et al. [13].

Naturally, not all greedy-like algorithms are expected to be bijectively optimal. For instance, for
the classic paging problem, all lazy algorithms are greedy-like, however, as shown in [3] [5], assuming
locality of reference, only LRU is optimal. Therefore, one needs to chose a “good” algorithm in this
class of greedy-like algorithms. Let GG denote such a greedy-like algorithm. We say that A is G-like
on o; if, after serving o[1,i— 1], A serves request o; as G would. Note that the G-like notion cannot
be characterized in general for all online problems. It needs to be defined for specific problems
and specific greedy-like algorithms (e.g., the definition of an “LRU-like” algorithm in [5]). Given
sequences over Z,, Algorithm A is G-like on the suffiz [j,n] if A serves all requests o;...0, in a
G-like manner. The following definition formally describes algorithms for which the G-like decision
can be moved “one step earlier” without affecting performance with respect to bijective analysis.

Definition 3. Suppose that A is an online algorithm over sequences in I, such that A is G-like on
the suffix [j + 1,n]. We say that A is G-like extendable on j if there exists a bijection 7 : T, — T,
and an online algorithm B with the following properties.

e For every o € L,, B makes the same decisions as A on the first j — 1 requests of o.
e For every o € 1,, B is G-like on o;.
o m(0)[1,j] = o[1,j] and B(n(0)) < A(0).

Informally, A is G-like extendable if it can be transformed to another algorithm B that is
“closer” to the statement of a G-like algorithm and is not inferior to A according to bijective
analysis. We note that Definition [3 is motivated by the statement of Lemma 3.4 in [5]; in contrast
to the latter, it applies not only to paging (and the LRU algorithm) but to all online problems for
which there is a well-defined G algorithm with the above properties (and in particular, is greedy-
like). This definition is instrumental in proving the optimality of G; in particular, we obtain the
following theorem. The proof follows along the lines of the proof of Lemma 3.7 and Theorem 3.8
in [5].

Theorem 4. If every online algorithm A (over requests in I,,) that is G-like on the suffiz [j + 1, n]
is also G-like extendable on j, for all 1 < j < n, then G is optimal.

Proof. Consider an arbitrary algorithm ALG and any request sequence o € Z,,. We will show that
there exists a bijection 7 : Z,, — Z,, such that G(o) < ALG(7(0)).

Fix an arbitrary o € Z,, we will show by reverse induction on the requests that the theorem
holds. More precisely, let C; be the set of all algorithms that are G-like on o[i,n] and serve
o[l,7 — 1] exactly as ALG. By reverse induction on the indexes of o, we show that, for every
algorithm ALG, there exists an algorithm C; € C; and a bijection p; such that C;(0) < ALG(p;(0))
and p;(o0)[1,4] = o[1,1].

For the last request, define y, to be the identity function, and define C,, to serve o[l,n — 1]
exactly as ALG and to serve o, in a G-like manner. The claim follows immediately from the fact
that G is greedy-like.

Consider the inductive step from 7 + 1 to i. From the induction hypothesis, there exists an
algorithm C;1 € C;41 such that

Cit1(0) < ALG(pi+1(0)) - (1)



By the theorem statement, C;y; is G-like extendable on i and, by Definition [B] we have an
algorithm B; and a bijection 7; such that

Bi(0) < Cini(m;(0)) < ALG(pis (17 (0))) (2)

where the last inequality follows from (). Note that m; '(0)[1,4] = m;(0)[1,i] = o[1,1]
By applying the induction hypothesis on algorithm B;, there exist an algorithm C; € C;11 and
a bijection y, ; such that

Ci(0) < Bi(pi11(0)) < ALG(nig1(m; (41 (0))))

where the last inequality follows from (2)).

Since C; € Ciy1, C; is G-like on o[i + 1,n]. Moreover, as C; € C;41 and is based on B;, Cj is
G-like on o[i] as it serves o[1,1i] exactly as B; and, by Definition Bl B; is G-like on o[i]. It follows
then that C; serves o[l,i — 1] exactly as ALG and is G-like on o[i,n]. Hence, C; € C;. Define
i i= pip1 0Tt o tiyq- Note that p;(o)[1,4] = qu(ﬂi—l(ugH(U[l,i]))) = o[1,] and the inductive
step follows.

After the induction, there exists an algorithm C; € C;. Algorithm C} is G-like on o[1,n] and,
therefore, G(0) = C1(0) < ALG(7(0)), where 7 := ;. O

We will demonstrate the applicability of this framework by showing optimality of greedy-like
online algorithms for three well-known online problems: the 2-server problem on the circle, the
weighted paging problem and the reordering buffer management problem.

3.1 The 2-server problem on the continuous circle

We begin with the 2-server problem on the continuous circle. Here the candidate algorithm G is
the obvious greedy algorithm (with an arbitrary tie-breaking rule) that serves a request by moving
the server closer to the request, and the G-like notion is obviously well-defined.

Theorem 5. GREEDY is optimal for 2-server on the circle.

Proof. Let A denote any online algorithm that is G-like on the suffix [j + 1, n], for some j € [1,n].
From Theorem M it suffices to prove that A is G-like extendable on j. We will show the existence
of an appropriate online algorithm B and a bijection 7, according to Definition Bl In particular,
since the definition requires that 7(o)[1,j] = o[l,j], and that B makes the same decisions as A
on o[l,j — 1], we only need to define 7(o)[j + 1, n], as well as the decisions of B while serving the
latter sequence of requests.

Consider the request o;: if A serves this request in a G-like manner (i.e., greedily), then the
lemma holds trivially. Otherwise, note that after serving o[1,j — 1] and w(o)[1, 7 — 1], respectively,
A and B have the same configuration. Namely, if a1, a2 and by, bs denote the servers for the two
algorithms at this configuration, we have that a; = b1 and ap = bp. Since A does not serve o;
greedily, we can assume, without loss of generality, that d(az,0;) > d(a1,0;) and that A serves the
request using as (see Figure [[l for an illustration). Let D = d(ag, 0;) —d(a1,0;), and let 7[j +1,n]
denote the sequence which is derived from o[j + 1,n] by shifting each request by d(ai,0;) in the
direction opposite to the move of as (in the example of Figure [I this is done clockwise). We then
define the mapping 7 (o) as w(o) = o[1, j]-7[j+1,n|; it is straightforward to show that this mapping
is bijective in Z,,.
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(a) The configurations right before 0. (b) The configurations and actions after serving o;.

Figure 1: An illustration of the bijection that shifts the requests around the circle by a distance of
d(a1,0;) and the first action of A after the configurations of A and B diverge on request o;

Next, we define the actions of algorithm B over the sequence 7(c)[j + 1,n]. In particular, note
that B serves the request o; = (o) greedily; moreover we require that B subsequently moves the
server by by a distance equal to D (in the example of Figure [l this is done counter-clockwise). It
can be shown by induction on [, that, for all I € [j + 1,n], if servers ay,as are at distance z right
before A serves oy, then servers by, by are at distance x before B serves m(0;); that is, B can serve
the request 7(o;) by moving one of its servers that is in the same position, relative to the shift, as
the server of A that serves o;, and thus the two costs are identical. In conclusion, the cost of A on
o[j+1,n] is the same as the cost of B on 7(c[j+1,n]), which further implies that A(c) = B(w(0)),
which concludes the proof. O

3.2 The weighted paging problem

Next, we consider the weighted paging problem. This is a generalization of the standard (uniform)
paging problem, in which each page p is associated with an eviction cost ¢,, and has generated
an impressive body of work from the point of view of competitive analysis (see e.g., [20} 40} ]
and references therein). It is well known that the weighted paging problem for a cache of size k is
equivalent to the k-server problem in a discrete star graph, assuming there are no requests to the
center node of the star. More precisely, the star has as many edges as pages, and the weight of
each edge is equal to half the eviction cost of the corresponding page; last, requests may appear on
any leaf of the star.

Consider the simple greedy algorithm G that, upon a fault, evicts from the cache a page
of smallest cost; clearly, this algorithm is greedy-like. The proof of the next theorem relies on
Theorem [ (as in the case of the proof of Theorem [). However, unlike Theorem [ (and unlike
the proof of the bijective optimality of greedy/lazy algorithms for unweighted paging in [3]), the
proof is technically more involved, due to the asymmetry of the cost requests (which complicates
the argument for the G-like extendability of all possible online algorithms).

Theorem 6. GREEDY is bijectively optimal for weighted paging.

We give the proof in the framework of the k-server problem on the discrete star (which as
explained, is an equivalent formulation of the weighted paging problem). Let A denote any online
algorithm that is G-like on the suffix [j + 1,n] for some j € [1,n]. From Theorem [ it suffices
to prove that A is G-like extendable on j. We will show the existence of an appropriate online
algorithm B and a bijection 7, according to Definition Bl In particular, since the definition requires
that 7(o)[1,j] = o[1, j], and that B makes the same decisions as A on o[l,j — 1], we only need to
define 7(0)[j + 1,n|, as well as the decisions of B while serving the latter sequence of requests.
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Consider the request o;: if A serves this request greedily, then the lemma holds trivially.
Otherwise, note that after serving o[1,j —1] and 7(0)[1, j — 1], respectively, A and B have the same
configuration. For concreteness, let aq,...,ax, and by, ..., b, denote the configurations of A and B
after serving ol[l,j — 1], and m(0)[1,7 — 1], respectively, with a; = b;, for all i € [1,k]. Moreover,
let v; denote the nodes on which a; and b; lie, right after A and B have served the last request
of the sequence o[l,j — 1] = w(0)[1,7 — 1], and let ¢; denote the cost of the edge to which v; is
incident. We can assume, without loss of generality, that A serves request o; by moving the server
from position a;, whereas B serves request (o) = o; by moving server by (hence ¢; > c3). We
emphasize that indices “1” and “2” will be used throughout the proof to identify these specific
servers (aq,by1,a2,be) as well as the nodes v1, v, defined as above.

Given a request 7 to some node of the star (other than the center), we define 7 as follows:

ai, if r =aq
T =< as, ifr=a
T, otherwise.

As a next step, we need to define an appropriate 7(o) as well as the actions of the algorithm B
(relative to the decisions on A on o). We already stipulated that 7(o)[1,j] = o[1,j], and we have
also determined the decisions of B on the first j requests in 7(o)[1,j] = o[l,j]. We will next
define, in an inductive manner, both the bijection, as well as the decisions of B, for all sequences
in 7(o)[j + 1,n]. For all o; > j + 1, define w(0;) as follows:

o1, A and B have the same configuration after serving o[1,l — 1]
m(oy) = and 7(o)[1,1 — 1], respectively,

7;, otherwise.

The mapping 7(o) is then defined, in the natural way, as 7(o1)...7(0y,). It is straightforward to
verify that this mapping is indeed bijective.

We will next inductively (I > j+1) define how algorithm B serves request m(o;). We first intro-
duce some useful notation. Suppose that after serving sequences o[1,1] and 7 (o)[1,], respectively,
A and B have servers at the same node z. If a, denotes the server of A that is located on z, then
we define by to be B’s server that is located on z.

We distinguish the following cases, in order to properly define B.

e If A and B have identical configurations right before serving o; and 7(0;), respectively, then
both A and B serve their requests identically (and thus are in the same configurations right
after serving the corresponding requests).

e If A and B do not have identical configurations right before serving o; and m(0;), then we
consider the following subcases:
— Case 1: If 0y € {v1,v2} and server ay is at the node of request &; = 7(0y), then:

* subcase la: If A serves o; by moving server ag, then B serves 7(o;) by moving b;.

* subcase 1b: If A serves o; by moving server a, with ¢ # 2, then B serves 7(o;) by
moving by . See Figure 2al for an illustration.
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— Case 2: If o, € {v1,v2} and ay is at the node of request o; then B serves m(o;) by
moving b .
— Case 3: If 0y ¢ {v1,v2} then we consider the following subcases:
* subcase 3a: If A serves o; by moving server a,, with ¢ # 2, then B moves server
by -
* subcase 3b: If A serves o; by moving server as, then B serves 7(o;) by moving by.
See Figure 2h] for an illustration.

a2,07 a2
b1, 01 by
Qq, bq’ 01,01
(a) An illustration of subcase 1b (b) An illustration of subcase 3b

Figure 2: An illustration of subcases 1b and 3a in the statement of algorithm B

The following invariant will be instrumental in proving that algorithm B (as shown above) is
well-defined, and that B is bijectively no worse than A.

Lemma 7 (Invariant). (i) For all requests oy,m(0y), if A and B are not in the same configuration
right before serving these requests, respectively, then either (ai,by) = (vi,v2), or (a1,be) =
(1)2, 1)1) .

(ii) Prior to serving o;,m(0y), either A and B (respectively) are in identical configurations, or
their configurations only differ in that by is not at a node occupied by a server of A, and,
likewise, as is not at a node occupied by a server of B.

Proof. The proof is by induction on [. Suppose that the invariant holds right before A and B serve
requests o; and 7(0y), respectively. We will show that the invariant holds after these requests are
served by verifying that all cases in the statement of B satisfy the invariant. For succinctness, we
will use the expression “before/after the requests” to refer to “immediately before/after serving the
corresponding requests”.

e If A and B have identical configurations before the requests, then so they do after the requests,
and the invariant holds trivially.

e If A and B do not have identical configurations before the requests, we consider the corre-
sponding cases and subcases of algorithm B.

— subcase la. This subcase maintains the invariant because if, say (a1,b2) € (v, v2) prior
to the requests, then (ai,b) € (v2,v1) after the requests. Similarly if (a1, b2) € (ve,v1)
before the requests, then (aj,by) € (v1,v2) after the requests.

— subcase 1b: After the requests, A and B are in the same configuration, so the invariant
is maintained (see also Figure [2]).
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— Case 2: This case trivially maintains the invariant since A and B do not move any
servers.

— subcase 3a: Part (i) of the invariant holds trivially. Invariant (ii) is maintained because
A and B move servers from the same node (say x) to the same node (say y), with

z,y & {v1,va}.
— subcase 3b: After the requests, A and B are in the same configuration, thus the
invariant is maintained.

O

We can now use Lemmal7l (and, in particular, Part (ii)) in order to show that B is well-defined.
More precisely, Part (ii) of the lemma implies that B makes well-defined decisions in case 2, as well
as subcases 1b, 3a and 3b; all other cases or subcases are trivially well-defined.

Having established the consistency of B, we proceed to the last step of the proof, namely to
show that A(c) < B(w(0)). Let 6 be equal to A(oj) — B(n(0;)); in words, ¢ is the difference in
the cost incurred by A and B when serving o; and 7(o;), respectively (recalling the notation we
introduced early in this proof, this cost is equal to 6 = ¢; — ¢2). The following lemma shows,
informally, that as long as A and B are in different configurations, A has payed at least J more
than B, and when A and B reach the same configuration, A has paid at least as much as B.

Lemma 8. Let oy and w(o;) denote the current requests that are about to be served by A and B,
respectively. Then

(i) If A and B are in the same configuration prior to serving o; and w(oy), respectively, then
A(o[1,1]) = B(n(a[1,1])).

(ii) If A and B are not at the same configuration prior to serving o; and w(oy), respectively, then
A(o[L,l]) > B(w(o[1,1])) + 0.

Proof. The proof is by induction on [. Suffices to show that each case in the statement of B
maintains the statements (i) and (ii) of the lemma after A and B serve requests o; and 7(oy),
respectively.

If A and B are in the same configuration prior to serving o; and 7(o;), then A and B serve the
requests identically, and thus pay the same cost. Hence the lemma is satisfied trivially. Otherwise,
we consider the remaining cases in the statement of B:

e subcase la: In this case, the servers of A and B move the same distance, thus the lemma
holds.

e subcase 1b: In this case, A pays on oy, in the worst case, a cost § less than B on m(0;) (see
also Figure 2al). Thus the lemma holds.

e Case 2: The lemma holds trivially as both A and B pay zero cost (they have each a server
at the corresponding request).

e subcase 3a: A and B serve their requests at the same cost, thus the lemma holds.

e subcase 3b: This case is similar to subcase 1b: namely, A pays on oy, in the worst case, a
cost ¢ less than B pays on m(0y).
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The following corollary completes the proof that A is G-like extendable and shows that the
greedy algorithm is optimal. This completes the proof of Theorem

Corollary 9. A(o) > B(n(0)).

Proof. Suppose there is an index [ such that, after serving o[1,!] and 7(o[1,1]), A and B are in the
same configuration. Then from Lemma [8 A(c[1,1]) > B(w(c[1,1])). For all subsequent requests
in o[l + 1,n] and 7(o)[l + 1,n], from the statement of B, we deduce that A and B remain in
the same configuration; furthermore, A serves o(h) in the same way as B serves w(o(h)) (for all
I < h <n), and thus A(o(h)) = B(n(o(h)). Otherwise, there is no such index [ such that, after
serving o[1,!] and m(o[1,l]), A and B are in the same configuration, and Lemma [§ shows that
A(o) > B(w(0)) + 9 > B(n(0)). In both cases, we obtain that A(c) > B(w(0)). O

3.3 Reordering buffer management

As a third application of our framework, we consider the well-studied reordering buffer management
problem, introduced by Récke et al. [38]. It consists of a service station that has some active colour,
an initially empty buffer of size & and a sequence of coloured requests. Requests enter the buffer
sequentially and all items within the buffer that are the same colour as the active colour can be
served by the service station. If none of the items in the buffer have the active colour, the service
station must change its active colour at a fixed cost. The goal is to minimize the number of colour
switches. As with the other problems we consider in this paper, the reordering buffer management
problem has been studied extensively in the context of competitive analysis (see, e.g. [I} [7, [6] and
references therein).

For this problem, we define G as the greedy algorithm that switches (only if necessary) to a
colour ¢ for which the number of items of colour ¢ in the buffer is maximized among all colours (and
is thus trivially greedy-like). We once again rely on Theorem []in order to show bijective optimality.
The nature of this problem gives rise to some technical complications in the optimality proof, in
the sense that an algorithm may delay processing a request, (an option that is not meaningful in
the context of paging/k-server problems), which in turn complicates the comparison of A(c) and
B(w(0)) on a request-by-request manner.

Theorem 10. GREEDY is bijectively optimal for reordering buffer management.

For the reordering buffer management problem, the next item in the request sequence to enter
the buffer is called the current request. It is useful to define some notion of time for this problem.
At time step i, the current request is o;11. That is, the items o1, ..., 0; have entered the buffered
(and possible have been served). More precisely, “at time step ¢” refers to the precise moment that
o; enters the buffer. Moreover, without loss of generality, we assume that the current request enters
the buffer as soon as a slot is freed. At time n, all the items have entered the buffer and there is
no current request.

For this problem, there is a natural notion of “laziness”, as defined in [38], where the algorithm
only changes its active colour when otherwise it can no longer make any progress in the input.
Without loss of generality, we can assume that all the algorithms are lazy [3§].

With these notions, we get the following observation that will be useful for Theorem [I0
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Observation 11. For some T < 7', consider any lazy algorithm A at time T and any lazy algorithm
A’ at time 7' for a given request sequence o. All the items in the buffer of A either have been served
by A’ or are in the buffer of A’. This implies that, if A switches to a colour c that is not in the
buffer of A" at time 7', A advances to some time 7" < 7.

As in [38], a colour block is the set of items of the same colour that are served with a single
colour switch whereas a buffer colour block is the set of items of the same colour in the buffer. For
some algorithm A, Z4(o) are the buffer colour blocks at time 7 for o.

Let A denote any online algorithm that is G-like on the suffix o[j + 1,n] for some j € [1,n].
From Theorem Ml it suffices to prove that A is G-like extendable on j. We will show the existence
of an appropriate online algorithm B and a bijection 7, according to Definition Bl In particular,
since the definition requires that 7(o)[1,j] = o[1,j], and since B makes the same decisions as A
on o[l,7 — 1], we only need to define w(c)[j + 1, n], as well as the decisions of B while serving the
latter sequence of requests. If A is G-like on o[i + 1], we can define B as A and the claim follows.
Hence, for the rest of the proof, we assume that A is not G-like on o;.

Let x be the active colour of A after the colour switch at time ¢ and let y # x be a colour of
maximum cardinality in the buffer of A at time 1.

In order to define 7, we define a bijective mapping. Given a colour (or a request) r, we define
7 as follows.

x, ifr=y
r=qy, ifr==xa

r, otherwise.

Given a sequence of requests o = (01,...,0,), we define @ = (771,...,7,). The bijection 7 is
defined such that all the request after j have the colours x changed to y and y changed to z. More
formally, w(o) = o[1,4] - a[j + 1,n].

Now, we will define the actions of B for 7(c). For the requests 7(o)[1, j] = o[1, 5], Algorithm
B performs the same colour changes as A. Note that this ensures that the contents of the buffers
of A and B are the same at time j. For request o;, B must make a colour switch since A makes
a colour switch. Algorithm B switches to colour y, a colour of maximum cardinality in the buffer.
Let ® = |Z,| — | Z,|, where Z,, Z, € ZJA are the buffer blocks of colour y and z.

For the remaining requests, B will simulate A on o and maintain a queue of the colour switches
of A after time j, where a colour switch to colour ¢ by A is enqueued as €. Whenever B must make
a colour switch, it removes colours from the queue until the dequeued colour matches the colour
of a request in the buffer. This ensures that B will not make more colour switches than A. In the
following lemma, we show that B is well-defined and serves all the remaining requests.

Lemma 12. Algorithm B is well-defined over w(o).

Proof. Algorithm B is well-defined on 7(0)[1, j] = o(1,7) as it performs the same actions as A does
over o(1,j — 1) and then switches to a colour in the buffer at o;.

Now, consider the request sequence 7(o[j + 1,n]). Let @ be the sequence of colours that B
dequeues from its queue over 7(0), i.e., the list of colour switches of A after time j. We will show,
by induction on the indexes of (), that B is well-defined and will be able to serve the remaining
requests of m(o). Specifically, we will show that the following invariants are maintained throughout.

For a dequeued colour c, let 7/ be the time of B when c is dequeued and let 7 be the time step
of the colour switch in A. Let YA¢ (resp. X2"¢) be the items of colour y (resp. x) in the buffer at
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time 7 with an index more than j. The following invariants imply the correctness and completeness
of B:

1. 7>

2. for every Z € Z2(0), if there exists a Z' € Z5(n(0)) of the same colour, then |Z| < |Z’| and,
for every o, € Z, w(0), € Z'; and

3. YA < |XB| and | XA| < |V7]| and, for every o, € YA U X4, 7(0), € XEUYT.

Prior to the colour switch at time i+ 1, the buffers of A and B are identical. After serving X4,
Algorithm A is at time 7 and, after serving Y2, Algorithm B is at time 7/ > 7 4+ ®. Moreover,
this means that B will read more requests from the input than A and, hence, the second and third
invariants hold.

Assume that the invariants hold from index 1,...,¢ — 1 and consider the /-th element of ().
There are three cases to consider: (1) there are no items of colour Q[¢] in the buffer of B at time
7', (2) there are items of colour Q[{] # z in the buffer of B at time 7/, and (3) there are items of
colour Q[¢] = z in the buffer of B at time 7'.

e Case 1: There are no requests of colour Q[¢] in the buffer of B at time 7'.

— Invariant 1: By Observation Djﬂ, after the colour switch of Q[f], A is at time 7/ < 7.

— Invariant 2: Assume for contradiction that items of a colour ¢ enter the buffer of A
during this colour switch such that, for Z. € 24(o) and Z. € Z8(n(0)), |Zc| > |Z.].
This can only occur if there exists an 0; € Z, with an index greater than all the requests
in Z!, but that would contradict the fact that 7/ < 7.

— Invariant 3: By a similar argument, after time 4, every request that enters the buffer
of A with colour y (resp. z) must be in the buffer of B (but with colour § = z (resp.
Z = y), maintaining Invariant 3.

e Case 2: There are requests of colour Q[¢] # x in the buffer of B at time 7/. By Invariant
2, for Zgy € ZA(0) and Z&?[f] € Z8(n(0)), |Z&2m| > |Z.|, and B will make at least as
much progress in the request sequence as A. This guarantees all three invariants. The same
argument holds for Q[¢] = y from Invariant 3.

e Case 3:

— There are requests of colour Q[¢] = z in the buffer of B at time 7/. If this is the first
colour switch to x after 7, A will read at most ® requests that are not of colour y that
have already been read by B, taking A to time 7" < 7/. At 7”, there is additional space
for |[YA| items not of colour y in the space of the buffer of A. By Invariant 3, |Y4| is no
greater than the size of Xﬁ in the buffer of B. The progress made by A after time 7" is
no greater than the progress made by B after time 7/, guaranteeing all three invariants.

— If this is not the first colour switch to x after ¢, by Invariant 3, |YTA| is no greater than
the size of X 5 in the buffer of B. Again, the progress made by A is no greater than the
progress made by B, guaranteeing all three invariants.

'Note that, at this point, the sequences o and (o) are the same modulo a relabelling of the colour z to y and y
to x.
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Proof of Theorem[I0. From Lemma [I2] the algorithm B is well-defined. By the definition of B,
the number of colour switches of B over 7(o)[1, j] is the same as of A over o1, j] and the number

of colours switches of B over 7(o)[j + 1,n] is no more than A over o[j + 1,n]. Hence, B(w(0)) <
A(o). O

4 The bijective ratio of the k-server problem on the line and the
circle

4.1 Lower bounds

While Theorem [l shows that GREEDY is bijectively optimal for 2-server on the circle, a similar
statement does not hold for the case of the line metric. In fact, in Theorem [I3] we prove a stronger
statement, namely, we design an explicit online algorithm A which has a lower average-cost ratio
against GREEDY of at most ¢ for some constant ¢ < 1.

Theorem 13. For 2-server on the line, and requests over I, there is an online algorithm A and
constants c,c’ with ¢ < 1, such that .7 A(0) < ¢,z GREEDY(0) + .

Proof. Suffices to show that, if we chose a sequence o € Z,, uniformly at random, then E(A(0)) <
¢E(GREEDY(0))+ . Let x1, 29 € [0,1] with 21 < 2 be the two server positions of a configuration C.
We say that C is unfavourable for GREEDY if 21 < ¢/3 and (2/3)t < zo <t with ¢ € (0,1) a small
constant that we will choose later.

We prove the theorem in two steps. The first step shows that there is an algorithm that
essentially simulates GREEDY, but, when faced with an unfavourable situation for GREEDY, it can
outperform GREEDY by a constant factor. The second step is then to show that after starting in an
arbitrary configuration, GREEDY will find itself in an unfavourable configuration within a constant
number of requests with some probability p > 0.

We now formally define Step 1 and Step 2.

Step 1. Here we show that there is a ¢; < 1 for which the following holds. If C' is a configuration
that is unfavourable for GREEDY then there is an algorithm A such that for request sequences of
length exactly 3 we have E(A) < ¢; - E(GREEDY) and the final configuration after the three requests
are processed by A or by GREEDY is the same.

Step 2. Here we show that, for every fixed ¢t € (0, 1), starting from an arbitrary configuration (yi, y2),
GREEDY will find itself in an unfavourable configuration (x1,x2) with x9 < t within a constant
number of steps (depending on t) with positive probability p > 0 (also depending on ¢).

We now proceed with the details in the analysis of the two steps.

Analysis of Step 1: Algorithm A works as follows. Let 01,092,053 be three requests. Define the
positions

x3 = (5/8)xy + (3/8)x1, and (3)
24 = 1019 (4)

(see Figure ). On the first request, Algorithm A uses Server 1 (at that time positioned at x1) to
serve oy if (1/2)x; + (1/2)x2 < 01 < x3. In this case we say A was successful (at outperforming
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GREEDY) for the first request. If o1 does not satisfy these inequalities then Algorithm A simply
simulates GREEDY on all requests.

Figure 3: The figure depicts an unfavourable configuration for GREEDY and the intervals within
which the three subsequent requests need to appear so that the new algorithm outperforms GREEDY.
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On the second request, if A was successful for o1, then the algorithm serves request oo using
Server 2 whenever x4 < g9. We say that A was successful on the second request. In every other
case, Algorithm A simulates GREEDY. For that purpose, it places both servers to the positions they
would be in if GREEDY had been executed on o109 to begin with.

On the third request, Algorithm A simply simulates GREEDY, again meaning that it places both
servers to the positions in which they would be if GREEDY had been executed on o109073.

We will now compare the costs of A and the GREEDY algorithm. If A is unsuccessful in the first
step, then A and GREEDY have the same costs. The probability that A is successful in the first step
is at least x3 — (x2/2 + x1/2) > k for some constant k > 0. Assuming thus that A is successful on
the first request, A incurs a cost that is at most d(x3, x1) —d(z2, z1) larger than the cost of GREEDY.
Denoting by D; the average of the cost of A minus the cost of GREEDY in step i € {1,2,3}, we
obtain

Dl < k- (d(arg,xl) — d(xg,xl)).

We compare the cost of the second step under the assumption that A was successful in the first
step. If A is successful in the second step, then A incurs a cost that is at least d(x2,x3) smaller
than the one of GREEDY. This happens with probability (1 — x4). If A is unsuccessful, then A has
a cost that is at most d(z2, ;) larger than the one of GREEDY. We obtain an average difference in
cost of

D2 < k - (334 . d(xg,xg) — (1 — LE4) . d(xg,xg)).

We now compare the costs for the third request. If A was unsuccessful in one of the previous steps,
then the cost of A on the third request is the same as that of GREEDY. Otherwise, we consider
two cases. If x9 < 03 < (02 — x1)/2, which happens with probability at least (x4 — x2)/2, then
GREEDY serves o3 by moving Server 1. In comparison to the cost of GREEDY, algorithm A saves at
least d(z1,x2)/2. Otherwise, if o3 is outside of said range, the cost of A is at most d(x3, z1) greater
than the cost of GREEDY because the total difference of the two configurations is at most d(zs, z1).
This happens with probability at most x4. We obtain

D3 § k . (1 — LE4) . (x4d(a;3,a;1) — (334 — xg)/Q . d(a;l,xg)/2).

Substituting x3 and z4, using [B)) and (@) respectively, overall we obtain that D; + Dy + D3 <
—(1/2)k(zg — x1)z2(23 — 80x2). Thus, if ¢ (and hence x9) is sufficiently small, then, on average,
the cost of algorithm A is smaller by a constant amount than the cost of GREEDY.

Analysis of Step 2: Let t be a fixed number in (0,1). Starting from an arbitrary configuration C'

with constant probability after the first request, server two is in the right half of the line. Assuming
this, after the second request, with probability at least t/3, Server 1 is located at a position z1 < ¢/3.
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On subsequent requests as long as Server 2 is located to the right of ¢, there is a positive probability
that Server 2 moves a distance of at least (1/6)t towards Server 1 but not beyond (2/3)¢t. Thus,
with positive probability after at most 6/t steps Server 2 is at a position with (2/3)t < z9 <t and
Server 1 has not moved. O

Next, we will show a lower bound on the bijective ratio of any lazy, deterministic online algorithm
for the 2-server problem on the line (which also extends to general k-server on both the circle and
the line). The following proposition is useful in establishing lower bounds on the bijective ratio of
a given online algorithm A against an algorithm B that may be online or offline. Its proof follows
from the fact that under any bijection 7, there is at least one sequence o such that B(w(0)) < ¢
and A(o) > pe.

Proposition 14. Suppose that there are ¢ > 0 and ng such that, for alln > ng, |[{oc € Z,, : A(o) <
p-ct <|{o €Z,: B(o) <c}|. Then the bijective ratio of A against B is at least p.

Theorem 15. Any deterministic online algorithm for 2-server even on a line metric of three
equidistant points has strict offline bijective ratio at least 2.

Proof. We will show that there exists an initial server configuration which yields the bound. Sup-
pose that the three points on the line metric are numbered 1,2,3, from left to right, and that the
initial server positions are at the end points of the line, i.e., points 1 and 3. Let also d denote
the distance between two consecutive points on the line. For a given n > ng, define the set of
sequences S C Z,, such that o[i] € {1,3}, for all i <n —2, o[n — 1] € {2}, and o[n] € {1,3}. The
optimal offline algorithm can serve every sequence in S at a cost equal to d. In contrast, there
exists a ¢ € S such that any deterministic online algorithm A must pay at least 2d to serve o.
Namely, if A serves the request o[n — 1] by moving server 1, the sequence o with o[n] € {1} has
this property (symmetrically if A serves the request o[n — 1] by moving server 3). Last, note that
d is the cheapest non-zero cost at which a sequence in Z, can be served. We thus obtain that
o €Z,: A(o) < 2-d}| < |{o € Z, : opT(0) < d}|, and the theorem follows from Proposi-
tion [I4] O

We note that the lower bound of Theorem [[5] extends to general k-server on both the circle and
the line.

Last, in the following theorem, we show a lower bound on GREEDY under the Max/Max ratio
for the line which implies a lower bound on the bijective ratio.

Theorem 16. For any € > 0, the bijective ratio of GREEDY is at least % — ¢ for the line and at
least % — ¢ for the circle.

Proof. We show the result for the line. (The bound for the circle follows with a similar argument.)
Consider a line that runs from 0 at the left-most point to 1 at the right-most point. Let the servers
be labelled s1, s9,..., sk from left to right (in any configuration, including the initial). First, we
show that it is possible to force GREEDY to move all the servers close to 0 in a constant number of
requests. Specifically, define 0 := ¢/k. For any constant ¢, k2—_51 > ¢ > 0, we force GREEDY to move
s1 to 0 and to move all the other servers towards 0 so that d(s;, s1+1) < ¢’. An initial request is
placed at 0, forcing GREEDY to move s1 to 0. Iterating on ¢ from 2 to k — 1, requests are placed as
close as possible to the mid-point between s;_1 and s; so that GREEDY moves s;, continuing until

d(si—1,s;) < ¢. In total, this requires at most [log(1/8")](k — 2) + 1 requests.
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The remaining requests alternate between x := % + %5/ and 1. Note that x is past the mid-
point of 1 and s;_;. Hence, these requests (except possibly the first one) will be served by si at a
cost of more than 1/2 —§ =1/2 —¢/k.

The worst-case for K-CENTER occurs when all the requests are to an extreme point from any
server. This has a total cost of 1/k (1/(2k) to serve the request and 1/(2k) to return). For large
enough n, this gives a Max/Max ratio of k/2 — ¢ which implies the theorem.

By a similar argument, it is possible to force a server of GREEDY to travel at least 1/3 —e/k on
the circle for all but a constant number of requests. O

4.2 Upper bounds

We now consider upper bounds and provide sufficient conditions for showing that the bijective
ratio of an online algorithm A against an algorithm B (that may be online or offline) is at most
¢; these conditions are formally described in Lemma [ and Lemma [I8 Both lemmas require two
conditions stated in terms of individual requests, and their combination yields the desired bound.
We use the notation A(o[i]|B(c[l,i—1])) to denote the cost of A for serving request o[i] assuming a
configuration resulting from B serving sequence o1, — 1], where the suffix of the request sequence
is implied. For the k-server problem in particular, and the algorithms we consider, this is a well-
defined concept. Since B can be either offline or online, we further emphasize that, in the former
case, it is implicit that the decisions of B on o[l,j] are contingent on its acting on the entire
sequence o[1,n]. Last, we use A(o[i]) to denote A(o[i]|A(c[1,i — 1])).

Lemma 17. Suppose that there exists a ¢ > 1, a d > 0 and a bijection m over I, such that, given
an online algorithm A and an algorithm B, for all o € Z,, and all i < n, the following hold:

(i) A(oli]|B(o[l,i —1])) < d- B(ol[i]), and

(i) A(oli]) = A(m(o)[i]| B(w(0)[1,i —1])) < (¢ = d) - B(x(0)[i]),
then, A(o) < c¢- B(n(0)).

Proof. Using w(o) as the request sequence for (i) and adding both inequalities, we get A(o[i]) <
¢- B(w(0)[i]). The lemma follows by summing over all the requests. O

The following lemma formalizes a similar approach using amortized analysis.

Lemma 18. Given an online algorithm A and an algorithm B, let ® be any potential function
such that the amortized cost of A for oli] is a; = A(o[i]) + A®;, where AD®; = &; — P,;_q1, and Pg is
the potential prior to serving the first request. Suppose also that there exist ¢,d > 0 and a bijection
7w over L, such that, for all o € I,, and all i <n, the following hold:

(i) A(oli]|B(o[l,i —1])) < d- B(ol[i]), and
(ii) ai < c- A(m(o)[i]| B((o)[1,7 — 1])),
then, A(o) < c-d-B(m(0)) + ®¢ — Dy,.

Proof. Summing Inequality (ii) over all the requests gives

D ai=A(0) + @, — Bo < ¢y A(n(0)[i]| B(n(0)[1,i — 1)) .
=1

i=1
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Thus,
Alo) <c (Z A(m(o)[i]| B(m(0)[L,i — 1]))) + Q9 — P < cd- B(m(0)) + Po — Pn
i=1

where the last inequality follows from (i), using 7(c) as the request sequence. O

4.2.1 Defining the bijection

This section addresses the definition of a suitable bijection. Let § > 0 be a positive value, rep-
resenting the distance between any two adjacent points in the metric space. For a given server
configuration C, let Pg be the sequence of points in the metric space, ordered by their distance
from the closest server in C. That is, for all i < [P%|, D™N(PL[H]) < D™ (PLfi + 1]), where
D™in(PL[i]) is the distance from PY[i] to the nearest server in configuration C.

Definition 19. For the server configurations C1 and Cy, an ordered bijection (OB) is a bijec-

tion such that, for all i, Pgl [i] is matched to 7382 [i]. Let A and B be two algorithms; we define

748 (o) = 7B (0[1]...o[n]) to be any bijection of the form ﬂf’B(a[l])...ﬂf}’B(a[n]) such that

78 s the oB of the server configurations of A and B right after serving the sequences o[1,i] and

‘AB AB

m (o[1])... w27 (o]i—1]), respectively. Note that this definition is applicable to all metric spaces.
(When clear from the context, we drop the superscript of .)

As there may be multiple points at some distance d from the nearest server, each permutation
of the points at distance d represents a different bijection. In OB, we assume that ties are broken
arbitrarily. We assume for simplicity that both the line and the circle have unit length and that
d is chosen such that there exist points at positions i/(2k), for ¢ € [0,2k] (assuming an arbitrary
“0” point for the circle). A configuration has the k servers spaced uniformly along the line/circle if
there is a server at point i/(2k) for all odd i € [0, 2k].

We define the best configuration 1 under OB as a configuration C* such that, for any other
configuration C', D™1(PY,. [i]) < D™ (P4 [i]) for all points 7. The following lemma defines the best
configuration for the line and the circle.

Lemma 20. For the line and the circle, a configuration in which the servers are spaced uniformly
along the metric space is the best configuration.

Proof. We give the proof for the line (a very similar argument applies for the circle). Let C be
the configuration in which all the servers are uniformly spaced along the line. That is, the furthest
point on the line from the set of servers is at distance 1/2k. Note that, under our assumptions
about ¢ such a configuration always exists. By the definition of C, ignoring the first k& values of 0,
the values of D™I"(P[i]) increase by d every 2k steps. More formally,

0, forl1 <i<k
[%]-5, for k < i .

D™ (PR [i]) = {

Let C' be a configuration of the servers that is not C. In the configuration of C’, there must be at
least one point on the line with a cost higher than 1/2k. By the definition of C’, ignoring the first &

2For a given metric, the best configurations may not exist; however, for the circle and the line it does.
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values of 0, the values of D™%(PZ,) increase by § at most every 2k steps (i.e., D™®(PZ, [(—2k])+5 <
Dmin (P, []) for all £ > 3k).
Hence, there is a point j such that, for every point j” < j, D™1(PS[j"]) = D™"(P,[;"]) and,
for every point j/ > j, D™IN(PL[j]) > D™in(PL,[j']). Thus C is a best configuration.
U

Informally, in the following lemma, we compare the “worst” configuration to the best configu-
ration. That is, we bound from above the distances to all points from a server with respect to any
two configurations.

Lemma 21. For any 6 > 0 and any two configurations C1 and Cy of k servers on the line,
Dmin(Pg1 [i]) < 2/<;Dmm(77g2 [i]) for every i.

Proof. We make the natural assumption that in any configuration, there is no point that is occupied
by more than one server. We define W as the worst configuration, namely as the one that has the
property that, for any configuration C, D™1(Pg,[i]) > D™ (PL[i]) for all points i (as for the best
configuration, a worst configuration may not necessarily exist for every metric, but we will show
that it exists for the line and the circle). For the line, we claim that W corresponds to all the servers
being at one of ends of the line. In such a configuration, ignoring the first k& points at distance 0,
the values of D™ (PJ,[i]) increase by & at each step. More formally,

in oS s 0, for1<i<k
G {(z’ _ k)5, fork<i.

For every other configuration C', D™®(PJ,[i]) > D™ (P4 [i]).

Let C* be the configuration with the servers uniformly spaced along the line. By Lemma [20]
C* is the best configuration.

Consider the ratio of D™"(P,[i]) to D™ (P, [i]). Modulo the initial k& points at distance 0,
the values of D™ (P, [i]) increase by § every step (i.e., D™(PS,[¢ — 1]) + & = D™R(PY,[¢]) for all
¢ > k) and the values of PZ. increase by § every 2k steps (i.e., D™ (PE,, [(—2k])+5 = D™n(PL, [4])
for all ¢ > 3k). This ratio is maximized when i > 3k and (i — k) mod 2k = 0, for which it attains
a value of 2k. O

From Lemma 2I] and the notions of the proof, we also obtain the following.

Lemma 22. For any § > 0 and any two configurations C1 and Cy of k servers on the line or the
circle, if Pgl [i] is located between two adjacent servers of Cy, then Dmm(P(‘;1 [i]) < kDmin(Pg2 [i]).

Proof. From Theorem [21], the best configuration C* places the servers uniformly along the line and,
ignoring the first k values at 0, D™ (P2, [i]) increase by § every 2k steps (i.e., D™ (PL, [¢ — 2k]) +
§ = D™N(PL.[{]) for all £ > 3k). Hence, D™ (P2, [i]) > [(i — k)/2k]d and the claim follows if
DWin(PL[i]) < [(i — k)/2]6, which we show in the following.

For any other configuration C, let Pg(si) C Pg be the set of points between the servers s
and t in configuration C, ordered by the distance to the nearest server. As the points are be-

tween two servers, the values of Dmin(Pg(s 0 [i]) begin at ¢ and increase by § every 2 steps (i.e.,
D™ (P, (1)) = D™ (P, 5 [2]) = 8, and D™ (g, y[€—2])+8 = D™ (Pgy, »[f]) for all £ > 1).
Hence, as 7750( ) C P2, it follows that D™ (PL[i]) < [(i — k)/2]6. O

s,t
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4.2.2 Completing the analysis

We will now use the bijection 7 as defined explicitly in Definition 9] so as to establish our upper
bounds on the bijective ratio. An important observation is the following.

Observation 23. For any 6 > 0 and any server configuration C, the cost of GREEDY to serve a
request at point PY[i] is D™1(PY[i]) and the cost of K-CENTER is 2D™1(PL[i]).

From its statement, K-CENTER anchors its servers in the best configuration under OB. By
definition, to serve a request, the algorithm moves a server to a request and back to its original
position. Hence, we obtain that, for any 6 > 0 and the best server configuration C*, the cost of
serving a request for K-CENTER is 2D™" (P2, [i]). This immediately implies the following:

Theorem 24. K-CENTER has an asymptotic bijective ratio of at most 2 for the k-server problem
on the line and the circle.

We will now use the framework of Lemma [I7), and we begin by applying it to the circle metric.
Let B be any online or offline algorithm. First note that by the definitions of GREEDY and K-
CENTER, we have the following inequalities.

GREEDY(c[i)|B(o[l,i — 1]))
2 - GREEDY(0[i]|[K-CENTER(0[1,7 — 1]))

B(ali) (5)

<
< K-CENTER(0[7]) (6)

Theorem 25. GREEDY has a bijective ratio of at most k for the k-server problem on the circle.
Moreover, GREEDY has a bijective ratio of at most k/2 for the k-server problem on the circle against
K-CENTER.

Proof. We begin by proving the first part of the theorem, the second part follows along the same
lines.

Part 1: From ([B]), we have that
(k—=1)B(w(o)[i]) > (k — 1)GREEDY(o[i]|B(o[1,i — 1])) . (7)
In addition, from Lemma 22] it follows that
k - GREEDY (7 (0)[i]|B(mw(o)[1,7 — 1])) > GREEDY(0[i]) (8)

since every request on the circle is located between two servers. Adding (7)) and (8)), we thus obtain
that, for any o,

(k —1)B(w(0)[i]) > GREEDY(0[i]) — GREEDY(m(0)[i]|B(mw(o)[1,i — 1]) .
Using this with (B]) and applying Lemma [I7] we obtain the result.
Part 2: Inequality (6l) implies
(k — 1)k-CENTER(7(0)[i]) > 2(k — 1) - GREEDY(0[¢]|K-CENTER(0[1,i — 1])) . 9)
From Lemma 22]it follows that

2k - GREEDY (0 [i]|K-CENTER(0[1,i — 1])) > 2 - GREEDY(0[7]) (10)
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since every request on the circle is located between two servers. Adding (@) and (I0), we thus
obtain that, for any o,

(k — 1)K-CENTER(7(0)[i]) > 2(GREEDY(0[i]) — GREEDY(7(0)[i]|K-CENTER(7(0)[1,7 — 1]))) .
Using this with (@), and applying Lemma [I7], we obtain the result. O

We now move to the line metric. We first note that by combining (5] and Lemma 2] and by
applying Lemma [I7] we obtain a strict bijective ratio of 2k for GREEDY on the line. We will also
show a stronger, albeit asymptotic bound of 4k/3, using amortized analysis based on Lemma [I8
First, we show, a general bound for GREEDY on the line as compared to some algorithm B. Later,
we will choose appropriately the parameters in the statement of the lemma to compare GREEDY to
an arbitrary algorithm and to K-CENTER in particular.

Lemma 26. Let B be any algorithm for the k-server problem on the line such that
GREEDY (0 [i]| B(co[l,i — 1])) < dB(cli]) for d > 0. Suppose that there exist ci,co > 0 such that in
the configuration of GREEDY right before o;,

¢1GREEDY (o[i]|B(m(o)[1,i — 1])), if o[i] is between two servers

GREEDY(0[i]) < { , , .
CoGREEDY (o[i]|B(m(o)[1,i — 1])), otherwise.

2cacy

Then, for any o, GREEDY (o) < d - cater

diameter of the line.

- B(m(0)) +n , where n is a constant that depends on the

Proof. This proof makes use of a potential function argument. Define « to be equal to % We
define the potential function ¢ = —« Zfz_ll d(gi, gi—1), i.e., —a times the sum of the distances

between adjacent servers. Let a; denote the amortized cost for oli], i.e., a; = GREEDY(o[i]) + Ad;,
where A®; = ®; — ;1. We distinguish between the following cases, concerning each request oli].

e Case 1: oli] is between two non-outer-most servers.
In this case, the change in potential is A®; = 0 as the server that moves approaches one
adjacent server by a distance of B(o[i]) and moves away from its other adjacent server by the
same distance. Hence, we have an amortized cost

a; = GREEDY(o[i]) < ¢;GREEDY(o[i]| B(w(0o)[1,i — 1])) .

e Case 2: oli] is between an end-point and an outer-most server.
In this case, A®; = —aGREEDY(c[i]) and

a; = (1 — @)GREEDY(0[i]) < c2(1 — «)GREEDY (o [i)| B(7(0)[1,i — 1])) .

e Case 3: oli] is between an outer-most server and its adjacent server.
In this case, A®; = aGREEDY(0[i]) and

a; = (1 4+ a)GREEDY(0i]) < ¢1(1 4+ a)GREEDY (o [i]|B(w(0)[1,i — 1])) .
Overall, for any 4, a; < ¢1(1 + a)GREEDY(c[i]| B(m(0)[1,7 — 1])) as ca(1 — ) = c1(1 + ) > ¢;1. The

lemma follows by applying Lemma [I8] U
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Using Lemma and the properties of the OB, we obtain the following bounds for GREEDY
against any algorithm (including offline), as well as K-CENTER.

Theorem 27. Let B be any algorithm for the k-server problem on the line. Then for any o,
GREEDY(0) < %B(W(J)H—n , where 1 is a constant. Moreover, GREEDY (o) < %K—CENTER(F(O‘))—I—
n, where again 1 is a constant.

Proof. We determine appropriate values for d, ¢1, and ¢ in the statement of Lemma For the
first part of the theorem, d = 1 from (Bl), ¢; < k from Lemma 22] and c2 < 2k from Lemma 21
hence the first part of the theorem follows. For the second part of the theorem, ¢; and ¢y are as
above, and, from (), we have d = 1/2. O

5 The bijective ratio of the k-server problem on the star

In this section, we study the bijective ratio of the continuous k-server problem on the star. Here,
a star consists of m line segments (called rays), not necessarily of the same length, which have a
common origin called the center. One can think of such a metric as a transitional metric when
moving from the line to trees that allows us to draw certain interesting conclusions concerning the
performance of algorithms under the bijective ratio. Similar to the line, we represent this metric
by a spider graph, which consists of a set of paths (of potentially different lengths) that intersect
at the center, and in which all edges have the same length.

Recall that on the line, Theorem shows that K-CENTER has a bijective ratio of 2, whereas
Theorems [27] and [I6] show that GREEDY has a bijective ratio of ©(k). In particular, our analysis
of the bijective ratio of K-CENTER matches its Max/Max ratio [I1]. In contrast to our analysis
of the bijective ratio of K-CENTER and GREEDY, we show that on stars the bijective performance
of these algorithms changes in a dramatic way. More precisely, in Theorem 28 the bijective ratio
of K-CENTER is unbounded, while, in Theorem B0, we show that the bijective ratio of GREEDY
is at most 4k. These results demonstrate that the bijective ratio is not only a generalization of
Max/Max ratio, but it also classifies algorithms very differently in terms of performance.

Theorem 28. There exists a star S, and an online algorithm A such that K-CENTER has unbounded
asymptotic bijective ratio against A on S.

Proof. Consider a star S that consists of m — 1 rays of length d and one longer ray of length 4kd —d.
For this star, K-CENTER anchors its servers on the long ray (see Figure []). More specifically, the
first server is placed at a distance d from the center of the star with the remaining servers placed
along the long ray with a spacing of 4d between them. We also define an algorithm A that anchors
a server at the center of S, and the remaining k — 1 servers as in Figure @ Similar to K-CENTER,
A serves a request with the closest server, which then returns it to its anchor position. For this
star, we show that there exist integers j and n such that the j-th cheapest sequence of K-CENTER
(among sequences in Z,) is at least (d) times as costly as the j-th cheapest sequence of A.

We assume that the anchor position of the servers for algorithm A is the initial configuration
of servers for the two algorithms.

We observe that after the initial anchoring of the servers for A and K-CENTER, each requested
point always incurs the same cost for A, and always incurs the same cost for K-CENTER.

For some ¢ < d to be determined later, let SX-CFNTER he the sequences of cost at most 2¢n for

P,n
K-CENTER. For a given sequence o € SE:SENTER, let € be the number of requests that have cost
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Figure 4: An illustration of the lower bound construction for the K-CENTER algorithm. Here, we
denote by a;, b; the servers of A and K-CENTER, respectively.

more than 2d. Hence, 2ed < 2pn <= & < %. Based on the anchor points for K-CENTER, there
are 2kd + k points with cost at most 2d and N — 2kd — k point with cost more than 2d, where N is
the total number of nodes in the metric space. We can bound from above the number of sequences
in SEISENTER as follows. (For this recall that the cost of a request is twice the distance to the nearest
server since the server will be moved back to its original position afterwards.) Let

ﬂ
d
K-CENTER < n 2 n—e(N —9 R AY-
|SISENTER < ZZ:O <€>( kd + k)"~ (N = 2kd — k)
<2" {mgx {(2kd + k)" ¢ (md + 2kd)*}
0.2}

< 27(2kd + k)"~ T (md + 2kd) @, for m > k,

< 2M(3kd)" T
< (6kd)"™(3md)

en

(3md) a
¢ (11)

Similarly, for some positive constant ¢ < d, let Sg}n be the sequences of cost at most 2cn for A.
We can bound from below the number of sequences in Sén as follows.

1S2. > (¢ (m+ 2k —2) + k)" > (em)™ . (12)

Setting m = (kd)? and ¢ = d/3 and using (1), we get that \Sg/‘gfLNTER = 6"33m". For ¢ > 9,
\S{fn] > ]Sg;giNTER . Hence, for j = \Sg]gleTER\, the bijective ratio for the j-th cheapest sequence
is at least d/27.

This implies that the bijective ratio of K-CENTER against A is at least {2(d) and, hence, un-

bounded. O

We define our bijection 7 according to Definition Note that in the star, unlike the line and
the circle, a best configuration, as defined in Section [£.22.T] may not necessarily exist. However, the
following corollary (which follows from Lemma [21]) shows that there exists a configuration that is
good enough.

Corollary 29. Let C be a configuration with a server at the centre. For any § > 0, Pg[z'] <
21{:738, [i], where C" is any other configuration.

We note that, unlike the line, the approach of Lemma [I7] cannot yield a bounded bijective ratio
for GREEDY. This is because the best and worst configurations (as defined in Section L.21]) can
be unbounded with respect to D™, We will thus resort to amortized analysis, using a different
potential function than the one used in Lemma
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Theorem 30. Let B be any algorithm for the k-server problem on the uniform spider graph. For
any o, GREEDY(0) < 4kB(w(0)) + n, where n is a constant.

k

Proof. The potential function is ® := ) 7, d(c, g;), where c is the centre of the star and g; is

the

i-th server. Let a; denote the amortized cost for oli], i.e., a; = GREEDY(cli]) + A®;, where

AD; = ®; — ;1. We distinguish three cases with respect to o[i].

e Case 1: A server serves o[i| away from the centre on the same ray. In this case, the change
in potential is A®;, = GREEDY(o[i]). Hence, the amortized cost a; = 2GREEDY(o[i]) <
2d(c,oli]) < 4k - GREEDY(7(0)[i]|B(7(0)[1,7 — 1])), where the last inequality follows from
Corollary

e Case 2: A server serves o[i| towards the centre on the same ray. In this case, the change in
potential is A®; = —GREEDY(0[i]). Hence, the amortized cost a; = 0.

o Case 3: A server serves oli] by moving a sever that lies on a different ray than the one of oli].
In this case, the change in potential is A®; = d(c, o[i])—d(s1,¢). Hence, for the amortized cost
we get a; = GREEDY (o[i])+d(c, oi])—d(s1,c¢) = 2d(c, oli]) < 4k-GREEDY (7 (0)[i]|B(7(0)[1,i—
1])), where the last inequality follows from Corollary

Thus, a; < 4k-GREEDY (ci]|B(mw(0)[1,7—1]) for all . The theorem follows from (Bl and Lemma [I§]

O
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