

Subgraph Isomorphism on Graph Classes that
Exclude a Substructure
Citation for published version (APA):

Bodlaender, H. L., Hanaka, T., Kobayashi, Y., Kobayashi, Y., Okamoto, Y., Otachi, Y., & van der Zanden,
T. C. (2020). Subgraph Isomorphism on Graph Classes that Exclude a Substructure. Algorithmica, 82(12),
3566-3587. https://doi.org/10.1007/s00453-020-00737-z

Document status and date:
Published: 01/12/2020

DOI:
10.1007/s00453-020-00737-z

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 28 Apr. 2024

https://doi.org/10.1007/s00453-020-00737-z
https://doi.org/10.1007/s00453-020-00737-z
https://cris.maastrichtuniversity.nl/en/publications/47f72fca-d5da-4e35-9449-1c40f7d8cd9c

Vol:.(1234567890)

Algorithmica (2020) 82:3566–3587
https://doi.org/10.1007/s00453-020-00737-z

1 3

Subgraph Isomorphism on Graph Classes that Exclude
a Substructure

Hans L. Bodlaender1 · Tesshu Hanaka2 · Yasuaki Kobayashi3 ·
Yusuke Kobayashi3 · Yoshio Okamoto4,5 · Yota Otachi6  ·
Tom C. van der Zanden7

Received: 28 June 2019 / Accepted: 13 June 2020 / Published online: 2 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We study Subgraph Isomorphism on graph classes defined by a fixed forbidden
graph. Although there are several ways for forbidding a graph, we observe that it is
reasonable to focus on the minor relation since other well-known relations lead to
either trivial or equivalent problems. When the forbidden minor is connected, we
present a near dichotomy of the complexity of Subgraph Isomorphism with respect
to the forbidden minor, where the only unsettled case is P

5
 , the path of five vertices.

We then also consider the general case of possibly disconnected forbidden minors.
We show fixed-parameter tractable cases and randomized XP-time solvable cases
parameterized by the size of the forbidden minor H. We also show that by slightly
generalizing the tractable cases, the problem becomes NP-complete. All unsettle
cases are equivalent to P

5
 or the disjoint union of two P

5
’s. As a byproduct, we show

that Subgraph Isomorphism is fixed-parameter tractable parameterized by vertex
integrity. Using similar techniques, we also observe that Subgraph Isomorphism is
fixed-parameter tractable parameterized by neighborhood diversity.

Keywords  Subgraph isomorphism · Minor-free graphs · Parameterized complexity

1  Introduction

Let Q and G be graphs. A subgraph isomorphism � is an injection from V(Q) to V(G)
that preserves the adjacency in Q; that is, if {u, v} ∈ E(Q) , then {�(u), �(v)} ∈ E(G) .
We say that Q is subgraph-isomorphic to G if there is a subgraph isomorphism from
Q to G, and write Q ⪯ G . In this paper, we study the following problem of deciding
the existence of a subgraph isomorphism.

 *	 Yota Otachi
	 otachi@nagoya‑u.jp

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0087-853X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00737-z&domain=pdf

3567

1 3

Algorithmica (2020) 82:3566–3587	

The problem Subgraph Isomorphism is one of the most general and fundamen-
tal graph problems and generalizes many other graph problems such as Graph Iso-
morphism, Clique, Hamiltonian Path/Cycle, and Bandwidth. Obviously, Subgraph
Isomorphism is NP-complete in general. When both host and pattern graphs are
restricted to be in a graph class C , we call the problem Subgraph Isomorphism on
C . By slightly modifying known reductions in [7, 15], one can easily show that the
problem is hard even for very restricted graph classes such as linear forests and clus-
ter graphs. (See Proposition 1.1.)

Since most of the well-studied graph classes contain all linear forests or all clus-
ter graphs, it is often hopeless to have a polynomial-time algorithm for an interest-
ing graph class. This is sometimes true even if we further assume that the graphs
are connected [20, 22]. On the other hand, it is polynomial-time solvable for trees
[29]. This result was first generalized for 2-connected outerplanar graphs [25], and
finally for k-connected partial k-trees [16, 28] (where the running time is XP param-
eterized by k). In [28], a polynomial-time algorithm for partial k-trees of bounded
maximum degree is presented as well, which is later generalized to partial k-trees of
log-bounded fragmentation [17]. When the pattern graph has constant treewidth, the
celebrated color-coding technique [1] gives a fixed-parameter algorithm parameter-
ized by the size of the pattern graph. It is also known that for chain graphs, co-chain
graphs, and threshold graphs, Subgraph Isomorphism is polynomial-time solvable
[20–22]. In the case where only the pattern graph has to be in a restricted graph
class that is closed under vertex deletions, a complexity dichotomy with respect to
the graph class is known [18].

Because of its unavoidable hardness in the general case, it is often assumed that
the pattern graph is small. In such a setting, we can study the parameterized com-
plexity1 of Subgraph Isomorphism parameterized by the size of the pattern graph.
Unfortunately, the W[1]-completeness of Clique [9] implies that this parameteri-
zation does not help in general. Indeed, the existence of a 2o(n log n)-time algorithm
for Subgraph Isomorphism is ruled out assuming the Exponential Time Hypothe-
sis, where n is the total number of vertices [5]. So we need further restrictions on
the considered graph classes even in the parameterized setting. For planar graphs,
it is known to be fixed-parameter tractable [8, 11]. This result is later generalized
to graphs of bounded genus [4]. For several graph parameters, the parameterized
complexity of Subgraph Isomorphism parameterized by combinations of them is

1  We assume that the readers are familiar with the concept of parameterized complexity. See e.g. [6] for
basic definitions omitted here.

3568	 Algorithmica (2020) 82:3566–3587

1 3

determined in [27]. In [3], it is shown that when the pattern graph excludes a fixed
graph as a minor, the problem is fixed-parameter tractable parameterized by tree-
width and the size of the pattern graph. The result in [3] implies also that Subgraph
Isomorphism can be solved in subexponential time when the host graph also excludes
a fixed graph as a minor.

1.1 � Our Results

As mentioned above, the research on Subgraph Isomorphism has been done mostly
when the size of the pattern graph is considered as a parameter. However, in this
paper, we are going to study the general case where the pattern graph can be as large
as the host graph.

We denote the path of n vertices by Pn , the complete graph of n vertices by Kn ,
and the star with � leaves by K1,� . The disjoint union of graphs X and Y is denoted
by X ∪ Y and the disjoint union of k copies of a graph Z is denoted by kZ. The com-
plement of a graph X is denoted by X.

We believe the following fact is folklore but give a proof to be self-contained.
Recall that a linear forest is the disjoint union of paths and a cluster graph is the
disjoint union of complete graphs.

Proposition 1.1  Subgraph Isomorphism is NP-complete on linear forests and on
cluster graphs even if the input graphs have the same number of vertices.

Proof  Since the problem is clearly in NP, we show the NP-hardness. Recall that
3-Partition is the following problem: the input is 3m positive integers a1,… , a3m
with

∑
1≤i≤3m ai = mB such that B∕4 < ai < B∕2 for all i. The task is to decide

whether there is a partition of a1,… , a3m into m triplets such that the members of
each triplet sum up to B. The problem is known to be strongly NP-complete; that is,
it is NP-complete even if a polynomial in m upperbounds all ai [15].

To show the hardness on linear forests, we set the host graph G to be mPB and
the pattern graph Q to be Pa1

∪⋯ ∪ Pa3m
 . Similarly, to show the hardness on cluster

graphs, we set G = mKB and Q = Ka1
∪⋯ ∪ Ka3m

 . It is straightforward to show that
Q ⪯ G if and only if the corresponding instance of 3-Partition is a yes-instance. 	� ◻

Our first observation is that forbidding a graph as an induced substructure (an
induced subgraph, an induced topological minor, or an induced minor) does not help
for making Subgraph Isomorphism tractable unless we make the graph class trivial.
This can be done just by combining some easy observations and known results.

Observation 1.2  Let C be the graph class that forbids a fixed graph H as either an
induced subgraph, an induced topological minor, or an induced minor. Then, Sub-
graph Isomorphism on C is polynomial-time solvable if H has at most two vertices;
otherwise, it is NP-complete.

3569

1 3

Algorithmica (2020) 82:3566–3587	

Proof  We assume that H is a linear forest since otherwise it is NP-complete by
Lemma 2.1. Hence, we may assume that H is forbidden as an induced subgraph as it
is equivalent to the other cases.

If H = 3K1 , then Clique is NP-complete on C because Independent Set is NP-
complete on triangle-free graphs [33]. If H = P3 , then C is the class of cluster
graphs and thus Subgraph Isomorphism on C is NP-complete by Proposition 1.1. If
H = K2 ∪ K1 = P3 , then C is the class of co-cluster graphs (or complete multi-par-
tite graphs). It is known that if |V(G)| = |V(Q)| , then Q ⪯ G if and only if G ⪯ Q
[20]. Thus, by Proposition 1.1, this case is NP-complete.

In the remaining cases, we can assume that H has order at most 2 since all other
cases are NP-complete by the discussion above. For these cases, the allowed graphs
are either edgeless or complete, and thus Subgraph Isomorphism is trivially polyno-
mial-time solvable. 	� ◻

Our main contribution in this paper is the following pair of results on Subgraph
Isomorphism on graph classes forbidding a fixed graph as a substructure.

Theorem 1.3  Let C be the graph class that forbids a fixed connected graph H ≠ P5
as either a subgraph, a topological minor, or a minor. Then, Subgraph Isomor-
phism on C is polynomial-time solvable if H is a subgraph of P4; otherwise, it is
NP-complete.

Theorem 1.4  Let C be the graph class that forbids a fixed (not necessarily con-
nected) graph H as either a subgraph, a topological minor, or a minor. Then, Sub-
graph Isomorphism on C is

•	 fixed-parameter tractable parameterized by the order of H if H is a linear forest
such that at most one component is of order 4 and all other components are of
order at most 3;

•	 randomized XP-time solvable parameterized by the order of H if H is a linear
forest such that each component is of order at most 4;

•	 NP-complete if either H is not a linear forest, H contains a component with six or
more vertices, or H contains three components with five vertices.

All other cases are randomized polynomial-time reducible to the case where H is P5
or 2P5.

We prove Theorem 1.3 in Sect. 3 and Theorem 1.4 in Sect. 4.

2 � Preliminaries and Basic Observations

A graph Q is a minor of G if Q can be obtained from G by removing vertices,
removing edges, and contracting edges, where contracting an edge {u, v} means add-
ing a new vertex wu,v , making the neighbors of u and v adjacent to wu,v , and remov-
ing u and v. A graph Q is a topological minor of G if Q can be obtained by removing

3570	 Algorithmica (2020) 82:3566–3587

1 3

vertices, removing edges, and contracting edges, where contraction of an edge is
allowed if one of the endpoints of the edge is of degree 2. A graph Q is a subgraph
of G if Q can be obtained by removing vertices and edges. If we cannot remove
edges but can do the other modifications as before, then we get the induced variants
induced minor, induced topological minor, and induced subgraph.

Recall that a graph is a linear forest if it is the disjoint union of paths. In other
words, a graph is a linear forest if and only if it does not contain a cycle nor a ver-
tex of degree at least 3. Observe that in all graph containment relations mentioned
above, if we do not forbid any linear forest from a graph class, then the class includes
all linear forests. Thus, by Proposition 1.1, we have the following lemma.

Lemma 2.1  If H is not a linear forest, then Subgraph Isomorphism is NP-complete
for graphs that do not contain H as a minor, a topological minor, a subgraph, an
induced minor, an induced topological minor, or an induced subgraph.

2.1 � Graphs Forbidding a Short Path as a Minor

By the discussion above, we can focus on a graph class forbidding a linear forest as
a minor (or equivalently as a topological minor or a subgraph). We here characterize
graph classes forbidding a short path as a minor.

Lemma 2.2  A connected P3-minor free graph is isomorphic to K1 or K2.

Proof  If a connected graph is not complete, then there is a path between nonadjacent
vertices. This path contains P3 as a subgraph. A complete graph with more than two
vertices contains P3 as a subgraph. 	� ◻

Lemma 2.3  A connected P4-minor free graph is isomorphic to K1,K3, or K1,s for
some s ≥ 1.

Proof  Let H be a connected P4-minor free graph. If H is not a tree, it has a cycle
C as a subgraph. As H is P4-minor free, this cycle C has length 3. If H contains
a vertex v that is not in C but has a neighbor on C, then the vertices in C together
with v induce a subgraph of H that contains P4 as a subgraph. The connectivity of H
implies that H = C = K3.

Now assume that H is a tree with two or more vertices. If H has no universal ver-
tex, then there are two edges e1, e2 ∈ E(H) that do not share any endpoint. The edges
e1 and e2 with the unique path connecting them form a path of at least four vertices.
Thus H has a universal vertex, and hence it is a star. 	� ◻

3571

1 3

Algorithmica (2020) 82:3566–3587	

3 � Forbidding a Connected Graph as a Minor

Here we first show that Subgraph Isomorphism on Pk-minor free graphs is linear-
time solvable if k ≤ 4 . Note that Pk-minor free graphs include all Pk′-minor free
graphs if k′ ≤ k.

The following result can be easily obtained from Lemma 2.3.

Lemma 3.1  Subgraph Isomorphism on P4-minor free graphs is linear-time solvable.

Proof  Let G be the host graph and Q be the pattern graph. We assume that
|V(Q)| ≤ |V(G)| since otherwise Q  G . By Lemma 2.3, each component in both
graphs is either an isolated vertex K1 , a triangle K3 , or a star K1,s for some s ≥ 1.

We first remove isolated vertices. Let Q′ and G′ be the graphs obtained from Q
and G, respectively, by removing all isolated vertices. Since |V(Q)| ≤ |V(G)| , Q ⪯ G
if and only if Q� ⪯ G . Also, since isolated vertices in G cannot be used to embed any
vertex of Q′ , Q� ⪯ G if and only if Q� ⪯ G� . In the following, we assume that Q and
G do not have isolated vertices.

We next get rid of the triangles. A triangle K3 in Q has to be matched to a triangle
in G. Therefore, if Q contains t triangles, we can remove t triangles from each of G
and Q, and obtain an equivalent instance. (If G does not contain t triangles, then we
can immediately find that Q  G .) Since Q contains no triangle anymore, all trian-
gles K3 in G can be replaced with the same number of K1,2’s.

Now we have only stars K1,s with s ≥ 1 in both graphs. The rest of the problem
can be solved by greedily matching a maximum star in Q to a maximum star in G.

The preprocessing phase can be done in linear time. The matching phase can be
done in linear time as well since we just need to bucket sort the component sizes in
each graph and compare them. 	� ◻

The following theorem implies that Subgraph Isomorphism on Pk-minor free
graphs is NP-complete for every k ≥ 6.

Theorem 3.2  Subgraph Isomorphism is NP-complete when the host graph is a for-
est without paths of length 6 and the pattern is a collection of stars.

Proof  The problem clearly is in NP. To show hardness, we reduce from Exact
3-Cover [15]:

3572	 Algorithmica (2020) 82:3566–3587

1 3

Suppose we have an instance (C,U) of Exact 3-Cover given, where
U = {u0,… , un−1} . From (C,U) , we construct the host graph G and the pattern Q.

The host G consists of the disjoint union of |C| trees as follows (see Fig. 1). For
each set C ∈ C , we take a tree in G as follows. Take a star K1,4n+6 . For each ui ∈ C ,
do the following: take one of the leaves of the star, and add n + i pendant verti-
ces to it. Take another leaf of the star, and add 3n − i pendant vertices to it. I.e., if
C = {ui, uj, uk} , then the corresponding tree has seven vertices of degree more than
1: one vertex with degree 4n + 6 , which is also adjacent to each of the other six
non-leaf vertices; the non-leaf vertices have degree n + i + 1 , 3n − i + 1 , n + j + 1 ,
3n − j + 1 , n + k + 1 , and 3n − k + 1 . Call the vertex of degree 4n + 6 the central
vertex of the component of C.

The pattern graph Q consists of a number of stars (see Fig. 2):

•	 We have n/3 stars K1,4n.
•	 We have |C| − n∕3 stars K1,4n+6.
•	 For each i ∈ {0,… , n − 1} , we have stars K1,n+i and K1,3n−i . Call these the ele-

ment stars.

From (C,U) , G and Q can be constructed in polynomial time. Now we show that
Q ⪯ G if and only if (C,U) is a yes-instance of Exact 3-Cover. We assume that
n > 6 in the following.

The if direction: Suppose that the Exact 3-Cover instance (C,U) has a solution
C
′ ⊆ C.

Fig. 1   The tree in G corresponding to {ui, uj, uk} ∈ C

Fig. 2   The pattern graph Q 

3573

1 3

Algorithmica (2020) 82:3566–3587	

We map each K1,4n+6 of Q into a component M of G corresponding to a set
D ∉ C

� . The center of K1,4n+6 is mapped to the central vertex of M and all leaves to
its neighbors. The other vertices T are isolated and not used.

Embed each K1,4n of Q into a component L of G corresponding to a set C ∈ C
� ,

mapping the center of K1,4n to the central vertex of L, and the leaves of K1,4n to leaves
neighboring the central vertex of L. After we have done so, we left in this compo-
nent six stars: if C = {ui, uj, uk} , then the vertices in L that we did not yet use form
stars K1,n+i , K1,3n−i , K1,n+j , K1,3n−j , K1,n+k , K1,3n−k . We thus can embed the element
stars corresponding to ui , uj , and uk in these stars, and have embedded the entire pat-
tern in the host graph since C′ is a cover of U.

The only if direction: Suppose that Q ⪯ G . Note that both Q and G have exactly
|C| vertices of degree at least 4n. Thus it follows that each vertex of degree at least 4n
in Q must be mapped to a central vertex of a component in G. We can see that one of
the following two cases must hold for the components in the host graph G.

Case 1: A star K1,4n+6 is embedded in the component. This “uses up” the cen-
tral vertex and all its neighbors. The only vertices in the component that are
not in the image of the star K1,4n+6 are leaves with its neighbor being used:
these isolated vertices thus cannot be used for embedding any other stars. So
all element stars must be embedded in components for which Case 2 holds.
Case 2: A star K1,4n is embedded in the component. At this point, note that
the total number of vertices of element stars in Q equals 4n2 + 2n : each of the
n elements has in total 4n leaves and two high degree vertices in its element
stars. Also, the total number of vertices not used by the stars K1,4n in the Case
2-components equals 4n2 + 2n : we have n/3 components of Case 2 in G and
each has 16n + 7 vertices of which 4n + 1 are used for embedding the star K1,4n .
Thus, each vertex in a Case 2-component M must be used for embedding a ver-
tex. This is only possible if we embed in M the element stars of the elements in
the set corresponding to M.

So, let C′ be the sets whose component is of Case 2, i.e., where we embedded a
K1,4n in its component. This subcollection C′ is a solution for Exact 3-Cover: for
each element ui , its element stars are embedded in a component that corresponds
to a set C that contains ui , and by the argument above C ∈ C

� . 	� ◻

By Lemma 2.1, if a connected graph H is not a path, then Subgraph Isomor-
phism on H-minor free graphs is NP-complete. Assume that H is a path Pk . If
k ≥ 6 , then by Theorem 3.2 the problem is NP-complete. If k ≤ 4 , then by Lemma
3.1 the problem can be solved in polynomial time. This completes the proof of
Theorem 1.3.

3574	 Algorithmica (2020) 82:3566–3587

1 3

4 � Forbidding a Disconnected Graph as a Minor

In this section, we study the more general cases where the forbidden minor H is
not necessarily connected. By Lemma 2.1, we can focus on linear forests H. We
already know, by Theorem 3.2, if H contains a component with six or more ver-
tices the problem becomes NP-complete. Thus in the following we consider the
case where the components of H have five or less vertices.

Using the results in this section, we can prove Theorem 1.4. Corollary 4.2 implies
the positive case of Theorem 1.4. Theorems 3.2 and 4.5 together with Lemma 2.1
imply the negative cases. The discussion on the missing cases will be in Sect. 4.4.

4.1 � Subgraph Isomorphism on (P
4
∪ kP

3
)‑Minor Free Graphs

We show that Subgraph Isomorphism on (P4 ∪ kP3)-minor free graphs is fixed-
parameter tractable when parameterized by k. To this end, we present an algo-
rithm that is parameterized by the vertex integrity, which we think is of independ-
ent interest. The vertex integrity [2] of a graph is the minimum integer k such
that there is a vertex set S ⊆ V such that |S| ≤ k and the maximum order of the
components of G − S is at most k − |S| . We call such S a ��(k) set of G. Note that
the property of having vertex integrity at most k is closed under the subgraph
relation.

This subsection is devoted to the proof of the following theorem.

Theorem 4.1  Subgraph Isomorphism on graphs of vertex integrity at most k is
fixed-parameter tractable when parameterized by k.

By combining Theorem 4.1, Lemma 3.1, and the fact that kP3-minor free
graphs have vertex integrity at most 3k − 1 , we can prove the following.

Corollary 4.2  Subgraph Isomorphism on (P4 ∪ kP3)-minor free graphs is fixed-
parameter tractable when parameterized by k.

Proof  Let G be the host graph and Q be the pattern graph. We first check whether
the input graphs are P4-minor free. This can be done in polynomial time since we
just need to check the existence of a P4 subgraph. If G is P4-minor free but Q is not,
then Q  G . If both are P4-minor free, then the problem can be solved in polynomial
time by Lemma 3.1. Hence, in the following, we assume that G has a P4 minor, and
thus has a subgraph R isomorphic to P4 . Since G is (P4 ∪ kP3)-minor free, G − V(R)
is kP3-minor free.

Observe that a kP3-minor free graph has vertex integrity at most 3k − 1 : by repeat-
edly removing vertices that form a P3 subgraph at most k − 1 times, we can make the
graph P3-minor free, which has the maximum component order at most 2 by Lemma
2.2. Therefore, G itself has vertex integrity at most 3k − 1 + |V(R)| = 3k + 3.

We now check whether Q has vertex integrity at most 3k + 3 , which can be done
in FPT time parameterized by k [10]. If this is not the case, then Q  G as the vertex

3575

1 3

Algorithmica (2020) 82:3566–3587	

integrity cannot be larger in a subgraph. If Q has vertex integrity at most 3k + 3 ,
then we can apply Theorem 4.1. 	� ◻

To prove Theorem 4.1, we start with the following simple fact.

Lemma 4.3  Let � be a subgraph isomorphism from Q to G. For every ��(k) set T of
G, there exists a minimal ��(k) set S of Q such that 𝜂(S) ⊆ T .

Proof  Let G� = G[�(V(Q))] and T � = T ∩ �(V(Q)) . The set T ′ is a ��(k) set of G′ since
|T ′| ≤ |T| and G� − T � is a subgraph of G − T  . Let S� = �−1(T �) . Since � restricted to
V(Q) − S� is a subgraph isomorphism from Q − S� to G� − T � , the maximum compo-
nent order of Q − S� cannot be larger than that of G� − T  , and thus S′ is a ��(k) set of
Q. Now every minimal ��(k) set S ⊆ S′ of Q satisfies that 𝜂(S) ⊆ T � ⊆ T  . 	� ◻

Our algorithm assumes that there is a subgraph isomorphism � from Q to G
and proceeds as follows:

1.	 find a ��(k) set T of G;
2.	 guess a minimal ��(k) set S of Q such that 𝜂(S) ⊆ T;
3.	 guess the bijection between S and R ∶= �(S);
4.	 guess a subset F ⊆ E(G − R) of the edges “unused” by � such that R is a ��(k) set

of G − F;
5.	 solve the problem of deciding the extendability of the guessed parts as the feasi-

bility problem of an integer linear program with a bounded number of variables.

Proof  [Theorem 4.1] Let G and Q be graphs of vertex integrity at most k. Our task is
to find a subgraph isomorphism � from Q to G in FPT time parameterized by k.

We first find a ��(k) set T of G and then guess a minimal ��(k) set S of Q such that
𝜂(S) ⊆ T for some subgraph isomorphism � from Q to G. By Lemma 4.3, such a set
S exists if � exists. Finding T can be done in O(kk+1n) time [10], where n = |V(G)| .
To guess S, it suffices to list all minimal ��(k) set S of Q. The algorithm in [10] can
be modified for this purpose. To find a ��(k) set, it traverses a (k + 1)-ary search tree
of height k that contains all minimal ��(k) sets. By exhaustively traversing the search
tree even after finding a ��(k) set, we can find all minimal ��(k) sets in the same run-
ning time. (See [5, Exercise 3.3] for the same discussion about minimal vertex cov-
ers of size k.)

We then guess the subset R of T such that �(S) = R . We also guess for each s ∈ S ,
the image �(s) ∈ R . That is, we guess an injection from S to T. The number of such

injections is
(
|T|
|S|

)
⋅ |S|! ≤ k! . If there is an edge {u, v} ∈ E(Q[S]) such that

{�(u), �(v)} ∉ E(G[R]) , then we reject this guess. Otherwise, we try to further
extend �.

Observe that R is not necessarily a ��(k) set of G. In the following, we guess
“unnecessary” edges in G − R . That is, we guess a subset F of the edges that are

3576	 Algorithmica (2020) 82:3566–3587

1 3

not used by � as images of any edges in Q. Furthermore, we select F so that R is a
��(k) set of G − F . Such F exists because � embeds Q − S (and no other things) into
G − R . Note that we cannot make a component of G − R small by removing edges
incident to at least one vertex of R, and thus we find F without such edges.

Guessing F: We now show that the number of candidates of F that we need
to consider is bounded by some function in k. We partition F into three sets
F1 = F ∩ E(G[T − R]) , F2 = F ∩ E(V(G) − T , T − R) , and F3 = F ∩ E(G − T) and
then count the numbers of candidates separately. See Fig. 3.

Guessing F1 : For F1 , we just use all 2|E(G[T−R])| < 2k
2 subsets of E(G[T − R]) as

candidates. If R is not a ��(k) set of G[T] − F1 , we reject this F1.
Guessing F2 : Since we are finding F such that R is a ��(k) set of G − F , each
vertex in T − R has less than k edges to V(G) − T in G − F . Thus fewer than k2
components of V(G) − T have edges to T − R in G − F . We guess such compo-
nents C.
Observe that each component in V(G) − T is of order at most k and that each
vertex of V(G) − T can be partitioned into at most 2k types with respect to the
adjacency to T. This implies that the components of V(G) − T can be classified
into at most 4k2 types ( 2k2 for the isomorphism type and (2k)k for the adjacency
to T) in such a way that if two components C1 and C2 of G − T are of the same
type, then there is an automorphism of G that fixes T and maps C1 to C2 . Given
this classification of the components in V(G) − T  , we only need to guess how
many components of each type are included in C . For this guess, we have at

most
(
4k

2

+ k2 − 1

k2

)
< 4k

4+k2 options.

For each guess C , we guess the edges connecting the components in C to
T − R in G − F . Since |C| < k2 and |C| ≤ k for each C ∈ C , there are at most
k3 ⋅ |T − R| ≤ k4 candidate edges. We just try all O(2k4) subsets F′

2
 of such

edges, and set F2 = E(V(G) − T , T − R) − F�
2
 . In total, we have O(2k4+k2 ⋅ 2k4)

options for F2.
Guessing F3 : Recall that G − T does not contain any component of order more
than k. Hence, if G − R − (F1 ∪ F2) has a component of order more than k, then
it consists of some vertices in T − R and some components in C . Thus, we only
need to pick some edges of the components in C for F3 to make R a ��(k) set of

Fig. 3   F
1
 is a set of edges in

G[T − R] , F
2
 a set of edges

between V(G) − T and T − R ,
and F

3
 a set of edges in

G − T  . The example shows
the case where |R| = k − 2
and thus the components of
G − R − (F

1
∪ F

2
∪ F

3
) have to

have order at most 2

3577

1 3

Algorithmica (2020) 82:3566–3587	

G − F . We use all 2k4 subsets of the edges of the components in C as a candi-
date of F3.
In total, F = F1 ∪ F2 ∪ F3 has at most 2k2 ⋅ 4k4+k2 ⋅ 2k4 ⋅ 2k4 candidates, and each
candidate can be found in FPT time. We reject this guess F if R is not a ��(k) set
of G − F . In the following, we assume that F is guessed correctly and denote
G − F by G′.

Extending � : Recall that we already know how � maps S to R and that each com-
ponent in Q − S and G� − R is of order at most k. We now extend � by deter-
mining how � maps Q − S to G� − R . By renaming vertices, we can assume that
S = {s1,… , sq} , R = {r1,… , rq} , and �(si) = ri for 1 ≤ i ≤ q.

We say that a vertex u in Q − S matches a vertex v in G� − R if
{i ∣ si ∈ NQ(u) ∩ S} ⊆ {i ∣ ri ∈ NG� (v) ∩ R} . A set of components {C1,… ,Ch} of
Q − S fits a component D of G� − R if there is an isomorphism � from the disjoint
union of C1,… ,Ch to D such that for all u ∈

⋃
i V(Ci) and v ∈ V(D) , �(u) = v holds

only if u matches v. Note that if h > k , then {C1,… ,Ch} can fit no component of
G� − R.

As we did before for guessing F2 , we classify the components of Q − S and
G� − R into at most 4k2 types. Two components C1 and C2 of Q − S (or of G� − R )
are of the same type if and only if there is an isomorphism � from C1 to C2 such
that �(v1) = v2 implies that NQ(v1) ∩ S = NQ(v2) ∩ S (or NG� (v1) ∩ R = NG� (v2) ∩ R ,
respectively). We denote by t(C) the type of a component C and by t({C1,… ,Ch})
the multi-set {t(C1),… , t(Ch)} . Observe that {C1,… ,Ch} fits D if and only if all sets
{C�

1
,… ,C�

h
} with t({C�

1
,… ,C�

h
}) = t({C1,… ,Ch}) fits D′ with t(D�) = t(D).

Observe that the guessed part �|S can be extended to a subgraph isomorphism �
from Q to G′ if and only if there is a partition of the components of Q − S such that
each part {C1,… ,Ch} in the partition can be injectively mapped to a component D
of G� − R where {C1,… ,Ch} fits D. To check the existence of such a partition, we
only need to find for each pair of a multi-set T of types of a set of components in
Q − S and a type � of a component in G� − R , how many sets of components of type
T the map � embeds to components of type � . We use the following ILP formulation
to solve this problem.

Let n� and n′
�
 be the numbers of type-� components in Q − S and G� − R , respec-

tively. These numbers can be computed in FPT time parameterized by k.
For each type � and for each multi-set T of types such that T fits � , we use a

variable xT,� to represent the number of type-T multi-sets of components in Q − S
that are mapped to type-� components in G� − R . For each type � of components
in G� − R , we can embed at most n� sets of components in Q − S . This constraint is
expressed as follows:

For each type � of components in Q − S , we need to embed all n� components of
type � into some components of G − R� . We can express this constraint as follows:

(1)n� ≥
∑

T∶T fits �

xT,� for each type �.

3578	 Algorithmica (2020) 82:3566–3587

1 3

where �T,� is the multiplicity of � in T  . This completes the ILP formulation of the
problem. We do not have any objective function and just ask for the feasibility. The
construction can be done in FPT time parameterized by k.

Observe that there are at most
(
4k

2

+ k − 1

k

)
< 4k

3+k multi-sets T of types of

components. Thus the ILP above has at most 4k2 ⋅ 4k3+k variables (the first factor for
� and the second for T  ) and at most 4k2 ⋅ 4k3+k + 4k

2

⋅ 4k
2

⋅ 4k
3+k constraints (the first

term for (1) and the second for (2)) of length O(4k2 ⋅ 4k3+k) . The coefficients are
upper bounded by |V(G�)| . It is known that the feasibility check of such an ILP can
be done in FPT time parameterized by k [13, 19, 24]. Thus, the problem can be
solved in FPT time when parameterized by k. (The running time is doubly exponen-
tial in k3 .) 	� ◻

4.2 � Subgraph Isomorphism on kP
4
‑Minor Free Graphs

We show that Subgraph Isomorphism on kP4-minor free graphs is randomized XP-
time solvable parameterized by k. Our randomized algorithm is a Monte Carlo algo-
rithm with false negatives. That is, it always rejects a no-instance, but may reject a
yes-instance with probability at most 1/2.

For a graph G = (V ,E) , a set S ⊆ V is a P4-hitting set of G if G − S does not con-
tain P4 as a minor (or equivalently as a subgraph). The P4-hitting number of G is the
minimum size of a P4-hitting set of G. To show the main result of this section, we
prove Theorem 4.4 below, which immediately gives the result claimed above on kP4

-minor free graphs as their P4-hitting number is at most 4(k − 1).
Our algorithm will find a subgraph isomorphism � from Q to G as follows:

1.	 Find a P4-hitting set T of G such that |T| ≤ k , and guess the “used” part R of T.
2.	 Guess S = �−1(R) and the mapping from S to R.
3.	 Color the vertices of G − T and Q − S according to the connections to R and S,

respectively.
4.	 Guess how many vertices of each color c in G will remain unused after embed-

ding the non-singleton components (triangles and stars) in Q − S to G − T . Check
whether the singleton components in Q can be embedded to the guessed vertices.

5.	 Construct an auxiliary bipartite multi-graph B from the components of G and the
non-singleton components in Q (with some dummy vertices).

6.	 Find a perfect matching of B with a specific weight. Using such a matching,
extend the guessed parts of � to a subgraph isomorphism from Q to G.

(2)n� =
∑

T,�∶�∈T and T fits �

�T,� ⋅ xT,� for each type �,

3579

1 3

Algorithmica (2020) 82:3566–3587	

Theorem 4.4  Subgraph Isomorphism on graphs with P4-hitting number at most k
admits a randomized nO(2k)-time algorithm with false negatives.

Proof  Let G and Q be graphs of P4-hitting number at most k. We will find a sub-
graph isomorphism � from Q to G in randomized XP time parameterized by k. In
the following, we denote by n and m the total numbers of vertices and edges, respec-
tively, in G and Q.

Mapping P4-hitting sets: We first find a P4-hitting set T of G such that |T| ≤ k .
This can be done in time O(4k(n + m)) by branching on P4-subgraphs and checking
P4-subgraph freeness. We guess R = �(V(Q)) ∩ T  , S = �−1(R) , and �(s) ∈ R for each
s ∈ S . We reject the guess if {u, v} ∈ E(Q[S]) and {�(u), �(v)} ∉ E(G[R]) for some
u, v ∈ S . Also, if S is not a P4-hitting set of Q, then we reject this guess as we can-
not map Q − S to G − T  . We have O(2k) options for R, O(nk) options for S, and O(k!)
options for the mapping from S to R. By Lemma 2.3, each component of G − T and
Q − S is either a singleton K1 , a triangle K3 , or a star K1,� for some � ≥ 1.

Coloring vertices: We rename the vertices in R and S to have R = {r1,… , rq} ,
S = {s1,… , sq} , and �(si) = ri for 1 ≤ i ≤ q . We set the color of a vertex v ∈ G − T  ,
denoted ���(v) , to be the set {i ∣ ri ∈ NG(v)} . Similarly, we set the color ���(u) of a
vertex u ∈ Q − S to be {i ∣ si ∈ NQ(u)} . Observe that u ∈ Q − S can be embedded to
v ∈ G − T only if ���(u) ⊆ ���(v) (assuming that the guesses so far are correct).

For a set of vertices X of G − T or Q − S and a color C ⊆ {1,… , q} , we set hX(C) to
be the number of vertices v ∈ X such that ���(v) = C . We call hX the color histogram of X.

In the later steps, it is convenient to identify color histograms with 2q-digit n-ary
numbers. Ordering the subsets of {1,… , q} in an arbitrary way, the ith digit can rep-
resent the number of vertices having the ith subset as their color. Then for disjoint
sets X and Y, it holds that hX + hY = hX∪Y.

Guessing the color histogram of unused vertices: We guess the color histogram hA
of the set A of vertices that remain unused after embedding the non-singleton compo-
nents (triangles and stars) in Q − S to G − T . (Note that we do not guess A directly.)
The number of possible options for hA is O(n2k) . At this point, we do not know whether
there is an embedding of the non-singleton components consistent with hA . For now,
we assume the existence of such an embedding, and first test whether the singleton
components of Q − S can be embedded to the unused vertices of G − T guessed as hA.

We need to embed each singleton component u in Q − S to a vertex v such that
���(u) ⊆ ���(v) . So the problem here can be reduced to the problem of finding a
matching saturating U in the bipartite graph such that

•	 the vertex set is U ∪ U�;
•	 U is the set of singleton components of Q − S;
•	 U′ is a set of vertices that contains exactly hA(C) vertices of each color C;
•	 u ∈ U and v ∈ U� are adjacent if and only if ���(u) ⊆ ���(v).

Since |U ∪ U�| ≤ n , we can check this in polynomial time.
Embedding non-singleton components: We finally test the existence of an embed-

ding of the stars and triangles in Q − S to G − T consistent with hA . We reduce this

3580	 Algorithmica (2020) 82:3566–3587

1 3

task to the problem of deciding the existence of a perfect matching with a specific
weight in the bipartite multi-graph B = (X, Y ∪ Z;E) defined as follows:

1.	 X corresponds to the components of G − T .
2.	 Y corresponds to the non-singleton components in Q − S.
3.	 Z is the set of dummy vertices such that |Z| = |X| − |Y| . (Observe that |X| − |Y|

has to be nonnegative if S is guessed correctly.)
4.	 For x ∈ X and y ∈ Y  , add one edge of weight hD if there is a way to embed the

component Cy corresponding to y to the component Cx corresponding to x such
that the set of remaining vertices is D. (There could be multiple edges with dif-
ferent weights between x and y.)

5.	 For x ∈ X and z ∈ Z , add an edge of weight hD , where D is the set of vertices of
the component Cx corresponding to x.

The graph B can be constructed in time nO(2k) . To see this, the 4th step is the only
nontrivial one. For that step, we have n2k candidates for hD . Each candidate can be
checked in time polynomial in n + 2k since each component involved is K1 , K3 , or
K1,s.

From the construction, there exists an embedding of the non-singleton compo-
nents in Q − S to G − T consistent with hA if and only if B has a perfect matching of
weight exactly hA . Including an edge between x ∈ X and y ∈ Y of weight hD into the
perfect matching means mapping Cy to Cx in such a way that V(Cx) ⧵ �(V(Cy)) has
the color histogram hD . Including an edge between x ∈ X and z ∈ Y means that Cx is
not used to embed any non-singleton component of Q − S.

Now it suffices to find a perfect matching of B with weight exactly hA . It is known
that, given a multi-graph with the maximum edge weight bounded by W and a target
total weight T, there is a Monte Carlo algorithm with false negatives that finds a per-
fect matching of weight exactly T (if any) in time polynomial in |V(B)| + |E(B)| +W
[31] (see also [18, 26, 27]). Since W is nO(2k) , the theorem holds. 	� ◻

We may need completely new ideas to find a deterministic counterpart of Theo-
rem 4.4. Although the randomized algorithm we used in the proof of Theorem 4.4
has been known for decades [31], it is still unknown whether there exists a deter-
ministic algorithm for finding a perfect matching of given exact weight with running
time polynomial in the number of vertices and the sum of edge weights.

To consider the tightness of Theorem 4.4 from a different direction, it would be
interesting to ask whether Subgraph Isomorphism parameterized by P4-hitting num-
ber is W[1]-hard. If this is the case, f (k) ⋅ nO(1)-time algorithms for some comput-
able f cannot be achieved under some complexity assumptions [5].

4.3 � Subgraph Isomorphism on 3P
5
‑Minor Free Graphs

A double star Da,b is the graph obtained from two stars K1,a and K1,b by connecting
the centers of the stars with an edge.

3581

1 3

Algorithmica (2020) 82:3566–3587	

Theorem 4.5  Subgraph Isomorphism on 3P5-minor free graphs is NP-complete.

Proof  The problem is clearly in NP. We show the NP-hardness by a reduction from
3-Sat with the restriction that each clause contains two or three literals and that each
variable occurs exactly twice as a positive literal and exactly once as a negative lit-
eral. We call this variant 3-Sat(2, 1 ). It is known that 3-Sat(2, 1 ) is NP-complete
[12]. Let (U, C) be an instance of 3-Sat(2, 1 ) with the variables U = {u0,… , un−1}
and the clauses C = {C0,… ,Cm−1}.

We first construct the host graph G (see Fig. 4). It consists of 2n double stars, two
special vertices c and c′ , and many pendant vertices attached to c and c′ . For each
variable ui ∈ U , we take two isomorphic double stars D(n+i)n,(3n−i)n and call them Di
and Di . The double stars Di and Di correspond to the positive literal ui and the nega-
tive literal ui , respectively. We add for each ui ∈ U some edges between leaves of
the double stars Di and Dj and the special vertices c and c′ as follows. Let ui ∈ Cj,Ck
and ui ∈ C

�
 . We arbitrarily and bijectively assign the two stars K1,(n+i)n and K1,(3n−i)n

in Di to Cj and C
�
 . From the star in Di assigned to Ch ( h ∈ {j,�} ), we pick n + h

leaves and make them adjacent to c, and then pick 3n − h leaves from the remain-
ing and make them adjacent to c. Similarly, in Di , we choose one side of the double
star, make n + � of the leaves there adjacent to c, and make 3n − � of the remaining
adjacent to c′ . So far, we took N ∶= 4n3 + 2n + 2 vertices into G. By attaching N

Fig. 4   The gadgets in the host graph G. Note that the special vertices c and c′ are shared by all gadg-
ets although their copies are depicted for each gadget for the readability. We omit the pendant vertices
attached to c and c′

Fig. 5   The gadgets in Q. We omit the pendant vertices attached to d and d′

3582	 Algorithmica (2020) 82:3566–3587

1 3

and 2N pendant vertices to c and c′ , respectively, we complete the construction of G.
Observe that if we remove c and c′ from G, then it becomes a collection of double
stars and isolated vertices, which is P5-minor free. Thus the host graph G cannot
have 3P5 as a minor.

The pattern graph Q consists of n double stars, m stars K1,4n , and two addi-
tional vertices d and d′ (see Fig. 5). For each variable ui ∈ U , we take a double star
D(n+i)n,(3n−i)n and call it Bi . For each clause Cj ∈ C , we take a star K1,4n and call it Fj .
For each star Fj , we arbitrarily select n + j leaves and make them adjacent to d, and
then make the remaining 3n − j leaves adjacent to d′ . Finally, we attach N and 2N
pendant vertices to d and d′ , respectively, Observe that if we remove d and d′ , then
the the pattern graph becomes a collection of stars, double stars, and isolated verti-
ces. Thus H is 3P5-minor free.

In the following, we show that Q ⪯ G if and only if (U, C) is a yes-instance of
3-Sat(2, 1).

The if direction: Suppose that (U, C) has a satisfying assignment f ∶ U → {����,
�����} . We construct a subgraph isomorphism � ∶ V(Q) → V(G) as follows. We
first set �(d) = c and �(d�) = c� . We map the pendants attached to them appropri-
ately. For each ui ∈ U , we map Bi to Di if f (ui) = ���� , and to Di if f (ui) = �����.

Now observe that what we left unused in G for each ui is the double star that cor-
responds to the clauses satisfied by the literal of ui that is true under f. Furthermore,
since f is a satisfying assignment of (U, C) , each clause Cj ∈ C has at least one star
assigned to Cj included in an unused double star in G. Also, such a correspondence is
injective by the construction. Therefore, we can map each Fj in Q into a correspond-
ing star included in an unused double star in G by mapping the center to the center,
the neighbors of d to the neighbors of c, and the neighbors of d′ to the neighbors of c′.

The only if direction: Suppose that Q ⪯ G and thus there is a subgraph isomor-
phism � ∶ V(Q) → V(G) from Q to G. Observe that �(d) = c and �(d�) = c� because
of their high degrees. Recall that each double star in Q and G has exactly 4n2 + 2
vertices and that Bi is isomorphic only to Di and Di . Hence, Bi has to be mapped to
Di or Di for every i.

Now we know that after the vertices {d, d�} ∪
⋃

i V(Bi) are mapped, the unused
vertices in G induce a subgraph that contains either Di or Di for each i. From this
subgraph, we construct a truth assignment f ∶ U → {����, �����} : if Di is left
unused we set f (ui) = ���� ; otherwise we set f (ui) = �����.

Assume that Di is left unused by {d, d�} ∪
⋃

i V(Bi) and 𝜂(V(Fj)) ⊆ V(Di) holds for
some i. (The other case where Di is replaced with Di is the same.) Since each leaf in Fj is
adjacent to either d or d′ , each image of them has to be adjacent to either c or c′ . Thus Fj
is mapped to one of the stars in Di . Because of the connections to d and d′ in Q and to c
and c′ in G, this is possible only if the star induced by �(V(Fj)) corresponds to the clause
Cj . Thus Di contains a star corresponding to Cj , and Cj includes the positive literal of ui .
Since Di is left unused, we have f (ui) = ���� , and thus Cj is satisfied by f. 	� ◻

3583

1 3

Algorithmica (2020) 82:3566–3587	

4.4 � Missing Cases

To complete the proof of Theorem 1.4, here we discuss the missing cases of Sub-
graph Isomorphism on H-minor free graphs. In the missing cases, H contains, as a
minor, P5 or 2P5 but no 3P5 nor P6 . In other words, there is p ∈ {1, 2} such that H
contains a pP5-minor but no (p + 1)P5-minor nor P6-minor.

We reduce this case to the case where the forbidden minor is pP5 in rand-
omized polynomial time. Since H is a linear forest, H is a minor of pP5 ∪ kP4
for some constant k < |V(H)| . An H-minor free graph is (pP5 ∪ kP4)-minor free,
and thus it is either pP5-minor free or (k + 5p)P4-minor free. (The idea here is
basically the same with the one in the proof of Corollary 4.2.) If the host graph
G is pP5-minor free (or (k + 5p)P4-minor free) but the pattern graph Q is not,
then we output a trivial no-instance (e.g., G = K1 and Q = K2 ). If both G and Q
are pP5-minor free, we just output the original input G and Q as the reduced pP5

-minor free instance. If both G and Q are (k + 5p)P4-minor free, then by Theo-
rem 4.4, we can solve the problem in randomized polynomial-time. Depending
on whether Q ⪯ G or not, we output a trivial yes-instance (e.g., G = Q = K1 ) or a
trivial no-instance.

5 � Structural Parameterizations of Subgraph Isomorphism

We conclude the paper with some remarks on structural parameterizations of Sub-
graph Isomorphism. Our results imply a few things in this direction. See Fig. 6. The
proof of Theorem 3.2 implies that Subgraph Isomorphism is NP-complete even for
graphs of tree-depth [32] at most 3. This result is tight by Lemma 3.1 since graphs
of tree-depth at most 2 do not contain P4 as a subgraph. Proposition 1.1 implies it
is NP-complete even for graphs of constant twin-cover number [14] because cluster
graphs have twin-cover number 0. For the parameterization by neighborhood diver-
sity [23], we can use techniques similar to the ones we used for Theorem 4.1.

Fig. 6   Graph parameters and Subgraph Isomorphism. For each connection of parameters, there is a func-
tion in the parameter above that lower bounds the one below

3584	 Algorithmica (2020) 82:3566–3587

1 3

Two vertices u and v of a graph G = (V ,E) are twins if N(u) ⧵ {v} = N(v) ⧵ {u} .
The neighborhood diversity of G = (V ,E) is the minimum integer k such that V can
be partitioned into k sets T1,… , Tk of pairwise twin vertices. Such a minimum parti-
tion can be found in linear time using fast modular decomposition algorithms [30,
34]. Observe that each part Ti in the partition is either complete or independent.
Also, for parts Ti and Tj , there are either no edges or all possible edges. We say that
Ti and Tj are adjacent if there are all possible edges, and nonadjacent otherwise.

Theorem 5.1  Subgraph Isomorphism on graphs of neighborhood diversity at most k
is fixed-parameter tractable parameterized by k.

Proof  Let G be the host graph and Q be the pattern graph, both with neighborhood
diversity at most k. Let T1,… , Tt be a partition of the vertices of G into pairwise
twin vertices with t ≤ k , and similarly let R1,… ,Rr be a partition of the vertices of
Q into pairwise twin vertices with r ≤ k.

We find a subgraph isomorphism � from Q to G by reducing the problem to at
most 3k2 instances of ILP as follows. By a variable xi,j we represent the number
of the vertices that � maps from Ri to Tj . For each variable xi,j , we guess whether
xi,j = 0 , xi,j = 1 , or xi,j ≥ 2 . Since we have at most k2 variables xi,j , this gives us at
most 3k2 options.

We reject this guess if at least one of the following holds:

•	 xi,j ≠ 0 and xi′,j′ ≠ 0 for adjacent Ri and Ri′ and nonadjacent Tj and Tj′;
•	 xi,j ≠ 0 and xi′,j ≠ 0 for adjacent Ri and Ri′ and an independent Tj;
•	 xi,j ≥ 2 for a complete Ri and an independent Tj.

For guesses satisfying all the conditions above, we construct an ILP instance as
follows. For each variable xi,j , we add the guessed constraint xi,j = 0 , xi,j = 1 , or
xi,j ≥ 2 . For each i ∈ {1,… , r} , we add the constraint

∑
1≤j≤t xi,j = �Ri� . For each

j ∈ {1,… , t} , we add the constraint
∑

1≤i≤r xi,j ≤ �Tj� . We can see that this ILP is
feasible if and only if there is a subgraph isomorphism consistent with the guess. As
we saw in the proof of Theorem 4.1 for vertex integrity, this feasibility check can be
done in FPT time parameterized by k. (The dependency on k in the running time is
kO(k

2) .) 	� ◻

Funding  Partially supported by NETWORKS (the Networks project, funded by the Netherlands Organi-
zation for Scientific Research NWO), the ELC project (the project Exploring the Limits of Computation,
funded by MEXT), JSPS/MEXT KAKENHI Grant Numbers JP24106004, JP18K11168, JP18K11169,
JP18H04091, JP18H06469, JP15K00009, JST CREST Grant Number JPMJCR1402, and Kayamori
Foundation of Informational Science Advancement. The authors thank Momoko Hayamizu, Kenji Kashi-
wabara, Hirotaka Ono, Ryuhei Uehara, and Koichi Yamazaki for helpful discussions. The authors are
grateful to the anonymous reviewer of an earlier version of this paper who pointed out a gap in a proof. A
preliminary version appeared in the proceedings of the 11th International Conference on Algorithms and
Complexity (CIAC 2019), Lecture Notes in Computer Science 11485 (2019) 87–98.

3585

1 3

Algorithmica (2020) 82:3566–3587	

References

	 1.	 Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995). https​://doi.
org/10.1145/21033​2.21033​7

	 2.	 Barefoot, C.A., Entringer, R.C., Swart, H.C.: Vulnerability in graphs—a comparative survey. J.
Combin. Math. Combin. Comput. 1, 13–22 (1987)

	 3.	 Bodlaender, H.L, Nederlof, J., van der Zanden, T.C.: Subexponential time algorithms for embedding
H-minor free graphs. In: ICALP 2016, vol. 55. LIPIcs, pp. 9:1–9:14 (2016). https​://doi.org/10.4230/
LIPIc​s.ICALP​.2016.9

	 4.	 Bonsma, P.S.: Surface split decompositions and subgraph isomorphism in graphs on surfaces. In:
STACS 2012, vol. 14. LIPIcs, pp. 531–542 (2012). https​://doi.org/10.4230/LIPIc​s.STACS​.2012.531

	 5.	 Cygan, M., Fomin, F.V., Golovnev, A., Kulikov, A.S., Mihajlin, I., Pachocki, J., Socała, A.: Tight
lower bounds on graph embedding problems. J. ACM 64(3), 18:1–18:22 (2017). https​://doi.
org/10.1145/30510​94

	 6.	 Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms. Springer, New York (2015)

	 7.	 Damaschke, P.: Induced subgraph isomorphism for cographs in NP-complete. In: WG 1990, vol.
484. LNCS, pp. 72–78 (1990). https​://doi.org/10.1007/3-540-53832​-1_32

	 8.	 Dorn, F.: Planar subgraph isomorphism revisited. In: STACS 2010, vol. 5. LIPIcs, pp. 263–274
(2010). https​://doi.org/10.4230/LIPIc​s.STACS​.2010.2460

	 9.	 Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on complete-
ness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995). https​://doi.org/10.1016/0304-
3975(94)00097​-3

	10.	 Drange, P.G., Dregi, M.S., van’t Hof, P.: On the computational complexity of vertex integrity and
component order connectivity. Algorithmica 76(4), 1181–1202 (2016). https​://doi.org/10.1007/
s0045​3-016-0127-x

	11.	 Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Gr. Algorithms Appl.
3(3), 1–27 (1999). https​://doi.org/10.7155/jgaa.00014​

	12.	 Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and
related problems. Algorithmica 13(3), 266–282 (1995). https​://doi.org/10.1007/BF011​90507​

	13.	 Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7(1), 49–65 (1987). https​://doi.org/10.1007/BF025​79200​

	14.	 Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17(2),
77–100 (2015)

	15.	 Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Complete-
ness. W. H. Freeman, New York (1979)

	16.	 Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of partial k-trees.
Theor. Comput. Sci. 164(1&2), 287–298 (1996). https​://doi.org/10.1016/0304-3975(96)00046​-1

	17.	 Hajiaghayi, M.T., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation, and graphs of
(locally) bounded treewidth. J. Comput. Syst. Sci. 73(5), 755–768 (2007). https​://doi.org/10.1016/j.
jcss.2007.01.003

	18.	 Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of poly-
nomial-time algorithms, kernels, and turing kernels. SODA 2015, 616–629 (2015). https​://doi.
org/10.1137/1.97816​11973​730.42

	19.	 Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987). https​://doi.org/10.1287/moor.12.3.415

	20.	 Kijima, S., Otachi, Y., Saitoh, T., Uno, T.: Subgraph isomorphism in graph classes. Discrete Math.
312(21), 3164–3173 (2012). https​://doi.org/10.1016/j.disc.2012.07.010

	21.	 Kiyomi, M., Otachi, Y.: Finding a chain graph in a bipartite permutation graph. Inf. Process. Lett.
116(9), 569–573 (2016). https​://doi.org/10.1016/j.ipl.2016.04.006

	22.	 Konagaya, M., Otachi, Y., Uehara, R.: Polynomial-time algorithms for subgraph isomorphism
in small graph classes of perfect graphs. Discrete Appl. Math. 199, 37–45 (2016). https​://doi.
org/10.1016/j.dam.2015.01.040

	23.	 Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37
(2012). https​://doi.org/10.1007/s0045​3-011-9554-x

	24.	 Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4),
538–548 (1983). https​://doi.org/10.1287/moor.8.4.538

https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.4230/LIPIcs.ICALP.2016.9
https://doi.org/10.4230/LIPIcs.ICALP.2016.9
https://doi.org/10.4230/LIPIcs.STACS.2012.531
https://doi.org/10.1145/3051094
https://doi.org/10.1145/3051094
https://doi.org/10.1007/3-540-53832-1_32
https://doi.org/10.4230/LIPIcs.STACS.2010.2460
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/s00453-016-0127-x
https://doi.org/10.1007/s00453-016-0127-x
https://doi.org/10.7155/jgaa.00014
https://doi.org/10.1007/BF01190507
https://doi.org/10.1007/BF02579200
https://doi.org/10.1016/0304-3975(96)00046-1
https://doi.org/10.1016/j.jcss.2007.01.003
https://doi.org/10.1016/j.jcss.2007.01.003
https://doi.org/10.1137/1.9781611973730.42
https://doi.org/10.1137/1.9781611973730.42
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1016/j.disc.2012.07.010
https://doi.org/10.1016/j.ipl.2016.04.006
https://doi.org/10.1016/j.dam.2015.01.040
https://doi.org/10.1016/j.dam.2015.01.040
https://doi.org/10.1007/s00453-011-9554-x
https://doi.org/10.1287/moor.8.4.538

3586	 Algorithmica (2020) 82:3566–3587

1 3

	25.	 Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theor. Com-
put. Sci. 63(3), 295–302 (1989). https​://doi.org/10.1016/0304-3975(89)90011​-X

	26.	 Marx, D.: List edge multicoloring in graphs with few cycles. Inf. Process. Lett. 89(2), 85–90 (2004).
https​://doi.org/10.1016/j.ipl.2003.09.016

	27.	 Marx, D., Pilipczuk, M.: Everything you always wanted to know about the parameterized complex-
ity of subgraph isomorphism (but were afraid to ask). In: STACS 2014, vol. 25. LIPIcs, pp. 542–553
(2014). https​://doi.org/10.4230/LIPIc​s.STACS​.2014.542

	28.	 Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial k-trees.
Discrete Math. 108(1–3), 343–364 (1992). https​://doi.org/10.1016/0012-365X(92)90687​-B

	29.	 Matula, D.W.: Subtree isomorphism in O(n5∕2) . In: Alspach, B., Hell, P., Miller, D.J. (eds.) Algo-
rithmic Aspects of Combinatorics. Annals of Discrete Mathematics, vol. 2, pp. 91–106. Elsevier,
Amsterdam (1978)

	30.	 McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math.
201(1–3), 189–241 (1999). https​://doi.org/10.1016/S0012​-365X(98)00319​-7

	31.	 Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combina-
torica 7(1), 105–113 (1987). https​://doi.org/10.1007/BF025​79206​

	32.	 Nesetril, J., de Mendez, P.O.: Sparsity-Graphs, Structures, and Algorithms, vol 28. Algorithms and
Combinatorics. Springer, New York (2012). https​://doi.org/10.1007/978-3-642-27875​-4

	33.	 Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universi-
tatis Carolinae 15(2), 307–309 (1974)

	34.	 Tedder, M., Corneil, D.G, Habib, M., Paul, C.: Simpler linear-time modular decomposition via
recursive factorizing permutations. In: ICALP 2008 (1), vol. 5125. LNCS, pp. 634–645 (2008).
https​://doi.org/10.1007/978-3-540-70575​-8_52

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Hans L. Bodlaender1 · Tesshu Hanaka2 · Yasuaki Kobayashi3 ·
Yusuke Kobayashi3 · Yoshio Okamoto4,5 · Yota Otachi6  ·
Tom C. van der Zanden7

	 Hans L. Bodlaender
	 H.L.Bodlaender@uu.nl

	 Tesshu Hanaka
	 hanaka.91t@g.chuo‑u.ac.jp

	 Yasuaki Kobayashi
	 kobayashi@iip.ist.i.kyoto‑u.ac.jp

	 Yusuke Kobayashi
	 yusuke@kurims.kyoto‑u.ac.jp

	 Yoshio Okamoto
	 okamotoy@uec.ac.jp

	 Tom C. van der Zanden
	 T.vanderZanden@maastrichtuniversity.nl

1	 Utrecht University, Utrecht, The Netherlands
2	 Chuo University, Bunkyo‑ku, Tokyo, Japan
3	 Kyoto University, Kyoto, Japan
4	 The University of Electro-Communications, Chofu, Tokyo, Japan

https://doi.org/10.1016/0304-3975(89)90011-X
https://doi.org/10.1016/j.ipl.2003.09.016
https://doi.org/10.4230/LIPIcs.STACS.2014.542
https://doi.org/10.1016/0012-365X(92)90687-B
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1007/BF02579206
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-540-70575-8_52
http://orcid.org/0000-0002-0087-853X

3587

1 3

Algorithmica (2020) 82:3566–3587	

5	 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
6	 Nagoya University, Nagoya 464‑8601, Japan
7	 Maastricht University, Maastricht, The Netherlands

	Subgraph Isomorphism on Graph Classes that Exclude a Substructure
	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminaries and Basic Observations
	2.1 Graphs Forbidding a Short Path as a Minor

	3 Forbidding a Connected Graph as a Minor
	4 Forbidding a Disconnected Graph as a Minor
	4.1 Subgraph Isomorphism on -Minor Free Graphs
	4.2 Subgraph Isomorphism on -Minor Free Graphs
	4.3 Subgraph Isomorphism on -Minor Free Graphs
	4.4 Missing Cases

	5 Structural Parameterizations of Subgraph Isomorphism
	References

