
Vol:.(1234567890)

Algorithmica (2021) 83:2634–2650
https://doi.org/10.1007/s00453-020-00745-z

1 3

Subexponential‑Time Algorithms for Finding Large Induced
Sparse Subgraphs

Jana Novotná1,2 · Karolina Okrasa2,3 · Michał Pilipczuk2 · Paweł Rzążewski2,3  ·
Erik Jan van Leeuwen4 · Bartosz Walczak5

Received: 2 December 2019 / Accepted: 2 July 2020 / Published online: 31 July 2020
© The Author(s) 2020

Abstract
Let C and D be hereditary graph classes. Consider the following problem: given a
graph G ∈ D , find a largest, in terms of the number of vertices, induced subgraph of
G that belongs to C . We prove that it can be solved in 2o(n) time, where n is the num-
ber of vertices of G, if the following conditions are satisfied:

•	 the graphs in C are sparse, i.e., they have linearly many edges in terms of the
number of vertices;

•	 the graphs in D admit balanced separators of size governed by their density, e.g.,
O(�) or O(

√

m) , where � and m denote the maximum degree and the number of
edges, respectively; and

•	 the considered problem admits a single-exponential fixed-parameter algorithm
when parameterized by the treewidth of the input graph.

 This leads, for example, to the following corollaries for specific classes C and D:

•	 a largest induced forest in a P
t
-free graph can be found in 2Õ(n2∕3) time, for every

fixed t; and
•	 a largest induced planar graph in a string graph can be found in 2Õ(n2∕3) time.

The extended abstract of this paper was presented on IPEC 2019[28]. J.N. was supported by student
Grants GAUK 1277018, SVV-2017-260452. M.P. was suppored by the Project TOTAL that has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant Agreement No. 677651). P.Rz. was supported by
Polish National Science Centre Grant No. 2018/31/D/ST6/00062. B.W. was partially supported by
Polish National Science Centre Grant No. 2015/17/B/ST6/01873.

 *	 Paweł Rzążewski
	 p.rzazewski@mini.pw.edu.pl

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7696-3848
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00745-z&domain=pdf

2635

1 3

Algorithmica (2021) 83:2634–2650	

Keywords  Subexponential algorithm · Feedback vertex set · Pt-free graphs · String
graphs

Mathematics Subject Classification  05C85 · 68Q25

1  Introduction

Many optimization problems in graphs can be expressed as follows: given a graph
G, find a largest vertex set A such that G[A], the subgraph of G induced by A, satis-
fies some property. Examples include Independent Set (the property of being edge-
less), Feedback Vertex Set (the property of being acyclic), and Planarization (the
property of being planar). Here, Feedback Vertex Set and Planarization are cus-
tomarily phrased in the complementary form that asks for minimizing the comple-
ment of A: given G, find a smallest vertex set X such that G − X has the desired
property. While all problems considered in this paper can be viewed in these two
ways, for the sake of clarity we focus on the maximization formulation.

Formally, we shall consider the following Max Induced C-Subgraph problem.
Fix a graph class C that is hereditary, that is, closed under taking induced sub-
graphs. Then, given a graph G, the goal is to find a largest vertex subset A such
that G[A] ∈ C . Our focus is on exact algorithms for this problem with running
time expressed in terms of n, the number of vertices of G. Clearly, as long as the
graphs from C can be recognized in polynomial time, the problem can be solved in
2n ⋅ nO(1) time by brute-force; we are interested in non-trivial improvements over this
approach.

The complexity of Max Induced C-Subgraph was studied as early as in 1980
by Lewis and Yannakakis[26], who proved that when the graph class C does not
contain all graphs, the problem is NP-hard. Recently, Komusiewicz[21] inspected
the reduction of Lewis and Yannakakis and concluded that under the Exponential
Time Hypothesis (ETH) one can even exclude the existence of subexponential-time
algorithms for the problem, that is, ones with running time 2o(n) . While the result of
Komusiewicz[21] excludes significant improvements in the running time, there is
still room for improvement in the base of the exponent. Indeed, for various classes
of graphs C , algorithms with running time O((2 − �)n) for some 𝜀 > 0 are known;
see e.g.[5, 15–17, 31] and the references therein.

Another direction, which is of main interest to us, is to impose more conditions
on the input graphs G in the hope of obtaining faster algorithms for restricted cases.
Formally, we fix another hereditary graph class D and consider Max Induced C-Sub-
graph where the input graph G is additionally required to belong to D.

In this line of research, the class C of edgeless graphs, which corresponds to the
classical Max Independent Set (mis) problem, has been extensively studied. Sup-
pose D is the class of H -free graphs, that is, graphs that exclude some fixed graph
H as an induced subgraph. As observed by Alekseev[2], the problem is NP-hard
on H-free graphs unless H is a path or a subdivision of the claw ( K1,3 ); the reduc-
tion of[2] actually excludes the existence of a subexponential-time algorithm under

2636	 Algorithmica (2021) 83:2634–2650

1 3

ETH in these cases. On the positive side, the maximal classes for which polynomial-
time algorithms are known are the P6-free graphs[18] and the fork-free graphs[3,
27]. It would be consistent with our knowledge if mis was polynomial-time solv-
able on H-free graphs whenever H is a path or a subdivision of the claw. Very
recently, Abrishami et al.[1] reported a polynomial-time algorithm on long-hole-free
graphs, which are graphs that exclude every cycle of length at least 5 as an induced
subgraph.

It turns out that if we only aim at subexponential-time instead of polynomial-time
algorithms, many more tractability results can be obtained for mis, and usually they
are also conceptually much simpler. Bacsó et al.[4] showed that mis can be solved in
2O(

√

tn log n) time on Pt-free graphs, for every t ∈ ℕ (see also an alternative subexpo-
nential-time algorithm by Brause[9], with running time 2O(n1−�) for any � ∈ (0, 1∕2t)).

In the light of the results above, it is natural to ask whether structural assump-
tions on the class D from which the input is drawn, like e.g. Pt-freeness, can help in
the design of subexponential-time algorithms for other maximum induced subgraph
problems, beyond C being the class of edgeless graphs. This is precisely the question
we investigate in this work.

Our contribution We identify three properties that together provide a way to solve
the Max Induced C-Subgraph problem on graphs from D in subexponential time,
where C and D are hereditary graph classes. They are as follows:

•	 The class C should consist of sparse graphs. To be specific, let us assume that
every n-vertex graph from C has O(n) edges.

•	 The class D may contain dense graphs, but they should admit balanced sepa-
rators whose size is somehow governed by the density. To be specific, let us
assume that every graph from D with maximum degree � has a balanced separa-
tor of size O(�) , or that every graph from D with m edges has a balanced separa-
tor of size O(

√

m).
•	 The Max Induced C-Subgraph problem on graphs from D can be solved in

2Õ(w)
⋅ nO(1) time, where w is the treewidth of the input graph. Here, notation Õ(⋅)

hides polylogarithmic factors.

We show that if these conditions are simultaneously satisfied, then the Max Induced
C-Subgraph problem on graphs from D can be solved in 2Õ(n2∕3) time in the presence
of balanced separators of size O(�) and in 2Õ(n3∕4) time for balanced separators of
size O(

√

m) . The precise statement and proof of this result can be found in Sect. 2.
The conditions on C look natural and are satisfied by various specific classes of

interest, like forests (corresponding to Feedback Vertex Set) and planar graphs
(corresponding to Planarization). On the other hand, the condition on D looks more
puzzling. However, there are certain non-sparse classes of graphs where the exist-
ence of such balanced separators has been established. For instance, balanced sepa-
rators of size O(�) are known to exist in Pt-free graphs for any fixed t ∈ ℕ[4], and
in long-hole-free graphs[11]. The existence of balanced separators of size O(

√

m) is
known for string graphs, which are intersection graphs of arc-connected subsets of
the plane, and more generally for intersection graphs of connected subgraphs in any

2637

1 3

Algorithmica (2021) 83:2634–2650	

proper minor-closed class (see Lee[25]). All these observations yield a number of
concrete corollaries to our main result, which are gathered in Sect. 3.

In Sect. 4, we investigate more closely the case that D is the class of string
graphs. We show that in this class we can obtain significantly faster subexponential-
time algorithms for the above-mentioned problems. The key idea is to use another
result by Lee[25], which asserts that string graphs not containing Kt,t as a subgraph
are sparse—they have O(n ⋅ t log t) edges. Observe that for all discussed classes C ,
including edgeless graphs, forests, and planar graphs, their members do not contain
a subgraph isomorphic to Kt,t , for some constant t.

In Sect. 5, we discuss some lower bounds: we show that if C is the class of forests
(corresponding to the Feedback Vertex Set problem) and D is characterized by a
single excluded induced subgraph, then under the Exponential Time Hypothesis one
cannot hope for subexponential-time algorithms in greater generality than provided
by our main result.

2 � Main Result

We use standard graph notation. We assume that the reader is familiar with tree-
width. We recall some notations for tree decompositions in Sect. 6, where it is actu-
ally needed.

For a graph G, a set S ⊆ V(G) is a balanced separator if every connected compo-
nent of G − S has at most 2

3
|V(G)| vertices. It is known that small balanced separa-

tors can be used to construct tree decompositions of small width, as made explicit in
the following lemma.

Lemma 1  [14] If every subgraph of a graph G has a balanced separator of size at
most k, then the treewidth of G is O(k).

Now, we are ready to state and prove our main result.

Theorem 1  Let C and D be classes of graphs that satisfy the following conditions:

	(P1)	 Every n-vertex graph from C has O(n) edges.
	(P2)	 The class D is closed under taking induced subgraphs.
	(P3)	 Given a graph G ∈ D with n vertices and treewidth w, one can find a largest

set A ⊆ V(G) such that G[A] ∈ C in 2Õ(w)
⋅ nO(1) time.

Furthermore, let the class D satisfy one of the following conditions:

	(P4a)	Every graph in D with maximum degree � has a balanced separator of size
O(�) , or

	(P4b)	Every graph in D with n vertices and maximum degree � has a balanced sepa-
rator of size O(

√

n�).

2638	 Algorithmica (2021) 83:2634–2650

1 3

Then, given an n-vertex graph G ∈ D, one can find a largest set A ⊆ V(G) such
that G[A] ∈ C in time

(a)	 2Õ(n2∕3), if D satisfies (P4a), or
(b)	 2Õ(n3∕4), if D satisfies (P4b).

Proof  Let a constant � be defined as follows, depending on which of the two condi-
tions is satisfied by D:

Let G ∈ D be the input graph and n be the number of its vertices. We devise a
branching algorithm that finds a largest set A ⊆ V(G) such that G[A] ∈ C in 2Õ(n1−𝜏)
time. This matches the complexity bounds from the statement of the theorem.

Consider a fixed solution A, that is, a largest set A ⊆ V(G) such that G[A] ∈ C .
Let A′

⊆ A be the set of vertices of degree greater than n� in G[A]. By property (P1),
we have |A�

| = O(n∕n�) = O(n1−�).
The algorithm guesses the set A′ exhaustively, by trying all subsets of V(G) of the

appropriate sizes O(n1−�) , which results in nO(n1−𝜏) = 2Õ(n1−𝜏) branches. Fix one such
branch and assume, for the purpose of further description of the algorithm, that it
corresponds to the correct set A′ (i.e., the one obtained from the fixed solution A).
Let G� = G − A�.

Suppose that G′ contains a vertex v of degree at least n2� . If v ∈ A , then v has
degree at most n� in G[A] (since v ∉ A� ). The algorithm further guesses that v ∉ A
and discards v (one branch), or it guesses that v ∈ A and discards all but at most
n� neighbors of v in G′ (at most nn� branches). In the latter case, we do not fix the
assumption that v or any particular neighbor of v belongs to A, so that the vertices
that have survived this step can still be discarded in subsequent branching steps.

The step described above is repeated exhaustively. The overall number of
branches generated in this way can be bounded as follows, where k = |V(G�)|:

Once the branching step can no longer be applied, we obtain an induced subgraph
G′′ of G′ of maximum degree less than n2� . In the branch where all the choices have
been made correctly (i.e., according to the fixed solution A), G′′ still contains all
vertices from A ⧵ A′.

� =

{

1∕3 if D satisfies (P4a),

1∕4 if D satisfies (P4b).

F(k) ⩽ F(k − 1) + nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

⩽ F(k − 2) + nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏)) + nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

⩽ ⋯ ⩽ F(k − (n2𝜏 − n𝜏)) + (n2𝜏 − n𝜏) ⋅ nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

= (n2𝜏 − n𝜏 + 1) ⋅ nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

⩽
(

(n2𝜏 − n𝜏 + 1) ⋅ nn
𝜏)k∕(n2𝜏−n𝜏)

⩽
(

(n2𝜏 − n𝜏 + 1) ⋅ nn
𝜏)n∕(n2𝜏−n𝜏)

= nO(n1+𝜏−2𝜏) = 2Õ(n1−𝜏).

2639

1 3

Algorithmica (2021) 83:2634–2650	

By property (P2), we have G�� ∈ D . Thus G′′ satisfies either (P4a) or (P4b),
which means that G′′ has a balanced separator of size O(n2∕3) in the former case
or O(

√

n ⋅ n1∕2) = O(n3∕4) in the latter case. In both cases, the size of the separa-
tor is O(n1−�) . Moreover, again by property (P2), balanced separators of that size
also exist in every subgraph of G′′ . Therefore, by Lemma 1, we conclude that G′′
has treewidth O(n1−�) . Since |A�

| ⩽ O(n1−�) , it follows that the graph G[V(G��) ∪ A�]
also has treewidth O(n1−�).

We know that G[V(G��) ∪ A�] ∈ D and, in the branch where all choices have been
made correctly, this graph contains the entire maximum-size solution A. Now, we
apply the procedure assumed in (P3) to the graph G[V(G��) ∪ A�] and observe that
in the correct branch it finds some maximum-size solution (possibly different from
A). Let us point out that in this step it is not sufficient to consider only the graph G′′ ,
as the vertices from A′ introduce some additional constraints on the solution we are
looking for.

For the time complexity, the algorithm considers 2Õ(n1−𝜏) branches and in each of
them it executes the procedure assumed in (P3) in 2Õ(n1−𝜏) time, which gives the total
running time of 2Õ(n1−𝜏) . 	� ◻

Remark 1  The condition (P1) in the statement of Theorem 1 can be relaxed to “every
n-vertex graph from C has O(n2−�) edges, for some constant 𝜀 > 0 ”. Then, we can
follow the same approach with the following modification: we choose � = 1 −

2

3
� in

case of (P4a) and � = 1 −
3

4
� in case of (P4b), and replace the threshold for branch-

ing on high-degree vertices from n2� to n2�+�−1 . This way, we obtain algorithms with
running time 2Õ(n1−𝜀∕3) for property (P4a) and 2Õ(n1−𝜀∕4) for property (P4b). This run-
ning time is subexponential for every 𝜀 > 0.

Remark 2  Let us point out that the conjunction of properties (P2) and (P4a) implies
(P4b). We state them separately, as there are some natural graph classes with each
type of behavior. One can also imagine unifying properties (P4a) and (P4b) into the
existence of a balanced separator of size O(n���) , for some constants �, � . However,
then, one needs to be careful when choosing � so that it belongs to the interval [0, 1].
As we did not find concrete examples of interesting graph classes D for which this
approach would yield non-trivial results and which would not satisfy either (P4a) or
(P4b), we refrain from discussing further details here.

3 � Corollaries

In this section, we discuss possible classes C and D which satisfy the conditions of
Theorem 1. For some choices of C , we obtain well-studied computational problems:

1.	 for matchings, we obtain Max Induced Matching,
2.	 for forests, we obtain Max Induced Forest, the complement problem of Feedback

Vertex Set (note that from the point of view of exact algorithms these problems
are equivalent),

2640	 Algorithmica (2021) 83:2634–2650

1 3

3.	 for graphs of maximum degree d, where d is fixed, we obtain Max Induced
Degree-d Subgraph,

4.	 for planar graphs, we obtain Max Induced Planar Subgraph, also known as
Planarization,

5.	 for graphs embeddable in � , where the surface � is fixed, we obtain Max Induced
�-Embeddable Subgraph,

6.	 for graphs of degeneracy at most d, where d is fixed, we obtain Max Induced d
-Degenerate Subgraph.

We note that all these classes satisfy property (P1) of Theorem 1. We point out that
the Euler formula implies that every n-vertex graph embeddable on a surface � with
Euler genus g has at most 3n + 6g − 6 edges[34].

Given a graph of treewidth w, its tree decomposition of width at most 5w + 4
can be computed in 2O(w)

⋅ n time[6]. Therefore, for the purpose of verifying prop-
erty (P3), we can assume that a tree decomposition of width O(w) is additionally
provided on input. While 2Õ(w)

⋅ nO(1)-time algorithms are quite straightforward and
well known for the first two problems on the list, this is not necessarily the case for
the others. As the Max Induced Degree-d Subgraph problem can be expressed in
the so-called Existential Counting Modal Logic, an algorithm with running time
2O(w)

⋅ nO(1) can be easily derived from the meta-theorem of Pilipczuk[30]. Algo-
rithms for Max Induced Planar Subgraph and, more generally, Max Induced �
-Embeddable Subgraph, were provided by Kociumaka and Pilipczuk[20]. Finally,
we give a suitable algorithm for Max Induced d-Degenerate Subgraph in Lemma 4
in Sect. 6.

It may be tempting to consider, as C , the graphs with no even cycle C2k (not nec-
essarily induced), for some fixed integer k ⩾ 2 . This is because such graphs have
O(n2−Ω(1∕k)) edges[7], and thus they satisfy the generalization of property (P1) men-
tioned in Remark 1 for � = Ω(1∕k) . However, for these classes, property (P3) turns
out to be problematic: for any fixed � ⩾ 5 , there is no algorithm for a minimum
set of vertices hitting all (non-induced) copies of C

�
 in a graph with treewidth w

with running time 2o(w2)
⋅ nO(1) unless the ETH fails[30] (this bound appears to be

essentially tight, as the problem can be solved in 2Õ(w2)
⋅ nO(1) time[13]). It is unclear

whether the additional assumption that the input graph belongs to some class D ,
considered here, can help.

Now, let us consider classes D . Examples of classes satisfying property (P4a) in
Theorem 1 come from forbidding some induced subgraphs. Bacsó et al.[4] proved
that Pt-free graphs with maximum degree � have treewidth O(� ⋅ t) . Very recently,
Chudnovsky et al.[11] observed that long-hole-free graphs, that is, graphs with no
induced cycles of length at least 5, also have balanced separators of size O(�).

An example of a class satisfying property (P4b) is the class of string graphs—
intersection graphs of arc-connected subsets of the plane[22–24]. The importance of
this class stems from the fact that they serve as a common generalization of classes
of intersection graphs of geometric objects in the plane. Lee[25] showed that they
admit balanced separators of size O(

√

m) , where m is the number of edges. In fact,
he proved a more general result that if M is a class of graphs excluding a fixed
graph as a minor, then intersection graphs of connected subgraphs of graphs from

2641

1 3

Algorithmica (2021) 83:2634–2650	

M admit balanced separators of size O(
√

m) . String graphs are precisely the inter-
section graphs of connected subgraphs of planar graphs[19].

Summing up, we obtain the following.

Corollary 1  Each of the following problems can be solved in 2Õ(n2∕3) time on Pt-free
graphs (for every fixed t) and in long-hole-free graphs, and in 2Õ(n3∕4) time on string
graphs:

1.	 Max Induced Matching,
2.	 Max Induced Forest,
3.	 Max Induced Degree-d Subgraph, for every fixed d ∈ ℕ,

4.	 Max Induced Planar Subgraph,
5.	 Max Induced �-Embeddable Subgraph, for every fixed surface �,

6.	 Max Induced d-Degenerate Subgraph, for every fixed d ∈ ℕ.

As we have argued, in Corollary 1, we can replace string graphs with intersection
graphs of connected subgraphs of graphs from M , where M is any class of graphs
excluding a fixed graph as a minor; this is because the result of Lee[25] holds in that
generality.

Finally, let us point out that we can easily extend the approach of Theorem 1 to
enforce some constraints on the set of vertices that are removed, i.e., V(G) ⧵ A . For
example, we might require that this set is independent. To obtain this, whenever we
decide to discard a vertex in the branching phase, we need to mark all its neighbors,
so that we do not discard them later. Note that this might result in having a marked
vertex of degree at least n2� , which is adjacent to at least n� marked vertices. In this
case we cannot perform any branching, but we can immediately terminate this call,
as the existence of such a vertex certifies that A′ was not chosen properly. Further-
more, in standard dynamic programming algorithms, based on tree decompositions,
the constraints coming from marking can also be handled easily. Thus, in particular,
we obtain the following corollary, answering a question by Paulusma[29].

Corollary 2  For every fixed t, the Independent Feedback Vertex Set problem can
be solved in 2Õ(n2∕3) time on Pt-free graphs with n vertices.

4 � Refined Algorithm for String Graphs

Let us point out that subexponential-time algorithms for Max Induced Matching
and Max Induced Forest on string graphs, even with a better running time 2Õ(n2∕3) ,
were already known[8]. They are based on another result by Lee[25].

Theorem 2  (Lee[25]) There is a constant c > 0 such that for every t ⩾ 1 the fol-
lowing holds: every string graph that does not contain Kt,t as a (not necessarily
induced) subgraph has at most c ⋅ n ⋅ t log t edges.

2642	 Algorithmica (2021) 83:2634–2650

1 3

The better running time comes from a similar win-win approach: either we
have few edges (and thus a small balanced separator), or we have a large biclique,
which can be exploited for branching in a very effective way. It turns out that a
similar idea can be used to improve the running times of algorithms for other
problems mentioned in Corollary 1, if the input is a string graph.

We prove the following general result.

Theorem 3  Let t be a constant, and let C be a class of graphs with the following
properties:

	(SP1)	No graph from C contains Kt+1,t+1 as a subgraph.
	(SP2)	Given a string graph G with n vertices and treewidth w, one can find a largest

set A ⊆ V(G) such that G[A] ∈ C in 2Õ(w)
⋅ nO(1) time.

Then, given an n-vertex string graph G, one can find a largest set A ⊆ V(G)
such that G[A] ∈ C in 2Õ(n2∕3) time. The algorithm does not require the geometric
representation.
Proof  The proof is similar to the proof of Theorem 1. Let G be the input string
graph with n vertices. We assume that n is sufficiently large compared to t, as oth-
erwise the input has constant size and we can solve the problem using brute force.
Let A be the (unknown) solution that we are trying to find. First, we check whether
G contains a subgraph isomorphic to Kn1∕3,n1∕3 . We can do it in total time 2Õ(n1∕3) by
exhaustive enumeration of all pairs of disjoint sets, each of size n1∕3.

First, consider the case that such a biclique exists, and let X and Y be its biparti-
tion classes. Note that |A ∩ X| ⩽ t or |A ∩ Y| ⩽ t , as otherwise G[A] contains Kt+1,t+1
as a subgraph, which contradicts property (SP1). In other words, we can choose
the set of t vertices from one of the classes and immediately discard all other ver-
tices from this class. We perform such a branching, and the number of branches is
bounded by

So let us assume that the search for a biclique fails. By Theorem 2, this means that
G has Õ(n4∕3) edges, so, by a result of Lee[25, Theorem 1] and Lemma 1, G has
treewidth Õ(n2∕3) . Then we call the algorithm from property (SP2) to compute the
solution. The total running time is 2Õ(n2∕3) . 	� ◻

Now let us apply the theorem above to problems mentioned in Corollary 1.
Clearly, if C is the class of forests, then it satisfies property (SP1) in Theorem 3
for t = 1 . If C is a class of graphs with degeneracy at most d (this already contains
the case of graphs with maximum degree at most d), then property (SP1) is satis-
fied for t = d . If C is the class of planar graphs, then property (SP1) is satisfied
for t = 2 . Finally, if C is the class of graphs embeddable in a fixed surface � , then
property (SP1) is satisfied for t = 2g + 3 , where g is the Euler genus of � . Indeed,

F(n) ⩽ 2 ⋅
(

n1∕3
)t
F
(

n − (n1∕3 − t)
)

⩽ 2Õ(n2∕3).

2643

1 3

Algorithmica (2021) 83:2634–2650	

it was observed by Ringel[32] that K3,2g+2 cannot be embedded in a surface with
Euler genus g.

Summing up, we obtain the following corollary from Theorem 3.

Corollary 3  Each of the following problems can be solved in 2Õ(n2∕3) time on string
graphs, even if no geometric representation is given:

1.	 Max Induced Matching,
2.	 Max Induced Forest,
3.	 Max Induced Degree-d Subgraph, for every fixed d ∈ ℕ,

4.	 Max Induced Planar Subgraph,
5.	 Max Induced �-Embeddable Subgraph, for every fixed surface �,

6.	 Max Induced d-Degenerate Subgraph, for every fixed d ∈ ℕ.

5 � Max Induced Forest in H‑Free Graphs

Our original motivation was the Max Induced Forest problem. In the previous sec-
tion, we discussed a subexponential-time algorithm solving it on Pt-free graphs.
We now show that as long as the considered class of inputs D is characterized by
a single excluded induced subgraph, that is, we investigate Max Induced Forest on
H-free graphs for a fixed graph H, we cannot hope for more positive results. Namely,
it turns out that if H is not a linear forest (i.e., a collection of vertex-disjoint paths),
the problem is unlikely to admit a polynomial-time or even a subexponential-time
algorithm on H-free graphs. Specifically, we obtain the following dichotomy.

Theorem 4  Let H be a fixed graph.

1.	 If H is a linear forest, then the Max Induced Forest problem can be solved in
2Õ(n2∕3) time on H-free graphs with n vertices.

2.	 Otherwise, on H-free graphs, the Max Induced Forest problem is NP-complete
and cannot be solved in 2o(n) time unless the ETH fails.

Statement 1 of Theorem 4 follows from Corollary 1, because every linear forest
is an induced subgraph of some path. Statement 2 follows from a combination of
arguments already existing in the literature. However, since the proof is simple, we
include it for the sake of completeness.

We prove statement 2 of Theorem 4 in two steps. First, we consider graphs H that
contain a cycle or two branch vertices, that is, vertices of degree at least 3. In this
case, we can apply the standard argument of subdividing every edge a suitable num-
ber of times, cf.[10, Theorem 3].

Lemma 2  Let H be a fixed graph that either contains a cycle or has a con-
nected component with at least two branch vertices. Then Max Induced Forest

2644	 Algorithmica (2021) 83:2634–2650

1 3

is NP-complete on H-free graphs. Moreover, there is no algorithm solving Max
Induced Forest in 2o(n) time for n-vertex H-free graphs unless the ETH fails.

Proof  We reduce from Max Induced Forest in graphs with maximum degree 6; it is
known that this problem is NP-complete and has no subexponential-time algorithm
assuming ETH[12]. Let G be a graph with n vertices and maximum degree 6. Let
G∗ be the graph obtained from G by subdividing every edge |V(H)| + 1 times. It is
straightforward to observe that G has an induced forest on n − k vertices if and only
if G∗ has an induced forest on |G∗

| − k vertices. Moreover, the number of vertices in
G∗ is linear in n.

Finally, we show that G∗ is H-free. First, observe that if H contains a cycle, then
H cannot be a subgraph of G∗ , as the girth of G∗ is greater than |V(H)| + 1 . On the
other hand, the distance between any two branch vertices in G∗ is at least |V(H)| + 1 ,
so G∗ does not contain H as a subgraph in case H has two branch vertices in the
same connected component. 	� ◻

By Lemma 2, the only graphs H for which we might hope for a polynomial-
time or even a subexponential-time algorithm for Max Induced Forest on H-free
graphs are collections of disjoint subdivided stars. To resolve this case, we will
show that the problem remains hard for line graphs. Recall that the line graph
L(G) of a graph G is the graph whose vertices are the edges of G and where the
adjacency relation corresponds to the relation of having a common endpoint in G.

Actually, Chiarelli et al.[10] reported that the hardness of Max Induced Forest
on line graphs was observed by Speckenmeyer in his PhD thesis[33]. However,
we were unable to find this result there. Therefore, we provide the easy proof,
which boils down to essentially the same argument as in[10, Theorem 5].

Lemma 3  Max Induced Forest is NP-complete on line graphs. Moreover, there
is no algorithm solving Max Induced Forest in 2o(n) time for n-vertex line graphs
unless the ETH fails.

Proof  We reduce from the Hamiltonian Path problem, which is NP-complete and
has no subexponential-time algorithm, even if the input graph has linearly many
edges[12]. Let G be a graph, which is the input instance of Hamiltonian Path.

First, note that any induced forest in L(G) corresponds to a collection of vertex-
disjoint paths in G. More formally, consider a set E�

⊆ E(G) , such that L(G)[E�] is
a forest. We claim that the subgraph G� = (V(G),E�) of G is a collection of vertex-
disjoint paths. Suppose not. This means that G′ contains a vertex v of degree at least
3 or a cycle C. In the former case, the edges incident to v in G′ form a clique in
L(G)[E�] . In the latter case, the edges of the cycle C form a cycle in L(G)[E�] . In
either case, we get a contradiction to the assumption that L(G)[E�] is a forest.

We claim that G has a Hamiltonian path if and only if L(G) has an induced forest
on n − 1 vertices. Indeed, the n − 1 edges of a Hamiltonian path in G induce a path
(in particular, a forest) in L(G). For the converse, suppose that L(G) has an induced
forest on at least n − 1 vertices. By the observation above, this induced forest

2645

1 3

Algorithmica (2021) 83:2634–2650	

corresponds to a collection of vertex-disjoint paths in G with at least n − 1 edges in
total. This is only possible if this collection consists of a single path of length n − 1 ,
that is, a Hamiltonian path in G.

Finally, observe that the number of vertices of L(G) is equal to the number of
edges of G, which is linear in the number of vertices of G. 	� ◻

Recall that line graphs are claw-free, that is, they contain no induced copy of K1,3 .
Thus Theorem 3 implies that if H contains any star with at least 3 leaves, then Max
Induced Forest remains NP-complete and has no subexponential-time algorithm on
H-free graphs unless ETH fails. Statement 2 of Theorem 4 follows from combining
Lemmas 2 and 3.

6 � Largest Induced Degenerate Subgraph in Low‑Treewidth Graphs

This section is devoted to the proof of the following result, which we used in Sect. 3.

Lemma 4  For every fixed d ∈ ℕ, there is an algorithm for Max Induced d-Degener-
ate Subgraph with running time 2O(w logw)

⋅ n, where w is the treewidth of the input
graph and n is the number of its vertices.

Preliminaries on tree decompositions. First, we introduce some notations and ter-
minology, as they will be required in this section. A tree decomposition of a graph G
is a tree T together with a mapping �(⋅) that assigns a bag �(x) to each node x of T in
such a way that the following conditions hold:

	(T1)	 for each u ∈ V(G) , the set of nodes x with u ∈ �(x) induces a connected non-
empty subtree of T; and

	(T2)	 for each uv ∈ E(G) , there exists a node x such that {u, v} ⊆ 𝛽(x).

The width of a tree decomposition (T , �) is maxx∈V(T) |�(x)| − 1 , and the treewidth of
a graph G is the minimum width of a tree decomposition of G.

Henceforth, all tree decompositions will be rooted: the underlying tree T has a
prescribed root vertex r. This gives rise a natural ancestor-descendant relation: we
write x ⪯ y if x is an ancestor of y (where possibly x = y ). Then, for a node x of T,
we define the component at x as

It easily follows from (T1) and (T2) that then N(𝛼(x)) ⊆ 𝛽(x) for every node x.
A nice tree decomposition is a normalized form of a rooted tree decomposition in

which every node is of one of the following four kinds.

•	 Leaf node a node x with no children and with �(x) = �.

�(x) =

(

⋃

y⪰x

�(y)

)

⧵ �(x).

2646	 Algorithmica (2021) 83:2634–2650

1 3

•	 Introduce node a node x with one child y such that �(x) = �(y) ∪ {u} for some
vertex u ∉ �(y).

•	 Forget node a node x with one child y such that �(x) = �(y) ⧵ {u} for some ver-
tex u ∈ �(y).

•	 Join node a node x with two children y and z such that �(x) = �(y) = �(z).

Moreover, we require that the root r of the nice tree decomposition satisfies
�(r) = �.

It is known that any given tree decomposition (T , �) of width k of an n-vertex
graph G can be transformed in kO(1)

⋅max(n, |V(T)|) time into a nice tree decom-
position of G of width at most as large, see[12, Lemma 7.4]. Moreover, given
an n-vertex graph G of treewidth w, a tree decomposition of G of width at most
5w + 4 can be computed in 2O(w)

⋅ n time[6], and this tree decomposition has at
most n nodes. By combining these two results, for the proof of Lemma 4, we can
assume that the input graph G is supplied with a nice tree decomposition (T , �) of
width k ⩽ 5w + 4 , where w = tw(G) . From now on, our goal is to design a suit-
able dynamic programming algorithm working on this decomposition with run-
ning time 2O(k log k)

⋅ n = 2O(w logw)
⋅ n.

Dynamic programming states. The main idea behind our dynamic program-
ming algorithm is to view the notion of degeneracy via vertex orderings, as
expressed in the following fact.

Lemma 5  (folklore) A graph H is d-degenerate if and only if there is a linear order-
ing � of vertices of H such that every vertex of H has at most d neighbors that are
smaller in �.

Let us point out that sometimes degeneracy is expressed in terms of vertex
ordering, where we count neighbors that are larger. This characterization is
clearly equivalent, as it is sufficient to reverse the ordering given in Lemma 5.

Due to Lemma 5, the problem considered in Lemma 4 can be restated as fol-
lows: find a largest set A ⊆ V(G) that admits a linear ordering � in which every
vertex of A has at most d neighbors in G[A] that are smaller in � . Intuitively,
our dynamic programming will therefore keep track of the intersection of the bag
with A, the restriction of � to this intersection; and how many smaller neighbors
of each vertex from this intersection have been already forgotten.

We now proceed with formal details. For a node x of T, a set X ⊆ 𝛽(x) , a lin-
ear ordering � of X, and a function f ∶ X → {0,… , d} , we define �x[X, �, f] ∈ ℕ
as follows. The value �x[X, �, f] is the maximum size of a set Y ⊆ 𝛼(x) such that
X ∪ Y admits a linear ordering � with the following properties: � restricted to X is
equal to � and for every a ∈ X , there are at most f(a) vertices b ∈ Y that are adja-
cent to a and smaller than a in � . Note that other neighbors of a that belong to X
are not taken into consideration when verifying the quota imposed by f(a). Note
also that such a set Y always exists, as Y = � satisfies the criteria.

For a fixed node x, the total number of triples (X, �, f) as above is at most

2647

1 3

Algorithmica (2021) 83:2634–2650	

Hence, we now show how to compute the values �x[X, �, f] in a bottom-up manner,
so that the values for a node x are computed based on the values for the children of
x in 2O(k log k) time. The answer to the problem corresponds to the value �r[�, �, �] ,
where r is the root of T. While �r[�, �, �] is just the size of a largest feasible solution,
an actual solution can be recovered from the dynamic programming tables using
standard methods within the same complexity: for every computed value �x[X, �, f] ,
we store the way this value was obtained, and then we trace back the solution from
�r[�, �, �] in a top-down manner.

Transitions It remains to provide recursive formulas for the values of �x[⋅, ⋅, ⋅] .
We only present the formulas, while the verification of their correctness, which fol-
lows easily from the definition of �x[⋅, ⋅, ⋅] , is left to the reader. As usual, we distin-
guish cases depending on the type of x.

•	 Leaf node x. Then we have only one value:

•	 Introduce node x with child y such that �(x) = �(y) ∪ {u} . Then

•	 Forget node x with child y such that �(x) = �(y) ⧵ {u} . Then we have

 where S(X, �, f) is the set comprising the pairs (��, f �) satisfying the following:

•	 �
′ is a vertex ordering of X ∪ {u} whose restriction to X is equal to � ; and

•	 f � ∶ X ∪ {u} → {0,… , d} is such that for all a ∈ X that are adjacent to u and
larger than u in �′ , we have f �(a) ⩽ f (a) − 1 , and for all other a ∈ X , we have
f �(a) ⩽ f (a) . Moreover, we require that f �(u) ⩽ d − � , where � is the number
of vertices a ∈ X that are adjacent to u and smaller than u in �′.

•	 Join node x with children y and z. Then

 where fy + fz ⩽ f means that fy(a) + fz(a) ⩽ f (a) for each a ∈ X.
It is straightforward to see that using the formulas above, each value �x[X, �, f] can
be computed in 2O(k log k) time based on the values computed for the children of x.
This completes the proof of Lemma 4.

Acknowledgements  The results presented in this paper were obtained during the Parameterized Algo-
rithms Retreat of the algorithms group of the University of Warsaw (PARUW), held in Karpacz in Febru-
ary 2019. This Retreat was financed by the project CUTACOMBS, which has received funding from the

2k+1 ⋅ (k + 1)! ⋅ (d + 1)k+1 ⩽ 2O(k log k).

�x[�, �, �] = 0.

�x[X, �, f] =

{

�y[X, �, f] if u ∉ X;

�y[X ⧵ {u}, �|X⧵{u}, f |X⧵{u}] if u ∈ X.

�x[X, �, f] = max

(

�y[X, �, f], 1 + max
(��,f �)∈S(X,�,f)

�y[X ∪ {u}, ��, f �]

)

,

�x[X, �, f] = max
fy+fz⩽f

�y[X, �, fy] +�z[X, �, fz],

2648	 Algorithmica (2021) 83:2634–2650

1 3

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant Agreement No. 714704). We are grateful to the anonymous reviewer at IPEC 2019 for
suggesting the generalization of the algorithm described in Sect. 4.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Abrishami, T., Chudnovsky, M., Pilipczuk, M., Rzążewski, P., Seymour, P.: Induced subgraphs of
bounded treewidth and the container method. CoRR abs/2003.05185. arXiv​:2003.05185​ (2020)

	 2.	 Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph inde-
pendence number. Combinatorial-algebraic methods in applied mathematics, pp. 3–13 (1982). (in
Russian)

	 3.	 Alekseev, V.E.: On easy and hard hereditary classes of graphs with respect to the independ-
ent set problem. Discrete Appl. Math. 132(1–3), 17–26 (2003). https​://doi.org/10.1016/S0166​
-218X(03)00387​-1

	 4.	 Bacsó, G., Lokshtanov, D., Marx, D., Pilipczuk, M., Tuza, Z., van Leeuwen, E.J.: Subexponential-
time algorithms for maximum independent set in P

t
-free and broom-free graphs. Algorithmica

81(2), 421–438 (2019)
	 5.	 Bliznets, I., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Largest chordal and interval subgraphs faster

than 2n . Algorithmica 76(2), 569–594 (2016). https​://doi.org/10.1007/s0045​3-015-0054-2
	 6.	 Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A ckn

5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016). https​://doi.
org/10.1137/13094​7374

	 7.	 Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Combin. Theory Ser. B 16(2),
97–105 (1974)

	 8.	 Bonnet, É., Rzążewski, P.: Optimality program in segment and string graphs. Algorithmica 81(7),
3047–3073 (2019). https​://doi.org/10.1007/s0045​3-019-00568​-7

	 9.	 Brause, C.: A subexponential-time algorithm for the maximum independent set problem in P
t
-free

graphs. Discrete Appl. Math. 231, 113–118 (2017). https​://doi.org/10.1016/j.dam.2016.06.016
	10.	 Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum connected trans-

versals in graphs: new hardness results and tractable cases using the price of connectivity. Theor.
Comput. Sci. 705, 75–83 (2018). https​://doi.org/10.1016/j.tcs.2017.09.033

	11.	 Chudnovsky, M., Pilipczuk, M., Pilipczuk, M., Thomassé, S.: On the maximum weight independent
set problem in graphs without induced cycles of length at least five. CoRR abs/1903.04761. arXiv​
:1903.04761​ (2019)

	12.	 Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms. Springer, Berlin (2015). https​://doi.org/10.1007/978-3-319-
21275​-3

	13.	 Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M.: Hitting forbidden subgraphs in graphs of
bounded treewidth. Inf. Comput. 256, 62–82 (2017). https​://doi.org/10.1016/j.ic.2017.04.009

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2003.05185
https://doi.org/10.1016/S0166-218X(03)00387-1
https://doi.org/10.1016/S0166-218X(03)00387-1
https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1137/130947374
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s00453-019-00568-7
https://doi.org/10.1016/j.dam.2016.06.016
https://doi.org/10.1016/j.tcs.2017.09.033
http://arxiv.org/abs/1903.04761
http://arxiv.org/abs/1903.04761
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2017.04.009

2649

1 3

Algorithmica (2021) 83:2634–2650	

	14.	 Dvořák, Z., Norin, S.: Treewidth of graphs with balanced separations. J. Combin. Theory Ser. B
137, 137–144 (2019). https​://doi.org/10.1016/j.jctb.2018.12.007

	15.	 Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search.
In: STOC 2016, pp. 764–775. ACM (2016)

	16.	 Fomin, F.V., Todinca, I., Villanger, Y.: Exact algorithm for the maximum induced planar subgraph
problem. In: ESA 2011, LNCS, vol. 6942, pp. 287–298. Springer (2011)

	17.	 Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO.
SIAM J. Comput. 44(1), 54–87 (2015)

	18.	 Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum
weight independent set on P

6
-free graphs. In: SODA 2019, pp. 1257–1271. SIAM (2019)

	19.	 Kratochvíl, M., Goljan, P.K.: String Graphs. Academia, Prague (1986)
	20.	 Kociumaka, T., Pilipczuk, M.: Deleting vertices to graphs of bounded genus. Algorithmica 81(9),

3655–3691 (2019). https​://doi.org/10.1007/s0045​3-019-00592​-7
	21.	 Komusiewicz, C.: Tight running time lower bounds for vertex deletion problems. ACM Trans. Com-

put. Theory 10(2), 6:1–6:18 (2018)
	22.	 Kratochvíl, J.: String graphs. i. The number of critical nonstring graphs is infinite. J. Comb. Theory

Ser. B 52(1), 53–66 (1991). https​://doi.org/10.1016/0095-8956(91)90090​-7
	23.	 Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory Ser. B

52(1), 67–78 (1991). https​://doi.org/10.1016/0095-8956(91)90091​-W
	24.	 Kratochvíl, J., Matousek, J.: String graphs requiring exponential representations. J. Comb. Theory

Ser. B 53(1), 1–4 (1991). https​://doi.org/10.1016/0095-8956(91)90050​-T
	25.	 Lee, J.R.: Separators in region intersection graphs. In: ITCS 2017, LIPIcs, vol. 67, pp. 1:1–1:8.

Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2017)
	26.	 Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete.

J. Comput. Syst. Sci. 20(2), 219–230 (1980). https​://doi.org/10.1016/0022-0000(80)90060​-4
	27.	 Lozin, V.V., Milanič, M.: A polynomial algorithm to find an independent set of maximum weight in

a fork-free graph. J. Discrete Algorithms 6(4), 595–604 (2008)
	28.	 Novotná, J., Okrasa, K., Pilipczuk, M., Rzazewski, P., van Leeuwen, E.J., Walczak, B.: Subexponen-

tial-time algorithms for finding large induced sparse subgraphs. In: B.M.P. Jansen, J.A. Telle (eds.)
14th International Symposium on Parameterized and Exact Computation, IPEC 2019, September
11–13, 2019, Munich, Germany, LIPIcs, vol. 148, pp. 23:1–23:11. Schloss Dagstuhl - Leibniz-Zen-
trum für Informatik. https​://doi.org/10.4230/LIPIc​s.IPEC.2019.23 (2019)

	29.	 Paulusma, D.: Personal communication
	30.	 Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential time: a logical

approach. In: MFCS 2011, vol. 6907, pp. 520–531. Springer (2011)
	31.	 Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph faster than 2n . In:

IPEC 2012, LNCS, vol. 7535, pp. 3–12. Springer (2012)
	32.	 Ringel, G.: Das Geschlecht des vollständiger Paaren Graphen. Abh. Math. Sem. Univ. Hamburg 28,

139–150 (1965)
	33.	 Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen.

Ph.D. thesis, Universität Paderborn (1983) (in German)
	34.	 Thomassen, C.: Embeddings of graphs. Discrete Math. 124(1–3), 217–228 (1994). https​://doi.

org/10.1016/0012-365X(92)00062​-V

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.jctb.2018.12.007
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.1016/0095-8956(91)90091-W
https://doi.org/10.1016/0095-8956(91)90050-T
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.4230/LIPIcs.IPEC.2019.23
https://doi.org/10.1016/0012-365X(92)00062-V
https://doi.org/10.1016/0012-365X(92)00062-V

2650	 Algorithmica (2021) 83:2634–2650

1 3

Affiliations

Jana Novotná1,2 · Karolina Okrasa2,3 · Michał Pilipczuk2 · Paweł Rzążewski2,3  ·
Erik Jan van Leeuwen4 · Bartosz Walczak5

	 Jana Novotná
	 janca@kam.mff.cuni.cz

	 Karolina Okrasa
	 k.okrasa@mini.pw.edu.pl

	 Michał Pilipczuk
	 michal.pilipczuk@mimuw.edu.pl

	 Erik Jan van Leeuwen
	 e.j.vanleeuwen@uu.nl

	 Bartosz Walczak
	 walczak@tcs.uj.edu.pl

1	 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
2	 Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University

of Warsaw, Warsaw, Poland
3	 Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw,

Poland
4	 Department of Information and Computing Sciences, Utrecht University, Utrecht,

The Netherlands
5	 Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science,

Jagiellonian University, Kraków, Poland

http://orcid.org/0000-0001-7696-3848

	Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs
	Abstract
	1 Introduction
	2 Main Result
	3 Corollaries
	4 Refined Algorithm for String Graphs
	5 Max Induced Forest in H-Free Graphs
	6 Largest Induced Degenerate Subgraph in Low-Treewidth Graphs
	Acknowledgements
	References

