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Abstract
Let C and D be hereditary graph classes. Consider the following problem: given a 
graph G ∈ D , find a largest, in terms of the number of vertices, induced subgraph of 
G that belongs to C . We prove that it can be solved in 2o(n) time, where n is the num-
ber of vertices of G, if the following conditions are satisfied:

•	 the graphs in C are sparse, i.e., they have linearly many edges in terms of the 
number of vertices;

•	 the graphs in D admit balanced separators of size governed by their density, e.g., 
O(�) or O(

√

m) , where � and m denote the maximum degree and the number of 
edges, respectively; and

•	 the considered problem admits a single-exponential fixed-parameter algorithm 
when parameterized by the treewidth of the input graph.

 This leads, for example, to the following corollaries for specific classes C and D:

•	 a largest induced forest in a P
t
-free graph can be found in 2Õ(n2∕3) time, for every 

fixed t; and
•	 a largest induced planar graph in a string graph can be found in 2Õ(n2∕3) time.
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1  Introduction

Many optimization problems in graphs can be expressed as follows: given a graph 
G, find a largest vertex set A such that G[A], the subgraph of G induced by A, satis-
fies some property. Examples include Independent Set (the property of being edge-
less), Feedback Vertex Set (the property of being acyclic), and Planarization (the 
property of being planar). Here, Feedback Vertex Set and Planarization are cus-
tomarily phrased in the complementary form that asks for minimizing the comple-
ment of A: given G, find a smallest vertex set X such that G − X has the desired 
property. While all problems considered in this paper can be viewed in these two 
ways, for the sake of clarity we focus on the maximization formulation.

Formally, we shall consider the following Max Induced C-Subgraph problem. 
Fix a graph class C that is hereditary, that is, closed under taking induced sub-
graphs. Then, given a graph G, the goal is to find a largest vertex subset A such 
that G[A] ∈ C . Our focus is on exact algorithms for this problem with running 
time expressed in terms of n, the number of vertices of G. Clearly, as long as the 
graphs from C can be recognized in polynomial time, the problem can be solved in 
2n ⋅ nO(1) time by brute-force; we are interested in non-trivial improvements over this 
approach.

The complexity of Max Induced C-Subgraph was studied as early as in 1980 
by Lewis and Yannakakis[26], who proved that when the graph class C does not 
contain all graphs, the problem is NP-hard. Recently, Komusiewicz[21] inspected 
the reduction of Lewis and Yannakakis and concluded that under the Exponential 
Time Hypothesis (ETH) one can even exclude the existence of subexponential-time 
algorithms for the problem, that is, ones with running time 2o(n) . While the result of 
Komusiewicz[21] excludes significant improvements in the running time, there is 
still room for improvement in the base of the exponent. Indeed, for various classes 
of graphs C , algorithms with running time O((2 − �)n) for some 𝜀 > 0 are known; 
see e.g.[5, 15–17, 31] and the references therein.

Another direction, which is of main interest to us, is to impose more conditions 
on the input graphs G in the hope of obtaining faster algorithms for restricted cases. 
Formally, we fix another hereditary graph class D and consider Max Induced C-Sub-
graph where the input graph G is additionally required to belong to D.

In this line of research, the class C of edgeless graphs, which corresponds to the 
classical Max  Independent Set (mis) problem, has been extensively studied. Sup-
pose D is the class of H -free graphs, that is, graphs that exclude some fixed graph 
H as an induced subgraph. As observed by Alekseev[2], the problem is NP-hard 
on H-free graphs unless H is a path or a subdivision of the claw ( K1,3 ); the reduc-
tion of[2] actually excludes the existence of a subexponential-time algorithm under 
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ETH in these cases. On the positive side, the maximal classes for which polynomial-
time algorithms are known are the P6-free graphs[18] and the fork-free graphs[3, 
27]. It would be consistent with our knowledge if mis was polynomial-time solv-
able on H-free graphs whenever H is a path or a subdivision of the claw. Very 
recently, Abrishami et al.[1] reported a polynomial-time algorithm on long-hole-free 
graphs, which are graphs that exclude every cycle of length at least 5 as an induced 
subgraph.

It turns out that if we only aim at subexponential-time instead of polynomial-time 
algorithms, many more tractability results can be obtained for mis, and usually they 
are also conceptually much simpler. Bacsó et al.[4] showed that mis can be solved in 
2O(

√

tn log n) time on Pt-free graphs, for every t ∈ ℕ (see also an alternative subexpo-
nential-time algorithm by Brause[9], with running time 2O(n1−�) for any � ∈ (0, 1∕2t)).

In the light of the results above, it is natural to ask whether structural assump-
tions on the class D from which the input is drawn, like e.g. Pt-freeness, can help in 
the design of subexponential-time algorithms for other maximum induced subgraph 
problems, beyond C being the class of edgeless graphs. This is precisely the question 
we investigate in this work.

Our contribution We identify three properties that together provide a way to solve 
the Max Induced C-Subgraph problem on graphs from D in subexponential time, 
where C and D are hereditary graph classes. They are as follows:

•	 The class C should consist of sparse graphs. To be specific, let us assume that 
every n-vertex graph from C has O(n) edges.

•	 The class D may contain dense graphs, but they should admit balanced sepa-
rators whose size is somehow governed by the density. To be specific, let us 
assume that every graph from D with maximum degree � has a balanced separa-
tor of size O(�) , or that every graph from D with m edges has a balanced separa-
tor of size O(

√

m).
•	 The Max Induced C-Subgraph problem on graphs from D can be solved in 

2Õ(w)
⋅ nO(1) time, where w is the treewidth of the input graph. Here, notation Õ(⋅) 

hides polylogarithmic factors.

We show that if these conditions are simultaneously satisfied, then the Max Induced 
C-Subgraph problem on graphs from D can be solved in 2Õ(n2∕3) time in the presence 
of balanced separators of size O(�) and in 2Õ(n3∕4) time for balanced separators of 
size O(

√

m) . The precise statement and proof of this result can be found in Sect. 2.
The conditions on C look natural and are satisfied by various specific classes of 

interest, like forests (corresponding to Feedback Vertex Set) and planar graphs 
(corresponding to Planarization). On the other hand, the condition on D looks more 
puzzling. However, there are certain non-sparse classes of graphs where the exist-
ence of such balanced separators has been established. For instance, balanced sepa-
rators of size O(�) are known to exist in Pt-free graphs for any fixed t ∈ ℕ[4], and 
in long-hole-free graphs[11]. The existence of balanced separators of size O(

√

m) is 
known for string graphs, which are intersection graphs of arc-connected subsets of 
the plane, and more generally for intersection graphs of connected subgraphs in any 
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proper minor-closed class (see Lee[25]). All these observations yield a number of 
concrete corollaries to our main result, which are gathered in Sect. 3.

In Sect.  4, we investigate more closely the case that D is the class of string 
graphs. We show that in this class we can obtain significantly faster subexponential-
time algorithms for the above-mentioned problems. The key idea is to use another 
result by Lee[25], which asserts that string graphs not containing Kt,t as a subgraph 
are sparse—they have O(n ⋅ t log t) edges. Observe that for all discussed classes C , 
including edgeless graphs, forests, and planar graphs, their members do not contain 
a subgraph isomorphic to Kt,t , for some constant t.

In Sect. 5, we discuss some lower bounds: we show that if C is the class of forests 
(corresponding to the Feedback Vertex Set problem) and D is characterized by a 
single excluded induced subgraph, then under the Exponential Time Hypothesis one 
cannot hope for subexponential-time algorithms in greater generality than provided 
by our main result.

2 � Main Result

We use standard graph notation. We assume that the reader is familiar with tree-
width. We recall some notations for tree decompositions in Sect. 6, where it is actu-
ally needed.

For a graph G, a set S ⊆ V(G) is a balanced separator if every connected compo-
nent of G − S has at most 2

3
|V(G)| vertices. It is known that small balanced separa-

tors can be used to construct tree decompositions of small width, as made explicit in 
the following lemma.

Lemma 1  [14] If every subgraph of a graph G has a balanced separator of size at 
most k,  then the treewidth of G is O(k).

Now, we are ready to state and prove our main result.

Theorem 1  Let C and D be classes of graphs that satisfy the following conditions: 

	(P1)	 Every n-vertex graph from C has O(n) edges.
	(P2)	 The class D is closed under taking induced subgraphs.
	(P3)	 Given a graph G ∈ D with n vertices and treewidth w,  one can find a largest 

set A ⊆ V(G) such that G[A] ∈ C in 2Õ(w)
⋅ nO(1) time.

Furthermore, let the class D satisfy one of the following conditions:

	(P4a)	Every graph in D with maximum degree � has a balanced separator of size 
O(�) , or

	(P4b)	Every graph in D with n vertices and maximum degree � has a balanced sepa-
rator of size O(

√

n�).
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Then, given an n-vertex graph G ∈ D, one can find a largest set A ⊆ V(G) such 
that G[A] ∈ C in time

(a)	 2Õ(n2∕3), if D satisfies (P4a), or
(b)	 2Õ(n3∕4), if D satisfies (P4b).

Proof  Let a constant � be defined as follows, depending on which of the two condi-
tions is satisfied by D:

Let G ∈ D be the input graph and n be the number of its vertices. We devise a 
branching algorithm that finds a largest set A ⊆ V(G) such that G[A] ∈ C in 2Õ(n1−𝜏 ) 
time. This matches the complexity bounds from the statement of the theorem.

Consider a fixed solution A, that is, a largest set A ⊆ V(G) such that G[A] ∈ C . 
Let A′

⊆ A be the set of vertices of degree greater than n� in G[A]. By property (P1), 
we have |A�

| = O(n∕n�) = O(n1−�).
The algorithm guesses the set A′ exhaustively, by trying all subsets of V(G) of the 

appropriate sizes O(n1−�) , which results in nO(n1−𝜏 ) = 2Õ(n1−𝜏 ) branches. Fix one such 
branch and assume, for the purpose of further description of the algorithm, that it 
corresponds to the correct set A′ (i.e., the one obtained from the fixed solution A). 
Let G� = G − A�.

Suppose that G′ contains a vertex v of degree at least n2� . If v ∈ A , then v has 
degree at most n� in G[A] (since v ∉ A� ). The algorithm further guesses that v ∉ A 
and discards v (one branch), or it guesses that v ∈ A and discards all but at most 
n� neighbors of v in G′ (at most nn� branches). In the latter case, we do not fix the 
assumption that v or any particular neighbor of v belongs to A, so that the vertices 
that have survived this step can still be discarded in subsequent branching steps.

The step described above is repeated exhaustively. The overall number of 
branches generated in this way can be bounded as follows, where k = |V(G�)|:

Once the branching step can no longer be applied, we obtain an induced subgraph 
G′′ of G′ of maximum degree less than n2� . In the branch where all the choices have 
been made correctly (i.e., according to the fixed solution A), G′′ still contains all 
vertices from A ⧵ A′.

� =

{

1∕3 if D satisfies (P4a),

1∕4 if D satisfies (P4b).

F(k) ⩽ F(k − 1) + nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

⩽ F(k − 2) + nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏)) + nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

⩽ ⋯ ⩽ F(k − (n2𝜏 − n𝜏)) + (n2𝜏 − n𝜏) ⋅ nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

= (n2𝜏 − n𝜏 + 1) ⋅ nn
𝜏

⋅ F(k − (n2𝜏 − n𝜏))

⩽
(

(n2𝜏 − n𝜏 + 1) ⋅ nn
𝜏)k∕(n2𝜏−n𝜏 )

⩽
(

(n2𝜏 − n𝜏 + 1) ⋅ nn
𝜏)n∕(n2𝜏−n𝜏 )

= nO(n1+𝜏−2𝜏 ) = 2Õ(n1−𝜏 ).
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By property (P2), we have G�� ∈ D . Thus G′′ satisfies either (P4a) or (P4b), 
which means that G′′ has a balanced separator of size O(n2∕3) in the former case 
or O(

√

n ⋅ n1∕2) = O(n3∕4) in the latter case. In both cases, the size of the separa-
tor is O(n1−�) . Moreover, again by property (P2), balanced separators of that size 
also exist in every subgraph of G′′ . Therefore, by Lemma 1, we conclude that G′′ 
has treewidth O(n1−�) . Since |A�

| ⩽ O(n1−�) , it follows that the graph G[V(G��) ∪ A�] 
also has treewidth O(n1−�).

We know that G[V(G��) ∪ A�] ∈ D and, in the branch where all choices have been 
made correctly, this graph contains the entire maximum-size solution A. Now, we 
apply the procedure assumed in (P3) to the graph G[V(G��) ∪ A�] and observe that 
in the correct branch it finds some maximum-size solution (possibly different from 
A). Let us point out that in this step it is not sufficient to consider only the graph G′′ , 
as the vertices from A′ introduce some additional constraints on the solution we are 
looking for.

For the time complexity, the algorithm considers 2Õ(n1−𝜏 ) branches and in each of 
them it executes the procedure assumed in (P3) in 2Õ(n1−𝜏 ) time, which gives the total 
running time of 2Õ(n1−𝜏 ) . 	�  ◻

Remark 1  The condition (P1) in the statement of Theorem 1 can be relaxed to “every 
n-vertex graph from C has O(n2−�) edges, for some constant 𝜀 > 0 ”. Then, we can 
follow the same approach with the following modification: we choose � = 1 −

2

3
� in 

case of (P4a) and � = 1 −
3

4
� in case of (P4b), and replace the threshold for branch-

ing on high-degree vertices from n2� to n2�+�−1 . This way, we obtain algorithms with 
running time 2Õ(n1−𝜀∕3) for property (P4a) and 2Õ(n1−𝜀∕4) for property (P4b). This run-
ning time is subexponential for every 𝜀 > 0.

Remark 2  Let us point out that the conjunction of properties (P2) and (P4a) implies 
(P4b). We state them separately, as there are some natural graph classes with each 
type of behavior. One can also imagine unifying properties (P4a) and (P4b) into the 
existence of a balanced separator of size O(n���) , for some constants �, � . However, 
then, one needs to be careful when choosing � so that it belongs to the interval [0, 1]. 
As we did not find concrete examples of interesting graph classes D for which this 
approach would yield non-trivial results and which would not satisfy either (P4a) or 
(P4b), we refrain from discussing further details here.

3 � Corollaries

In this section, we discuss possible classes C and D which satisfy the conditions of 
Theorem 1. For some choices of C , we obtain well-studied computational problems: 

1.	 for matchings, we obtain Max Induced Matching,
2.	 for forests, we obtain Max Induced Forest, the complement problem of Feedback 

Vertex Set (note that from the point of view of exact algorithms these problems 
are equivalent),
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3.	 for graphs of maximum degree d, where d is fixed, we obtain Max Induced 
Degree-d Subgraph,

4.	 for planar graphs, we obtain Max Induced Planar Subgraph, also known as 
Planarization,

5.	 for graphs embeddable in � , where the surface � is fixed, we obtain Max Induced 
�-Embeddable Subgraph,

6.	 for graphs of degeneracy at most d, where d is fixed, we obtain Max Induced d 
-Degenerate Subgraph.

We note that all these classes satisfy property (P1) of Theorem 1. We point out that 
the Euler formula implies that every n-vertex graph embeddable on a surface � with 
Euler genus g has at most 3n + 6g − 6 edges[34].

Given a graph of treewidth w, its tree decomposition of width at most 5w + 4 
can be computed in 2O(w)

⋅ n time[6]. Therefore, for the purpose of verifying prop-
erty (P3), we can assume that a tree decomposition of width O(w) is additionally 
provided on input. While 2Õ(w)

⋅ nO(1)-time algorithms are quite straightforward and 
well known for the first two problems on the list, this is not necessarily the case for 
the others. As the Max Induced Degree-d Subgraph problem can be expressed in 
the so-called Existential Counting Modal Logic, an algorithm with running time 
2O(w)

⋅ nO(1) can be easily derived from the meta-theorem of Pilipczuk[30]. Algo-
rithms for Max Induced Planar Subgraph and, more generally, Max Induced �
-Embeddable Subgraph, were provided by Kociumaka and Pilipczuk[20]. Finally, 
we give a suitable algorithm for Max Induced d-Degenerate Subgraph in Lemma 4 
in Sect. 6.

It may be tempting to consider, as C , the graphs with no even cycle C2k (not nec-
essarily induced), for some fixed integer k ⩾ 2 . This is because such graphs have 
O(n2−Ω(1∕k)) edges[7], and thus they satisfy the generalization of property (P1) men-
tioned in Remark 1 for � = Ω(1∕k) . However, for these classes, property (P3) turns 
out to be problematic: for any fixed � ⩾ 5 , there is no algorithm for a minimum 
set of vertices hitting all (non-induced) copies of C

�
 in a graph with treewidth w 

with running time 2o(w2)
⋅ nO(1) unless the ETH fails[30] (this bound appears to be 

essentially tight, as the problem can be solved in 2Õ(w2)
⋅ nO(1) time[13]). It is unclear 

whether the additional assumption that the input graph belongs to some class D , 
considered here, can help.

Now, let us consider classes D . Examples of classes satisfying property (P4a) in 
Theorem 1 come from forbidding some induced subgraphs. Bacsó et al.[4] proved 
that Pt-free graphs with maximum degree � have treewidth O(� ⋅ t) . Very recently, 
Chudnovsky et al.[11] observed that long-hole-free graphs, that is, graphs with no 
induced cycles of length at least 5, also have balanced separators of size O(�).

An example of a class satisfying property (P4b) is the class of string graphs—
intersection graphs of arc-connected subsets of the plane[22–24]. The importance of 
this class stems from the fact that they serve as a common generalization of classes 
of intersection graphs of geometric objects in the plane. Lee[25] showed that they 
admit balanced separators of size O(

√

m) , where m is the number of edges. In fact, 
he proved a more general result that if M is a class of graphs excluding a fixed 
graph as a minor, then intersection graphs of connected subgraphs of graphs from 
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M admit balanced separators of size O(
√

m) . String graphs are precisely the inter-
section graphs of connected subgraphs of planar graphs[19].

Summing up, we obtain the following.

Corollary 1  Each of the following problems can be solved in 2Õ(n2∕3) time on Pt-free 
graphs (for every fixed t) and in long-hole-free graphs, and in 2Õ(n3∕4) time on string 
graphs:

1.	 Max Induced Matching,
2.	 Max Induced Forest,
3.	 Max Induced Degree-d Subgraph, for every fixed d ∈ ℕ,

4.	 Max Induced Planar Subgraph,
5.	 Max Induced �-Embeddable Subgraph, for every fixed surface �,

6.	 Max Induced d-Degenerate Subgraph, for every fixed d ∈ ℕ.

As we have argued, in Corollary 1, we can replace string graphs with intersection 
graphs of connected subgraphs of graphs from M , where M is any class of graphs 
excluding a fixed graph as a minor; this is because the result of Lee[25] holds in that 
generality.

Finally, let us point out that we can easily extend the approach of Theorem 1 to 
enforce some constraints on the set of vertices that are removed, i.e., V(G) ⧵ A . For 
example, we might require that this set is independent. To obtain this, whenever we 
decide to discard a vertex in the branching phase, we need to mark all its neighbors, 
so that we do not discard them later. Note that this might result in having a marked 
vertex of degree at least n2� , which is adjacent to at least n� marked vertices. In this 
case we cannot perform any branching, but we can immediately terminate this call, 
as the existence of such a vertex certifies that A′ was not chosen properly. Further-
more, in standard dynamic programming algorithms, based on tree decompositions, 
the constraints coming from marking can also be handled easily. Thus, in particular, 
we obtain the following corollary, answering a question by Paulusma[29].

Corollary 2  For every fixed t,  the Independent Feedback Vertex Set problem can 
be solved in 2Õ(n2∕3) time on Pt-free graphs with n vertices.

4 � Refined Algorithm for String Graphs

Let us point out that subexponential-time algorithms for Max Induced Matching 
and Max Induced Forest on string graphs, even with a better running time 2Õ(n2∕3) , 
were already known[8]. They are based on another result by Lee[25].

Theorem 2  (Lee[25]) There is a constant c > 0 such that for every t ⩾ 1 the fol-
lowing holds: every string graph that does not contain Kt,t as a (not necessarily 
induced) subgraph has at most c ⋅ n ⋅ t log t edges.
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The better running time comes from a similar win-win approach: either we 
have few edges (and thus a small balanced separator), or we have a large biclique, 
which can be exploited for branching in a very effective way. It turns out that a 
similar idea can be used to improve the running times of algorithms for other 
problems mentioned in Corollary 1, if the input is a string graph.

We prove the following general result.

Theorem 3  Let t be a constant, and let C be a class of graphs with the following 
properties:

	(SP1)	No graph from C contains Kt+1,t+1 as a subgraph.
	(SP2)	Given a string graph G with n vertices and treewidth w,  one can find a largest 

set A ⊆ V(G) such that G[A] ∈ C in 2Õ(w)
⋅ nO(1) time.

Then, given an n-vertex string graph G,   one can find a largest set A ⊆ V(G) 
such that G[A] ∈ C in 2Õ(n2∕3) time. The algorithm does not require the geometric 
representation.
Proof  The proof is similar to the proof of Theorem  1. Let G be the input string 
graph with n vertices. We assume that n is sufficiently large compared to t, as oth-
erwise the input has constant size and we can solve the problem using brute force. 
Let A be the (unknown) solution that we are trying to find. First, we check whether 
G contains a subgraph isomorphic to Kn1∕3,n1∕3 . We can do it in total time 2Õ(n1∕3) by 
exhaustive enumeration of all pairs of disjoint sets, each of size n1∕3.

First, consider the case that such a biclique exists, and let X and Y be its biparti-
tion classes. Note that |A ∩ X| ⩽ t or |A ∩ Y| ⩽ t , as otherwise G[A] contains Kt+1,t+1 
as a subgraph, which contradicts property (SP1). In other words, we can choose 
the set of t vertices from one of the classes and immediately discard all other ver-
tices from this class. We perform such a branching, and the number of branches is 
bounded by

So let us assume that the search for a biclique fails. By Theorem 2, this means that 
G has Õ(n4∕3) edges, so, by a result of Lee[25, Theorem 1] and Lemma 1, G has 
treewidth Õ(n2∕3) . Then we call the algorithm from property (SP2) to compute the 
solution. The total running time is 2Õ(n2∕3) . 	�  ◻

Now let us apply the theorem above to problems mentioned in Corollary 1. 
Clearly, if C is the class of forests, then it satisfies property (SP1) in Theorem 3 
for t = 1 . If C is a class of graphs with degeneracy at most d (this already contains 
the case of graphs with maximum degree at most d), then property (SP1) is satis-
fied for t = d . If C is the class of planar graphs, then property (SP1) is satisfied 
for t = 2 . Finally, if C is the class of graphs embeddable in a fixed surface � , then 
property (SP1) is satisfied for t = 2g + 3 , where g is the Euler genus of � . Indeed, 

F(n) ⩽ 2 ⋅
(

n1∕3
)t
F
(

n − (n1∕3 − t)
)

⩽ 2Õ(n2∕3).
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it was observed by Ringel[32] that K3,2g+2 cannot be embedded in a surface with 
Euler genus g.

Summing up, we obtain the following corollary from Theorem 3.

Corollary 3  Each of the following problems can be solved in 2Õ(n2∕3) time on string 
graphs, even if no geometric representation is given:

1.	 Max Induced Matching,
2.	 Max Induced Forest,
3.	 Max Induced Degree-d Subgraph, for every fixed d ∈ ℕ,

4.	 Max Induced Planar Subgraph,
5.	 Max Induced �-Embeddable Subgraph, for every fixed surface �,

6.	 Max Induced d-Degenerate Subgraph, for every fixed d ∈ ℕ.

5 � Max Induced Forest in H‑Free Graphs

Our original motivation was the Max Induced Forest problem. In the previous sec-
tion, we discussed a subexponential-time algorithm solving it on Pt-free graphs. 
We now show that as long as the considered class of inputs D is characterized by 
a single excluded induced subgraph, that is, we investigate Max Induced Forest on 
H-free graphs for a fixed graph H, we cannot hope for more positive results. Namely, 
it turns out that if H is not a linear forest (i.e., a collection of vertex-disjoint paths), 
the problem is unlikely to admit a polynomial-time or even a subexponential-time 
algorithm on H-free graphs. Specifically, we obtain the following dichotomy.

Theorem 4  Let H be a fixed graph.

1.	 If H is a linear forest, then the Max Induced Forest problem can be solved in 
2Õ(n2∕3) time on H-free graphs with n vertices.

2.	 Otherwise, on H-free graphs, the Max Induced Forest problem is NP-complete 
and cannot be solved in 2o(n) time unless the ETH fails.

Statement 1 of Theorem 4 follows from Corollary 1, because every linear forest 
is an induced subgraph of some path. Statement 2 follows from a combination of 
arguments already existing in the literature. However, since the proof is simple, we 
include it for the sake of completeness.

We prove statement 2 of Theorem 4 in two steps. First, we consider graphs H that 
contain a cycle or two branch vertices, that is, vertices of degree at least 3. In this 
case, we can apply the standard argument of subdividing every edge a suitable num-
ber of times, cf.[10, Theorem 3].

Lemma 2  Let H be a fixed graph that either contains a cycle or has a con-
nected component with at least two branch vertices. Then Max Induced Forest 
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is NP-complete on H-free graphs. Moreover, there is no algorithm solving Max 
Induced Forest in 2o(n) time for n-vertex H-free graphs unless the ETH fails.

Proof  We reduce from Max Induced Forest in graphs with maximum degree 6; it is 
known that this problem is NP-complete and has no subexponential-time algorithm 
assuming ETH[12]. Let G be a graph with n vertices and maximum degree 6. Let 
G∗ be the graph obtained from G by subdividing every edge |V(H)| + 1 times. It is 
straightforward to observe that G has an induced forest on n − k vertices if and only 
if G∗ has an induced forest on |G∗

| − k vertices. Moreover, the number of vertices in 
G∗ is linear in n.

Finally, we show that G∗ is H-free. First, observe that if H contains a cycle, then 
H cannot be a subgraph of G∗ , as the girth of G∗ is greater than |V(H)| + 1 . On the 
other hand, the distance between any two branch vertices in G∗ is at least |V(H)| + 1 , 
so G∗ does not contain H as a subgraph in case H has two branch vertices in the 
same connected component. 	�  ◻

By Lemma 2, the only graphs H for which we might hope for a polynomial-
time or even a subexponential-time algorithm for Max Induced Forest on H-free 
graphs are collections of disjoint subdivided stars. To resolve this case, we will 
show that the problem remains hard for line graphs. Recall that the line graph 
L(G) of a graph G is the graph whose vertices are the edges of G and where the 
adjacency relation corresponds to the relation of having a common endpoint in G.

Actually, Chiarelli et al.[10] reported that the hardness of Max Induced Forest 
on line graphs was observed by Speckenmeyer in his PhD thesis[33]. However, 
we were unable to find this result there. Therefore, we provide the easy proof, 
which boils down to essentially the same argument as in[10, Theorem 5].

Lemma 3  Max Induced Forest is NP-complete on line graphs. Moreover, there 
is no algorithm solving Max Induced Forest in 2o(n) time for n-vertex line graphs 
unless the ETH fails.

Proof  We reduce from the Hamiltonian Path problem, which is NP-complete and 
has no subexponential-time algorithm, even if the input graph has linearly many 
edges[12]. Let G be a graph, which is the input instance of Hamiltonian Path.

First, note that any induced forest in L(G) corresponds to a collection of vertex-
disjoint paths in G. More formally, consider a set E�

⊆ E(G) , such that L(G)[E�] is 
a forest. We claim that the subgraph G� = (V(G),E�) of G is a collection of vertex-
disjoint paths. Suppose not. This means that G′ contains a vertex v of degree at least 
3 or a cycle C. In the former case, the edges incident to v in G′ form a clique in 
L(G)[E�] . In the latter case, the edges of the cycle C form a cycle in L(G)[E�] . In 
either case, we get a contradiction to the assumption that L(G)[E�] is a forest.

We claim that G has a Hamiltonian path if and only if L(G) has an induced forest 
on n − 1 vertices. Indeed, the n − 1 edges of a Hamiltonian path in G induce a path 
(in particular, a forest) in L(G). For the converse, suppose that L(G) has an induced 
forest on at least n − 1 vertices. By the observation above, this induced forest 
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corresponds to a collection of vertex-disjoint paths in G with at least n − 1 edges in 
total. This is only possible if this collection consists of a single path of length n − 1 , 
that is, a Hamiltonian path in G.

Finally, observe that the number of vertices of L(G) is equal to the number of 
edges of G, which is linear in the number of vertices of G. 	�  ◻

Recall that line graphs are claw-free, that is, they contain no induced copy of K1,3 . 
Thus Theorem 3 implies that if H contains any star with at least 3 leaves, then Max 
Induced Forest remains NP-complete and has no subexponential-time algorithm on 
H-free graphs unless ETH fails. Statement 2 of Theorem 4 follows from combining 
Lemmas 2 and 3.

6 � Largest Induced Degenerate Subgraph in Low‑Treewidth Graphs

This section is devoted to the proof of the following result, which we used in Sect. 3.

Lemma 4  For every fixed d ∈ ℕ, there is an algorithm for Max Induced d-Degener-
ate Subgraph with running time 2O(w logw)

⋅ n, where w is the treewidth of the input 
graph and n is the number of its vertices.

Preliminaries on tree decompositions. First, we introduce some notations and ter-
minology, as they will be required in this section. A tree decomposition of a graph G 
is a tree T together with a mapping �(⋅) that assigns a bag �(x) to each node x of T in 
such a way that the following conditions hold: 

	(T1)	 for each u ∈ V(G) , the set of nodes x with u ∈ �(x) induces a connected non-
empty subtree of T; and

	(T2)	 for each uv ∈ E(G) , there exists a node x such that {u, v} ⊆ 𝛽(x).

The width of a tree decomposition (T , �) is maxx∈V(T) |�(x)| − 1 , and the treewidth of 
a graph G is the minimum width of a tree decomposition of G.

Henceforth, all tree decompositions will be rooted: the underlying tree T has a 
prescribed root vertex r. This gives rise a natural ancestor-descendant relation: we 
write x ⪯ y if x is an ancestor of y (where possibly x = y ). Then, for a node x of T, 
we define the component at x as

It easily follows from (T1) and (T2) that then N(𝛼(x)) ⊆ 𝛽(x) for every node x.
A nice tree decomposition is a normalized form of a rooted tree decomposition in 

which every node is of one of the following four kinds.

•	 Leaf node a node x with no children and with �(x) = �.

�(x) =

(

⋃

y⪰x

�(y)

)

⧵ �(x).
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•	 Introduce node a node x with one child y such that �(x) = �(y) ∪ {u} for some 
vertex u ∉ �(y).

•	 Forget node a node x with one child y such that �(x) = �(y) ⧵ {u} for some ver-
tex u ∈ �(y).

•	 Join node a node x with two children y and z such that �(x) = �(y) = �(z).

Moreover, we require that the root r of the nice tree decomposition satisfies 
�(r) = �.

It is known that any given tree decomposition (T , �) of width k of an n-vertex 
graph G can be transformed in kO(1)

⋅max(n, |V(T)|) time into a nice tree decom-
position of G of width at most as large, see[12, Lemma 7.4]. Moreover, given 
an n-vertex graph G of treewidth w, a tree decomposition of G of width at most 
5w + 4 can be computed in 2O(w)

⋅ n time[6], and this tree decomposition has at 
most n nodes. By combining these two results, for the proof of Lemma 4, we can 
assume that the input graph G is supplied with a nice tree decomposition (T , �) of 
width k ⩽ 5w + 4 , where w = tw(G) . From now on, our goal is to design a suit-
able dynamic programming algorithm working on this decomposition with run-
ning time 2O(k log k)

⋅ n = 2O(w logw)
⋅ n.

Dynamic programming states. The main idea behind our dynamic program-
ming algorithm is to view the notion of degeneracy via vertex orderings, as 
expressed in the following fact.

Lemma 5  (folklore) A graph H is d-degenerate if and only if there is a linear order-
ing � of vertices of H such that every vertex of H has at most d neighbors that are 
smaller in �.

Let us point out that sometimes degeneracy is expressed in terms of vertex 
ordering, where we count neighbors that are larger. This characterization is 
clearly equivalent, as it is sufficient to reverse the ordering given in Lemma 5.

Due to Lemma 5, the problem considered in Lemma 4 can be restated as fol-
lows: find a largest set A ⊆ V(G) that admits a linear ordering � in which every 
vertex of A has at most d neighbors in G[A] that are smaller in � . Intuitively, 
our dynamic programming will therefore keep track of the intersection of the bag 
with A, the restriction of � to this intersection; and how many smaller neighbors 
of each vertex from this intersection have been already forgotten.

We now proceed with formal details. For a node x of T, a set X ⊆ 𝛽(x) , a lin-
ear ordering � of X, and a function f ∶ X → {0,… , d} , we define �x[X, �, f ] ∈ ℕ 
as follows. The value �x[X, �, f ] is the maximum size of a set Y ⊆ 𝛼(x) such that 
X ∪ Y  admits a linear ordering � with the following properties: � restricted to X is 
equal to � and for every a ∈ X , there are at most f(a) vertices b ∈ Y  that are adja-
cent to a and smaller than a in � . Note that other neighbors of a that belong to X 
are not taken into consideration when verifying the quota imposed by f(a). Note 
also that such a set Y always exists, as Y = � satisfies the criteria.

For a fixed node x, the total number of triples (X, �, f ) as above is at most
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Hence, we now show how to compute the values �x[X, �, f ] in a bottom-up manner, 
so that the values for a node x are computed based on the values for the children of 
x in 2O(k log k) time. The answer to the problem corresponds to the value �r[�, �, �] , 
where r is the root of T. While �r[�, �, �] is just the size of a largest feasible solution, 
an actual solution can be recovered from the dynamic programming tables using 
standard methods within the same complexity: for every computed value �x[X, �, f ] , 
we store the way this value was obtained, and then we trace back the solution from 
�r[�, �, �] in a top-down manner.

Transitions It remains to provide recursive formulas for the values of �x[⋅, ⋅, ⋅] . 
We only present the formulas, while the verification of their correctness, which fol-
lows easily from the definition of �x[⋅, ⋅, ⋅] , is left to the reader. As usual, we distin-
guish cases depending on the type of x.

•	 Leaf node x. Then we have only one value: 

•	 Introduce node x with child y such that �(x) = �(y) ∪ {u} . Then 

•	 Forget node x with child y such that �(x) = �(y) ⧵ {u} . Then we have 

 where S(X, �, f ) is the set comprising the pairs (��, f �) satisfying the following:

•	 �
′ is a vertex ordering of X ∪ {u} whose restriction to X is equal to � ; and

•	 f � ∶ X ∪ {u} → {0,… , d} is such that for all a ∈ X that are adjacent to u and 
larger than u in �′ , we have f �(a) ⩽ f (a) − 1 , and for all other a ∈ X , we have 
f �(a) ⩽ f (a) . Moreover, we require that f �(u) ⩽ d − � , where � is the number 
of vertices a ∈ X that are adjacent to u and smaller than u in �′.

•	 Join node x with children y and z. Then 

 where fy + fz ⩽ f  means that fy(a) + fz(a) ⩽ f (a) for each a ∈ X.
It is straightforward to see that using the formulas above, each value �x[X, �, f ] can 
be computed in 2O(k log k) time based on the values computed for the children of x. 
This completes the proof of Lemma 4.
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2k+1 ⋅ (k + 1)! ⋅ (d + 1)k+1 ⩽ 2O(k log k).

�x[�, �, �] = 0.

�x[X, �, f ] =

{
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�y[X, �, f ], 1 + max
(��,f �)∈S(X,�,f )

�y[X ∪ {u}, ��, f �]

)
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fy+fz⩽f
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