
ar
X

iv
:1

40
7.

26
62

v3
 [

cs
.L

G
]

 1
 J

ul
 2

01
5

Learning Privately with Labeled and Unlabeled Examples

Amos Beimel∗ Kobbi Nissim† Uri Stemmer‡

Dept. of Computer Science

Ben-Gurion University of the Negev

{beimel|kobbi|stemmer}@cs.bgu.ac.il

Abstract

A private learner is an algorithm that given a sample of labeled individual examples out-
puts a generalizing hypothesis while preserving the privacy of each individual. In 2008, Ka-
siviswanathan et al. (FOCS 2008) gave a generic construction of private learners, in which the
sample complexity is (generally) higher than what is needed for non-private learners. This gap
in the sample complexity was then further studied in several followup papers, showing that
(at least in some cases) this gap is unavoidable. Moreover, those papers considered ways to
overcome the gap, by relaxing either the privacy or the learning guarantees of the learner.

We suggest an alternative approach, inspired by the (non-private) models of semi-supervised
learning and active-learning, where the focus is on the sample complexity of labeled examples
whereas unlabeled examples are of a significantly lower cost. We consider private semi-supervised
learners that operate on a random sample, where only a (hopefully small) portion of this sample
is labeled. The learners have no control over which of the sample elements are labeled. Our
main result is that the labeled sample complexity of private learners is characterized by the VC
dimension.

We present two generic constructions of private semi-supervised learners. The first construc-
tion is of learners where the labeled sample complexity is proportional to the VC dimension of
the concept class, however, the unlabeled sample complexity of the algorithm is as big as the
representation length of domain elements. Our second construction presents a new technique for
decreasing the labeled sample complexity of a given private learner, while roughly maintaining
its unlabeled sample complexity. In addition, we show that in some settings the labeled sample
complexity does not depend on the privacy parameters of the learner.

1 Introduction

A private learner is an algorithm that given a sample of labeled examples, where each example
represents an individual, outputs a generalizing hypothesis while preserving the privacy of each

∗Supported by a grant from the Israeli Science and Technology ministry, by a Israel Science Foundation grant
544/13, and by the Frankel Center for Computer Science.

†Work done while the second author was a visiting scholar at the Harvard Center for Research on Computation
and Society (supported by NSF grant CNS-1237235) and at the Boston University Hariri Institute for Computing
and Computational Science & Engineering. Supported in part by Israel Science Foundation grant no. 276/12.

‡Supported by the Ministry of Science and Technology (Israel), by the Check Point Institute for Information
Security, by the IBM PhD Fellowship Awards Program, and by the Frankel Center for Computer Science.

1

http://arxiv.org/abs/1407.2662v3

individual. This formal notion, combining the requirements of PAC learning [28] and Differen-
tial Privacy [16], was presented in 2008 by Kasiviswanathan et al. [21], who also gave a generic
construction of private learners. However, the sample complexity of the learner of [21] is (gen-
erally) higher than what is needed for non-private learners. Namely, their construction requires
O(log |C|) samples for learning a concept class C, as opposed to the non-private sample complexity
of Θ(VC(C)).

This gap in the sample complexity was studied in several followup papers. For pure differential
privacy, it was shown that in some cases this gap can be closed with the price of giving up proper
learning – where the output hypothesis should be from the learned concept class – for improper
learning. Indeed, it was shown that for the class of point functions over domain of size 2d, the
sample complexity of every proper private learner is Ω(d) (matching the upper bound of [21]),
whereas there exist improper private learners with sample complexity O(1) that use pseudorandom
or pairwise independent functions as their output hypotheses [5, 6].1 A complete characterization
for the sample complexity of pure-private improper-learners was given in [6] in terms of a new
dimension – the Representation Dimension. They showed that Θ(RepDim(C)) examples are both
necessary and sufficient for a pure-private improper-learner for a class C. Following that, Feldman
and Xiao [19] separated the sample complexity of pure-private learners from that of non-private
ones, and showed that the representation dimension can sometimes be significantly bigger then the
VC dimension. For example, they showed that every pure-private learner (proper or improper)
for the class of thresholds over {0, 1}d requires Ω(d) samples [19] (while there exists a non-private
proper-learner with sample complexity O(1)).

Another approach for reducing the sample complexity of private learners is to relax the privacy
requirement to approximate differential privacy. This relaxation was shown to be significant as it
allows privately and properly learning point functions with O(1) sample complexity, and threshold
functions with sample complexity 2O(log∗ d) [7]. Recently, Bun et al. [11] showed that the dependency
in log∗ d in necessary. Namely, they showed that every approximate-private proper-learner for the
class of thresholds over {0, 1}d requires Ω(log∗ d) samples. This separates the sample complexity of
approximate-private proper-learners from that of non-private learners.

Tables 1 and 2 summarize the currently known bounds on the sample complexity of private
learners. Table 1 specifies general upper bounds, and table 2 specifies known upper and lower
bounds on the sample complexity of privately learning thresholds over {0, 1}d.

Pure-privacy Approximate-privacy

Proper
learning

O(log |C|) O(log |C|)
Improper
learning

Θ(RepDim(C)) O(RepDim(C))

Table 1: General upper bounds on the sample complexity of private learners for a class C.

1To simplify the exposition, we omit in this section dependency on all variables except for d, corresponding to the
representation length of domain elements.

2

Pure-privacy Approximate-privacy

Proper
learning

Θ(d)
Upper bound: 2O(log∗ d)

Lower bound: Ω(log∗ d)

Improper
learning

Θ(d)
Upper bound: 2O(log∗ d)

Lower bound: Ω(1)

Table 2: Bounds on the sample complexity of private learners for a thresholds over {0, 1}d. While the VC
dimension of this class is constant, its representation dimension is Θ(d).

1.1 This Work

In this work we examine an alternative approach for reducing the costs of private learning, inspired
by the (non-private) models of semi-supervised learning [29] and active learning [23].2 In both
models, the focus is on reducing the sample complexity of labeled examples whereas it is assumed
that unlabeled examples can be obtained with a significantly lower cost. In this vein, a recent
work by Balcan and Feldman [4] suggested a generic conversion of active learners in the model of
statistical queries [22] into learners that also provide differential privacy. For example, Balcan and
Feldman showed an active pure-private proper-learner for the class of thresholds over {0, 1}d that
uses O(1) labeled examples and O(d) unlabeled examples.

We show that while the unlabeled sample complexity of private learners is subject to the lower
bounds mentioned in tables 1 and 2, the labeled sample complexity is characterized by the VC dimen-
sion of the target concept class. We present two generic constructions of private semi-supervised
learners via an approach that deviates from most of the research in semi-supervised and active
learning: (1) Semi-supervised learning algorithms and heuristics often rely on strong assumptions
about the data, e.g., that close points are likely to be labeled similarly, that the data is clustered,
or that the data lies on a low dimensional subspace of the input space. In contrast, we work in the
standard PAC learning model, and need not make any further assumptions. (2) Active learners
examine their pool of unlabeled data and then choose (maybe adaptively) which data examples to
label. Our learners have no control over which of the sample elements are labeled.

Our main result is that the labeled sample complexity of such learners is characterized by the
VC dimension. Our first generic construction is of learners where the labeled sample complexity is
proportional to the VC dimension of the concept class. However, the unlabeled sample complexity
of the algorithm is as big as the representation length of domain elements. The learner for a class C
starts with an unlabeled database and uses private sanitization to create a synthetic database, with
roughly VC(C) points, that can answer queries in a class related to C. It then uses this database to
choose a subset of the hypotheses of size 2O(VC(C)) and then uses the exponential mechanism [24]
to choose from these hypotheses using O(VC(C)) labeled examples.

As an example, applying this technique with the private sanitizer for threshold functions from [7]
we get a (semi-supervised) approximate-private proper-learner for thresholds over {0, 1}d with
optimal O(1) labeled sample complexity and near optimal 2O(log∗ d) unlabeled sample complexity.
This matches the labeled sample complexity of Balcan and Feldman [4] (ignoring the dependency
in all parameters except for d), and improves on the unlabeled sample complexity.3

2A semi-supervised learner uses a small batch of labeled examples and a large batch of unlabeled examples, whereas
an active-learner operates on a large batch of unlabeled example and chooses (maybe adaptively) which examples
should be labeled.

3We remark that – unlike this work – the focus in [4] is on the dependency of the labeled sample complexity in

3

Our second construction presents a new technique for decreasing the labeled sample complexity
of a given private learner A. At the heart of this construction is a technique for choosing (non-
privately) a hypothesis using a small labeled database; this hypothesis is used to label a bigger
database, which is given to the private learner A.

Consider, for example, the concept class RECTANGLEℓd containing all axis-aligned rectangles over
ℓ dimensions, where each dimension consists of 2d points. Applying our techniques on the learner
from [7] results in a non-active semi-supervised private learner with optimal O(ℓ) labeled sample
complexity and with Õ(ℓ3 · 8log∗ d) unlabeled sample complexity. This matches the labeled sample
complexity of Balcan and Feldman [4], and improves the unlabeled sample complexity whenever
the dimension ℓ is not too big (roughly, ℓ ≤

√
d).

Private Active Learners. We study the labeled sample complexity of private active learners,
i.e., learners that operate on a pool of unlabeled examples (individuals’ data) and adaptively query
the labels of specific examples. As those queries depend on individuals’ data, they may breach
privacy if exposed. We, therefore, introduce a stronger definition for private active learners that
remedies this potential risk, and show that (most of) our learners satisfy this stronger definition,
while the learners of [4] do not. This strong definition has its downside, as we show that (at
least in some cases) it introduces a 1

α blowup to the labeled sample complexity (where α is the
approximation parameter). On the other hand, when considering private active learners that only
satisfy the definition of [4] (which is still a reasonable definition), we show that the labeled sample
complexity has no dependency on the privacy parameters.

1.2 Related Work

Differential privacy was defined in [16] and the relaxation to approximate differential privacy is
from [15]. Most related to our work is the work on private learning and its sample complexity [8, 21,
12, 17, 5, 6, 7, 19] and the early work on sanitization [9]. Blum et al. [8] showed that computationally
efficient private-learners exist for all concept classes that can be efficiently learned in the statistical
queries model of [22]. Kasiviswanathan et al. [21] showed an example of a concept class – the
class of parity functions – that is not learnable in the statistical queries model but can be learned
privately and efficiently. These positive results show that many “natural” learning tasks that are
efficiently learned non-privately can be learned privately and efficiently.

Chaudhuri and Hsu [12] presented upper and lower bounds on the sample complexity of label-
private learners, a relaxation of private learning where the learner is required to only protect the
privacy of the labels in the sample. Following that, Beimel et al. [7] showed that the VC dimension
completely characterizes the sample complexity of such learners.

Dwork et al. [17] showed how to boost the accuracy of private learning algorithms. That is, given
a private learning algorithm that has a big classification error, they produced a private learning
algorithm with small error. Other tools for private learning include, e.g., private SVM [25], private
logistic regression [13], and private empirical risk minimization [14].

the approximation parameter. As our learners are non-active, their labeled sample complexity is lower bounded by
Ω(1

α
) (where α is the approximation parameter).

4

2 Preliminaries

In this section we define differential privacy and semi-supervised (private) learning. Additional
preliminaries on the VC dimension and on data sanitization are deferred to the appendix.

Notation. We use Oγ(g(n)) as a shorthand for O(h(γ) · g(n)) for some non-negative function h.

In informal discussions, we sometimes write Õ(g(n)) to indicate that g(n) is missing lower order
terms. We use X to denote an arbitrary domain, and Xd for the domain {0, 1}d.

Differential Privacy. Consider a database where each entry contains information pertaining to
an individual. An algorithm operating on such databases is said to preserve differential privacy if
its outcome is insensitive to any modification in a single entry. Formally:

Definition 2.1 (Differential Privacy [16, 15]). Databases S1 ∈ Xn and S2 ∈ Xn over a domain
X are called neighboring if they differ in exactly one entry. A randomized algorithm A is (ǫ, δ)-
differentially private if for all neighboring databases S1, S2 ∈ Xn, and for all sets F of outputs,

Pr[A(S1) ∈ F] ≤ exp(ǫ) · Pr[A(S2) ∈ F] + δ. (1)

The probability is taken over the random coins of A. When δ=0 we omit it and say that A preserves
pure differential privacy, otherwise (when δ > 0) we say that A preserves approximate differential
privacy.

See Appendix A for basic differentially private mechanisms.

Semi-Supervised PAC Learning. The standard PAC model (and similarly private PAC) fo-
cuses on learning a class of concepts from a sample of labeled examples. In a situation where
labeled examples are significantly more costly than unlabeled ones, it is natural to attempt to use
a combination of labeled and unlabeled data to reduce the number of labeled examples needed.
Such learners may have no control over which of the examples are labeled, as in semi-supervised
learning, or may specifically choose which examples to label, as in active learning. In this section
we focus on semi-supervised learning. Active learning will be discussed in Section 5.

A concept c : X → {0, 1} is a predicate that labels examples taken from the domain X by either
0 or 1. A concept class C over X is a set of concepts (predicates) mapping X to {0, 1}. A semi-
supervised learner is given n examples sampled according to an unknown probability distribution
µ over X, where m ≤ n of these examples are labeled according to an unknown target concept
c ∈ C. The learner succeeds if it outputs a hypothesis h that is a good approximation of the target
concept according to the distribution µ. Formally:

Definition 2.2. Let c and µ be a concept and a distribution over a domain X. The generalization
error of a hypothesis h : X → {0, 1} w.r.t. c and µ is defined as errorµ(c, h) = Prx∼µ[h(x) 6= c(x)].
When errorµ(c, h) ≤ α we say that h is α-good for c and µ.

Definition 2.3 (Semi-Supervised [28, 29]). Let C be a concept class over a domain X, and let
A be an algorithm operating on (partially) labeled databases. Algorithm A is an (α, β, n,m)-SSL
(semi-supervised learner) for C if for all concepts c ∈ C and all distributions µ on X the following
holds.

5

Let D = (xi, yi)
n
i=1 ∈ (X×{0, 1,⊥})n be a database s.t. (1) each xi is drawn i.i.d. from µ; (2) in

the first m entries yi = c(xi); (3) in the last (n−m) entries yi = ⊥. Then,

Pr[A(D)=h s.t. errorµ(c, h) > α] ≤ β.

The probability is taken over the choice of the samples from µ and the coin tosses of A.

If a semi-supervised learner is restricted to only output hypotheses from the target concept class
C, then it is called a proper learner. Otherwise, it is called an improper learner. We sometimes refer
to the input of a semi-supervised learner as two databasesD ∈ (X×{⊥})n−m and S ∈ (X×{0, 1})m ,
where m and n are the labeled and unlabeled sample complexities of the learner.

Definition 2.4. Given a labeled sample S = (xi, yi)
m
i=1, the empirical error of a hypothesis h on

S is errorS(h) =
1
m |{i : h(xi) 6= yi}|. Given an unlabeled sample D = (xi)

n
i=1 and a target concept

c, the empirical error of h w.r.t. D and c is errorD(h, c) =
1
n |{i : h(xi) 6= c(xi)}|.

Semi-supervised learning algorithms operate on a (partially) labeled sample with the goal of
choosing a hypothesis with a small generalization error. Standard arguments in learning theory (see
Appendix B) state that the generalization of a hypothesis h and its empirical error (observed on a
large enough sample) are similar. Hence, in order to output a hypothesis with small generalization
error it suffices to output a hypothesis with small empirical error.

Agnostic Learner. Consider an SSL for an unknown class C that uses a (known) hypotheses
class H. If H 6= C, then a hypothesis with small empirical error might not exist in H. Such learners
are referred to in the literature as agnostic-learners, and are only required to produce a hypothesis
f ∈ H (approximately) minimizing errorµ(c, f), where c is the (unknown) target concept.

Definition 2.5 (Agnostic Semi-Supervised). Let H be a concept class over a domain X, and let A
be an algorithm operating on (partially) labeled databases. Algorithm A is an (α, β, n,m)-agnostic-
SSL using H if for all concepts c (not necessarily in H) and all distributions µ on X the following
holds.

Let D = (xi, yi)
n
i=1 ∈ (X × {0, 1,⊥})n be a database s.t. (1) each xi is drawn i.i.d. from µ;

(2) in the first m entries yi = c(xi); (3) in the last (n−m) entries yi = ⊥. Then, A(D) outputs a
hypothesis h ∈ H satisfying Pr[errorµ(c, h) ≤ minf∈H{errorµ(c, f)}+α] ≥ 1− β. The probability is
taken over the choice of the samples from µ and the coin tosses of A.

Private Semi-Supervised PAC learning. Similarly to [21] we define private semi-supervised
learning as the combination of Definitions 2.1 and 2.3.

Definition 2.6 (Private Semi-Supervised). Let A be an algorithm that gets an input S ∈ (X ×
{0, 1,⊥})n. Algorithm A is an (α, β, ǫ, δ, n,m)-PSSL (private SSL) for a concept class C over X if
A is an (α, β, n,m)-SSL for C and A is (ǫ, δ)-differentially private.

Active Learning. Semi-supervised learners are a subset of the larger family of active learners.
Such learners can adaptively request to reveal the labels of specific examples. See formal definition
and discussion in Section 5.

6

3 A Generic Construction Achieving Low Labeled Sample Com-

plexity

We next study the labeled sample complexity of private semi-supervised learners. We begin with
a generic algorithm showing that for every concept class C there exist a pure-private proper-
learner with labeled sample complexity (roughly) VC(C). This algorithm, called GenericLearner,
is described in Algorithm 1. The algorithm operates on a labeled database S and on an unlabeled
database D. First, the algorithm produces a sanitization D̃ of the unlabeled database D w.r.t. C⊕

(to be defined). Afterwards, the algorithm uses D̃ to construct a small set of hypotheses H (we will
show that H contains at least one good hypothesis). Finally, the algorithm uses the exponential
mechanism to choose a hypothesis out of H.

Similar ideas have appeared in [12, 7] in the context of label-private learners, i.e., learners
that are only required to protect the privacy of the labels in the sample (and not the privacy of
the elements themselves). Like GenericLearner, the learners of [12, 7] construct a small set of
hypotheses H that “covers” the hypothesis space and then use the exponential mechanism in order
to choose a hypothesis h ∈ H. However, GenericLearner differs in that it protects the privacy of
the entire sample (both the labels and the elements themselves).

Definition 3.1. Given two concepts h, f ∈ C, we denote (h⊕f) : Xd → {0, 1}, where (h⊕f)(x) = 1
if and only if h(x) 6= f(x). Let C⊕ = {(h⊕f) : h, f ∈ C}.

To preserve the privacy of the examples in D, we first create a sanitized version of it – D̃. If the
entries of D are drawn i.i.d. according to the underlying distribution (and if D is big enough), then
a hypothesis with small empirical error on D also has small generalization error (see Theorem B.6).
Our learner classifies the sanitized database D̃ with small error, thus we require that a small
error on D̃ implies a small error on D. Specifically, if c is the target concept, then we require
that for every f ∈ C, errorD(f, c) = 1

|D| |{x ∈ D : f(x) 6= c(x)}| is approximately the same as

errorD̃(f, c) =
1
|D̃|

∣∣∣{x ∈ D̃ : f(x) 6= c(x)}
∣∣∣. Observe that this is exactly what we would get from

a sanitization of D w.r.t. the concept class C⊕c = {(f⊕c) : f ∈ C}. As the target concept c is
unknown, we let D̃ be a sanitization of D w.r.t. C⊕, which contains C⊕c.

To apply the sanitization of Blum et al. [9] toD w.r.t. the class C⊕, we analyze the VC dimension
of C⊕ in the next observation.

Observation 3.2. For any concept class C over Xd it holds that VC(C⊕) = O(VC(C)).

Proof. Recall that the projection of C on a set of domain points B = {b1, . . . , bℓ} ⊆ Xd is ΠC(B) =
{〈c(b1), . . . , c(bℓ)〉 : c ∈ C}. Now note that for every B = {b1, . . . , bℓ} ⊆ Xd

ΠC⊕(B) = {〈(h⊕ f)(b1), . . . , (h⊕ f)(bℓ)〉 : h, f ∈ C}
= {〈h(b1), . . . , h(bℓ)〉 ⊕ 〈f(b1), . . . , f(bℓ)〉 : h, f ∈ C}
= {〈h(b1), ..., h(bℓ)〉 : h∈C} ⊕ {〈f(b1), ..., f(bℓ)〉 : f∈C}
= ΠC(B)⊕ΠC(B).

Therefore, by Sauer’s lemma B.2, |ΠC⊕(B)| ≤ |ΠC(B)|2 ≤
(

eℓ
VC(C)

)2VC(C)
. Hence, for C⊕ to

shatter a subset B ⊆ Xd of size ℓ it must be that
(

eℓ
VC(C)

)2VC(C)
≥ 2ℓ. For ℓ ≥ 10VC(C) this

inequality does not hold, and we can conclude that VC(C⊕) ≤ 10VC(C).

7

Algorithm 1 GenericLearner

Input: parameter ǫ, an unlabeled database D = (xi)
n−m
i=1 , and a labeled database S = (xi, yi)

m
i=1.

1. Initialize H = ∅.
2. Construct an ǫ-private sanitization D̃ of D w.r.t. C⊕, where |D̃| = O

(
VC(C⊕)

α2 log(1α)
)
=

O
(
VC(C)
α2 log(1α)

)
(e.g., using Theorem A.3).

3. Let B = {b1, . . . , bℓ} be the set of all (unlabeled) points appearing at least once in D̃.

4. For every (z1, . . . , zℓ) ∈ ΠC(B) = {(c(j1), . . . , c(jℓ)) : c ∈ C}, add to H an arbitrary concept
c ∈ C s.t. c(bi) = zi for every 1 ≤ i ≤ ℓ.

5. Choose and return h ∈ H using the exponential mechanism with inputs ǫ,H, S.

Theorem 3.3. Let C be a concept class over Xd. For every α, β, ǫ, there exists an (α, β, ǫ, δ=0, n,m)-

private semi-supervised proper-learner for C, where m = O
(
VC(C)
α3ǫ log(1α) +

1
αǫ log(

1
β)
)
, and n =

O
(
d·VC(C)

α3ǫ
log(1α) +

1
αǫ log(

1
β)
)
. The learner might not be efficient.

Proof. Note that GenericLearner only accesses D via a sanitizer, and only accesses S using the
exponential mechanism (on Step 5). As each of those two mechanisms is ǫ-differentially private,
and as D and S are two disjoint samples, GenericLearner is ǫ-differentially private. We, thus,
only need to prove that with high probability the learner returns a good hypothesis.

Fix a target concept c ∈ C and a distribution µ over X, and define the following three “good”
events:

E1 : For every h ∈ C it holds that |errorS(h) − error
D̃
(h, c)| ≤ 3α

5 .

E2 : The exponential mechanism chooses an h ∈ H such that errorS(h) ≤ α
5 +minf∈H {errorS(f)}.

E3 : For every h ∈ H s.t. errorS(h) ≤ 4α
5 , it holds that errorµ(c, h) ≤ α.

We first observe that when these three events happen algorithm GenericLearner returns an
α-good hypothesis: For every (y1, . . . , yℓ) ∈ ΠC(B), algorithm GenericLearner adds to H a hy-
pothesis f s.t. ∀1 ≤ i ≤ ℓ, f(bi) = yi. In particular, H contains a hypothesis h∗ s.t. h∗(x) = c(x)
for every x ∈ B, that is, a hypothesis h∗ s.t. errorD̃(h

∗, c) = 0. As event E1 has occur we have
that this h∗ satisfies errorS(h

∗) ≤ 3α
5 . Thus, event E1∩E2 ensures that algorithm GenericLearner

chooses (using the exponential mechanism) a hypothesis h ∈ H s.t. errorS(h) ≤ 4α
5 . Event E3

ensures, therefore, that this h satisfies errorµ(c, h) ≤ α. We will now show E1 ∩ E2 ∩ E3 happens
with high probability.

Standard arguments in learning theory state that (w.h.p.) the empirical error on a (large
enough) random sample is close to the generalization error (see Theorem B.6). Specifically, by
setting n and m to be at least 1250

α2 VC(C) ln(25
αβ), Theorem B.6 ensures that with probability at

least (1− 2
5β), for every h ∈ C the following two inequalities hold.

|errorS(h) − errorµ(h, c)| ≤
α

5
(2)

|errorD(h, c) − errorµ(h, c)| ≤
α

5
(3)

8

Note that Event E3 occurs whenever Inequality (2) holds (since H ⊆ C). Moreover, by setting the
size of the unlabeled database (n−m) to be at least

(n −m) ≥ O

(
d ·VC(C⊕) log(1α)

α3ǫ
+

log(1β)

ǫα

)

= O

(
d ·VC(C) log(1α)

α3ǫ
+

log(1β)

ǫα

)
.

Theorem A.3 ensures that with probability at least (1− β
5) for every (h ⊕ f) ∈ C⊕ (i.e., for every

h, f ∈ C) it holds that

α

5
≥ |Q(h⊕f)(D)−Q(h⊕f)(D̃)|

=

∣∣∣∣∣
|{x ∈ D : (h⊕f)(x)=1}|

|D| − |{x ∈ D̃ : (h⊕f)(x)=1}|
|D̃|

∣∣∣∣∣

=

∣∣∣∣∣
|{x ∈ D : h(x)6=f(x)}|

|D| − |{x ∈ D̃ : h(x)6=f(x)}|
|D̃|

∣∣∣∣∣

=
∣∣errorD(h, f)− errorD̃(h, f)

∣∣ .

In particular, for every h ∈ C it holds that

∣∣errorD(h, c) − error
D̃
(h, c)

∣∣ ≤ α

5
. (4)

Therefore (using Inequalities (2),(3),(4) and the triangle inequality), Event E1 ∩ E3 occurs with
probability at least (1− 3β

5).
The exponential mechanism ensures that the probability of event E2 is at least 1 − |H| ·

exp(−ǫαm/10) (see Proposition A.1). Note that log |H| ≤ |B| ≤ |D̃| = O
(
VC(C)
α2 log(1α)

)
. There-

fore, for m ≥ O
(
VC(C)
α3ǫ

log(1α) +
1
αǫ log(

1
β)
)
, Event E2 occurs with probability at least (1− β

5).

All in all, setting n ≥ O

(
d·VC(C) log(1

α
)

α3ǫ
+

log(1
β
)

ǫα

)
, and m ≥ O

(
VC(C)
α3ǫ

log(1α) +
1
αǫ log(

1
β)
)
,

ensures that the probability of GenericLearner failing to output an α-good hypothesis is at most
β.

Note that the labeled sample complexity in Theorem 3.3 is optimal (ignoring the dependency
in α, β, ǫ), as even without the privacy requirement every PAC learner for a class C must have
labeled sample complexity Ω(VC(C)). However, the unlabeled sample complexity is as big as the
representation length of domain elements, that is, O(d · VC(C)). Such a blowup in the unlabeled
sample complexity is unavoidable in any generic construction of pure-private learners.4

To show the usefulness of Theorem 3.3, we consider the concept class THRESHd defined as follows.
For 0 ≤ j ≤ 2d let cj : Xd → {0, 1} be defined as cj(x) = 1 if x < j and cj(x) = 0 otherwise.
Define the concept class THRESHd = {cj : 0 ≤ j ≤ 2d}. Balcan and Feldman [4] showed an efficient

4 Feldman and Xiao [19] showed an example of a concept class C over Xd for which every pure-private learner
must have unlabeled sample complexity Ω(VC(C) · d). Hence, as a function of d and VC(C), the unlabeled sample
complexity in Theorem 3.3 is the best possible for a generic construction of pure-private learners.

9

pure-private proper-learner for THRESHd with labeled sample complexity Oα,β,ǫ(1) and unlabeled
sample complexity Oα,β,ǫ(d). At the cost of preserving approximate-privacy, and using the efficient
approximate-private sanitizer for thresholds from [7] (in Step 2 of Algorithm GenericLearner
instead on the sanitizer of [9]), we get the following lemma (as GenericLearner requires unlabeled
examples only in Step 2, and the sanitizer of [7] requires a database of size Õα,β,ǫ,δ(8

log∗ d)).

Corollary 3.4. There exists an efficient approximate-private proper-learner for THRESHd with la-
beled sample complexity Oα,β,ǫ(1) and unlabeled sample complexity Õα,β,ǫ,δ(8

log∗ d).

Beimel et al. [7] showed an efficient approximate-private proper-learner for THRESHd with (both
labeled and unlabeled) sample complexity Õα,β,ǫ,δ(16

log∗ d). The learner from Corollary 3.4 has
similar unlabeled sample complexity, but improves on the labeled complexity.

4 Boosting the Labeled Sample Complexity of Private Learners

We now show a generic transformation of a private learning algorithm A for a class C into a private
learner with reduced labeled sample complexity (roughly VC(C)), while maintaining its unlabeled
sample complexity. This transformation could be applied to a proper or an improper learner, and
to a learner that preserves pure or approximated privacy.

The main ingredient of the transformation is algorithm LabelBoostProcedure (Algorithm 2),
where the labeled sample complexity is reduced logarithmically. We will later use this procedure
iteratively to get our learner with labeled sample complexity Oα,β,ǫ(VC(C)).

Given a partially labeled sample B of size n, algorithm LabelBoostProcedure chooses a small
subset H of C that strongly depends on the points in B so outputting a hypothesis h ∈ H may
breach privacy. Nevertheless, LabelBoostProcedure does choose a good hypothesis h ∈ H (using
the exponential mechanism) and use it to relabel part of the sample B. In Lemma 4.1, we analyze
the privacy guarantees of Algorithm LabelBoostProcedure.

Algorithm 2 LabelBoostProcedure

Input: A partially labeled database B = S◦T◦D ∈ (X × {0, 1,⊥})∗.
% We assume that the first portion of B (denoted as S) contains labeled examples. Our goal is to output a similar

database where both S and T are labeled.

1. Initialize H = ∅.
2. Let P = {p1, . . . , pℓ} be the set of all points p ∈ X appearing at least once in S◦T .
3. For every (z1, . . . , zℓ) ∈ ΠC(P) = {(c(p1), . . . , c(pℓ)) : c ∈ C}, add toH an arbitrary concept

c ∈ C s.t. c(pi) = zi for every 1 ≤ i ≤ ℓ.

4. Choose h ∈ H using the exponential mechanism with privacy parameter ǫ=1, solution set
H, and the database S.

5. Relabel S◦T using h, and denote this relabeled database as (S◦T)h, that is, if S◦T =
(xi, yi)

t
i=1 then (S◦T)h = (xi, y

′
i)
t
i=1 where y′i = h(xi).

6. Output (S◦T)h◦D.

10

Lemma 4.1. Let A be an (ǫ, δ)-differentially private algorithm operating on partially labeled databases.
Construct an algorithm B that on input a database S◦T◦D ∈ (X × {0, 1,⊥})∗ applies A on the
outcome of LabelBoostProcedure(S◦T◦D). Then, B is (ǫ+ 3, 4eδ)-differentially private.

Proof. Consider the executions of B on two neighboring inputs S1◦T1◦D1 and S2◦T2◦D2. If these
two neighboring inputs differ (only) on the last portionD then the executions of LabelBoostProcedure
on these neighboring inputs are identical, and hence Inequality (1) (approximate differential pri-
vacy) follows from the privacy of A. We, therefore, assume that D1 = D2 = D (and that
S1◦T1, S2◦T2 differ in at most one entry).

Denote by H1, P1 and by H2, P2 the elements H,P as they are in the executions of algorithm
LabelBoostProcedure on S1◦T1◦D and on S2◦T2◦D. The main difficulty in proving differential
privacy is that H1 and H2 can significantly differ. We show, however, that the distribution on
relabeled databases (S◦T)h generated in Step 5 of the two executions are similar in the sense that
for each relabeled database in one of the distributions there exist one or two databases in the other
s.t. (1) all these databases have, roughly, the same probability, and (2) they differ on at most one
entry. Thus, executing the differentially private algorithm A on (S◦T)h◦D preserves differential
privacy. We now make this argument formal.

Note that |P1 \ P2| ∈ {0, 1}, and let p1 be the element in P1 \ P2 if such an element exists.
If this is the case, then p1 appears exactly once in S1◦T1. Similarly, let p2 be the element in
P2 \ P1 if such an element exists. Let K = P1 ∩ P2, hence Pi = K or Pi = K ∪ {pi}. Therefore,
|ΠC(K)| ≤ |ΠC(Pi)| ≤ 2|ΠC(K)|. Thus, |H1| ≤ 2|H2| and similarly |H2| ≤ 2|H1|.

More specifically, for every ~z ∈ ΠC(K) there are either one or two (but not more) hypotheses in
H1 that agree with ~z on K. We denote these one or two hypotheses by h1,~z and h′1,~z, which may be
identical if only one unique hypothesis exists. Similarly, we denote h2,~z and h′2,~z as the hypotheses
corresponding to H2. For every ~z ∈ ΠC(K) we have that |q(Si, hi,~z) − q(Si, h

′
i,~z)| ≤ 1 because if

hi,~z = h′i,~z then the difference is clearly zero and otherwise they differ only on pi, which appears at
most once in Si. Moreover, for every ~z ∈ ΠC(K) we have that |q(S1, h1,~z)− q(S2, h2,~z)| ≤ 1 because
h1,~z and h2,~z disagree on at most two points p1, p2 such that at most one of them appears in S1 and
at most one of them appears in S2. The same is true for every pair in {h1,~z, h′1,~z} × {h2,~z , h′2,~z}.

Let wi,~z be the probability that the exponential mechanism chooses hi,~z or h′i,~z in Step 4 of the
execution on Si◦Ti◦D. We get that for every ~z ∈ ΠC(K),

w1,~z ≤
exp(12 · q(S1, h1,~z)) + exp(12 · q(S1, h

′
1,~z))∑

f∈H1
exp(12 · q(S1, f))

≤
exp(12 · q(S1, h1,~z)) + exp(12 · q(S1, h

′
1,~z))∑

~r∈ΠC(K) exp(
1
2 · q(S1, h1,~r))

≤
exp(12 · [q(S2, h2,~z) + 1]) + exp(12 · [q(S2, h

′
2,~z) + 1])

1
2

∑
~r∈ΠC(K)

(
exp(

q(S2,h2,~r)−1
2) + exp(

q(S2,h′
2,~r

)−1

2)
)

≤ 2e ·
exp(12 · [q(S2, h2,~z)]) + exp(12 · [q(S2, h

′
2,~z)])∑

f∈H2
exp(12 · q(S2, f))

≤ 4e · w2,~z.

We can now conclude the proof by noting that for every ~z ∈ ΠC(K) the databases (S1◦T1)
h1,~z

and (S2◦T2)
h2,~z are neighboring, and, therefore, (S1◦T1)

h1,~z◦D and (S2◦T2)
h2,~z◦D are neighboring.

11

For every ~z ∈ ΠC(K), let hi,~z denote the event that the exponential mechanism chooses hi,~z or h′i,~z
in Step 4 of the execution on Si◦Ti◦D. By the privacy properties of algorithm A we have that for
any set F of possible outputs of algorithm B

Pr[B (S1◦T1◦D) ∈ F] =
∑

~z∈ΠC(K)

w1,~z · Pr
[
A
(
(S1◦T1)

h◦D
)
∈ F

∣∣∣h1,~z
]

≤
∑

~z∈ΠC(K)

4e w2,~z

(
eǫ Pr

[
A
(
(S2◦T2)

h◦D
)
∈ F

∣∣∣h2,~z
]
+ δ
)

≤ eǫ+3 · Pr[B (S2◦T2◦D) ∈ F] + 4eδ.

Consider an execution of LabelBoostProcedure on a database S◦T◦D, and assume that the
examples in S are labeled by some target concept c ∈ C. Recall that for every possible labeling
~z of the elements in S and in T , algorithm LabelBoostProcedure adds to H a hypothesis from C
that agrees with ~z. In particular, H contains a hypothesis that agrees with the target concept c on
S (and on T). That is, ∃f ∈ H s.t. errorS(f) = 0. Hence, the exponential mechanism (on Step 4)
chooses (w.h.p.) a hypothesis h ∈ H s.t. errorS(h) is small, provided that |S| is roughly log |H|,
which is roughly VC(C) · log(|S| + |T |) by Sauer’s lemma. So, algorithm LabelBoostProcedure
takes an input database where only a small portion of it is labeled, and returns a similar database
in which the labeled portion grows exponentially.

Claim 4.2. Fix α and β, and let S◦T◦D be s.t. S is labeled by some target concept c ∈ C, and s.t.

|T | ≤ β

e
VC(C) exp(

α|S|
2VC(C)

)− |S|.

Consider the execution of LabelBoostProcedure on S◦T◦D, and let h denote the hypothesis chosen
on Step 4. With probability at least (1− β) we have that errorS(h) ≤ α.

Proof. Note that by Sauer’s lemma,

|H| = |ΠC(P)| ≤
(

e|P |
VC(C)

)VC(C)

≤
(
e(|T | + |S|)
VC(C)

)VC(C)

≤
(
β exp(

α|S|
2VC(C)

)

)VC(C)

≤ β exp(
α|S|
2

).

For every (z1, . . . , zℓ) ∈ ΠC(P), algorithm LabelBoostProcedure adds to H a hypothesis f s.t.
∀1 ≤ j ≤ ℓ, f(pj) = zj . In particular, H contains a hypothesis f∗ s.t. errorS(f

∗) = 0. Hence,
Proposition A.1 (properties of the exponential mechanism) ensures that the probability of the
exponential mechanism choosing an h s.t. errorS(h) > α is at most

|H| · exp(−α|S|
2

) ≤ β.

12

We next embed algorithm LabelBoostProcedure in a wrapper algorithm, called LabelBoost,
that iteratively applies LabelBoostProcedure in order to enlarge the labeled portion of the database.
Every such application deteriorates the privacy parameters, and hence, every iteration includes a
sub-sampling step, which compensates for those privacy losses. In a nutshell, the learner LabelBoost
could be described as follows. It starts by training on the given labeled data. In each step, a part
of the unlabeled points is labeled using the current hypothesis (previously labeled points are also
relabeled); then the learner retrains using its own predictions as a (larger) labeled sample. Variants
of this idea (known as self-training) have appeared in the literature for non-private learners (e.g.,
[27, 20, 1]). As we will see, in the context of private learners, this technique provably reduces the
labeled sample complexity (while maintaining utility).

Algorithm 3 LabelBoost

Setting: Algorithm A with (labeled and unlabeled) sample complexity n.
Input: An unlabeled database D ∈ X90000n and a labeled database S ∈ (X × {0, 1})m .

1. Set i = 1.

2. While |S| < 300n:
% S denotes the currently labeled portion of the database. In each iteration, |S| grows exponentially. The

loop ends when S is big enough s.t. we can apply the base learner A on S.

(a) Denote αi =
α

10·2i
, and βi =

β
4·2i

.

(b) Set v=min

{
30000n , βiVC(C)e

αi|S|

200VC(C) − |S|
}
. Let T be the first v elements of D, and

remove T from D. Fail if there are not enough elements in D.
% We consider the input as a one database (S◦T◦D) ∈ (X ×{0, 1,⊥})∗. The functionality of this step

can, therefore, be viewed as changing the index in which T ends and D begins.

(c) Delete (permanently) 99
100 |T | random entries from T , and 99

100 |S| random entries from S.
% Every iteration deteriorates the privacy parameters. We, therefore, boost the privacy guarantees

using sub-sampling.

(d) S◦T◦D ← LabelBoostProcedure(S◦T◦D).
% We use LabelBoostProcedure to “stretch” the labeled portion of the database onto T .

(e) Add every element of T to S.

(f) Set i = i+ 1.

3. Delete 299
300 |S| random entries from S.

% Boosting privacy guarantees.

4. Let S′ denote the outcome of |S| i.i.d. samples from S.
% We apply A on n i.i.d. samples from S. As A is a learner, it is required to output (w.h.p.) a hypothesis

with small error on S.

5. Execute A on S′.

Before analyzing algorithm LabelBoost we recall the sub-sampling technique from [21, 5].

13

Claim 4.3 ([21, 5]). Let A be an (ǫ∗, δ)-differentially private algorithm operating on databases of
size n. Fix ǫ ≤ 1, and denote t = n

ǫ (3 + exp(ǫ∗)). Construct an algorithm B that on input a
database D = (zi)

t
i=1 uniformly at random selects a subset J ⊆ {1, 2, ..., t} of size n, and runs A

on the multiset DJ = (zi)i∈J . Then, B is
(
ǫ, 4ǫ

3+exp(ǫ∗)δ
)
-differentially private.

Remark 4.4. In Claim 4.3 we assume that A treats its input as a multiset. If this is not the case,
then algorithm B should be modified to randomly shuffle the elements in DJ before applying A on
Dj .

Claim 4.3 boosts privacy by selecting random elements from the database and ignoring the rest
of the database. The intuition is simple: Fix two neighboring databases D,D′ differing (only) on
their ith entry. If the ith entry is ignored (which happens with high probability), then the executions
on D and on D′ are the same (i.e., perfect privacy). Otherwise, (ǫ∗, δ)-privacy is preserved.

In algorithm LabelBoost we apply the learner A on a database containing n i.i.d. samples from
the database S (Step 4). Consider two neighboring databases D,D′ differing on their ith entry.
Unlike in Claim 4.3, the risk is that this entry will appear several times in the database on which A
is executed. As the next claim states, the affects on the privacy guarantees are small. The intuition
is that the probability of the ith entry appearing “too many” times is negligible.

Claim 4.5 ([11]). Let ǫ ≤ 1 and A be an (ǫ, δ)-differentially private algorithm operating on
databases of size n. Construct an algorithm B that on input a database D = (zi)

n
i=1 applies A

on a database D′ containing n i.i.d. samples from D. Then, B is (ln(244), 2467δ)-differentially
private.

We next prove the privacy properties of algorithm LabelBoost.

Lemma 4.6. If A is (1, δ)-differentially private, then LabelBoost is (1, 41δ)-differentially private.

Proof. We think of the input of LabelBoost as one database B ∈ (X × {0, 1,⊥})90000n+m . Note
that the number of iterations performed on neighboring databases is identical (determined by the
parameters α, β, n,m), and denote this number as N . Throughout the execution, random elements
from the input database are deleted (on Step 2c). Note however, that the size of the database at
any moment throughout the execution does not depend on the database content (determined by
the parameters α, β, n,m). We denote the size of the database at the beginning of the ith iteration
as n(i), e.g., n(1) = 90000n +m.

Let Lt denote an algorithm similar to LabelBoost, except that only the last t iterations are
performed. The input of Lt is a database in (X × {0, 1,⊥})n(N−t+1) . We next show (by induction
on t) that Lt is (1, 41δ)-differentially private. To this end, note that an execution of L0 consists
of sub-sampling (as in Claim 4.3), i.i.d. sampling (as in Claim 4.5), and applying the (1, δ)-private
algorithm A. By Claim 4.5, steps 4–5 preserve (ln(244), 2476)-differential privacy, and, hence, by
Claim 4.3, we have that L0 is (1, 41δ)-differentially private.

Assume that Lt−1 is (1, 41δ)-differentially private, and observe that Lt could be restated as an
algorithm that first performs one iteration of algorithm LabelBoost and then applies Lt−1 on the
databases D,S as they are at the end of that iteration. Now fix two neighboring databases B1, B2

and consider the execution of Lt on B1 and on B2.
Let Sb

1, T
b
1 ,D

b
1 and Sb

2, T
b
2 ,D

b
2 be the databases S, T,D after Step 2b of the first iteration of Lt

on B1 and on B2 (note that B1 = Sb
1◦T b

1◦Db
1 and B2 = Sb

2◦T b
2◦Db

2). If B1 and B2 differ (only)
on their last portion, denoted as Db

1,D
b
2, then the execution of Lt on these neighboring inputs

14

differs only in the execution of Lt−1, and hence Inequality (1) (approximate differential privacy)
follows from the privacy of Lt−1. We, therefore, assume that Db

1 = Db
2 (and that Sb

1◦T b
1 and

Sb
2◦T b

2 differ in at most one entry). Now, note that an execution of Lt consists of sub-sampling
(as in Claim 4.3), applying algorithm LabelBoostProcedure on the inputs, and executing the
(1, 41δ)-private algorithm Lt−1. By Lemma 4.1 (privacy properties of LabelBoostProcedure), the
application of Lt−1 on top of LabelBoostProcedure preserves (4, 446δ)-differential privacy, and,
hence, by Claim 4.3 (sub-sampling), we have that Lt is (1, 41δ)-differentially private.

Before proceeding with the utility analysis, we introduce to following notations.

Notation. Consider the ith iteration of LabelBoost. We let Sb
i , T

b
i and Sc

i , T
c
i denote the elements

S, T as they are after Steps 2b and 2c, and let hi denote the the hypothesis h chosen in the execution
of LabelBoostProcedure in the ith iteration.

Observation 4.7. In every iteration i, with probability at least (1−βi) we have that errorSc
i
(hi) ≤

αi.

Proof. Follows from Claim 4.2.

Claim 4.8. Let LabelBoost be executed with a base learner with sample complexity n, and on
databases D,S. If |D| ≥ 90000n, then LabelBoost never fails on Step 2b.

Proof. Denote the number of iterations throughout the execution as N . We need to show that∑N
i=1 T

b
i ≤ 90000n. Clearly, |T b

N |, |T b
N−1| ≤ 30000n. Moreover, for every 1 < i < N we have that

|T b
i | ≥ 2|T b

i−1|. Hence,
N∑

i=1

T b
i ≤ 30000n + 30000n

∞∑

i=0

1

2i
= 90000n.

Claim 4.9. Fix α, β. Let LabelBoost be executed on a base learner with sample complexity n, and
on databases D,S, where |D| ≥ 90000n and |S| ≥ 96000

α VC(C) log(2240αβ). In every iteration i

|Sb
i | ≥

4800

αi
VC(C) log(

14

αiβi
).

Proof. The proof is by induction on i. Note that the base case (for i = 1) trivially holds, and
assume that the claim holds for i− 1. We have that

|Sb
i | = |Sc

i−1|+ |T c
i−1| =

1

100
(|Sb

i−1|+ |T b
i−1|)

=
1

100
βi−1VC(C) exp

(
αi−1|Sb

i−1|
200VC(C)

)

≥ 1

100
βi−1VC(C) exp

(
24 log(

14

αi−1βi−1
)

)

≥ 1

100
βi−1VC(C) ·

(
14

αi−1βi−1

)24

≥ 4800

αi
VC(C) log(

14

αiβi
).

15

Remark 4.10. The above analysis could easily be strengthen to show that |Sb
i | grows as an ex-

ponentiation tower in i. This implies that there are at most O(log∗ n) iterations throughout the
execution of LabelBoost on a base learner A with sample complexity n.

Claim 4.11. Let LabelBoost be executed on databases D,S containing i.i.d. samples from a fixed
distribution µ, where the examples in S are labeled by some fixed target concept c ∈ C, and
|S| ≥ 96000

α VC(C) log(2240αβ). For every i, the probability that errorµ(c, hi) > 10
∑i

j=1 αj is at

most 2
∑i

j=1 βj .

Proof. The proof is by induction on i. Note that for i = 1 we have that Sc
1 contains

48
α1
VC(C) log(14

α1β1
)

i.i.d. samples from µ that are labeled by the target concept c. By Observation 4.7, with probability
at least (1 − β1), we have that errorSc

1
(h1) ≤ α1. In that case, Theorem B.5 (the VC dimension

bound) states that with probability at least (1− β1) it holds that errorµ(c, h1) ≤ 10α1.
Now assume that the claim holds for (i − 1), and consider the ith iteration. Note that Sc

i

contains i.i.d. samples from µ that are labeled by hi−1. Moreover, by Claim 4.9, we have that
|Sc

i | = 1
100 |Sb

i | ≥ 48
αi
VC(C) log(14

αiβi
). By Observation 4.7, with probability at least (1 − βi), we

have that errorSc
i
(hi) ≤ αi. If that is the case, Theorem B.5 states that with probability at least

(1 − βi) it holds that errorµ(hi−1, hi) ≤ 10αi. So, with probability at least (1 − 2βi) we have
that errorµ(hi−1, hi) ≤ 10αi. Using the inductive assumption, the probability that errorµ(c, hi) ≤
errorµ(c, hi−1) + errorµ(hi−1, hi) ≤ 10

∑i
j=1 αj is at least (1− 2

∑i
j=1 βj).

Lemma 4.12. Fix α, β. Applying LabelBoost on an (α, β, n, n)-SSL for a class C results in an
(11α, 2β,O(n),m)-SSL for C, where m = O(1αVC(C) log(1

αβ)).

Proof. Let LabelBoost be executed on databases D,S containing i.i.d. samples from a fixed dis-
tribution µ, where |D| ≥ 90000n and |S| ≥ 96000

α VC(C) log(2240αβ). Moreover, assume that the
examples in S are labeled by some fixed target concept c ∈ C.

Consider the last iteration of Algorithm LabelBoost (say i = N) on these inputs. The intuition
is that after the last iteration, when reaching Step 4, the database S is big enough s.t. A returns
(w.h.p.) a hypothesis with small error on S. This hypothesis also has small generalization error as
S is labeled by hN which is close to the target concept (by Claim 4.11).

Formally, let S3 denote the database S as it after Step 3 of the execution, and let hfin denote the
hypothesis returned by the base learner A on Step 5. By the while condition on Step 2, we have that
|S3| ≥ n. Hence, by the utility guarantees of the base learner A, with probability at least (1 − β)
we have that errorS3(hfin) ≤ α. As |S3| ≥ 1

300 |S| ≥ 640
α VC(C) log(4480αβ), and as S3 contains i.i.d.

samples from µ labeled by hN , Theorem B.5 states that with probability at least (1− β
2) it holds that

errorµ(hfin, hN) ≤ 10α. By Claim 4.11, with probability at least (1− 2
∑N

i=1 βi) ≥ (1− β
2) it holds

that errorµ(c, hN) ≤ 10
∑N

j=1 αi ≤ α. All in all (using the triangle inequality), with probability at
least (1− 2β) we get that errorµ(c, hfin) ≤ 11α.

Combining Lemma 4.6 and Lemma 4.12 we get the following theorem.

Theorem 4.13. Fix α, β, δ. Applying LabelBoost on an (α, β, ǫ=1, δ, n, n)-PSSL for a class C
results in an (11α, 2β, ǫ=1, 41δ,O(n),m)-PSSL for C, where m = O(1αVC(C) log(1

αβ)).

Using Claim 4.3 to boost the privacy guarantees of the learner resulting from Theorem 4.13,
proves Theorem 4.14:

16

Theorem 4.14. There exists a constant λ such that: For every α, β, ǫ, δ, n, if there exists an
(α, β, 1, δ, n, n)-PSSL for a concept class C, then there exists an (λα, λβ, ǫ, δ,O(nǫ),m)-PSSL for
C, where m = O(1

αǫVC(C) log(1
αβ)).

Remark 4.15. Let B be the learner resulting from applying LabelBoost on a learner A. Then
(1) If A preserves pure-privacy, then so does B; and (2) If A is a proper-learner, then so is B.

Algorithm LabelBoost can also be used as an agnostic learner, where the target class C is
unknown, and the learner outputs a hypothesis out of a set F 6= C. Note that given a labeled
sample, a consistent hypothesis might not exist in F . Minor changes in the proof of Theorem 4.14
show the following theorem.

Theorem 4.16. There exists a constant λ such that: For every α, β, ǫ, δ, n, if there exists an
(α, β, 1, δ, n, n)-PSSL for a concept class F , then there exists an (λα, λβ, ǫ, δ,O(nǫ),m)-agnostic-
PSSL using F , where m = O(1

α2ǫ
VC(F) log(1

αβ)).

To show the usefulness of Theorem 4.14, we consider (a discrete version of) the class of
all axis-aligned rectangles (or hyperrectangles) in ℓ dimensions. Formally, let Xℓ

d = ({0, 1}d)ℓ
denote a discrete ℓ-dimensional domain, in which every axis consists of 2d points. For every
~a = (a1, . . . , aℓ),~b = (b1, . . . , bℓ) ∈ Xℓ

d define the concept c
[~a,~b]

: Xℓ
d → {0, 1} where c

[~a,~b]
(~x) = 1 if

and only if for every 1 ≤ i ≤ ℓ it holds that ai ≤ xi ≤ bi. Define the concept class of all axis-aligned
rectangles over Xℓ

d as RECTANGLEℓd = {c[~a,~b]}~a,~b∈Xℓ
d
. The VC dimension of this class is 2ℓ, and, thus,

it can be learned non-privately with (labeled and unlabeled) sample complexity Oα,β(ℓ). The best
currently known private PAC learner for this class [7] has (labeled and unlabeled) sample complex-
ity Õα,β,ǫ,δ(ℓ

3 · 8log∗ d). Using LabelBoost with the construction of [7] reduces the labeled sample
complexity while maintaining the unlabeled sample complexity.

Corollary 4.17. There exists a private semi-supervised learner for RECTANGLE
ℓ
d with unlabeled

sample complexity Õα,β,ǫ,δ(ℓ
3·8log∗ d) and labeled sample complexity Oα,β,ǫ(ℓ). The learner is efficient

(runs in polynomial time) whenever the dimension ℓ is small enough (roughly, ℓ ≤ log
1
3 d).

The labeled sample complexity in Theorem 4.14 has no dependency in δ.5 It would be helpful if
we could also reduce the dependency on ǫ. As we will later see, this can be achieved in the active
learning model.

LabelBoost vs. GenericLearner. While both constructions result in learners with labeled
sample complexity proportional to the VC dimension, they differ on their unlabeled sample com-
plexity.

Recall the generic construction of Kasiviswanathan et al. [21] for private PAC learners, in which
the (labeled and unlabeled) sample complexity is logarithmic in the size of the target concept class
C (better constructions are known for many specific cases). Using Algorithm LabelBoost with their
generic construction results in a private semi-supervised learner with unlabeled sample complexity
(roughly) log |C|, which is better than the bound achieved by GenericLearner (whose unlabeled
sample complexity is O(log |X| ·VC(C))). In cases where a sample-efficient private-PAC learner is
known, applying LabelBoost would give even better bounds.

5The unlabeled sample complexity depends on δ as n depends on δ.

17

Another difference is that (a direct use of) GenericLearner only yields pure-private proper-
learners, whereas LabelBoost could be applied to every private learner (proper or improper, preserv-
ing pure or approximated privacy). To emphasize this difference, recall that the sample complexity
of pure-private improper-PAC-learners is characterized by the Representation Dimension [6].

Corollary 4.18. For every concept class C there is a pure-private semi-supervised improper-learner
with labeled sample complexity Oα,β,ǫ(VC(C)) and unlabeled sample complexity Oα,β,ǫ(RepDim(C)).

5 Private Active Learners

Semi-supervised learners are a subset of the larger family of active learners. Such learners can
adaptively request to reveal the labels of specific examples. An active learner is given access to a
pool of n unlabeled examples, and adaptively chooses to label m examples.

Definition 5.1 (Active Learning [23]). Let C be a concept class over a domain X. Let A be an
interactive (stateful) algorithm that holds an initial input database D = (xi)

n
i=1 ∈ (X)n. For at

most m rounds, algorithm A outputs an index i ∈ {1, 2, . . . , n} and receives an answer yi ∈ {0, 1}.
Afterwards, algorithm A outputs a hypothesis h, and terminates.

Algorithm A is an (α, β, n,m)-AL (Active learner) for C if for all concepts c ∈ C and all
distributions µ on X: If A is initiated on an input D = (xi)

n
i=1, where each xi is drawn i.i.d.

from µ, and if every index i queried by A is answered by yi = c(xi), then algorithm A outputs a
hypothesis h satisfying Pr[errorµ(c, h) ≤ α] ≥ 1−β. The probability is taken over the random choice
of the samples from µ and the coin tosses of the learner A.

Remark 5.2. In the standard definition of active learners, the learners specify examples by their
value (whereas in Definition 5.1 the learner queries the labels of examples by their index). E.g., if
x5 = x9 = p then instead of asking for the label of p, algorithm A asks for the label example 5 (or
9). This deviation from the standard definition is because when privacy is introduced, every entry
in D corresponds to a single individual, and can be changed arbitrarily (and regardless of the other
entries).

Definition 5.3 (Private Active Learner [4]). An algorithm A is an (α, β, ǫ, δ, n,m)-PAL (Private
Active Learner) for a concept class C if Algorithm A is an (α, β, n,m)-active learner for C and A
is (ǫ, δ)-differentially private, where in the definition of privacy we consider the input of A to be a
fully labeled sample S = (xi, yi)

n
i=1 ∈ (X × {0, 1})n (and limit the number of labels yi it can access

to m).

Note that the queries that an active learner makes depend on individuals’ data. Hence, if the
indices that are queried are exposed, they may breach privacy. An example of how such an exposure
may occur is a medical research of a new disease – a hospital may posses background information
about individuals and hence can access a large pool of unlabeled examples, but to label an example
an actual medical test is needed. Partial information about the labeling queries would hence be
leaked to the tested individuals. More information about the queries may be leaked to an observer
of the testing site. The following definition remedies this potential breach of privacy.

Definition 5.4. We define the transcript in an execution of an active learner A as the ordered
sequence L = (ℓi)

m
i=1 ∈ {1, 2, . . . , n}m of indices that A outputs throughout the execution. We

say that a learner A is (ǫ, δ)-transcript-differentially private if the algorithm whose input is the

18

labeled sample and whose output is the output of A together with the transcript of the execution is
(ǫ, δ)-differentially private. An algorithm A is an (α, β, ǫ, δ, n,m)-TPAL (transcript-private active-
learner) for a concept class C if Algorithm A is an (α, β, n,m)-Active learner for C and A is
(ǫ, δ)-transcript-differentially private.

Recall that a semi-supervised learner has no control over which of its examples are labeled, and
the indices of the labeled examples are publicly known. Hence, a private semi-supervised learner
is, in particular, a transcript-private active learner.

Theorem 5.5. If A is an (α, β, ǫ, δ, n,m)-PSSL, then A is an (α, β, ǫ, δ, n,m)-TPAL.

In particular, our algorithms from Sections 3 and 4 satisfy Definition 5.4, suggesting that the
strong privacy guarantees of Definition 5.4 are achievable. However, as we will now see, this
comes with a price. The work on (non-private) active learning has mainly focused on reducing
the dependency of the labeled sample complexity in α (the approximation parameter). The classic
result in this regime states that the labeled sample complexity of learning THRESHd without privacy
is O(log(1α)), exhibiting an exponential improvement over the Ω(1α) labeled sample complexity
in the non-active model. As the next theorem states, the labeled sample complexity of every
transcript-private active-learner for THRESHd is lower bounded by Ω(1α).

Theorem 5.6. Let α ≤ 1
9 and β ≤ 1

4 . In every (α, β, ǫ, δ, n,m)-TPAL for THRESHd the labeled
sample complexity satisfies m = Ω

(
1
α

)
.

Proof. Let A be an (α, β, ǫ, δ, n,m)-TPAL for THRESHd with α ≤ 1/9 and β ≤ 1/4. Without loss
of generality, we can assume that n ≥ 100

α2 ln(1
αβ) (since A can ignore part of the sample). Denote

B = {1, 2, . . . , 8α2d} ⊆ Xd, and consider the following thought experiment for randomly generating
a labeled sample of size n.

1. Let D = (x1, x2, . . . , xn) denote the outcome of n uniform i.i.d. draws from Xd.

2. Uniformly at random choose t ∈ B, and let ct ∈ THRESHd be s.t. ct(x) = 1 iff x < t.

3. Return S = (xi, ct(xi))
n
i=1.

The above process induces a distribution on labeled samples of size n, denoted as P. Let S ∼ P,
and consider the execution of A on S. Recall that A operates on the unlabeled portion of S and
actively queries for labels. Let b denote the the number of elements from B in the database S.
Standard arguments in learning theory (see Theorem B.6) state that with all but probability β ≤ 1

4
it holds that 7αn ≤ b ≤ 9αn. We continue with the proof assuming that this is the case. We
first show that A must (w.h.p.) ask for the label of at least one example in B. To this end, note
that even given the labels of all x /∈ B, the target concept is distributed uniformly on B, and the
probability that A fails to output an α-good hypothesis is at least 3

4 . Hence,

19

β ≥ Pr
S,A

[A fails]

≥ Pr
S,A

[
A does not ask for the label
of any point in B and fails

]

= Pr
S,A

[
A does not ask for the
label of any point in B

]
· Pr
S,A

[
A fails

∣∣∣∣
A does not ask for the
label of any point in B

]

≥ Pr
S,A

[
A does not ask for the
label of any point in B

]
· 3
4

≥ Pr
S
[b ≤ 9αn] · Pr

S,A

[
A does not ask for the
label of any point in B

∣∣∣∣b ≤ 9αn

]
· 3
4

≥ 9

16
· Pr
S,A

[
A does not ask for the
label of any point in B

∣∣∣∣b ≤ 9αn

]
.

Thus, assuming that b ≤ 9αn, the probability that A asks for the label of a point in B is at least
(1− 16

9 β). Now choose a random x∗ from S s.t. x∗ ∈ B. Note that

Pr
S,x∗,A

[A(S) asks for the label of x∗] ≥ Pr
S
[b ≤ 9αn] · Pr

S,x∗,A

[
A(S) asks for
the label of x∗

∣∣∣∣b ≤ 9αn

]

≥ (1− β) · (1−
16
9 β)

9αn

≥ 1− 25
9 β

9αn
.

Choose a random x̂ from S (uniformly), and construct a labeled sample S′ by swapping the
entries (x∗, c(x∗)) and (x̂, c(x̂)) in S. Note that S′ is also distributed according to P, and that x̂ is
a uniformly random element of S′. Therefore,

Pr
S,x∗,x̂,A

[
A(S′) asks for the label of x̂

]
≤ m

n
.

As S and S′ differ in at most 2 entries, differential privacy states that

m

n
≥ Pr

S,x∗,x̂,A

[
A(S′) asks for the label of x̂

]

=
∑

S,x∗,x̂

Pr[S, x∗, x̂] · Pr
A

[
A(S′) asks for the label of x̂

]

≥
∑

S,x∗,x̂

Pr[S, x∗, x̂] e−2ǫ Pr
A

[A(S) asks for the label of x∗]− δ(1+e−ǫ)

= e−2ǫ · Pr
S,x∗,A

[A(S) asks for the label of x∗]− δ(1 + e−ǫ)

≥ e−2ǫ · 1−
25
9 β

9αn
− δ(1 + e−ǫ).

Solving for m, this yields m = Ω(1α).

The private active learners presented in [4] as well as the algorithm described in the next section
only satisfy the weaker Definition 5.3.

20

5.1 Removing the Dependency on the Privacy Parameters

We next show how to transform a semi-supervised private learner A into an active learner B with
better privacy guarantees without increasing the labeled sample complexity. Algorithm B, on input
an unlabeled database D, randomly chooses a subset of the inputs D′ ⊆ D and asks for the labels
of the examples in D′ (denote the resulting labeled database as S). Algorithm B then applies A
on D,S. As the next claim states, this eliminates the 1

ǫ factor from the labeled sample complexity
as the (perhaps adversarial) choice for the input database is independent of the queries chosen.

Claim 5.7. If there exists an (α, β, ǫ∗, δ, n,m)-PSSL for a concept class C, then for every ǫ there

exists an
(
α, β, ǫ, 7+eǫ

∗

3+e2ǫ∗
ǫδ, t,m

)
-PAL (private active learner) for C, where t = n

ǫ (3 + exp(2ǫ∗)).

Algorithm 4 SubSampling

Inputs: Base learner A, privacy parameters ǫ∗, ǫ, and a database D = (xi)
t
i=1 of t unlabeled

examples.

1. Uniformly at random select a subset J ⊆ {1, 2, ..., t} of size n, and let K ⊆ J denote the
smallest m indices in J .

2. Request the label of every index i ∈ K, and let {yi : i ∈ K} denote the received answers.

3. Run A an the multiset DJ = {(xi,⊥) : i ∈ J \K} ∪ {(xi, yi) : i ∈ K}.

Proof. The proof is via the construction of Algorithm SubSampling (Algorithm 4). The utility
analysis is straight forward. Fix a target concept c and a distribution µ. Assume that D contains t
i.i.d. samples from µ and that every query on an index i is answered by c(xi). Therefore, algorithm
A is executed on a multiset DJ containing n i.i.d. samples from µ where m of those samples are
labeled by c. By the utility properties of A, an α-good hypothesis is returned with probability at
least (1− β).

For the privacy analysis, fix two neighboring databases S, S′ ∈ (X × {0, 1})t differing on their
ith entry, and let D,D′ ∈ Xt denote the restriction of those two databases to X (that is, D contains
an entry x for every entry (x, y) in S). Consider an execution of SubSampling on D (and on D′),
and let J ⊆ {1, . . . , t} denote the random subset of size n chosen on Step 1. Moreover, and let DJ

denote the multiset on which A in executed.
Since S and S′ differ in just the ith entry, for any set of outcomes F it holds that Pr[A(DJ) ∈

F |i 6∈ J] = Pr[A(D′
J) ∈ F |i /∈ J]. When i ∈ J we have that

Pr[SubSampling(D) ∈ F ∧ i ∈ J] =
∑

R⊆[t]\{i}

|R|=n−1

Pr[J = R ∪ {i}] · Pr[A(DJ) ∈ F |J = R ∪ {i}].

Note that for every choice of R ⊆ [t] \ {i} s.t. |R| = (n − 1), there are exactly (t − n) choices for

21

Q ⊆ [t] \ {i} s.t. |Q| = n and R ⊆ Q. Hence,

Pr[SubSampling(D) ∈ F ∧ i ∈ J] =
∑

R⊆[t]\{i}

|R|=n−1

1

t− n

∑

Q⊆[t]\{i}

|Q|=n

R⊆Q

Pr[J=R∪{i}]·Pr[A(DJ)∈F |J=R∪{i}]

≤
∑

R⊆[t]\{i}

|R|=n−1

1

t− n

∑

Q⊆[t]\{i}

|Q|=n

R⊆Q

Pr[J=Q]
(
e2ǫ

∗
Pr[A(DJ)∈F |J=Q]+δ+δeǫ

∗
)
.

For the last inequality, note that DQ and DR∪{i} differ in at most two entries, as they differ in one
unlabeled example, and possibly one other example that is labeled in one multiset and unlabeled
on the other. Now note that every choice of Q will appear in the above sum exactly n times (as
the number of choices for appropriate R’s s.t. R ⊆ Q). Hence,

Pr [{SubSampling(D) ∈ F} ∧ {i ∈ J}] ≤ n

t− n

∑

Q⊆[t]\{i}

|Q|=n

Pr[J=Q]
(
e2ǫ

∗
Pr[A(DJ)∈F |J=Q]+δ+δeǫ

∗
)

=
n

t− n
· Pr[i /∈ J]

(
e2ǫ

∗
Pr[A(DJ) ∈ F |i /∈ J]+δ+δeǫ

∗
)

=
n

t
e2ǫ

∗ · Pr[A(DJ) ∈ F |i /∈ J] +
n

t
(1 + eǫ

∗
)δ

=
n

t
e2ǫ

∗ · Pr[A(D′
J) ∈ F |i /∈ J] +

n

t
(1 + eǫ

∗
)δ.

Therefore,

Pr[SubSampling(D) ∈ F] = Pr [{SubSampling∈F}∧{i∈J}] +Pr[i/∈J]·Pr[A(D′
J)∈F |i/∈J]

≤
(
n

t
e2ǫ

∗
+

t− n

t

)
· Pr[A(D′

J) ∈ F |i /∈ J] +
n

t
(1 + eǫ

∗
)δ.

Similar arguments show that

Pr[SubSampling(D′) ∈ F] ≥
(
n

t
e−2ǫ∗ +

t− n

t

)
· Pr[A(D′

J) ∈ F |i /∈ J]− n

t
2δ.

For t ≥ n
ǫ (3 + exp(2ǫ∗)), this yields

Pr[SubSampling(D) ∈ F]

≤ eǫ · Pr[SubSampling(D′) ∈ F] +
7 + eǫ

∗

3 + e2ǫ
∗ ǫδ.

The transformation of Claim 5.7 preserves the efficiency of the base (non-active) learner. Hence,
a given (efficient) non-active private learner could always be transformed into an (efficient) active

22

private learner whose labeled sample complexity does not depend on ǫ. Applying Claim 5.7 to
the learner from Theorem 4.14 result in the following theorem, showing that the labeled sample
complexity of private active learners has no dependency in the privacy parameters ǫ and δ.

Theorem 5.8. There exists a constant λ such that: For every α, β, ǫ, δ, n, if there exists an
(α, β, 1, δ, n, n)-PSSL for a concept class C, then there exists an (λα, λβ, ǫ, δ,O(nǫ),m)-PAL for
C, where m = O(1αVC(C) log(1

αβ)).

Acknowledgments. We thank Aryeh Kontorovich, Adam Smith, and Salil Vadhan for helpful
discussions of ideas in this work.

23

References

[1] A. Agrawala. Learning with a probabilistic teacher. Information Theory, IEEE Transactions
on, 16(4):373–379, Jul 1970.

[2] Martin Anthony and John Shawe-Taylor. A result of Vapnik with applications. Discrete
Applied Mathematics, 47(3):207–217, 1993.

[3] Matin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 2009.

[4] Maria-Florina Balcan and Vitaly Feldman. Statistical active learning algorithms. In Advances
in Neural Information Processing Systems 26, pages 1295–1303, 2013.

[5] Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the
sample complexity for private learning and private data release. Machine Learning, 94(3):401–
437, 2014.

[6] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Characterizing the sample complexity of
private learners. In Robert D. Kleinberg, editor, ITCS, pages 97–110. ACM, 2013.

[7] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure vs.
approximate differential privacy. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen,
and José D. P. Rolim, editors, APPROX-RANDOM, volume 8096 of Lecture Notes in Computer
Science, pages 363–378. Springer, 2013.

[8] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: The
SuLQ framework. In Chen Li, editor, PODS, pages 128–138. ACM, 2005.

[9] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to noninteractive
database privacy. J. ACM, 60(2):12, 2013.

[10] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability
and the vapnik-chervonenkis dimension. J. ACM, 36(4):929–965, 1989.

[11] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially private release and
learning of threshold functions. CoRR, abs/1504.07553, 2015.

[12] Kamalika Chaudhuri and Daniel Hsu. Sample complexity bounds for differentially private
learning. In Sham M. Kakade and Ulrike von Luxburg, editors, COLT, volume 19 of JMLR
Proceedings, pages 155–186. JMLR.org, 2011.

[13] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Daphne
Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, NIPS. MIT Press, 2008.

[14] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empir-
ical risk minimization. J. Mach. Learn. Res., 12:1069–1109, July 2011.

[15] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor,
EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 486–503. Springer,
2006.

24

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of
Lecture Notes in Computer Science, pages 265–284. Springer, 2006.

[17] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy. In
FOCS, pages 51–60. IEEE Computer Society, 2010.

[18] Andrzej Ehrenfeucht, David Haussler, Michael J. Kearns, and Leslie G. Valiant. A general
lower bound on the number of examples needed for learning. Inf. Comput., 82(3):247–261,
1989.

[19] Vitaly Feldman and David Xiao. Sample complexity bounds on differentially private learning
via communication complexity. CoRR, abs/1402.6278, 2014.

[20] S. Fralick. Learning to recognize patterns without a teacher. IEEE Trans. Inf. Theor., 13(1):57–
64, September 2006.

[21] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826, 2011.

[22] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–
1006, 1998.

[23] Andrew McCallum and Kamal Nigam. Employing em and pool-based active learning for text
classification. In Proceedings of the Fifteenth International Conference on Machine Learning,
ICML ’98, pages 350–358, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[24] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, pages
94–103. IEEE Computer Society, 2007.

[25] Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and Nina Taft. Learning in a large
function space: Privacy-preserving mechanisms for svm learning. CoRR, abs/0911.5708, 2009.

[26] N Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145 – 147, 1972.

[27] III Scudder, H. Probability of error of some adaptive pattern-recognition machines. Informa-
tion Theory, IEEE Transactions on, 11(3):363–371, Jul 1965.

[28] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[29] Vladimir Vapnik and Alexey Chervonenkis. Theory of pattern recognition [in russian]. Nauka,
Moscow, 1974.

[30] Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264–
280, 1971.

25

A Some Differentially Private Mechanisms

A.1 The Exponential Mechanism [24]

We next describe the exponential mechanism of McSherry and Talwar [24]. We present its private
learning variant; however, it can be used in more general scenarios. The goal here is to chooses a
hypothesis h ∈ H approximately minimizing the empirical error. The choice is probabilistic, where
the probability mass that is assigned to each hypothesis decreases exponentially with its empirical
error.

Algorithm 5 Exponential Mechanism

Inputs: Privacy parameter ǫ, finite hypothesis class H, and m labeled examples S = (xi, yi)
m
i=1.

1. ∀h ∈ H define q(S, h) = |{i : h(xi) = yi}|.
2. Randomly choose h ∈ H with probability exp(ǫ·q(S,h)/2)∑

f∈H exp(ǫ·q(S,f)/2) .

3. Output h.

Proposition A.1 (The Exponential Mechanism). (i) The exponential mechanism is ǫ-differentially
private. (ii) Let ê , minf∈H{errorS(f)}. For every ∆ > 0, the probability that the exponential
mechanism outputs a hypothesis h such that errorS(h) > ê+∆ is at most |H| · exp(−ǫ∆m/2).

A.2 Data Sanitization

Given a database S = (x1, . . . , xm) containing elements from some domain X, the goal of data
sanitization is to output (while preserving differential privacy) another database Ŝ that is in some
sense similar to S. This returned database Ŝ is called a sanitized database, and the algorithm
computing Ŝ is called a sanitizer.

For a concept c : X → {0, 1} define Qc : X∗ → [0, 1] as Qc(S) =
1
|S| ·

∣∣∣{i : c(xi) = 1}
∣∣∣. That

is, Qc(S) is the fraction of the entries in S that satisfy c. A sanitizer for a concept class C is a
differentially private algorithm that given a database S outputs a database Ŝ s.t. Qc(S) ≈ Qc(Ŝ)
for every c ∈ C.

Definition A.2 (Sanitization [9]). Let C be a class of concepts mapping X to {0, 1}. Let A be an
algorithm that on an input database S ∈ X∗ outputs another database Ŝ ∈ X∗. Algorithm A is an
(α, β, ǫ, δ,m)-sanitizer for predicates in the class C, if

1. A is (ǫ, δ)-differentially private;

2. For every input S ∈ Xm,

Pr
A

[
∃c ∈ C s.t. |Qc(S)−Qc(Ŝ)| > α

]
≤ β.

The probability is over the coin tosses of algorithm A. As before, when δ=0 (pure privacy) we omit
it from the set of parameters.

26

Theorem A.3 (Blum et al. [9]). For any class of predicates C over a domain X, and any param-
eters α, β, ǫ, there exists an (α, β, ǫ,m)-sanitizer for C, where the size of the database m satisfies:

m = O

(
log |X| · VC(C) · log(1/α)

α3ǫ
+

log(1/β)

ǫα

)
.

The returned sanitized database contains O(VC(C)
α2 log(1α)) elements.

B The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis (VC) Dimension is a combinatorial measure of concept classes that
characterizes the sample size of PAC learners. Let C be a concept class over a domain X,
and let B = {b1, . . . , bℓ} ⊆ X. The set of all dichotomies on B that are realized by C is

ΠC(B) =
{
(c(b1), . . . , c(bℓ)) : c ∈ C

}
. A set B ⊆ X is shattered by C if C realizes all possi-

ble dichotomies over B, i.e., ΠC(B) = {0, 1}|B|.

Definition B.1 (VC-Dimension [30]). The VC(C) is the cardinality of the largest set B ⊆ X
shattered by C. If arbitrarily large finite sets can be shattered by C, then VC(C) =∞.

Sauer’s lemma bounds the cardinality of ΠC(B) in terms of VC(C) and |B|.
Theorem B.2 ([26]). Let C be a concept class over a domain X, and let B ⊆ X such that

|B| > VC(C). It holds that ΠC(B) ≤
(

e|B|
VC(C)

)VC(C)
.

B.1 VC Bounds

Classical results in computational learning theory state that a sample of size Θ(VC(C)) is both
necessary and sufficient for the PAC learning of a concept class C. The following two theorems
give upper and lower bounds on the sample complexity.

Theorem B.3 ([18]). For any (α, β< 1
2 , n,m)-SSL for a class C it holds that m ≥ VC(C)−1

16α .

Theorem B.4 (Generalization Bound [30, 10]). Let C and µ be a concept class and a distribution
over a domain X. Let α, β > 0, and m ≥ 8

α (VC(C) ln(16α) + ln(2β)). Fix a concept c ∈ C, and
suppose that we draw a sample S = (xi, yi)

m
i=1, where xi are drawn i.i.d. from µ and yi = c(xi).

Then,
Pr [∃h ∈ C s.t. errorµ(h, c) > α ∧ errorS(h) = 0] ≤ β.

Hence, an algorithm that takes a sample of m = Ωα,β(VC(C)) labeled examples and outputs
a concept h ∈ C that agrees with the sample is a PAC learner for C. The following is a simple
generalization of Theorem B.4.

Theorem B.5 (Generalization Bound). Let C and µ be a concept class and a distribution over

a domain X. Let α, β > 0, and m ≥ 48
α

(
10VC(C) log(48eα) + log(5β))

)
. Suppose that we draw a

sample S = (xi)
m
i=1, where each xi is drawn i.i.d. from µ. Then,

Pr

[
∃c, h ∈ C s.t. errorµ(c, h) ≥ α

and errorS(c, h) ≤ α/10

]
≤ β.

27

The above theorem generalizes Theorem B.4 in two aspects. First, it holds simultaneously for
every pair c, h ∈ C, whereas in Theorem B.4 the target concept c is fixed before generating the
sample. Second, Theorem B.4 only ensures that a hypothesis h has small generalization error if
errorS(h) = 0. In Theorem B.5 on the other hand, this is guaranteed even if errorS(h) is small (but
non-zero).

The next theorem handles (in particular) the agnostic case, in which the concept class C is
unknown and the learner uses a hypotheses class H. In particular, given a labeled sample S there
may be no h ∈ H for which errorS(h) is small.

Theorem B.6 (Agnostic Bound [3, 2]). Let H and µ be a concept class and a distribution over
a domain X, and let f : X → {0, 1} be some concept, not necessarily in H. For a sample S =

(xi, f(xi))
m
i=1 where m ≥ 50VC(H)

α2 ln(1
αβ) and each xi is drawn i.i.d. from µ, it holds that

Pr
[
∀ h ∈ H,

∣∣errorµ(h, f)− errorS(h)
∣∣ ≤ α

]
≥ 1− β.

Notice that the sample size in Theorem B.5 is smaller than the sample size in Theorem B.6,
where, basically, the former is proportional to 1

α and the latter is proportional to 1
α2 .

28

	1 Introduction
	1.1 This Work
	1.2 Related Work

	2 Preliminaries
	3 A Generic Construction Achieving Low Labeled Sample Complexity
	4 Boosting the Labeled Sample Complexity of Private Learners
	5 Private Active Learners
	5.1 Removing the Dependency on the Privacy Parameters

	A Some Differentially Private Mechanisms
	A.1 The Exponential Mechanism MT07
	A.2 Data Sanitization

	B The Vapnik-Chervonenkis Dimension
	B.1 VC Bounds

