
Vol:.(1234567890)

Algorithmica (2021) 83:1786–1828
https://doi.org/10.1007/s00453-021-00802-1

1 3

Computing the Rooted Triplet Distance Between
Phylogenetic Networks

Jesper Jansson1  · Konstantinos Mampentzidis2 · Ramesh Rajaby3 ·
Wing‑Kin Sung3,4 

Received: 29 June 2020 / Accepted: 13 January 2021 / Published online: 16 March 2021
© The Author(s) 2021

Abstract
The rooted triplet distance measures the structural dissimilarity of two phylogenetic
trees or phylogenetic networks by counting the number of rooted phylogenetic trees
with exactly three leaf labels (called rooted triplets, or triplets for short) that occur
as embedded subtrees in one, but not both, of them. Suppose that N1 = (V1,E1) and
N2 = (V2,E2) are phylogenetic networks over a common leaf label set of size n,
that N

i
 has level k

i
 and maximum in-degree d

i
 for i ∈ {1, 2} , and that the networks’

out-degrees are unbounded. Write N = max(|V1|, |V2|) , M = max(|E1|, |E2|) ,
k = max(k1, k2) , and d = max(d1, d2) . Previous work has shown how to compute the
rooted triplet distance between N1 and N2 in O(n log n) time in the special case k ≤ 1 .
For k > 1 , no efficient algorithms are known; applying a classic method from 1980
by Fortune et al. in a direct way leads to a running time of Ω(N6n3) and the only
existing non-trivial algorithm imposes restrictions on the networks’ in- and out-
degrees (in particular, it does not work when non-binary vertices are allowed). In
this article, we develop two new algorithms with no such restrictions. Their run-
ning times are O(N2M + n3) and O(M + Nk2d2 + n3) , respectively. We also provide
implementations of our algorithms, evaluate their performance on simulated and
real datasets, and make some observations on the limitations of the current defini-
tion of the rooted triplet distance in practice. Our prototype implementations have
been packaged into the first publicly available software for computing the rooted
triplet distance between unrestricted networks of arbitrary levels.

Keywords  Phylogenetic network comparison · Rooted triplet distance · Fan graph ·
Resolved graph · Block tree · Contracted block network · Implementation

A preliminary version of this article appeared in Proceedings of the Thirtieth International
Workshop on Combinatorial Algorithms (IWOCA 2019), Lecture Notes in Computer Science,
Vol. 11638, pp. 290–303, Springer Nature Switzerland AG, 2019.

 *	 Jesper Jansson
	 jesper.jansson@polyu.edu.hk

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6859-8932
http://orcid.org/0000-0001-7806-7086
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00802-1&domain=pdf

1787

1 3

Algorithmica (2021) 83:1786–1828	

1  Introduction

1.1 � Background

Phylogenetic trees are commonly used in biology to represent evolutionary rela-
tionships, with the leaves corresponding to species that exist today and internal
vertices to ancestor species that existed in the past [1]. When studying the evo-
lution of a fixed set of species, different available data and tree reconstruction
methods can lead to trees that look structurally different. Quantifying this differ-
ence is essential to make better evolutionary inferences, which has led to the pro-
posal of several phylogenetic tree distance measures in the literature. For exam-
ple, to evaluate the accuracy of a tree reconstruction method M , one can perform
the following steps a number of times [2]: First generate a random phylogenetic
tree T and let a sequence evolve down the edges of T according to some chosen
model of sequence evolution, then apply the method M to reconstruct a tree T ′ ,
and finally measure the distance between T and T ′ . Some phylogenetic tree dis-
tance measures that are based on counting how many times certain features dif-
fer in the two trees are the Robinson-Foulds distance [3], the rooted triplet dis-
tance [4] for rooted trees, and the unrooted quartet distance [5] for unrooted trees.
Other distance measures are the nearest-neighbor interchange distance (intro-
duced independently in [6] and [7]), the path-length-difference distance [8], the
subtree prune-and-regraft distance [9], the maximum agreement subtree [10], and
the subtree moving tree edit distance [11].

The rooted phylogenetic network model is an extension of the rooted phylo-
genetic tree model that allows internal vertices to have more than just one par-
ent [12]. Such networks can describe more complex evolutionary relationships
involving reticulation events such as horizontal gene transfer and hybridization.
As in the case of phylogenetic trees, it is useful to have distance measures for
comparing phylogenetic networks. Therefore, in this article, we study a natural
generalization [13] of the rooted triplet distance for phylogenetic trees to rooted
phylogenetic networks and present two new algorithms for computing it.

1.2 � Problem Definitions

For any vertex u in a directed acyclic graph, let in(u) and out(u) be the in-degree
and out-degree of u. The vertex u is called a leaf if out(u) = 0 , and an internal
vertex if out(u) ≥ 1 . Formally, a rooted phylogenetic network N′ is a directed acy-
clic graph with one vertex of in-degree 0 (from here on called the root of N′ and
denoted by r(N�) ), distinctly labeled leaves, and no vertices with both in-degree 1
and out-degree 1. A vertex u in N′ is called a reticulation vertex if in(u) ≥ 2
holds. If N′ has no reticulation vertices, i.e., if all vertices in N′ have in-degree at
most 1, then N′ is a rooted phylogenetic tree. Below, when referring to a “tree”,
we imply a “rooted phylogenetic tree”, and when referring to a “network”, we
imply a “rooted phylogenetic network”.

1788	 Algorithmica (2021) 83:1786–1828

1 3

For the rest of this subsection, suppose that N′ is a network. A directed edge
from a vertex u to a vertex v in N′ is denoted by u → v . A path from u to v in N′ is
denoted by u ⇝ v . Let the height of u, written as h(u), be the number of edges in
a longest path from u to a leaf in N′ . By definition, if v is a parent of u in N′ then
h(v) > h(u) . We will use L(N�) to refer to both the set of leaves in N′ as well as to
the set of leaf labels in N′ since they are in one-to-one correspondence.

The level of a network was introduced by Choy et al. [14] as a parameter to
measure the treelikeness of a network, with the special case of a level-0 network
being a tree and a level-1 network a so-called galled tree [15] in which all under-
lying cycles are disjoint. The level is defined as follows. Let U(N�) be the undi-
rected graph created by replacing every directed edge in N′ with an undirected
edge. An undirected, connected graph H is called biconnected if it has no ver-
tex whose removal makes H disconnected. A maximal subgraph of U(N�) that is
biconnected is called a biconnected component of U(N�) . (Observe that the bicon-
nected components of U(N�) are edge-disjoint but not necessarily vertex-disjoint.)
For any biconnected component of U(N� ), its corresponding subgraph in N′ will
be referred to as a block of N′ . We say that N′ is a level-k network, or equiva-
lently N′ has level k, if every block of N′ contains at most k reticulation vertices.
Figure 1 shows a level-2 and a level-3 network.

If B is a block of N′ consisting of more than two vertices and one edge and B
contains at most one vertex that has one or more outgoing edges to vertices not
belonging to B then B is called uninformative. See Fig. 2 for an illustration.

Next, a rooted triplet � is a tree with three leaves. If it is binary we say that �
is a rooted resolved triplet, and if it is non-binary we say that � is a rooted fan
triplet. We say that the rooted fan triplet x|y|z is consistent with N′ if and only if
there exists a vertex u in N′ such that there are three directed paths of non-zero
length from u to x, from u to y, and from u to z that are vertex-disjoint except for
in u. Similarly, we say that the rooted resolved triplet xy|z is consistent with N′ if
and only if N′ contains two vertices u and v such that there are four directed paths
of non-zero length from u to v, from v to x, from v to y, and from u to z that are
vertex-disjoint except for in u and v, and furthermore, the path from u to z does
not pass through v. See Fig. 1 for an example. From here on, by “disjoint paths”

a3
a1

a4

a2

N1

a2
a3

a1

a4

N2

Fig. 1   N1 is a level-2 network and N2 is a level-3 network with L(N1) = L(N2) = {a1, a2, a3, a4} . In this
example, D(N1,N2) = 6 . Some shared triplets are: a1|a2|a4, a3a4|a2, a1a3|a2 . Some triplets consistent
with only one network are: a1|a3|a4, a2a3|a1

1789

1 3

Algorithmica (2021) 83:1786–1828	

we imply “vertex-disjoint paths of non-zero length”. Moreover, when referring to
a “triplet”, we imply a “rooted triplet”.

Given two networks N1 = (V1,E1) and N2 = (V2,E2) built on the same leaf label
set Λ , the rooted triplet distance D(N1,N2) , or triplet distance for short, is the num-
ber of triplets over Λ that are consistent with exactly one of N1 and N2 . Let S(N1,N2)
be the total number of shared triplets, i.e., triplets that are consistent with both N1
and N2 . Then:

Note that a shared triplet contributes a +1 to S(N1,N1) , S(N2,N2) , and S(N1,N2) ,
e.g., the triplet a1|a2|a4 in Fig. 1. On the other hand, a triplet from either net-
work that is not shared contributes a +1 to either S(N1,N1) or S(N2,N2) , and a 0
to S(N1,N2) . As an example, a1|a3|a4 in Fig. 1 contributes a +1 to S(N1,N1) and a 0
to S(N2,N2) and S(N1,N2).

Let Sr(N1,N2) and Sf (N1,N2) be the number of shared resolved and shared fan
triplets, respectively. Then S(N1,N2) = Sr(N1,N2) + Sf (N1,N2) , which implies that
D(N1,N2) can be obtained by considering shared resolved triplets and shared fan
triplets separately.

The rest of this article is focused on how to compute D(N1,N2) efficiently. We
shall use the following notation to express the time complexities of various algo-
rithms. For i ∈ {1, 2} , the network Ni has vertex set Vi and edge set Ei . The level of Ni
is ki and the maximum in-degree taken over all vertices in Ni is di . We assume that
the two given networks N1 and N2 have the same leaf label set Λ , and write n = |Λ| ,
N = max(|V1|, |V2|) , M = max(|E1|, |E2|) , k = max(k1, k2) , and d = max(d1, d2).

To simplify the descriptions of the algorithms, we will also assume that: (i) there
is no vertex u satisfying both in(u) > 1 and out(u) = 0 , i.e., all leaves have in-degree
at most 1; and (ii) there are no uninformative blocks in N1 and N2 . Assumption (i)

(1.1)D(N1,N2) = S(N1,N1) + S(N2,N2) − 2S(N1,N2)

Fig. 2   The block drawn with
solid edges is an uninformative
block because it only has one
vertex u with outgoing edges to
vertices not in the block

u

1790	 Algorithmica (2021) 83:1786–1828

1 3

is justified because every leaf u with in-degree larger than 1 can be replaced by an
internal vertex to which a leaf with the same leaf label as u is attached, and the
resulting network will be consistent with exactly the same triplets as before.
Assumption (ii) is justified because first each uninformative block can be replaced
by an edge, and then each vertex with in-degree 1 and out-degree 1 can be elimi-
nated by contracting its outgoing edge; the resulting network will be consistent
with the same triplets as the original network. If necessary, checking the input net-
works N1 and N2 and modifying them to ensure that they comply with (i) and (ii)
before running the algorithms takes O(M) time, e.g., by using Hopcroft-Tarjan’s
algorithm [16] to identify the biconnected components of U(N1) and U(N2).

1.3 � Previous Work

The rooted triplet distance was introduced by Dobson [4] in 1975 for trees, and gen-
eralized to networks by Gambette and Huber [13] in 2012. See also [17, Section 3.2]
for a short discussion about the definition.

Table 1 lists the time complexities of some previously known algorithms and
our new ones for computing D(N1,N2) . When k = 0 , both N1 and N2 are trees.
This case has been extensively studied in the literature [4, 18–24], with the most
efficient algorithms in theory and practice [19, 20, 24] running in O(n log n) time.
For k = 1 , an O(n2.687)-time algorithm based on counting 3-cycles in an auxiliary
graph was given in [17], and a faster, O(n log n)-time algorithm that transforms
the input to a constant number of instances with k = 0 was given in [25]. All
of these algorithms allow the vertices in the input networks to have arbitrary

Table 1   Previous and new results for computing D(N1,N2) , where N1 and N2 are two phylogenetic net-
works built on the same leaf label set Λ

Notation: n = |Λ| is the number of leaf labels, N = max(|V1|, |V2|) is the maximum number of verti-
ces, M = max(|E1|, |E2|) is the maximum number of edges, k = max(k1, k2) is the maximum level, and
d = max(d1, d2) is the maximum in-degree of the two networks

Year Reference k In- and out-degrees Time complexity

1980 Fortune et al. [26] Arbitrary Arbitrary Ω(N6n3)

2010 Byrka et al. [27] Arbitrary Binary O(N + Nk2 + n3)

2013 Brodal et al. [19] 0 Arbitrary O(n log n)

2019 Jansson et al. [25] 1 Arbitrary O(n log n)

2020 New Arbitrary Arbitrary O(N2M + n3)

2020 New Arbitrary Arbitrary O(M + Nk2d2 + n3)

1791

1 3

Algorithmica (2021) 83:1786–1828	

degrees. Moreover, software implementations of the fast algorithms for k = 0 and
k = 1 are available [20, 23–25].

For k > 1 , much less is known. In a special “binary degree” case where the
phylogenetic networks’ roots have out-degree 2 and all other internal vertices
have either in-degree 2 and out-degree 1, or in-degree 1 and out-degree 2, one
can adapt a technique developed by Byrka et al. [27] for a problem related to
finding a network consistent with as many resolved triplets as possible from a
given set. They showed how to preprocess any fixed network N� = (V ,E) satisfy-
ing the binary degree constraints so that checking if a resolved triplet is consist-
ent with N′ can be done efficiently. Below, we shall refer to this preprocessing
as constructing a data structure D such that D can be used to determine whether
any specified resolved triplet is consistent with N′ in O(1) time. The proof of
Lemma 2 in [27] showed how to build D in O(|V|3) time. According to Remark 1
in [27], this can be further improved to O(|V| + |V|k2) , where k is the level of N′ .
The rooted triplet distance can thus be computed in O(N + Nk2 + n3) time in a
straightforward way when N1 and N2 obey the special binary degree constraints. A
limitation of D is that it can only support consistency queries for resolved triplets,
while a network with no restrictions on the vertices’ degrees may also contain fan
triplets.

In the general case, when N1 and N2 have unbounded degrees and unbounded

levels, it is possible to compute D(N1,N2) by iterating over all 4
(
n

3

)

 triplets, and

for each such triplet applying the classic directed acyclic graph pattern matching
algorithm in [26] to determine its consistency with N1 and N2 . However, this leads
to a time complexity of Ω(N6n3) . To see this, let P in Theorem 3 in [26] be a
resolved triplet and G a phylogenetic network Ni with |Vi| vertices. P has two

internal nodes and four edges, so the algorithm will consider
(
|Vi|

2

)

 ways of

mapping the two internal nodes of P to vertices in Ni , and for each one, construct
a configuration graph G′ with Ω((|Vi| + 1)4) vertices and look for a path in G′ .
Hence, the algorithm will use Ω(|Vi|

6) time for each resolved triplet to check if it
occurs in Ni , i.e., Ω(N6n3) time in total.

1.4 � New Results

Here, we develop two algorithms that significantly improve upon the time com-
plexity of computing the rooted triplet distance in the general, unbounded case.
The running time of our first algorithm is O(N2M + n3) . One key insight is that
a technique of Perl and Shiloach for identifying two disjoint paths between two
pairs of vertices in a directed acyclic graph [28] can be extended to check if a fan
triplet or a resolved triplet is embedded in a phylogenetic network, leading to the
useful concepts of a fan graph and a resolved graph. Our second algorithm then
augments these ideas with so-called block trees and contracted block networks
to obtain a running time of O(M + Nk2d2 + n3) . Neither algorithm has a strictly

1792	 Algorithmica (2021) 83:1786–1828

1 3

better time complexity than the other one for all possible inputs. In the special
case where N1 and N2 follow the binary degree constraints of Byrka et al. [27],
the time complexity reduces to O(N + Nk2 + n3) , matching the bound in [27].

We also provide implementations of our algorithms, evaluate their performance
on simulated and real datasets, and make some observations on the limitations of the
current definition of the rooted triplet distance in practice. Our prototype implemen-
tations have been packaged into the first publicly available software for computing
the triplet distance between two unrestricted networks of arbitrary levels.

1.5 � Organization of the Article

Section 2 describes our first new algorithm and Sect. 3 the second one. Section 4
presents an implementation of both our algorithms and experiments illustrating their
practical performance. Finally, Sect. 5 gives some concluding remarks.

2 � A First Approach

This section presents an algorithm that computes D(N1,N2) in O(N2M + n3) time.
Overview. The algorithm consists of a preprocessing step and a triplet distance

computation step. For the preprocessing step, we extend a technique introduced by
Perl and Shiloach [28] to construct suitably defined auxiliary graphs that compactly
encode disjoint paths within N1 and N2 . Two graphs, the fan graph and resolved
graph, are created that enable us to check the consistency of any fan triplet and any
resolved triplet, respectively, with N1 and N2 in O(1) time. In the triplet distance

computation step, we compute D(N1,N2) by iterating over all possible 4
(
n

3

)

 tri-

plets and using the fan and resolved graphs to check the consistency of each triplet
with N1 and N2 efficiently.

2.1 � Preprocessing

Let G = (V ,E) be a directed acyclic graph and s1 , t1 , s2 , and t2 four vertices in G.
Perl and Shiloach [28] gave an algorithm that can find two vertex-disjoint paths,
one from s1 to t1 and one from s2 to t2 , in O(|V||E|) time or determine that no such
pair of paths exists. They achieve this by creating a directed graph G� = (V �,E�) in
O(|V||E|) time, with the property that the existence of such a pair of vertex-disjoint
paths in G is equivalent to the existence of a directed path from ⟨s1, s2⟩ to ⟨t1, t2⟩
in G′ , where ⟨s1, s2⟩ and ⟨t1, t2⟩ are vertices in G′ . A fan triplet or resolved triplet
involves more than two vertex-disjoint paths, and below we show how to extend the
technique by Perl and Shiloach [28] to determine if a given network has the neces-
sary vertex-disjoint paths that would imply the consistency of a given triplet with
the network.

1793

1 3

Algorithmica (2021) 83:1786–1828	

2.1.1 � The Fan Graph

For any network Ni = (Vi,Ei) , let its fan graph Nf

i
= (V

f

i
,E

f

i
) be a graph such that

V
f

i
= {s} ∪ {(u, v,w) ∣ u, v,w ∈ Vi, u ≠ v, u ≠ w, v ≠ w} and Ef

i
 includes the fol-

lowing directed edges:

1.	 {(u1, v1,w1) → (u2, v1,w1) ∣ u1 → u2 ∈ Ei, h(u1) ≥ max(h(v1), h(w1))}

2.	 {(u1, v1,w1) → (u1, v2,w1) ∣ v1 → v2 ∈ Ei, h(v1) ≥ max(h(u1), h(w1))}

3.	 {(u1, v1,w1) → (u1, v1,w2) ∣ w1 → w2 ∈ Ei, h(w1) ≥ max(h(u1), h(v1))}

4.	 {s → (u, v,w) ∣ u → v ∈ Ei, u → w ∈ Ei}

Every 3-tuple of vertices from Ni with distinct entries is represented by a vertex
in Nf

i
 . Refer to Fig. 3 for an example. Note that Nf

i
 contains O(|Vi|

3) vertices and
O(|Vi|

2|Ei|) edges, and can be constructed in O(|Vi|
2|Ei|) time. It also has the prop-

erty described in the following lemma, which generalizes Theorem 3.1 in [28].

Lemma 2.1  Consider a network Ni and its fan graph Nf

i
= (V

f

i
,E

f

i
) . For any three

different leaves x, y, and z in Ni , vertex s can reach vertex (x, y, z) in Nf

i
 if and only if

the fan triplet x|y|z is consistent with Ni.

Proof  (←) Let x|y|z be any fan triplet consistent with Ni . By definition, there exists
an internal vertex q in Ni and three disjoint paths (except for in q), one from q to
x, one from q to y, and one from q to z. Denote these paths by (q, x0, x1,… , xa) ,
(q, y0, y1,… , yb) , and (q, z0, z1,… , zc) , where xa = x , yb = y , and zc = z . Then Nf

i

also contains the following three paths:

a5

a1 a3

a6

a2

a4

Ni

b, 4

c, 3

d, 2 f, 2

g, 1e, 1

h, 3

i, 2

(a)

(c, f, h)

(e, f, h)

(e, f, i)

(c, f, i)

(d, f, h)

(d, f, i)

Nf
i

(b)

Fig. 3   Illustrating the fan graph. a An example network Ni . Every internal vertex is labeled by a letter
and its height. b Consider the triplet a3|a6|a4 . Lemma 2.1 implies that it is consistent with Ni because
there is a path (s, (b, f , h), (c, f , h), (e, f , h), (e, f , i), (e, a6, i), (e, a6, a4), (a3, a6, a4)) in the fan graph Nf

i
 .

A small part of Nf

i
 is drawn here, with the two directed edges (c, f , h) → (e, f , h) and (e, f , h) → (e, f , i) in

the path from s to (a3, a6, a4) indicated

1794	 Algorithmica (2021) 83:1786–1828

1 3

•	 (s, (q, y0, z0)) : This can be seen from q → y0 ∈ Ei and q → z0 ∈ Ei.
•	 ((q, y0, z0), (x0, y0, z0)) : This follows from the fact that q → x0 ∈ Ei and

h(q) > h(y0), h(z0).
•	 ((x0, y0, z0), … , (xa, yb, zc)) : This is because h(x0) > h(x1) > … > h(xa) ,

h(y0) > h(y1) > … > h(yb) , and h(z0) > h(z1) > … > h(zc) hold, and (x0,… , xa) ,
(y0,… , yb) , and (z0,… , zc) are paths in Ni.

By concatenating the three paths above, we get a path in Nf

i
 from s to (x, y, z).

(→) Because s can reach (x, y, z) in Nf

i
 , there exists a path P in Nf

i
 of the form

P = (s, (x1, y1, z1), (x2, y2, z2), … , (xt, yt, zt)) , where xt = x , yt = y , and zt = z .
Let S1 = (x1, x2,… , xt) , S2 = (y1, y2,… , yt) , and S3 = (z1, z2,… , zt) , where xt = x ,
yt = y , and zt = z , be three sequences of vertices from Ni obtained from P.

We prove by induction that the three paths obtained by following the sequences S1,
S2 , and S3 are disjoint paths in Ni . Consider any j ∈ {1, 2,… , t} . When j = t ,
all three vertices xt , yt , and zt are different according to the definition of Vf

i
 .

For j < t , by the inductive hypothesis we have that (xj+1,… , xt) , (yj+1,… , yt) and
(zj+1,… , zt) yield disjoint paths. In addition, by the definition of the fan graph Nf

i
 ,

for every j ∈ {1, 2,… , t − 1} , one of the following three cases holds: (1) xj ≠ xj+1
only, (2) yj ≠ yj+1 only, and (3) zj ≠ zj+1 only. In case (1), note that yj = yj+1 and
zj = zj+1 , which means that (xj+1,… , xt) , (yj,… , yt) and (zj,… , zt) yield disjoint
paths. We now show that xj cannot appear in any of these three paths. It holds that
h(xj) ≥ max(h(yj), h(zj)) , so for � ≥ j + 1 and y� ≠ yj , we have h(xj) > h(y𝜇) . Simi-
larly, for � ≥ j + 1 and z� ≠ zj , we have h(xj) > h(z𝜇) . Together with the fact that xj
, yj , and zj are different according to the definition of Nf

i
 , we deduce that the three

paths obtained from (xj,… , xt) , (yj,… , yt) , and (zj,… , zt) are disjoint. Cases (2)
and (3) can be argued in the same way. Thus, following S1 , S2 , and S3 yields three
disjoint paths.

Finally, since P contains a directed edge from s to (x1, y1, z1) , Ni contains an edge
from x1 to y1 and an edge from x1 to z1 . Therefore, the three paths in Ni that start
at the internal vertex x1 and then follow the sequences S1 , S2 , and S3 , respectively,
are disjoint paths (except for in x1 ) to x, y, and z. By definition, x|y|z is consistent
with Ni . 	� ◻

Corollary 2.2  Let Ni be a given network and r′ a dummy leaf attached to r(Ni) . For
any two different leaves x and y in Ni that are not r′ , there are two paths from r(Ni)
to x and y that are disjoint, except for in r(Ni) , if and only if s can reach (r�, x, y)
in Nf

i
.

2.1.2 � The Resolved Graph

For any network Ni , let its resolved graph Nr
i
= (Vr

i
,Er

i
) be a graph such

that Vr
i
= {s} ∪ {(u, v) ∣ u, v ∈ Vi, u ≠ v} ∪ {(u, v,w) ∣ u, v,w ∈ Vi, u ≠ v, u ≠ w, v ≠ w}

and Er
i
 includes the following directed edges:

1795

1 3

Algorithmica (2021) 83:1786–1828	

1.	 {s → (u, v) ∣ u → v ∈ Ei}

2.	 {(u1, v1) → (u2, v1) ∣ u1 → u2 ∈ Ei, h(u1) ≥ h(v1)}

3.	 {(u1, v1) → (u1, v2) ∣ v1 → v2 ∈ Ei, h(v1) ≥ h(u1)}

4.	 {(u, v) → (u, v,w) ∣ v → w ∈ Ei, h(v) ≥ h(u)}

5.	 {(u1, v1,w1) → (u2, v1,w1) ∣ u1 → u2 ∈ Ei, h(u1) ≥ max(h(v1), h(w1))}

6.	 {(u1, v1,w1) → (u1, v2,w1) ∣ v1 → v2 ∈ Ei, h(v1) ≥ max(h(u1), h(w1))}

7.	 {(u1, v1,w1) → (u1, v1,w2) ∣ w1 → w2 ∈ Ei, h(w1) ≥ max(h(u1), h(v1))}

Note that Nr
i
 contains O(|Vi|

3) vertices and O(|Vi|
2|Ei|) edges, can be constructed in

O(|Vi|
2|Ei|) time, and has the property described in the following lemma:

Lemma 2.3  Consider a network Ni and its resolved graph Nr
i
= (Vr

i
,Er

i
) . For any

three different leaves x, y, and z in Ni , vertex s can reach vertex (x, y, z) in Nr
i
 if and

only if the resolved triplet yz|x is consistent with Ni.

Proof  (←) If yz|x is consistent with Ni then Ni contains three paths of the following
form: (1) (x0, x1,… , xa) ; (2) (x0, y1,… , yj, yj+1,… , yb) ; and (3) (yj, z1,… , zc) ; such
that the three paths are vertex-disjoint except for in x0 and yj , the first path does not
pass through yj , and it holds that xa = x , yb = y , and zc = z.

Let x� be a vertex on the first path satisfying h(x𝜇−1) > h(yj) ≥ h(x𝜇) . Then
(s, (x0, y1), … , (x�, yj), (x�, yj, z1), … , (xa, yb, zc)) is a path in Nr

i
.

(→) If there is a path from s to (x, y, z) in Nr
i
 , it must be of the form

(s, (x1, y1), (x2, y2), … , (xq, yq), (xq+1, yq+1, zq+1), … , (xt, yt, zt)) , with xt = x ,
yt = y , and zt = z . By the definitions, we have x1 → y1 ∈ Ei , xq = xq+1 , yq = yq+1 ,
and yq → zq+1 ∈ Ei . Define three sequences of vertices from Ni as follows:
S1 = (x1, x2,… , xt) , S2 = (y1, y2,… , yt) , and S3 = (zq+1, zq+2,… , zt).

We claim that following the sequences S1 , S2 , and S3 yields three disjoint paths
in Ni . (This claim is shown below.) The claim and the fact that Nr

i
 contains an edge

from s to (x1, y1) and an edge from (xq, yq) to (xq+1, yq+1, zq+1) then imply that Ni con-
tains a path from x1 to x, a path from x1 to yq , a path from yq to y, and a path from yq
to z that make yz|x consistent with Ni.

To prove the claim, we show that the paths obtained by following the sequences
of vertices listed below are disjoint:

(a)	 (x1, x2,… , xq) and (y1, y2,… , yq)

(b)	 (xq+1, xq+2,… , xt) , (yq+1, yq+2,… , yt) , and (zq+1, zq+2,… , zt)

(c)	 (x1, x2,… , xq) and (yq+1, yq+2,… , yt)

(d)	 (x1, x2,… , xq) and (zq+1, zq+2,… , zt)

(e)	 (y1, y2,… , yq) and (zq+1, zq+2,… , zt)

(f)	 (y1, y2,… , yq) and (xq+1, xq+2,… , xt)

To prove that the paths obtained by following the sequences in (a) are disjoint
we use induction. By the definition of Nr

i
 , we know that xq ≠ yq . For the induc-

tive hypothesis, assume that the paths obtained from (xj+1,… , xq) and (yj+1,… , yq)
are disjoint. Again by definition, there are two cases: (1) xj ≠ xj+1 only; and

1796	 Algorithmica (2021) 83:1786–1828

1 3

(2) yj ≠ yj+1 only. For (1), we have yj = yj+1 and h(xj) ≥ h(yj) , thus for 𝜇 > j + 1
and y� ≠ yj , we have h(xj) > h(y𝜇) . Together with xj ≠ yj , we can see that xj does
not appear in (yj,… , yq) . Case (2) can be handled in the same way. Thus, the paths
from (a) are disjoint.

For (b), the induction proof from the proof of Lemma 2.1 immediately implies
that the three paths are disjoint.

To show that the paths obtained from (c) are disjoint, let j ∈ {1,… , q} be
the largest index such that xj ≠ xq . We know from the paths in (b) that xq = xq+1
does not appear in (yq+1,… , yt) , so we only need to prove that (x1,… , xj) is dis-
joint from (yq+1,… , yt) . Because xj ≠ xq , there exists some � ∈ {1,… , q} such
that (xj, y�) → (xq, y�) is in the path from s to (x, y, z). By definition xj ≠ y�
and h(xj) ≥ h(y�) . We consider the following two cases: (1) h(xj) > h(y𝜇) and
(2) h(xj) = h(y�) . In case (1), because of h(x1),… , h(xj) > h(y𝜇),… , h(yt) , the
paths from (c) are disjoint. In case (2), let g ∈ {1,… , j} be the maximum index
such that xg ≠ xj . Since h(xg) > h(xj) = h(y𝜇) , using the same argument as in (1),
we have that (x1,… , xg) and (y�,… , yt) are disjoint. It only remains to show that xj
does not appear in (y�,… , yt) . If we assume that xj appears in (y�,… , yt) then
because y� ≠ xj , we would have h(y𝜇) > h(xj) , which leads to a contradiction.

For the paths from (d), similar arguments as in (c) can be applied since
yq → zq+1 ∈ Ei , xq = xq+1 , and xq+1 ≠ zq+1.

To show that the paths from (e) are disjoint, because yq → zq+1 ∈ Ei , we have
h(y1),… , h(yq) > h(zq+1),… , h(zt) , meaning that the paths from (e) are disjoint.

Finally, to show that the paths from (f) are disjoint, by definition we have xq = xq+1
and h(yq) ≥ h(xq) . So for every 𝜇 > q + 1 and x� ≠ xq , it holds that h(yq) > h(x𝜇) .
Since we also have that xq ≠ yq , the paths from (f) are disjoint. 	� ◻

Corollary 2.4  Let Ni be a given network and r′ a dummy leaf attached to r(Ni) . For
any two different leaves x and y in Ni that are not r′ , there are two paths from some
internal vertex z ≠ r(Ni) in Ni to x and y that are disjoint, except for in z, if and only
if s can reach (r�, x, y) in Nr

i
.

2.1.3 � The Fan Table and the Resolved Table

Given Nf

i
 and Nr

i
 , we define the n × n × n fan table Af

i
 and the n × n × n resolved

table Ar
i
 as follows. For any three different leaves x, y, and z, Af

i
[x][y][z] = 1

if the fan triplet x|y|z is consistent with Ni and Af

i
[x][y][z] = 0 otherwise.

Similarly, Ar
i
[x][y][z] = 1 if the resolved triplet x|yz is consistent with Ni

and Ar
i
[x][y][z] = 0 otherwise.

With the help of Lemmas 2.1 and 2.3, both Af

i
 and Ar

i
 can be precomputed by

depth-first traversals (starting from s) of Nf

i
 and Nr

i
 . More precisely, Af

i
[x][y][z] = 1

if s can reach (x, y, z) in Nf

i
 and 0 otherwise, and Ar

i
[x][y][z] = 1 if s can

reach (x, y, z) in Nr
i
 and 0 otherwise.

1797

1 3

Algorithmica (2021) 83:1786–1828	

Since Nf

i
 and Nr

i
 have O(|Vi|

3) vertices and O(|Vi|
2|Ei|) edges, the time needed

to build Af

i
 and Ar

i
 by depth-first traversals is O(|Vi|

3 + |Vi|
2|Ei|) = O(|Vi|

2|Ei|).

2.2 � Triplet Distance Computation

Algorithm 1 summarizes the steps for computing the triplet distance between
two networks N1 and N2 . The main procedure, D(), uses Equation (1.1) to calcu-
late D(N1,N2) . It first builds the fan table Af

i
 and the resolved table Ar

i
 for each Ni ,

i ∈ {1, 2} , in a preprocessing step, and then relies on the procedure S() for count-
ing shared triplets. The shared fan triplets and shared resolved triplets are counted
by iterating over all possible triplets and using the fan and resolved tables to deter-
mine the consistency of any triplet with each of the two networks. The correctness is
ensured by Lemmas 2.1 and 2.3.

To analyze the running time, building the data structures Nr
i
 and Nf

i
 for i ∈ {1, 2}

on line 3 takes O(|V1|
2|E1| + |V2|

2|E2|) time. Building the tables Ar
i
 and Af

i
 on

1798	 Algorithmica (2021) 83:1786–1828

1 3

lines 4’7 requires O(|V1|
2|E1| + |V2|

2|E2|) time as well. After the preprocessing is
finished, the procedures Sf () and Sr() take O(n3) time because each of the

4

(
n

3

)

= O(n3) triplets can be checked in O(1) time by table lookups. Hence, the

total running time of the algorithm becomes O(|V1|
2|E1| + |V2|

2|E2| + n3) . By the
definitions of N and M (see Sect. 1), the time complexity is O(N2M + n3) . We have
obtained the following theorem:

Theorem 2.5  The triplet distance between two networks N1 and N2 can be computed
in O(N2M + n3) time.

3 � A Second Approach

In this section, we show how to compute D(N1,N2) in O(M + Nk2d2 + n3) time.
Overview. Algorithm 1 in the previous section computed D(N1,N2) by iterating

over all possible triplets and using the fan and resolved tables for N1 and N2 to iden-
tify which triplets were consistent with both networks. To refine this idea, for every
block of Ni , we will define a network of approximately the same size as the block,
which we call a contracted block network. For every such contracted block network,
we build a fan and resolved graph and the corresponding fan and resolved table. Fur-
thermore, by replacing the blocks of Ni by single vertices, we obtain a tree structure
called the block tree. The new algorithm in this section combines the block tree and
all the fan and resolved tables of the contracted block networks of Ni to efficiently
determine whether or not any specified triplet is consistent with Ni.

3.1 � Preprocessing

Let Ni be a network. Note that every block B of Ni contains one vertex whose height
is greater than the heights of all other vertices in B. This vertex will be called the
root of B and denoted by r(B). If B contains only one edge u → v and v ∈ L(Ni)
then B is called a leaf block; otherwise, B is called a non − leafblock . Recall from
Sect. 1.2 that we assume without loss of generality that: (i) all leaves have in-degree
at most 1 (so that every leaf has a leaf block); and (ii) the input networks have no
uninformative blocks. Lemma 3.1 presents an important property of the blocks in Ni.

Lemma 3.1  All blocks of a given network Ni are edge-disjoint.

Proof  For the purpose of obtaining a contradiction, suppose that Ni has two
different blocks B1 = (V1,E1) and B2 = (V2,E2) that share an edge. Define
B = (V1 ∪ V2,E1 ∪ E2) . Let U(B1) , U(B2) , and U(B) be the subgraphs of U(Ni) cor-
responding to B1 , B2 , and B. Since U(B1) and U(B2) are connected graphs that share
an edge, U(B) is also connected. Furthermore, if any vertex is removed from B,

1799

1 3

Algorithmica (2021) 83:1786–1828	

U(B) will still be connected. Therefore, U(B1) and U(B2) are not maximal bicon-
nected subgraphs of U(Ni) , which means B1 and B2 are not blocks of Ni . Hence, we
have reached a contradiction and the lemma follows. 	� ◻

3.1.1 � The Block Tree

From a high-level perspective, we will remove the cycles in U(Ni) by replacing the
non-leaf blocks by internal nodes to obtain a rooted tree on the leaf label set L(Ni) .
A similar idea was previously used by Choy et al. in the proof of Lemma 2 in [14] to
bound the number of reticulation vertices in a network, and later by Byrka et al. [27]
to efficiently check if a resolved triplet is consistent with a network. Below, we will
show that it is also useful for checking if a fan triplet is consistent with a network.

Formally, let Ti = (V �,E�) be a rooted tree, from now on referred to as the block
tree, with vertex set V ′ and edge set E′ constructed as follows:

1.	 For every block Bj in Ni , create a vertex bj in Ti.
2.	 Let B1 , B2 be two blocks in Ni with r(B1) ≠ r(B2) . If r(B2) is also a vertex in B1

then create the edge b1 → b2 in Ti.
3.	 Create a root vertex r in Ti . For every block Bj that has r(Ni) as a root, create the

edge r → bj in Ti.
4.	 If Bj is a leaf block, rename bj in Ti by the label of the leaf in Bj.

Figure 4 gives an example of a network Ni and its block tree Ti . The set of blocks
in Ni and the vertex set V � − r(Ti) , i.e., the set of all vertices of Ti except the root, are
in one-to-one correspondence. An edge b1 → b2 in Ti means that the corresponding
blocks B1 and B2 in Ni do not have the same root and the root vertex r(B2) is a shared
vertex between B1 and B2 . Note that by the definition of a block, an edge connecting
two vertices can define a block of its own (for example, block B9 in Fig. 4).

The following lemma states some properties of Ti.

Lemma 3.2  Let Ti = (V �,E�) be the block tree of a given network Ni . The block tree
Ti is a rooted tree that has n leaves, |V �| = O(n) , and |E�| = O(n).

Proof  We start by showing that Ti is a rooted tree. Since every edge of Ti is
directed, Ti is a directed graph. Let U(Ti) be the undirected version of that graph.
Since U(Ni) is connected, U(Ti) is connected as well according to the construction.
Next, we prove that Ti is a tree by contradiction. Suppose that U(Ti) has a cycle.
Then there exists a vertex b in Ti with in(b) > 1 . If B is the corresponding block
of b in Ni , this in turn implies the existence of two different blocks B1 and B2 in Ni
such that r(B) ≠ r(B1) and r(B) ≠ r(B2) , and with r(B) being a vertex in both B1
and B2 . By the definition of Ni , the root r(Ni) has a path to every vertex in Ni , so
r(B1) and r(B2) must have a common ancestor. This means that the two blocks B1 and
B2 could be merged to create an even larger block that contains both of them, contra-
dicting that B1 and B2 are blocks of Ni . Thus, Ti is a rooted tree.

1800	 Algorithmica (2021) 83:1786–1828

1 3

Next, we count the number of vertices and edges in Ti . By assumption (i) men-
tioned above, there are no leaves with in-degree greater than 1 in Ni . Thus, Ni con-
tains n leaf blocks and there will be exactly n leaves in Ti . To count the internal
vertices in Ti , we distinguish between vertices having in-degree 1 and out-degree 1,
from now on referred to as extra vertices, and non-extra vertices. First, to count
the non-extra vertices in Ti , observe that if we were to contract its extra vertices,
i.e., add an edge from the parent of every such vertex u to the child of u and then
remove u, we would obtain a tree T ��

i
= (V ��,E��) with n leaves in which every inter-

nal vertex has in-degree 1 and out-degree at least 2. This means that |V ��| = O(n)
and |E��| = O(n) . Secondly, to count the extra vertices, observe that any extra vertex

(a)

r

b1

a12a11

b11

b12 b13

a10a9a8a7

a6a5

b1

b6a4

a3a2

b4

b3a1

b2
b7 b8

a15 a16 a17 a18 a19 a20

b9

b10

a13 a14

a21a22

a23

a24 a25

a26

(b)

Fig. 4   a An example network Ni . The blocks containing leaves are highlighted in red. All other blocks
are colored gray. b The corresponding block tree Ti

1801

1 3

Algorithmica (2021) 83:1786–1828	

corresponds to an uninformative block in Ni or a non-leaf block of Ni containing
a single edge. By assumption (ii) above, Ni has no uninformative blocks. By the
definition of a network, Ni has no vertex u with in(u) = out(u) = 1 , so every extra
vertex in Ti must be the parent of at least one non-extra vertex. Because Ti is a tree,
no two extra vertices are parents of the same non-extra vertex. If follows that there
are O(n) extra vertices in Ti . In total, the number of vertices and edges in Ti is given
by |V �| = O(n) and |E�| = O(n) . 	� ◻

Since the set of blocks of Ni and the set V � − r(Ti) are in one-to-one correspond-
ence, we also have:

Corollary 3.3  The network Ni contains O(n) blocks.

The following lemma shows that the block tree Ti can be built efficiently:

Lemma 3.4  The block tree Ti = (V �,E�) of a given network Ni can be constructed in
O(|Ei|) time.

Proof  Constructing Ti when the blocks of Ni are given is performed by scanning the
vertices of Ni and the list of components that every vertex belongs to, while adding
edges to Ti according to the definition of V ′ and E′ . This requires O(|Vi|) time. Find-
ing the blocks takes O(|Ei|) time by applying the algorithm by Hopcroft and Tarjan
in [16]. Lastly, |Vi| ≤ |Ei| because Ni is a connected graph, so we can build Ti in
O(|Ei|) time. 	� ◻

3.1.2 � Contracted Block Networks

Each block in Ni can be viewed as a network, to which we may apply the techniques
from Sect. 2 for detecting those triplets that are anchored within. To be able to do
so, we first take each block B, make some adjustments to it as described next, and
call the resulting network CB the contracted block network of Ni corresponding to
block B. See Figs. 5 and 6 for an example of the construction.

For a given network Ni , a block B in Ni , and a vertex u in B, initialize Lu
B
 as the set

of leaves that can be reached from u without using edges in B. For example, for the
block B shown in Fig. 5, Lv3

B
= {a5, a6, a7, a19} and Lv10

B
= {a15} . Next, construct the

network CB = (V �,E�) with vertex set V ′ and edge set E′ and update the Lu
B
-sets by

applying the following operations:

1.	 Let CB be a copy of Ni.
2.	 Delete every edge and vertex from CB that is not in B.
3.	 For every edge u1 → u2 in CB , if in(u1) = out(u1) = in(u2) = out(u2) = 1 then con-

tract the edge as follows: Let u2 → u3 be the edge outgoing from u2 , create an edge
u1 → u3 , delete u2 and its two incident edges, and let Lu1

B
= L

u1
B
∪ L

u2
B

.

1802	 Algorithmica (2021) 83:1786–1828

1 3

4.	 For every vertex uj in CB with Luj
B
≠ ∅ , attach a child leaf sj representing the set of

leaves Luj
B
 . Also attach another child leaf s′

j
 called a copy leaf, to be used later on

to count triplets.
5.	 Insert an artificial leaf r′ as a child of the root r(CB).

Observe that every edge between two internal vertices in CB corresponds
to a path in B. For example, the edge v8 → v14 in Fig. 6 corresponds to the path
(v8, v9, v15, v14) in Fig. 5, while the edge v13 → v14 corresponds to the length-1 path
(v13, v14).

The following lemma bounds the size of CB:

Lemma 3.5  Let Ni be a network, B a block in Ni , and CB = (V �,E�) the contracted
block network of Ni that corresponds to block B. It holds that |V �| = O(kidi + 1) ,
|E�| = O(kidi + 1) , and |L(CB)| = O(kidi + 1).

v1

v2
v3

v4
v5

v6

v10

v7

v8

v9

v11

v12
v13

v14

a1 a2

a3
a4a5 a6 a7

a8 a9
a10

a11
a12

a13

a14

a15

a16

a17

a18

a19

v′

a20

v15

Fig. 5   In this example, Ni is a level-3 network that contains a block B whose vertices are v2, v3,… , v15
and whose edges are drawn with solid lines. Here, r(B) = v2

1803

1 3

Algorithmica (2021) 83:1786–1828	

Proof  If ki = 0 then B consists of a single edge of Ni , meaning that CB is a binary
tree on three leaves (a leaf of the form sj , its copy leaf s′

j
 , and the artificial leaf r′ ). In

this case, |V �| = 5 , |E�| = 4 , and |L(CB)| = 3.
If ki ≥ 1 , there are two possibilities. If B contains only one edge then CB is a

binary tree on three leaves as in the case ki = 0 above. Otherwise, proceed as follows
to derive the bounds. Call a non-reticulation vertex of CB that is the parent of at least
two internal vertices of CB a branching vertex (e.g., v2 and v7 in Fig. 6), and a non-
reticulation vertex of CB that is the parent of exactly one internal vertex a path vertex
(e.g., v3 , v5 , v6 , v8 , v10 , and v13 in Fig. 6). We apply a technique from [27] to count the
branching vertices and note that every branching vertex is the beginning of at least
one new directed path that has to end at a reticulation vertex. Since each reticulation
vertex can end at most di such paths and there are at most ki reticulation vertices
in CB , the number of branching vertices is at most kidi . Every path vertex is the par-
ent of either a branching vertex or a reticulation vertex, and every reticulation vertex
has at most di parents, so the number of path vertices is at most 2kidi . Therefore, the
total number of internal vertices is at most ki(3di + 1) . Next, at most two leaves are

v2
v3

v5

v6

v10

v7

v8 v11

v12
v13

v14

a5 a6

a10

a11
a12

a13 a14

a15

a16

a17

a18

a19

a7 a9a8

s3

s7

s8

s10

s5

s6

s12

s13

s14

r′

s′3

s′7

s′8

s′10

s′6

s′14

s′13

s′12

a20

(a) CB

Fig. 6   The contracted block network CB for the block B from Fig. 5. The internal vertices v3
and v4 in B have been merged in CB , and similarly for v8, v9 , and v15 . The set of leaves in CB is
{si, s

�
i
∶ i ∈ {3, 5, 6, 7, 8, 10, 12, 13, 14}}

1804	 Algorithmica (2021) 83:1786–1828

1 3

attached to each internal vertex, so |L(CB)| ≤ 2ki(3di + 1) and |V �| ≤ 3ki(3di + 1) .
As for the edges, there are at most kidi edges ending at reticulation vertices, at most
kidi edges ending at branching vertices, at most 2kidi edges ending at path vertices,
and |L(CB)| edges ending at leaves. Adding them together gives |E�| ≤ 10kidi + 2ki.

Hence, the lemma statement holds for every ki ≥ 0 . 	� ◻

3.1.3 � Constructing All Contracted Block Networks Efficiently

We first introduce some additional notation. For a given network Ni and a block B
in Ni , a leaf x in Ni is said to associate with B if there exists a vertex u in B such that
u ≠ r(B) and x ∈ Lu

B
 . As an example, in Fig. 5, the leaf a16 associates with B, but the

leaves a2 and a3 do not associate with B. For any leaf x associated with a block B
of Ni , define:

•	 qB(x) : The vertex in B from which there is a path to x that does not use any edges
in B. That is, x ∈ L

qB(x)

B
.

•	 pB(x) : The leaf in CB representing x.
•	 p�

B
(x) : The copy leaf of pB(x).

For example, in Figs. 5 and 6, qB(a5) = v3 , pB(a5) = s3 , p�B(a5) = s�
3
 , qB(a8) = v4 ,

and pB(a8) = s3.
Lemma 3.1 yields an algorithm for constructing all block networks of Ni in

O(|Ei|) time. As shown in the next lemma, by properly relabeling the leaves of Ni
and using an additional O(n2) time, it is possible to build the block networks so that
we can subsequently compute, for any block B and any leaf l ∈ L(Ni) , the values
of qB(l) and pB(l) in O(1) time.

Lemma 3.6  For any network Ni , all the contracted block networks of Ni can be com-
puted in O(|Ei| + n2) time, after which qB(l) and pB(l) for any block B and any leaf
l ∈ L(Ni) can be retrieved in O(1) time.

Proof  Perform the following steps:

1.	 Identify all the blocks of Ni . Let B1 … ,Bs be the blocks of Ni and let the cor-
responding vertex sets be V(B1),… ,V(Bs) . Note that for every j ∈ {1,… , s} , it
holds that V(Bj) ⊆ Vi.

2.	 The leaves of Ni are relabeled as follows. A leaf receives the label i, where
i ∈ {1, 2,… , n} , if it is the i − th leaf in order that is discovered by a depth-first
traversal of Ni . This traversal starts from r(Ni) . Let u be a vertex in Ni and part of
the blocks B1,… ,Bj . Let B′ be the block from B1,… ,Bj , such that r(B�) has the
largest height among all roots of B1,… ,Bj . During the traversal, every child u′
of u that is not part of B′ is visited first. This is to ensure that the labels in Lu

B′ are
consecutive and defined by a range of numbers [uleft, uright].

1805

1 3

Algorithmica (2021) 83:1786–1828	

3.	 For every j ∈ {1,… , s} the process of building CBj
= (Vj,Ej) is initialized as fol-

lows. Set Vj = V(Bj) . For every edge u → v in Ei , if both u and v are in Vj then add
that edge to Ej . Finally, for any vertex u1 in Vj , if L

u1
Bj
≠ ∅ create the leaf s1 repre-

senting Lu1
Bj

 , the copy leaf s′
1
 , add the edges u1 → s1 and u1 → s′

1
 to Ej , and set

QBj
[l] = u1 for every l ∈ {uleft,… , uright}.

4.	 For every j ∈ {1,… , s} the edges of CBj
 are contracted, following the definition

of a contracted block network. While performing the contraction, for
every j ∈ {1,… , s} , we build the table PBj

[1,… , n] , defined so that for
every l ∈ {1,… , n} we have PBj

[l] = pBj
(l) . The value of PBj

[l] is updated once
the final set in which the leaf l will reside has been determined. After contracting
all the edges, we also add the artificial leaf r′

j
.

Step 1 is performed by using the algorithm from [16], which takes O(|Ei|) time.
Step 2 is performed by a depth-first traversal of Ni , thus requiring O(|Ei|)
time as well. Since the blocks of Ni are edge-disjoint (see Lemma 3.1), we
have

∑s

j=1
�Ej� ≤ �Ei� , thus the time spent on adding and contracting vertices and

edges in steps 3 and 4 is O(|Ei|) . For every contracted block network CB , we spend
O(n) time to update the Q- and P-tables. By Corollary 3.3, there are O(n) blocks, so
the time needed to update every Q- and P-table is O(n2) . Hence, the total time taken
is O(|Ei| + n2) . 	� ◻

Finally, for any block B in Ni , we denote the fan graph of its contracted block
network CB by Cf

B
 and the resolved graph of CB by Cr

B
 . Moreover, we let Af

B
 be the fan

table of CB and Ar
B
 the resolved table of CB . The following lemma bounds the time

required to build Cf

B
 , Cr

B
 , Af

B
 , and Ar

B
 for all the blocks of a network Ni.

Lemma 3.7  Given a network Ni and all of its contracted block networks, building Cf

B
 ,

Cr
B
 , Af

B
 , and Ar

B
 for every block B of Ni takes O(|Vi|(k

2
i
d2
i
+ 1)) time in total.

Proof  We simply apply the method from Sect. 2 to each contracted block network.
To analyze the time that this will take, let {B1,B2,… ,Bt} be the blocks in Ni . For
each block Bx in Ni , let b(x) be the number of vertices in Bx , c(x) the number of
vertices in the contracted block network CBx

 , and e(x) the number of edges in the
contracted block network CBx

.
We first express the total size of the contracted block networks in terms of N.

When CBx
 is constructed from Bx , each vertex in Bx will either be deleted or remain

and introduce at most two leaves, so c(x) ≤ 3 ⋅ b(x) . Next, since the blocks decom-
pose Ni into edge-disjoint subgraphs by Lemma 3.1, and the total number of times
that blocks overlap each other is equal to the number of edges E′ in the block tree Ti ,
we have

t∑

x=1

b(x) ≤ �Vi� + �E�� . By Lemma 3.2, |E�| = O(n) . Then, using n ≤ |Vi|

gives
t∑

x=1

c(x) ≤ 3 ⋅
t∑

x=1

b(x) = O(�Vi�).

Now, we analyze the total time for all the blocks. According to Sect. 2, building
each Cf

Bx
 , Cr

Bx
 , Af

Bx
 , and Ar

Bx
 takes O(c(x)2e(x)) time. The total time is thus

1806	 Algorithmica (2021) 83:1786–1828

1 3

t∑

x=1

O(c(x)2e(x)) . Lemma 3.5 says that c(x) = O(kidi + 1) and e(x) = O(kidi + 1) , so

we can rewrite the total time needed as
O(

t∑

x=1

(kidi + 1)2c(x)) = O((kidi + 1)2
t∑

x=1

c(x)) = O(�Vi�(k
2
i
d2
i
+ 1)) . 	� ◻

3.2 � Checking If a Triplet is Consistent with a Network

Sections 3.2.1 and 3.2.2 below describe how to determine if any given fan or
resolved triplet, respectively, is consistent with Ni in O(1) time, assuming that the
data structures from Sect. 3.1 have already been built.

A more precise definition of triplet consistency that can associate specific loca-
tions in the network to triplets that are consistent with it will be needed in this sec-
tion. Let B be a block of a network Ni . We say that x|y|z is a fan triplet consistent
with B if and only if there exists a vertex u in B such that there are three directed
paths in Ni from u to x, from u to y, and from u to z that are disjoint except for in u.
We also say that x|y|z is rooted at u in B. Since u belongs to Ni , this means that x|y|z
is rooted at u in Ni as well. Next, we say that xy|z is a resolved triplet consistent
with B if and only if there exist two vertices u and v ( u ≠ v ) in B such that there are
four directed paths in Ni from u to v, from v to x, from v to y, and from u to z that
are disjoint except for in u and v, and the path from u to z does not pass through v.
Moreover, we say that xy|z is rooted at u and v in B and in Ni.

Observe that if x|y|z is a fan triplet consistent with a block B, then it is also con-
sistent with Ni . In the same way, if xy|z is a resolved triplet consistent with B, it is
also consistent with Ni.

3.2.1 � Checking a Fan Triplet

First, we show how to determine if a given fan triplet x|y|z is consistent with a given
block B (Lemma 3.8). The procedure, named IsFanInBlock, requires that the lowest
common ancestor (in the block tree Ti ) of x and y, the lowest common ancestor of x
and z, and the lowest common ancestor of y and z are the same, and that this node
corresponds to the block B being examined.

After that, the procedure IsFanInBlock is used as a subroutine in another proce-
dure, named IsFan, to determine if a given fan triplet x|y|z is consistent with a net-
work (Lemma 3.9). Whenever IsFanInBlock’s requirement on the lowest common
ancestors cannot be met, IsFan instead considers the different cases for the locations
of the lowest common ancestor of every pair (x, y), (x, z), and (y, z) in Ti . Since every
vertex in Ti except r(Ti) corresponds to a block in Ni , it can then apply the available
data structures to determine if Ni has the necessary disjoint paths.

1807

1 3

Algorithmica (2021) 83:1786–1828	

Lemma 3.8  Let Ni be a given network and Ti its block tree, and suppose that the
preprocessing from Lemma 3.7 has been performed on Ni . Consider any x, y, z ∈ Λ
such that the lowest common ancestor of every pair (x, y), (x, z), and (y, z) is a node
w in Ti . If w ≠ r(Ti) , Algorithm 2 determines whether or not the fan triplet x|y|z is
consistent with the block B in Ni corresponding to w in O(1) time.

Proof  For every l ∈ {x, y, z} , we let pl = pB(l) , p�l = p�
B
(l) , ql = qB(l) , and hl be the

height of ql in Ni . By construction (see Lemmas 3.4 and 3.6), we know that px , py ,
and pz are not the root of CB . The algorithm uses the tables Q and P to check all the
possible cases for the values of px , py , pz , qx , qy , and qz , and return a true or false
value, indicating a positive and a negative answer respectively. We have the follow-
ing cases:

1.	 px = py = pz :

1808	 Algorithmica (2021) 83:1786–1828

1 3

(a)	 hx = hy = hz : We have qx = qy = qz and x|y|z is rooted at qx . Hence, x|y|z is
consistent with B (e.g., a5|a6|a7 in Fig. 5).

(b)	 ((hx = hy) ∧ (hx > hz)) ∨ ((hx = hz) ∧ (hx > hy)) ∨ ((hy = hz) ∧ (hy > hx))  .
W.l.o.g., assume true for ((hx = hy) ∧ (hx > hz)) : Then, we have
qx = qy ∧ qx ≠ qz and x|y|z is rooted at qx . Hence, x|y|z is consistent with B
(e.g., a5|a6|a8 in Fig. 5).

(c)	 hx ≠ hy ≠ hz : Then qx ≠ qy ≠ qz , thus x|y|z is not consistent with B (e.g.,
a13|a14|a20 in Fig. 5).

2.	 ((px = py) ∧ (px ≠ pz)) ∨ ((px = pz) ∧ (px ≠ py)) ∨ ((py = pz) ∧ (py ≠ px)) . W.l.o.g.,
assume true for (px = py ∧ px ≠ pz) :

(a)	 hx = hy : We have qx = qy . If p′x|px|pz is a fan triplet in CB , then x|y|z is rooted
at qx , thus x|y|z is consistent with B (e.g., a8|a9|a15 in Fig. 5). If p′

x
|px|pz is

not a fan triplet in CB , x|y|z is not rooted at any vertex in B, thus x|y|z is not
consistent with B (e.g., a8|a9|a11 in Fig. 5).

(b)	 hx ≠ hy : Then qx ≠ qy and either qx or qy was contracted when creating CB .
Moreover, both x and y are now in the set of leaves defined by px . Since we
also have pz ≠ px , the triplet x|y|z is not consistent with B (e.g., a7|a8|a15 in
Fig. 5).

3.	 px ≠ py ≠ pz : If px|py|pz is consistent with CB , then there exists a vertex u in B
such that x|y|z is rooted at u. Hence, x|y|z is consistent with B (e.g., a8|a11|a16 in
Fig. 5). If px|py|pz is not consistent with CB, x|y|z is not rooted at any vertex in B,
thus x|y|z is not consistent with B (e.g., a14|a16|a17 in Fig. 5).

In every case above, testing if a fan triplet is consistent with CB translates to finding
a path that starts from s in Cf

B
 and ends in a vertex of Cf

B
 defined by the leaves of the

fan triplet. Hence, every case can be handled in O(1) time. In Algorithm 2, the above
cases are summarized in a procedure. 	� ◻

1809

1 3

Algorithmica (2021) 83:1786–1828	

Lemma 3.9  Let Ni be a given network and Ti its block tree, and suppose that the
preprocessing from Lemma 3.7 has been performed on Ni . For any x, y, z ∈ Λ , Algo-
rithm 3 determines whether or not the fan triplet x|y|z is consistent with Ni in O(1)
time.

Proof  For a block B of Ni and a vertex u in B that can reach a leaf x of Ni , define hB(x)
to be the height of qB(x) in Ni . In Algorithm 3 we have the procedure for testing the
consistency of the fan triplet x|y|z. It considers the following cases:

1.	 x|y|z is consistent with Ti : Let w be the lowest common ancestor of x, y, and z in
Ti .

1810	 Algorithmica (2021) 83:1786–1828

1 3

(a)	 w = r(Ti) : x|y|z is rooted at r(Ni) , thus x|y|z is consistent with Ni
(e.g., a23|a9|a20 in Fig. 4).

(b)	 w ≠ r(Ti) : w corresponds to a block B in Ni , thus we use Lemma 3.8 to
determine if x|y|z is consistent with B. If x|y|z is consistent with B, then
it is also consistent with Ni . If x|y|z is not consistent with B, then it is not
consistent with Ni (e.g., a3|a9|a12 in Fig. 4).

2.	 xy|z ∨ xz|y ∨ yz|x is consistent with Ti . Assume w.l.o.g. that xy|z is consistent
with Ti . Let w = lca(x, y) in Ti and � = lca(x, z) in Ti , and let B be the block in Ni
corresponding to w and F the block in Ni corresponding to � :

(a)	 � is not the parent of w in Ti : then x|y|z is not rooted at any vertex in Ni , thus
x|y|z is not consistent with Ni (e.g., a2|a4|a13 in Fig. 4).

(b)	 � is the parent of w in Ti . By the definition of Ti , B is rooted at a vertex u of
F that is not r(F):

	 i.	 (pB(x) = pB(y)) : then x|y|z is not rooted at any vertex in Ni , thus x|y|z
is not consistent with Ni (e.g., a2|a3|a4 in Fig. 4).

	 ii.	 (pB(x) ≠ pB(y)) ∧ (� = r(Ti)) : If r�|pB(x)|pB(y) is consistent with CB ,
where r′ is the dummy leaf in CB (see Corollary 2.2), then x|y|z is
rooted at r(Ni) , thus x|y|z is consistent with Ni (e.g., a1|a11|a15 in
Fig. 4). Otherwise, x|y|z is not rooted at any vertex in Ni , thus x|y|z
is not consistent with Ni (e.g., a12|a13|a15 in Fig. 4).

	 iii.	 (pB(x) ≠ pB(y)) ∧ (� ≠ r(Ti)) :

A.	 (pF(x) = pF(z)) ∧ (hF(z) ≤ hF(x)) : Since B is rooted at a vertex of F,
we have qF(x) = qF(y) , thus hF(x) = hF(y) . Using Corollary 2.2, if
r�|pB(x)|pB(y) is a fan triplet in CB , where r′ is the dummy leaf in
CB , then x|y|z is rooted at qF(x) , thus x|y|z is a fan triplet in Ni (e.g.,
a1|a4|a8 in Fig. 4). Otherwise, x|y|z is not rooted at any vertex in Ni ,
thus x|y|z is not consistent with Ni (e.g., a1|a24|a8 in Fig. 4).

B.	 (pF(x) = pF(z)) ∧ (hF(z) > hF(x)) : Since B is rooted at a vertex of F,
we have qF(x) = qF(y) and hF(x) = hF(y) . Hence, x|y|z is not consist-
ent with Ni (e.g., a1|a4|a21 in Fig. 4).

C.	 pF(x) ≠ pF(z) : Using Corollary 2.2, if r�|pB(x)|pB(y) is a fan triplet
in CB , where r′ is the dummy leaf in CB , and pF(x)|p�F(x)|pF(z) is a
fan triplet in CF , then x|y|z is rooted at qF(x) . Hence, x|y|z is consist-
ent with Ni (e.g., a1|a4|a9 in Fig. 4). Otherwise, x|y|z is not rooted at
any vertex of Ni , thus x|y|z is not consistent with Ni (e.g., a1|a4|a12
in Fig. 4).

	� ◻

1811

1 3

Algorithmica (2021) 83:1786–1828	

3.2.2 � Checking a Resolved Triplet

The strategy for determining if a given resolved triplet xy|z is consistent with a
network is analogous to the case of fan triplets just described. The procedure
IsResolvedInBlock (see Lemma 3.10) first considers consistency with a block B
in the case where it holds in the block tree Ti that the lowest common ancestor
of x and y, the lowest common ancestor of x and z, and the lowest common ances-
tor of y and z are the same. Next, the procedure IsResolved (see Lemma 3.11)
uses IsResolvedInBlock and the available data structures to take care of the gen-
eral case.

Lemma 3.10  Let Ni be a given network and Ti its block tree, and suppose that the
preprocessing from Lemma 3.7 has been performed on Ni . Consider any x, y, z ∈ Λ
such that the lowest common ancestor of every pair (x, y), (x, z), and (y, z) is a node
w in Ti . If w ≠ r(Ti) , Algorithm 4 determines whether or not the resolved triplet xy|z
is consistent with the block B in Ni corresponding to w in O(1) time.

Proof  Like in the case of fan triplets in Lemma 3.8, for every l ∈ {x, y, z} , we
let pl = pB(l) , p�l = p�

B
(l) , ql = qB(l) , and hl be the height of ql in Ni . By construction

(see Lemmas 3.4 and 3.6), we know that px , py , and pz are not the root of CB . The
algorithm uses the tables Q and P to check all the possible cases for the values of
px , py , pz , qx , qy , and qz , and return a true or false value, indicating a positive and a
negative answer respectively. We have the following cases:

1812	 Algorithmica (2021) 83:1786–1828

1 3

1.	 px = py = pz :

1.	 (hz > hx) ∧ (hz > hy) . W.l.o.g., let hx ≥ hy : Then, xy|z is rooted at qz and qx ,
thus xy|z is a resolved triplet in B (e.g., a8a9|a6 in Fig. 5).

2.	 (hz ≤ hx) ∨ (hz ≤ hy) : Because px = py = pz , xy|z is not rooted at any pair of
vertices in B, thus xy|z is not consistent with B (e.g., a8a6|a9 in Fig. 5).

3.	 (px = py) ∧ (px ≠ pz) . W.l.o.g., assume hx ≥ hy : If p′xpx|pz is consistent with CB ,
there exists u ≠ qx in B such that xy|z is rooted at u and qx in B. Hence, xy|z is
consistent with B (e.g., a5a8|a17 in Fig. 5). If p′

x
px|pz is not consistent with CB , xy|z

is not rooted at any pair of vertices in B, thus xy|z is not consistent with B (e.g.,
a5a8|a15 in Fig. 5).

4.	 ((px = pz) ∧ (px ≠ py)) ∨ ((py = pz) ∧ (py ≠ px)) . W.l.o.g., assume (px = pz) ∧ (px ≠ py) :

1.	 hz > hx : If p′x|px|py is a fan triplet in CB , then xy|z is rooted at qz and qx ,
thus xy|z is consistent with B (e.g., a14a17|a13 in Fig. 5). If p′

x
|px|py is not

consistent with CB, xy|z is not rooted at any pair of vertices in B, thus xy|z is
not consistent with B (e.g., a14a16|a13 in Fig. 5.).

2.	 hz ≤ hx : Since px = pz , the resolved triplet xy|z cannot be consistent
with B (e.g., a14a17|a20 in Fig. 5).

3.	 px ≠ py ≠ pz : If pxpy|pz is consistent with CB , then there exist two different verti-
ces u, v in B such that xy|z is rooted at u and v, thus xy|z is consistent with B (e.g.,
a12a13|a18 in Fig. 5). If pxpy|pz is not consistent with CB , xy|z is not rooted at any
pair of vertices in B, thus xy|z is not consistent with B (e.g., a12a18|a13 in Fig. 5).

Similarly to fan triplets, testing if a resolved triplet is consistent with CB translates to
finding a path that starts from s in Cr

B
 and ends in a vertex of Cr

B
 defined by the leaves

of the resolved triplet. Hence, every case can be handled in O(1) time. Algorithm 4
summarizes the above cases in a procedure. 	� ◻

1813

1 3

Algorithmica (2021) 83:1786–1828	

Lemma 3.11  Let Ni be a given network and Ti its block tree, and suppose that the
preprocessing from Lemma 3.7 has been performed on Ni . For any x, y, z ∈ Λ , Algo-
rithm 5 determines whether or not the resolved triplet xy|z is consistent with Ni in
O(1) time.

Proof  For a block B of Ni and a vertex u in B that can reach a leaf x of Ni ,
define hB(x) to be the height of qB(x) in Ni . In Algorithm 5 we have the procedure for
testing the consistency of the resolved triplet xy|z. We consider the following cases,
which are similar to the cases for fan triplets in Lemma 3.9:

1.	 x|y|z is consistent with Ti : Let w be the lowest common ancestor of x, y, and z in Ti .

1814	 Algorithmica (2021) 83:1786–1828

1 3

(a)	 w = r(Ti) : xy|z is not rooted at any pair of vertices in Ni , thus xy|z is not
consistent with Ni (e.g., a23a9|a20 in Fig. 4).

(b)	 w ≠ r(Ti) : w corresponds to a block B in Ni , thus we use Lemma 3.10 to
determine if xy|z is consistent with B. If xy|z is consistent with B, then it is
also consistent with Ni . If xy|z is not consistent with B, then it is not consist-
ent with Ni (e.g., a1a9|a12 in Fig. 4).

2.	 xy|z ∨ xz|y ∨ yz|x is consistent with Ti . Assume w.l.o.g. that xy|z is consistent
with Ti . Let w = lca(x, y) in Ti and � = lca(x, z) in Ti , and let B be the block in Ni
corresponding to w and F the block in Ni corresponding to � :

(a)	 � is not the parent of w in Ti : then there exists a vertex u in B and a vertex v
in F such that xy|z is rooted at v and u, thus xy|z is consistent with Ni (e.g.,
a2a4|a13 in Fig. 4).

(b)	 � is the parent of w in Ti . By the definition of Ti , B is rooted at a vertex u of
F that is not r(F). We consider the following cases:

	 i.	 pB(x) = pB(y) : W.l.o.g., assume hB(x) > hB(y) . Then, xy|z is root-
ed at either r(B) and qB(x) , or qF(z) and qB(x) , or r(F) and qB(x) .
Hence, xy|z is consistent with Ni (e.g., a2a3|a4 in Fig. 4).

	 ii.	 (pB(x) ≠ pB(y)) ∧ (� = r(Ti)) : Using Corollary 2.4, if we have that
pB(x)pB(y)|r

� is consistent with CB , where r′ is the dummy leaf in
CB , then there exists a vertex u in B such that xy|z is rooted at r(Ni)
and u. Hence, xy|z is consistent with Ni (e.g., a11a13|a15 in Fig. 4).
Otherwise, xy|z is not rooted at any pair of vertices in Ni , thus xy|z
is not consistent with Ni (e.g., a1a13|a15 in Fig. 4).

	 iii.	 (pB(x) ≠ pB(y)) ∧ (� ≠ r(Ti)) :

A.	 (pF(x) = pF(z)) ∧ (hF(z) ≤ hF(x)) : Since B is rooted at a vertex of F,
we have qF(x) = qF(y) , thus hF(x) = hF(y) . Using Corollary 2.4, if
pB(x)pB(y)|r

� is consistent with CB , where r′ is the dummy leaf in CB ,
then there exists a vertex u in B such that xy|z is rooted at qF(x) and
u. Hence, xy|z is consistent with Ni (e.g., a1a4|a8 in Fig. 4). Other-
wise, xy|z is not rooted at any pair of vertices in Ni , thus xy|z is not
consistent with Ni (e.g., a1a25|a22 in Fig. 4).

B.	 (pF(x) = pF(z)) ∧ (hF(z) > hF(x)) : Since B is rooted at a vertex of F,
we have qF(x) = qF(y) and hF(x) = hF(y) . Then, there exists a vertex
u in B such that xy|z is rooted at qF(z) and u, thus xy|z is consistent
with Ni (e.g., a1a4|a21 in Fig. 4).

C.	 pF(x) ≠ pF(z) : Using Corollary 2.4, if pB(x)pB(y)|r� is consistent with
CB , where r′ is the dummy leaf in CB , then there exists a vertex u
in B such that xy|z is rooted at either r(B) and u, or qF(z) and u, or
r(F) and u. If pF(x)p�F(x)|pF(z) is consistent with CF , then w.l.o.g. if
hF(x) > hF(y) we have that xy|z is rooted at some vertex u of F and
qF(x) . In both cases, xy|z is consistent with Ni (e.g., a1a4|a12 in Fig. 4).

1815

1 3

Algorithmica (2021) 83:1786–1828	

If both cases are false, xy|z is not rooted at any pair of vertices in Ni ,
thus xy|z is not consistent with Ni (e.g., a1a25|a26 in Fig. 4).

	� ◻

3.3 � Triplet Distance Computation

Our second algorithm for computing the triplet distance between two given net-
works N1 and N2 is listed in Algorithm 6. It has the same basic structure as the algo-
rithm in Sect. 2.2, but it applies the procedures presented in Sect. 3.2.1 and 3.2.2 to
check triplet consistency. The main procedure is named D(). In the preprocessing
step, for i ∈ {1, 2} , the algorithm builds the block tree Ti , an n × n table for Ti in
order to later answer lowest common ancestor queries between pairs of leaves in Ti
in O(1) time, all the contracted block networks of Ni , and finally, for every block B,
the fan graph Cf

B
 and the resolved graph Cr

B
 as well as the corresponding Af

B
 - and

Ar
B
-tables for the contracted block network CB . The algorithm then calls the proce-

dure S() to count shared fan and resolved triplets, which is done by enumerating all
possible triplets and calling IsFan and IsResolved to see which of them are consist-
ent with both N1 and N2 . The final answer is calculated according to Equation (1.1).

1816	 Algorithmica (2021) 83:1786–1828

1 3

From Lemma 3.4, computing T1 and T2 requires O(|E1| + |E2|) time. Building
the two tables for answering lowest common ancestor queries in T1 and T2 takes
O(n2) time by bottom-up traversals. From Lemma 3.6, constructing all the con-
tracted block networks requires O(|E1| + |E2| + n2) time. From Lemma 3.7, the
total time required to build Cf

B
 , Cr

B
 , Af

B
 , and Ar

B
 for every block B of N1 and N2

is O(|V1|(k
2
1
d2
1
+ 1) + |V2|(k

2
2
d2
2
+ 1)) . Since |Vi| = O(|Ei|) , the preprocessing time

sums up to O(|E1| + |E2| + |V1|k
2
1
d2
1
+ |V2|k

2
2
d2
2
+ n2).

Using Lemmas 3.9 and 3.11, after the preprocessing step we can determine the
consistency of a triplet with N1 or N2 in O(1) time. Since the number of triplets

that need to be checked is exactly 4
(
n

3

)

 , the total running time of the algorithm

is O(|E1| + |E2| + |V1|k
2
1
d2
1
+ |V2|k

2
2
d2
2
+ n3) . Using the definitions of N, M, k,

and d from Sect. 1, the running time can be expressed as O(M + Nk2d2 + n3) .
Hence, we obtain the following theorem:

1817

1 3

Algorithmica (2021) 83:1786–1828	

Theorem 3.12  The triplet distance between two networks N1 and N2 can be com-
puted in O(M + Nk2d2 + n3) time.

4 � Implementation and Experiments

This section presents the implementations of the two algorithms from Sects. 2 and 3,
and experimental results demonstrating their practical performance. Both simulated
and real datasets were used in the experiments.

4.1 � Algorithm Implementation

From here on, the algorithm from Sect. 2 will be referred to as NTDfirst and the
algorithm from Sect. 3 as NTDsecond. Both algorithms were implemented in the
C++ programming language and the source code is publicly available at:

https://github.com/kmampent/ntd

Since no other implementations for computing the rooted triplet distance between
two networks of arbitrary levels are available, the correctness of our program code
was verified by trying a large number of pairs of input networks under varying
parameters and making sure that the output of NTDfirst (which is simple to imple-
ment) was identical to the output of NTDsecond in all cases.

4.2 � The Setup

The experiments were performed on a machine with 16GB RAM and Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz. The operating system was Ubuntu 16.04.2
LTS, and the compiler used was g++ 5.4 with cmake 3.11.0.

4.3 � Experiment 1: Performance

The first set of experiments were designed to measure the running times and mem-
ory usage of our implementations of NTDfirst and NTDsecond. To do so system-
atically, we used simulated datasets. The Input. Given three parameters n, p, and e,
where n ≥ 1 is an integer, 0 ≤ p ≤ 1 , and e ≥ 0 is an integer, an input network N′
was built according to the following method:

•	 Generate a random rooted binary tree T with n leaves in the uniform model [29].
•	 For each internal vertex w in T except r(T), contract the edge between the parent

of w and w with probability p.
•	 For each vertex w in T, let d(w) be the number of edges on the path from r(T)

to w. Let N� = T .

1818	 Algorithmica (2021) 83:1786–1828

1 3

•	 Until e edges have been added or it is impossible to add any more edges: Add
an edge between two vertices in N′ chosen uniformly at random, under the con-
straint that an edge u → v is created in N′ only if d(u) < d(v) . (In other words, if
the total number of edges that can be added is y and y < e , then only add those
y edges.)

Experimental Results. We applied NTDfirst and NTDsecond to pairs of net-
works generated with the method above for varying values of n, p, and e, and meas-
ured their running times and memory usage. In the graphs shown below, every data
point corresponds to the average taken over 30 runs with a set of fixed parameters.
Reticulation events are typically rare in nature [30], so we used relatively small val-
ues for e, i.e., e ≤ 50 when n ≤ 500 , to make the experiments more realistic.

The results of Experiment 1 are reported below.

1.	 The two algorithms’ running times and memory usage increase as n increases
according to the plots in Figs. 7 and 8. The first figure shows the CPU time in
seconds taken when p = 0 and e ∈ {10, 20, 30, 40, 50} . For NTDfirst we used
10 ≤ n ≤ 230 , and for NTDsecond we used 10 ≤ n ≤ 500 . Space is the reason
behind the restrictions on n. As can be seen in Fig. 8a, at n = 230 the memory
usage of NTDfirst is getting close to the limit of the available 16GB RAM.
When n ≥ 240 , the memory requirements exceed the limit, and the operating
system initiates highly time-consuming communication with the disk.

2.	 Both algorithms take more time as the parameter e increases due to the additional
edges in the generated networks, with NTDsecond suffering more than NTD-
first. Again, see Fig. 7. The explanation for this behavior is as follows. The main
purpose of extending the algorithm from Sect. 2 in Sect. 3 was to avoid having

NTDfirst, p=0

0

10

20

10 50 90 130 170 210
n

cp
u

tim
e

(s
ec

on
ds

)

e 10 20 30 40 50

(a)

NTDsecond, p=0

0

10

20

30

40

50

0 100 200 300 400 500
n

cp
u

tim
e

(s
ec

on
ds

)

e 10 20 30 40 50

(b)

Fig. 7   The running times of NTDfirst and NTDsecond for increasing values of n and with p = 0 and
e ∈ {10, 20, 30, 40, 50}

1819

1 3

Algorithmica (2021) 83:1786–1828	

to build the highly time- and memory-consuming fan and resolved graph on the
entire input network, and instead build several such graphs on smaller blocks.
Figure 9 shows that a larger value of e implies a higher level k as well as fewer
non-leaf blocks in N′ , which in turn implies more time spent by NTDsecond
building the fan and resolved graphs. An extreme situation is when e is so large
that N′ has a really small number of non-leaf blocks, one of which is roughly as
large as N′ itself. Then, given that the preprocessing of NTDsecond is more
complex than that of NTDfirst, NTDsecond will be slower than NTDfirst.

NTDfirst, p=0

9

12

15

190 200 210 220 230
n

sp
ac

e
(G

B
)

e 10 20 30 40 50

(a)

NTDsecond, p=0

0

3

6

9

12

0 100 200 300 400 500
n

sp
ac

e
(G

B
)

e 10 20 30 40 50

(b)

Fig. 8   The memory usage of the two algorithms for increasing values of n and with p = 0 and
e ∈ {10, 20, 30, 40, 50} , as reported by the Maximum Resident Size parameter when calling the execut-
able of each algorithm with /usr/bin/time -v 

p=0

10

20

30

40

50

0 100 200 300 400 500
n

k

e 10 20 30 40 50

(a)

p=0

50

100

150

200

10 20 30 40 50
e

nu
m

be
r o

f n
on

-le
af

 b
lo

ck
s

n 150 230 310

(b)

Fig. 9   The effect of e and n on k (the generated network’s level) and the amount of non-leaf blocks

1820	 Algorithmica (2021) 83:1786–1828

1 3

An example of where this happens can be found in Fig. 10a when the parameters
are n = 90 , p = 0 , and e = 50.

	  In contrast, when p is large, e.g., p = 0.8 in Fig. 10b, the effect of e on the run-
ning times is small. This holds especially for NTDsecond. There will be fewer
internal vertices in the generated networks, which means that the number of edges
that can be added decreases as well.

3.	 The effect of the parameter p on the relative running times of the two algorithms
is shown in Fig. 11. In general, the difference in the two algorithms’ running
times becomes smaller as the value of p increases. For certain combinations of
the parameters such as n = 90 , p = 0 , and e = 50 in Fig. 11c, NTDfirst is faster
than NTDsecond, as observed earlier.

4.4 � Experiment 2: Limitations of the Rooted Triplet Distance

The second set of experiments applied the algorithms to real datasets. The goal was
to see how informative the current definition of the rooted triplet distance is in prac-
tice when comparing phylogenetic networks, and to investigate any potential short-
comings. The Input. For the real datasets, we borrowed six networks from Table S4
in [31] that describe biologically motivated alternative ‘scenarios’ for the evolution-
ary history of the Viola genus. They are named NA , NB , NC , ND , NE , and NF below.
The first five networks correspond to the five scenarios A, B, C, D, and E in [31],
and NF is “Scenario E, CHAM and MELVIO resolved”, which is actually the same
as scenario E but with two of the subclades (overlapping subtrees) expanded.

p=0

0

5

10

15

20

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

e 10 20 30 40 50

(a)

p=0.8

0.0

2.5

5.0

7.5

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

e 10 20 30 40 50

(b)

Fig. 10   The running time of NTDfirst minus the running time of NTDsecond for
e ∈ {10, 20, 30, 40, 50} and p ∈ {0, 0.8} . a Observe that when n = 90 , p = 0 , and e = 50 , the difference
is negative, which means NTDfirst is faster than NTDsecond. b When p is large (like the case p = 0.8
shown here), the number of edges that can be added to the generated networks is small and the differ-
ences in running times for varying values of e less significant

1821

1 3

Algorithmica (2021) 83:1786–1828	

Only two of the six networks are shown here; the network NB is displayed in
Fig. 12a, and ND in Fig. 12b. For the other four networks’ branching structures, the
reader is referred to Table S4 in [31].

The networks in Table S4 in [31] were inferred from a set of multilabeled trees.
(A multilabeled tree is a generalization of a phylogenetic tree in which identical leaf
labels are allowed to occur more than once.) The method that was used to construct
the networks is explained in detail in Step 3 (“Inference of the Most Parsimonious
Network from Multilabeled Gene Trees”) in the Materials and Methods-section
of [31]. Table S4 in [31] also provides these multilabeled trees. In order to repre-
sent the multilabeled trees as distinctly leaf-labeled trees as well, [31] replaced
any repeated leaf label x by unique leaf labels of the form x.1, x.2,… , x.i ; e.g., one

e=10

0

5

10

15

20

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

p 0 0.2 0.5 0.8

(a)

e=30

0

5

10

15

20

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

p 0 0.2 0.5 0.8

(b)

e=50

0

5

10

15

50 90 130 170 210
n

di
ffe

re
nc

e
in

 c
pu

 ti
m

e
(s

ec
on

ds
)

p 0 0.2 0.5 0.8

(c)

Fig. 11   The effect of different values of p on the running time of NTDfirst minus the running time
of NTDsecond, for e ∈ {10, 30, 50} . When n = 90 , p = 0 , and e = 50 , NTDfirst is faster than NTD-
second 

1822	 Algorithmica (2021) 83:1786–1828

1 3

occurrence of the leaf label Tridens was changed to Tridens.1, another one to
Tridens.2, another one to Tridens.3, and so on. These (distinctly leaf-labeled)
trees were also considered in our experiments and are referred to as TA , TB , TC , TD ,
TE , and TF.

The size of the leaf label set of TA , TB , TC , TD , TE , and TF is 16, 20, 21, 21, 22, and
50 leaves, respectively. For every s ∈ {A,B,C,D,E} , Ns contains 8 leaves, and NF
contains 16 leaves. Note that for all s ∈ {A,B,C,D,E,F} , the number of leaf labels
in Ts is larger than than the number of leaf labels in Ns due to the leaf relabeling pro-
cess just described to obtain distinctly leaf-labeled trees.

In our implementations, the input trees are represented in standard Newick format
and the input networks in extended Newick format [32]. We employ the graph-the-
oretic standard adjacency list to store the input networks, making it easy to support
different input formats at the same time.

Experimental Results. We used the trees Ts and networks Ns , where
s ∈ {A,B,C,D,E,F} , from Table S4 in [31], as explained above. In the experi-
ments, we computed the rooted triplet distance between each Ts and Ns
and also between pairs of these networks. According to Equation (1.1),
D(Ts,Ns) = S(Ts, Ts) + S(Ns,Ns) − 2S(Ts,Ns) . To make L(Ts) = L(Ns) when com-
puting D(Ts,Ns) , if a leaf x in Ns appeared as several leaves x.1,… , x.i in Ts then
we replaced x in Ns by leaves labeled x.1,… , x.i , attaching each of them as a child
of the parent of x. The maximum time spent by any of our algorithms was when

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

(a) The network (b) The network ND.

Fig. 12   The networks NB and ND from [31]

1823

1 3

Algorithmica (2021) 83:1786–1828	

computing D(TF,NF) , with NTDfirst requiring only 0.18 seconds to run and NTD-
second 0.05 seconds.

Our findings are summarized in Tables 2 and 3. By inspecting the tables,
Experiment 2 reveals two ways that the current definition of the rooted triplet
distance for networks could be improved:

1.	 Table 2 shows S(Ts, Ts) , S(Ns,Ns) , S(Ts,Ns) , and D(Ts,Ns) for every
s ∈ {A,B,C,D,E,F} . The values of D(Ts,Ns) seem quite large compared to
the number of triplets in each Ts (given by S(Ts, Ts) ). This is because of the
resolved triplets that arise when Ns is created from a multilabeled tree using the
method in [31], and the fan triplets that are created whenever a leaf x is replaced
by x.1,… , x.i in Ns . Consequently, it would be desirable to give less weights to
such triplets. A more flexible definition of the rooted triplet distance that can
assign different weights to different triplets could therefore be useful.

2.	 Next, Table 3 lists the triplet distance D(Ns,Ns�) for all pairs s, s� ∈ {A,B,C,D,E} .
The networks NA,… ,NE have identical leaf label sets, but the leaf label set of NF
is different, which is why NF is excluded from Table 3. Interestingly, although the
two networks NB and ND are structurally different (see Fig. 12), their triplet dis-
tance is 0. This suggests that alternative definitions of the rooted triplet distance
for networks may be better in practice, as discussed in Sect. 5 below.

Table 2   Experiments on the real
datasets

The computed values of S(T
s
,T

s
) , S(N

s
,N

s
) , S(T

s
,N

s
) , and D(T

s
,N

s
)

s S(T
s
,T

s
) S(N

s
,N

s
) S(T

s
,N

s
) D(T

s
,N

s
)

A 560 716 443 390
B 1140 1870 840 1330
C 1330 2185 965 1585
D 1330 2205 964 1607
E 1540 1996 983 1570
F 19,600 43,710 16,553 30,204

Table 3   Experiments on the real
datasets, continued

The computed values of D(N
s
,N

s�
) . In particular, observe that

D(N
B
,N

D
) = 0

N
A

N
B

N
C

N
D

N
E

N
A

0 20 19 20 10
N
B

20 0 1 0 10
N
C

19 1 0 1 9
N
D

20 0 1 0 10
N
E

10 10 9 10 0

1824	 Algorithmica (2021) 83:1786–1828

1 3

5 � Final Remarks

We have developed two new algorithms for computing the rooted triplet distance
between two phylogenetic networks over the same leaf label set. We have also pre-
sented an implementation of the algorithms and evaluated their performance on sim-
ulated and real datasets.

Future work involves creating new algorithms that are even more efficient than
the algorithms given here, as well as to research variants of the studied problem that
may provide more biologically meaningful ways for comparing networks. An exam-
ple of such a variant is motivated by the experiments on the real dataset in Sect. 4.4.
Recall that the two networks NB and ND were structurally different, yet their triplet
distance was 0. The reason is that, unlike in the case of trees, the same triplet can
appear several times in a network, and for two networks N1 and N2 to be compared,
if a triplet appears 1000 times in N1 and only once in N2 , it would contribute 0 under

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

6, 1

2, 1

1, 2

1, 1

2, 11, 1

4, 1

NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

1, 2

1, 1

2, 1

2, 1

1, 1

2, 1

8, 1

5, 1

5, 1

(a)The network (b)The network ND.

Fig. 13   Next to every vertex marked with a circle is the number of different pairs of disjoint paths from
that vertex to the leaves with labels Tridens and Chilenium, and the number of different disjoint
paths from the root to the vertex. With definition A of multiplicity for resolved triplets, the resolved tri-
plet ������� ��������� | �������� appears (4 + 6 + 2 + 1 + 2 + 1) ⋅ 1 + 1 ⋅ 2 = 18 times in NB and
(5 + 5 + 8 + 2 + 2 + 2 + 1 + 1) ⋅ 1 + 1 ⋅ 2 = 28 times in ND . With definition B, this triplet appears 7
times in NB and 9 times in ND

1825

1 3

Algorithmica (2021) 83:1786–1828	

the current definition of D(N1,N2) . However, extending the definition of the triplet
distance for networks to capture information about the frequencies of triplets in the
networks can be done in different ways, leading to different outcomes. For example,
consider the following two alternative definitions of multiplicity for a resolved triplet
xy|z, where u and v are the vertices used in the definition of the consistency of a
resolved triplet with a network in Sect. 1:

A.	 The to t a l number o f quad r up le s o f pa t h s o f t he fo r m
((u ⇝ v), (v ⇝ x), (v ⇝ y), (u ⇝ z)) that are disjoint except for in u and v, and
furthermore, the path from u to z does not pass through v.

B.	 The total number of pairs of vertices (u, v) such that there exist four paths of the
form (u ⇝ v), (v ⇝ x), (v ⇝ y), (u ⇝ z) that are disjoint except for in u and v, and
furthermore, the path from u to z does not pass through v.

The definitions for the case of fan triplets are analogous. Now consider the two net-
works NB and ND . As shown in Fig. 13, if we follow definition A of multiplicity,

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

ChileniumErpetion

1, 1

1, 1

2, 1

NB .

Andinium

Leptidium

CHAM

MELVIO
clade

Rubellium

Tridens

clade

Chilenium

Erpetion

1, 1
2, 1

2, 1

(a) The network (b) The network ND.

Fig. 14   Next to every vertex marked with a circle is the number of different pairs of disjoint paths
from that vertex to the leaves with labels Chilenium and CHAM_clade, and the number of differ-
ent disjoint paths from the root to the vertex. With definition A of multiplicity for resolved triplets,
the resolved triplet ��������� ����_����� | �������� appears (1 + 2 + 1) ⋅ 1 = 4 times in NB and
(2 + 2 + 1) ⋅ 1 = 5 times in ND . With definition B, this triplet appears three times in both networks

1826	 Algorithmica (2021) 83:1786–1828

1 3

the resolved triplet ������� ��������� | �������� appears 18 times in NB and
28 times in ND (and we could thus let it contribute 10 to the extended rooted triplet
distance). If we choose definition B instead, this resolved triplet appears 7 times in
NB and 9 times in ND . On the other hand, according to Fig. 14, the resolved tri-
plet ��������� ����_����� | �������� appears 4 times in NB and 5 times in ND
according to definition A, but 3 times in both networks according to definition B.

In summary, definition B seems somewhat simpler to compute than definition A,
but it fails to distinguish between certain cases that definition A can handle. To
determine under what circumstances definition B is good enough in practice is an
open problem and a future research topic.

Finally, Cardona et al. [33] gave an alternative generalization of the rooted tri-
plet distance from trees to networks. While the extension proposed by Gambette and
Huber [13] is closer to the definition of the widely studied rooted triplet distance
for trees, efficient algorithms for Cardona et al.’s extension might also be useful.
However, as pointed out in [13] and [33], neither one of them yields a metric for
all classes of phylogenetic networks (see Corollary 1 in [13] and Figs. 19 and 20
in [33]), so another open problem is to find even more informative generalizations.

Acknowledgements  JJ was partially funded by RGC/GRF project 15221420. KM acknowledges the sup-
port by the Danish National Research Foundation, grant DNRF84, via the Center for Massive Data Algo-
rithmics (MADALGO).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc, Sunderland (2004)
	 2.	 Nakhleh, L., Sun, J., Warnow, T., Linder, C. R., Moret, B. M. E., Tholse, A.: Towards the develop-

ment of computational tools for evaluating phylogenetic network reconstruction methods. In Pro-
ceedings of the 8th Pacific Symposium on Biocomputing (PSB 2003), pp. 315–326, 2003

	 3.	 Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53(1), 131–147
(1981)

	 4.	 Dobson, A. J.: Comparing the shapes of trees. In Combinatorial Mathematics III, pp. 95–100.
Springer, Berlin (1975)

	 5.	 Estabrook, G.F., McMorris, F.R., Meacham, C.A.: Comparison of undirected phylogenetic trees
based on subtrees of four evolutionary units. Syst. Zool. 34(2), 193–200 (1985)

	 6.	 Moore, G.W., Goodman, M., Barnabas, J.: An iterative approach from the standpoint of the addi-
tive hypothesis to the dendrogram problem posed by molecular data sets. J. Theor. Biol. 38(3),
423–457 (1973)

	 7.	 Robinson, D.F.: Comparison of labeled trees with valency three. J. Combin. Theory B 11(2),
105–119 (1971)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1827

1 3

Algorithmica (2021) 83:1786–1828	

	 8.	 Penny, D., Watson, E.E., Steel, M.A.: Trees from languages and genes are very similar. Syst.
Biol. 42(3), 382–384 (1993)

	 9.	 Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Dis.
Appl. Math. 71(1), 153–169 (1996)

	10.	 Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. J. Class. 2(1), 255–276 (1985)
	11.	 McVicar, M., Sach, B., Mesnage, C., Lijffijt, J., Spyropoulou, E., De Bie, T.: SuMoTED: an intu-

itive edit distance between rooted unordered uniquely-labelled trees. Pattern Recog. Lett. 79,
52–59 (2016)

	12.	 Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts Algorithms and
Applications. Cambridge University Press, Cambridge (2010)

	13.	 Gambette, P., Huber, K.T.: On encodings of phylogenetic networks of bounded level. J. Math.
Biol. 65(1), 157–180 (2012)

	14.	 Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the maximum agreement of phylo-
genetic networks. Theor. Comput. Sci. 335(1), 93–107 (2005)

	15.	 Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks
with constrained recombination. J. Bioinform. Comput. Biol. 2(1), 173–213 (2004)

	16.	 Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun.
ACM 16(6), 372–378 (1973)

	17.	 Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees by counting trian-
gles. J. Dis. Algor. 25, 66–78 (2014)

	18.	 Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially resolved trees.
Theor. Comput. Sci. 412(48), 6634–6652 (2011)

	19.	 Brodal, G. S., Fagerberg, R., Pedersen, C. N. S., Mailund, T., Sand, A.: Efficient algorithms for
computing the triplet and quartet distance between trees of arbitrary degree. In Proceedings of the
Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 1814–1832. Society for
Industrial and Applied Mathematics, 2013

	20.	 Brodal, G. S., Mampentzidis, K.: Cache oblivious algorithms for computing the triplet distance
between trees. In Proceedings of the 25th Annual European Symposium on Algorithms (ESA 2017),
volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pp 21:1–21:14. Schloss
Dagstuhl’Leibniz-Zentrum fuer Informatik, 2017

	21.	 Critchlow, D.E., Pearl, D.K., Qian, C.L.: The triples distance for rooted bifurcating phylogenetic
trees. Syst. Biol. 45(3), 323–334 (1996)

	22.	 Griebel, T., Brinkmeyer, M., Böcker, S.: EPoS: a modular software framework for phylogenetic
analysis. Bioinformatics 24(20), 2399–2400 (2008)

	23.	 Jansson, J., Rajaby, R.: A more practical algorithm for the rooted triplet distance. J. Comput. Biol.
24(2), 106–126 (2017)

	24.	 Sand, A., Holt, M.K., Johansen, J., Brodal, G.S., Mailund, T., Pedersen, C.N.S.: tqDist: a library for
computing the quartet and triplet distances between binary or general trees. Bioinformatics 30(14),
2079–2080 (2014)

	25.	 Jansson, J., Rajaby, R., Sung, W.-K.: An efficient algorithm for the rooted triplet distance between
galled trees. J. Comput. Biol. 26(9), 893–907 (2019)

	26.	 Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Com-
put. Sci. 10(2), 111–121 (1980)

	27.	 Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approximation algorithms
for maximizing triplet consistency within phylogenetic networks. J. Dis. Algor. 8(1), 65–75 (2010)

	28.	 Perl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a graph. J. ACM
25(1), 1–9 (1978)

	29.	 McKenzie, A., Steel, M.: Distributions of cherries for two models of trees. Math. Biosci. 164(1),
81–92 (2000)

	30.	 Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consist-
ent evolutionary history. Dis. Appl. Math. 155(8), 914–928 (2007)

	31.	 Marcussen, T., Heier, L., Brysting, A.K., Oxelman, B., Jakobsen, K.S.: From gene trees to a dated
allopolyploid network: insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64(1),
84–101 (2015)

	32.	 Cardona, G., Rosselló, F., Valiente, G.: Extended Newick: it is time for a standard representation of
phylogenetic networks. BMC Bioinform. 9(1), 532 (2008)

1828	 Algorithmica (2021) 83:1786–1828

1 3

	33.	 Cardona, G., Llabres, M., Rossello, F., Valiente, G.: Metrics for phylogenetic networks II: nodal and
triplets metrics. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(3), 454–469 (2009)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Jesper Jansson1  · Konstantinos Mampentzidis2 · Ramesh Rajaby3 ·
Wing‑Kin Sung3,4 

	 Konstantinos Mampentzidis
	 kmampent@cs.au.dk

	 Ramesh Rajaby
	 e0011356@u.nus.edu

	 Wing‑Kin Sung
	 ksung@comp.nus.edu.sg

1	 Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong

2	 Department of Computer Science, Aarhus University, Aarhus, Denmark
3	 School of Computing, National University of Singapore, 13 Computing Drive, Genome 117417,

Singapore
4	 Genome Institute of Singapore, 60 Biopolis Street, Genome 138672, Singapore

http://orcid.org/0000-0001-6859-8932
http://orcid.org/0000-0001-7806-7086

	Computing the Rooted Triplet Distance Between Phylogenetic Networks
	Abstract
	1 Introduction
	1.1 Background
	1.2 Problem Definitions
	1.3 Previous Work
	1.4 New Results
	1.5 Organization of the Article

	2 A First Approach
	2.1 Preprocessing
	2.1.1 The Fan Graph
	2.1.2 The Resolved Graph
	2.1.3 The Fan Table and the Resolved Table

	2.2 Triplet Distance Computation

	3 A Second Approach
	3.1 Preprocessing
	3.1.1 The Block Tree
	3.1.2 Contracted Block Networks
	3.1.3 Constructing All Contracted Block Networks Efficiently

	3.2 Checking If a Triplet is Consistent with a Network
	3.2.1 Checking a Fan Triplet
	3.2.2 Checking a Resolved Triplet

	3.3 Triplet Distance Computation

	4 Implementation and Experiments
	4.1 Algorithm Implementation
	4.2 The Setup
	4.3 Experiment 1: Performance
	4.4 Experiment 2: Limitations of the Rooted Triplet Distance

	5 Final Remarks
	Acknowledgements
	References

