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Abstract
The rooted triplet distance measures the structural dissimilarity of two phylogenetic 
trees or phylogenetic networks by counting the number of rooted phylogenetic trees 
with exactly three leaf labels (called rooted triplets, or triplets for short) that occur 
as embedded subtrees in one, but not both, of them. Suppose that N1 = (V1,E1) and 
N2 = (V2,E2) are phylogenetic networks over a common leaf label set of size  n, 
that N

i
 has level k

i
 and maximum in-degree d

i
 for i ∈ {1, 2} , and that the networks’ 

out-degrees are unbounded. Write N = max(|V1|, |V2|) , M = max(|E1|, |E2|) , 
k = max(k1, k2) , and d = max(d1, d2) . Previous work has shown how to compute the 
rooted triplet distance between N1 and N2 in O(n log n) time in the special case k ≤ 1 . 
For k > 1 , no efficient algorithms are known; applying a classic method from 1980 
by Fortune et al.  in a direct way leads to a running time of Ω(N6n3) and the only 
existing non-trivial algorithm imposes restrictions on the networks’ in- and out-
degrees (in particular, it does not work when non-binary vertices are allowed). In 
this article, we develop two new algorithms with no such restrictions. Their run-
ning times are O(N2M + n3) and O(M + Nk2d2 + n3) , respectively. We also provide 
implementations of our algorithms, evaluate their performance on simulated and 
real datasets, and make some observations on the limitations of the current defini-
tion of the rooted triplet distance in practice. Our prototype implementations have 
been packaged into the first publicly available software for computing the rooted 
triplet distance between unrestricted networks of arbitrary levels.
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1  Introduction

1.1 � Background

Phylogenetic trees are commonly used in biology to represent evolutionary rela-
tionships, with the leaves corresponding to species that exist today and internal 
vertices to ancestor species that existed in the past  [1]. When studying the evo-
lution of a fixed set of species, different available data and tree reconstruction 
methods can lead to trees that look structurally different. Quantifying this differ-
ence is essential to make better evolutionary inferences, which has led to the pro-
posal of several phylogenetic tree distance measures in the literature. For exam-
ple, to evaluate the accuracy of a tree reconstruction method M , one can perform 
the following steps a number of times [2]: First generate a random phylogenetic 
tree T and let a sequence evolve down the edges of T according to some chosen 
model of sequence evolution, then apply the method M to reconstruct a tree T ′ , 
and finally measure the distance between T and T ′ . Some phylogenetic tree dis-
tance measures that are based on counting how many times certain features dif-
fer in the two trees are the Robinson-Foulds distance  [3], the rooted triplet dis-
tance [4] for rooted trees, and the unrooted quartet distance [5] for unrooted trees. 
Other distance measures are the nearest-neighbor interchange distance (intro-
duced independently in [6] and [7]), the path-length-difference distance [8], the 
subtree prune-and-regraft distance [9], the maximum agreement subtree [10], and 
the subtree moving tree edit distance [11].

The rooted phylogenetic network model is an extension of the rooted phylo-
genetic tree model that allows internal vertices to have more than just one par-
ent  [12]. Such networks can describe more complex evolutionary relationships 
involving reticulation events such as horizontal gene transfer and hybridization. 
As in the case of phylogenetic trees, it is useful to have distance measures for 
comparing phylogenetic networks. Therefore, in this article, we study a natural 
generalization [13] of the rooted triplet distance for phylogenetic trees to rooted 
phylogenetic networks and present two new algorithms for computing it.

1.2 � Problem Definitions

For any vertex u in a directed acyclic graph, let in(u) and out(u) be the in-degree 
and out-degree of u. The vertex u is called a leaf if out(u) = 0 , and an internal 
vertex if out(u) ≥ 1 . Formally, a rooted phylogenetic network N′ is a directed acy-
clic graph with one vertex of in-degree 0 (from here on called the root of N′ and 
denoted by r(N�) ), distinctly labeled leaves, and no vertices with both in-degree 1 
and out-degree  1. A vertex  u in  N′ is called a reticulation vertex if in(u) ≥ 2 
holds. If N′ has no reticulation vertices, i.e., if all vertices in N′ have in-degree at 
most 1, then N′ is a rooted phylogenetic tree. Below, when referring to a “tree”, 
we imply a “rooted phylogenetic tree”, and when referring to a “network”, we 
imply a “rooted phylogenetic network”.
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For the rest of this subsection, suppose that N′ is a network. A directed edge 
from a vertex u to a vertex v in N′ is denoted by u → v . A path from u to v in N′ is 
denoted by u ⇝ v . Let the height of u, written as h(u), be the number of edges in 
a longest path from u to a leaf in N′ . By definition, if v is a parent of u in N′ then 
h(v) > h(u) . We will use L(N�) to refer to both the set of leaves in N′ as well as to 
the set of leaf labels in N′ since they are in one-to-one correspondence.

The level of a network was introduced by Choy et al.  [14] as a parameter to 
measure the treelikeness of a network, with the special case of a level-0 network 
being a tree and a level-1 network a so-called galled tree [15] in which all under-
lying cycles are disjoint. The level is defined as follows. Let U(N�) be the undi-
rected graph created by replacing every directed edge in N′ with an undirected 
edge. An undirected, connected graph  H is called biconnected if it has no ver-
tex whose removal makes H disconnected. A maximal subgraph of U(N�) that is 
biconnected is called a biconnected component of U(N�) . (Observe that the bicon-
nected components of U(N�) are edge-disjoint but not necessarily vertex-disjoint.) 
For any biconnected component of U(N� ), its corresponding subgraph in N′ will 
be referred to as a block of N′ . We say that N′ is a level-k network, or equiva-
lently N′ has level k, if every block of N′ contains at most k reticulation vertices. 
Figure 1 shows a level-2 and a level-3 network.

If B is a block of N′ consisting of more than two vertices and one edge and B 
contains at most one vertex that has one or more outgoing edges to vertices not 
belonging to B then B is called uninformative. See Fig. 2 for an illustration.

Next, a rooted triplet � is a tree with three leaves. If it is binary we say that � 
is a rooted resolved triplet, and if it is non-binary we say that � is a rooted fan 
triplet. We say that the rooted fan triplet x|y|z is consistent with N′ if and only if 
there exists a vertex u in N′ such that there are three directed paths of non-zero 
length from u to x, from u to y, and from u to z that are vertex-disjoint except for 
in u. Similarly, we say that the rooted resolved triplet xy|z is consistent with N′ if 
and only if N′ contains two vertices u and v such that there are four directed paths 
of non-zero length from u to v, from v to x, from v to y, and from u to z that are 
vertex-disjoint except for in u and v, and furthermore, the path from u to z does 
not pass through v. See Fig. 1 for an example. From here on, by “disjoint paths” 

a3
a1

a4

a2

N1

a2
a3

a1

a4

N2

Fig. 1   N1 is a level-2 network and N2 is a level-3 network with L(N1) = L(N2) = {a1, a2, a3, a4} . In this 
example, D(N1,N2) = 6 . Some shared triplets are: a1|a2|a4,   a3a4|a2,   a1a3|a2 . Some triplets consistent 
with only one network are: a1|a3|a4,  a2a3|a1
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we imply “vertex-disjoint paths of non-zero length”. Moreover, when referring to 
a “triplet”, we imply a “rooted triplet”.

Given two networks N1 = (V1,E1) and N2 = (V2,E2) built on the same leaf label 
set Λ , the rooted triplet distance D(N1,N2) , or triplet distance for short, is the num-
ber of triplets over Λ that are consistent with exactly one of N1 and N2 . Let S(N1,N2) 
be the total number of shared triplets, i.e., triplets that are consistent with both N1 
and N2 . Then:

Note that a shared triplet contributes a +1 to S(N1,N1) , S(N2,N2) , and S(N1,N2) , 
e.g., the triplet a1|a2|a4 in Fig.  1. On the other hand, a triplet from either net-
work that is not shared contributes a  +1 to either S(N1,N1) or S(N2,N2) , and a  0 
to S(N1,N2) . As an example, a1|a3|a4 in Fig. 1 contributes a +1 to S(N1,N1) and a 0 
to S(N2,N2) and S(N1,N2).

Let Sr(N1,N2) and Sf (N1,N2) be the number of shared resolved and shared fan 
triplets, respectively. Then S(N1,N2) = Sr(N1,N2) + Sf (N1,N2) , which implies that 
D(N1,N2) can be obtained by considering shared resolved triplets and shared fan 
triplets separately.

The rest of this article is focused on how to compute D(N1,N2) efficiently. We 
shall use the following notation to express the time complexities of various algo-
rithms. For i ∈ {1, 2} , the network Ni has vertex set Vi and edge set Ei . The level of Ni 
is ki and the maximum in-degree taken over all vertices in Ni is di . We assume that 
the two given networks N1 and N2 have the same leaf label set Λ , and write n = |Λ| , 
N = max(|V1|, |V2|) , M = max(|E1|, |E2|) , k = max(k1, k2) , and d = max(d1, d2).

To simplify the descriptions of the algorithms, we will also assume that: (i) there 
is no vertex u satisfying both in(u) > 1 and out(u) = 0 , i.e., all leaves have in-degree 
at most 1; and (ii) there are no uninformative blocks in N1 and N2 . Assumption (i) 

(1.1)D(N1,N2) = S(N1,N1) + S(N2,N2) − 2S(N1,N2)

Fig. 2   The block drawn with 
solid edges is an uninformative 
block because it only has one 
vertex u with outgoing edges to 
vertices not in the block

u
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is justified because every leaf u with in-degree larger than 1 can be replaced by an 
internal vertex to which a leaf with the same leaf label as  u is attached, and the 
resulting network will be consistent with exactly the same triplets as before. 
Assumption (ii) is justified because first each uninformative block can be replaced 
by an edge, and then each vertex with in-degree 1 and out-degree 1 can be elimi-
nated by contracting its outgoing edge; the resulting network will be consistent 
with the same triplets as the original network. If necessary, checking the input net-
works N1 and N2 and modifying them to ensure that they comply with  (i) and (ii) 
before running the algorithms takes O(M) time, e.g., by using Hopcroft-Tarjan’s 
algorithm [16] to identify the biconnected components of U(N1) and U(N2).

1.3 � Previous Work

The rooted triplet distance was introduced by Dobson [4] in 1975 for trees, and gen-
eralized to networks by Gambette and Huber [13] in 2012. See also [17, Section 3.2] 
for a short discussion about the definition.

Table 1 lists the time complexities of some previously known algorithms and 
our new ones for computing D(N1,N2) . When k = 0 , both N1 and N2 are trees. 
This case has been extensively studied in the literature [4, 18–24], with the most 
efficient algorithms in theory and practice [19, 20, 24] running in O(n log n) time. 
For k = 1 , an O(n2.687)-time algorithm based on counting 3-cycles in an auxiliary 
graph was given in  [17], and a faster, O(n log n)-time algorithm that transforms 
the input to a constant number of instances with  k = 0 was given in  [25]. All 
of these algorithms allow the vertices in the input networks to have arbitrary 

Table 1   Previous and new results for computing D(N1,N2) , where N1 and N2 are two phylogenetic net-
works built on the same leaf label set Λ

Notation: n = |Λ| is the number of leaf labels, N = max(|V1|, |V2|) is the maximum number of verti-
ces, M = max(|E1|, |E2|) is the maximum number of edges, k = max(k1, k2) is the maximum level, and 
d = max(d1, d2) is the maximum in-degree of the two networks

Year Reference k In- and out-degrees Time complexity

1980 Fortune et al. [26] Arbitrary Arbitrary Ω(N6n3)

2010 Byrka et al. [27] Arbitrary Binary O(N + Nk2 + n3)

2013 Brodal et al. [19] 0 Arbitrary O(n log n)

2019 Jansson et al. [25] 1 Arbitrary O(n log n)

2020 New Arbitrary Arbitrary O(N2M + n3)

2020 New Arbitrary Arbitrary O(M + Nk2d2 + n3)
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degrees. Moreover, software implementations of the fast algorithms for k = 0 and 
k = 1 are available [20, 23–25].

For k > 1 , much less is known. In a special “binary degree” case where the 
phylogenetic networks’ roots have out-degree  2 and all other internal vertices 
have either in-degree  2 and out-degree  1, or in-degree  1 and out-degree  2, one 
can adapt a technique developed by Byrka  et al.  [27] for a problem related to 
finding a network consistent with as many resolved triplets as possible from a 
given set. They showed how to preprocess any fixed network N� = (V ,E) satisfy-
ing the binary degree constraints so that checking if a resolved triplet is consist-
ent with N′ can be done efficiently. Below, we shall refer to this preprocessing 
as constructing a data structure D such that D can be used to determine whether 
any specified resolved triplet is consistent with  N′ in O(1) time. The proof of 
Lemma 2 in [27] showed how to build D in O(|V|3) time. According to Remark 1 
in [27], this can be further improved to O(|V| + |V|k2) , where k is the level of N′ . 
The rooted triplet distance can thus be computed in O(N + Nk2 + n3) time in a 
straightforward way when N1 and N2 obey the special binary degree constraints. A 
limitation of D is that it can only support consistency queries for resolved triplets, 
while a network with no restrictions on the vertices’ degrees may also contain fan 
triplets.

In the general case, when N1 and N2 have unbounded degrees and unbounded 

levels, it is possible to compute D(N1,N2) by iterating over all 4
(
n

3

)

 triplets, and 

for each such triplet applying the classic directed acyclic graph pattern matching 
algorithm in [26] to determine its consistency with N1 and N2 . However, this leads 
to a time complexity of Ω(N6n3) . To see this, let P in Theorem  3 in  [26] be a 
resolved triplet and  G a phylogenetic network  Ni with |Vi|  vertices. P  has two 

internal nodes and four edges, so the algorithm will consider 
(
|Vi|

2

)

 ways of 

mapping the two internal nodes of P to vertices in Ni , and for each one, construct 
a configuration graph G′ with Ω((|Vi| + 1)4) vertices and look for a path in G′ . 
Hence, the algorithm will use Ω(|Vi|

6) time for each resolved triplet to check if it 
occurs in Ni , i.e., Ω(N6n3) time in total.

1.4 � New Results

Here, we develop two algorithms that significantly improve upon the time com-
plexity of computing the rooted triplet distance in the general, unbounded case. 
The running time of our first algorithm is O(N2M + n3) . One key insight is that 
a technique of Perl and Shiloach for identifying two disjoint paths between two 
pairs of vertices in a directed acyclic graph [28] can be extended to check if a fan 
triplet or a resolved triplet is embedded in a phylogenetic network, leading to the 
useful concepts of a fan graph and a resolved graph. Our second algorithm then 
augments these ideas with so-called block trees and contracted block networks 
to obtain a running time of O(M + Nk2d2 + n3) . Neither algorithm has a strictly 
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better time complexity than the other one for all possible inputs. In the special 
case where N1 and N2 follow the binary degree constraints of Byrka et al.  [27], 
the time complexity reduces to O(N + Nk2 + n3) , matching the bound in [27].

We also provide implementations of our algorithms, evaluate their performance 
on simulated and real datasets, and make some observations on the limitations of the 
current definition of the rooted triplet distance in practice. Our prototype implemen-
tations have been packaged into the first publicly available software for computing 
the triplet distance between two unrestricted networks of arbitrary levels.

1.5 � Organization of the Article

Section 2 describes our first new algorithm and Sect. 3 the second one. Section 4 
presents an implementation of both our algorithms and experiments illustrating their 
practical performance. Finally, Sect. 5 gives some concluding remarks.

2 � A First Approach

This section presents an algorithm that computes D(N1,N2) in O(N2M + n3) time.
Overview. The algorithm consists of a preprocessing step and a triplet distance 

computation step. For the preprocessing step, we extend a technique introduced by 
Perl and Shiloach [28] to construct suitably defined auxiliary graphs that compactly 
encode disjoint paths within N1 and N2 . Two graphs, the fan graph and resolved 
graph, are created that enable us to check the consistency of any fan triplet and any 
resolved triplet, respectively, with N1 and N2 in O(1) time. In the triplet distance 

computation step, we compute D(N1,N2) by iterating over all possible 4
(
n

3

)

 tri-

plets and using the fan and resolved graphs to check the consistency of each triplet 
with N1 and N2 efficiently.

2.1 � Preprocessing

Let G = (V ,E) be a directed acyclic graph and s1 , t1 , s2 , and t2 four vertices in G. 
Perl and Shiloach  [28] gave an algorithm that can find two vertex-disjoint paths, 
one from s1 to t1 and one from s2 to t2 , in O(|V||E|) time or determine that no such 
pair of paths exists. They achieve this by creating a directed graph G� = (V �,E�) in 
O(|V||E|) time, with the property that the existence of such a pair of vertex-disjoint 
paths in G is equivalent to the existence of a directed path from ⟨s1, s2⟩ to ⟨t1, t2⟩ 
in G′ , where ⟨s1, s2⟩ and ⟨t1, t2⟩ are vertices in G′ . A fan triplet or resolved triplet 
involves more than two vertex-disjoint paths, and below we show how to extend the 
technique by Perl and Shiloach [28] to determine if a given network has the neces-
sary vertex-disjoint paths that would imply the consistency of a given triplet with 
the network.
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2.1.1 � The Fan Graph

For any network Ni = (Vi,Ei) , let its fan graph Nf

i
= (V

f

i
,E

f

i
) be a graph such that 

V
f

i
= {s} ∪ {(u, v,w) ∣ u, v,w ∈ Vi, u ≠ v, u ≠ w, v ≠ w} and Ef

i
  includes the fol-

lowing directed edges: 

1.	 {(u1, v1,w1) → (u2, v1,w1) ∣ u1 → u2 ∈ Ei, h(u1) ≥ max(h(v1), h(w1))}

2.	 {(u1, v1,w1) → (u1, v2,w1) ∣ v1 → v2 ∈ Ei, h(v1) ≥ max(h(u1), h(w1))}

3.	 {(u1, v1,w1) → (u1, v1,w2) ∣ w1 → w2 ∈ Ei, h(w1) ≥ max(h(u1), h(v1))}

4.	 {s → (u, v,w) ∣ u → v ∈ Ei, u → w ∈ Ei}

Every 3-tuple of vertices from Ni with distinct entries is represented by a vertex 
in Nf

i
 . Refer to Fig. 3 for an example. Note that Nf

i
 contains O(|Vi|

3) vertices and 
O(|Vi|

2|Ei|) edges, and can be constructed in O(|Vi|
2|Ei|) time. It also has the prop-

erty described in the following lemma, which generalizes Theorem 3.1 in [28].

Lemma 2.1  Consider a network Ni and its fan graph Nf

i
= (V

f

i
,E

f

i
) . For any three 

different leaves x, y, and z in Ni , vertex s can reach vertex (x, y, z) in Nf

i
 if and only if 

the fan triplet x|y|z is consistent with Ni.

Proof  (←) Let x|y|z be any fan triplet consistent with Ni . By definition, there exists 
an internal vertex q in Ni and three disjoint paths (except for in q), one from q to 
x, one from q to y, and one from  q to  z. Denote these paths by (q, x0, x1,… , xa) , 
(q, y0, y1,… , yb) , and (q, z0, z1,… , zc) , where  xa = x , yb = y , and  zc = z . Then Nf

i
 

also contains the following three paths:

a5

a1 a3

a6

a2

a4

Ni

b, 4

c, 3

d, 2 f, 2

g, 1e, 1

h, 3

i, 2

(a)

(c, f, h)

(e, f, h)

(e, f, i)

(c, f, i)

(d, f, h)

(d, f, i)

Nf
i

(b)

Fig. 3   Illustrating the fan graph. a An example network Ni . Every internal vertex is labeled by a letter 
and its height. b Consider the triplet a3|a6|a4 . Lemma 2.1 implies that it is consistent with Ni because 
there is a path (s, (b, f , h), (c, f , h), (e, f , h), (e, f , i), (e, a6, i), (e, a6, a4), (a3, a6, a4)) in the fan graph Nf

i
 . 

A small part of Nf

i
 is drawn here, with the two directed edges (c, f , h) → (e, f , h) and (e, f , h) → (e, f , i) in 

the path from s to (a3, a6, a4) indicated
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•	 (s, (q, y0, z0)) : This can be seen from q → y0 ∈ Ei and q → z0 ∈ Ei.
•	 ((q, y0, z0), (x0, y0, z0)) : This follows from the fact that q → x0 ∈ Ei and 

h(q) > h(y0), h(z0).
•	 ((x0, y0, z0), … , (xa, yb, zc)) : This is because h(x0) > h(x1) > … > h(xa) , 

h(y0) > h(y1) > … > h(yb) , and h(z0) > h(z1) > … > h(zc) hold, and (x0,… , xa) , 
(y0,… , yb) , and (z0,… , zc) are paths in Ni.

By concatenating the three paths above, we get a path in Nf

i
 from s to (x, y, z).

(→) Because s can reach (x, y, z) in Nf

i
 , there exists a path P in Nf

i
 of the form 

P = (s, (x1, y1, z1), (x2, y2, z2), … , (xt, yt, zt)) , where xt = x , yt = y , and  zt = z . 
Let S1 = (x1, x2,… , xt) , S2 = (y1, y2,… , yt) , and S3 = (z1, z2,… , zt) , where xt = x , 
yt = y , and zt = z , be three sequences of vertices from Ni obtained from P.

We prove by induction that the three paths obtained by following the sequences S1,  
S2 , and  S3 are disjoint paths in  Ni . Consider any j ∈ {1, 2,… , t} . When  j = t , 
all three vertices xt , yt , and  zt are different according to the definition of  Vf

i
 . 

For  j < t , by the inductive hypothesis we have that (xj+1,… , xt) , (yj+1,… , yt) and 
(zj+1,… , zt) yield disjoint paths. In addition, by the definition of the fan graph Nf

i
 , 

for every j ∈ {1, 2,… , t − 1} , one of the following three cases holds: (1) xj ≠ xj+1 
only, (2) yj ≠ yj+1 only, and (3)  zj ≠ zj+1 only. In case  (1), note that  yj = yj+1 and 
zj = zj+1 , which means that (xj+1,… , xt) , (yj,… , yt) and (zj,… , zt) yield disjoint 
paths. We now show that xj cannot appear in any of these three paths. It holds that 
h(xj) ≥ max(h(yj), h(zj)) , so for � ≥ j + 1 and y� ≠ yj , we have h(xj) > h(y𝜇) . Simi-
larly, for � ≥ j + 1 and z� ≠ zj , we have h(xj) > h(z𝜇) . Together with the fact that xj
, yj , and zj are different according to the definition of Nf

i
 , we deduce that the three 

paths obtained from (xj,… , xt) , (yj,… , yt) , and (zj,… , zt) are disjoint. Cases (2) 
and (3) can be argued in the same way. Thus, following S1 , S2 , and S3 yields three 
disjoint paths.

Finally, since P contains a directed edge from s to (x1, y1, z1) , Ni contains an edge 
from  x1 to y1 and an edge from  x1 to z1 . Therefore, the three paths in Ni that start 
at the internal vertex x1 and then follow the sequences S1 , S2 , and S3 , respectively, 
are disjoint paths (except for in x1 ) to x, y, and z. By definition, x|y|z  is consistent 
with Ni . 	� ◻

Corollary 2.2  Let Ni be a given network and r′ a dummy leaf attached to r(Ni) . For 
any two different leaves x and y in Ni that are not r′ , there are two paths from r(Ni) 
to x and y that are disjoint, except for in r(Ni) , if and only if s can reach (r�, x, y) 
in Nf

i
.

2.1.2 � The Resolved Graph

For any network Ni , let its resolved graph Nr
i
= (Vr

i
,Er

i
) be a graph such 

that  Vr
i
= {s} ∪ {(u, v) ∣ u, v ∈ Vi, u ≠ v} ∪ {(u, v,w) ∣ u, v,w ∈ Vi, u ≠ v, u ≠ w, v ≠ w} 

and Er
i
 includes the following directed edges: 
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1.	 {s → (u, v) ∣ u → v ∈ Ei}

2.	 {(u1, v1) → (u2, v1) ∣ u1 → u2 ∈ Ei, h(u1) ≥ h(v1)}

3.	 {(u1, v1) → (u1, v2) ∣ v1 → v2 ∈ Ei, h(v1) ≥ h(u1)}

4.	 {(u, v) → (u, v,w) ∣ v → w ∈ Ei, h(v) ≥ h(u)}

5.	 {(u1, v1,w1) → (u2, v1,w1) ∣ u1 → u2 ∈ Ei, h(u1) ≥ max(h(v1), h(w1))}

6.	 {(u1, v1,w1) → (u1, v2,w1) ∣ v1 → v2 ∈ Ei, h(v1) ≥ max(h(u1), h(w1))}

7.	 {(u1, v1,w1) → (u1, v1,w2) ∣ w1 → w2 ∈ Ei, h(w1) ≥ max(h(u1), h(v1))}

Note that Nr
i
 contains O(|Vi|

3) vertices and O(|Vi|
2|Ei|) edges, can be constructed in 

O(|Vi|
2|Ei|) time, and has the property described in the following lemma:

Lemma 2.3  Consider a network Ni and its resolved graph Nr
i
= (Vr

i
,Er

i
) . For any 

three different leaves x, y, and z in Ni , vertex s can reach vertex (x, y, z) in Nr
i
 if and 

only if the resolved triplet yz|x is consistent with Ni.

Proof  (←) If yz|x is consistent with Ni then Ni contains three paths of the following 
form: (1) (x0, x1,… , xa) ; (2) (x0, y1,… , yj, yj+1,… , yb) ; and (3) (yj, z1,… , zc) ; such 
that the three paths are vertex-disjoint except for in x0 and yj , the first path does not 
pass through yj , and it holds that xa = x , yb = y , and zc = z.

Let  x� be a vertex on the first path satisfying h(x𝜇−1) > h(yj) ≥ h(x𝜇) . Then 
(s, (x0, y1), … , (x�, yj), (x�, yj, z1), … , (xa, yb, zc)) is a path in Nr

i
.

(→) If there is a path from s to (x,  y,  z) in Nr
i
 , it must be of the form 

(s, (x1, y1), (x2, y2), … , (xq, yq), (xq+1, yq+1, zq+1), … , (xt, yt, zt)) , with xt = x , 
yt = y , and zt = z . By the definitions, we have  x1 → y1 ∈ Ei , xq = xq+1 , yq = yq+1 , 
and  yq → zq+1 ∈ Ei . Define three sequences of vertices from  Ni as follows: 
S1 = (x1, x2,… , xt) , S2 = (y1, y2,… , yt) , and S3 = (zq+1, zq+2,… , zt).

We claim that following the sequences S1 , S2 , and S3 yields three disjoint paths 
in Ni . (This claim is shown below.) The claim and the fact that Nr

i
 contains an edge 

from s to (x1, y1) and an edge from (xq, yq) to (xq+1, yq+1, zq+1) then imply that Ni con-
tains a path from x1 to x, a path from x1 to yq , a path from yq to y, and a path from yq 
to z that make yz|x consistent with Ni.

To prove the claim, we show that the paths obtained by following the sequences 
of vertices listed below are disjoint: 

(a)	 (x1, x2,… , xq) and (y1, y2,… , yq)

(b)	 (xq+1, xq+2,… , xt) , (yq+1, yq+2,… , yt) , and (zq+1, zq+2,… , zt)

(c)	 (x1, x2,… , xq) and (yq+1, yq+2,… , yt)

(d)	 (x1, x2,… , xq) and (zq+1, zq+2,… , zt)

(e)	 (y1, y2,… , yq) and (zq+1, zq+2,… , zt)

(f)	 (y1, y2,… , yq) and (xq+1, xq+2,… , xt)

To prove that the paths obtained by following the sequences in  (a) are disjoint 
we use induction. By the definition of Nr

i
 , we know that xq ≠ yq . For the induc-

tive hypothesis, assume that the paths obtained from (xj+1,… , xq) and (yj+1,… , yq) 
are disjoint. Again by definition, there are two cases: (1)  xj ≠ xj+1 only; and 
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(2)  yj ≠ yj+1 only. For  (1), we have yj = yj+1 and h(xj) ≥ h(yj) , thus for 𝜇 > j + 1 
and y� ≠ yj , we have h(xj) > h(y𝜇) . Together with xj ≠ yj , we can see that xj does 
not appear in (yj,… , yq) . Case (2) can be handled in the same way. Thus, the paths 
from (a) are disjoint.

For (b), the induction proof from the proof of Lemma 2.1 immediately implies 
that the three paths are disjoint.

To show that the paths obtained from  (c) are disjoint, let  j ∈ {1,… , q} be 
the largest index such that xj ≠ xq . We know from the paths in  (b) that  xq = xq+1 
does not appear in (yq+1,… , yt) , so we only need to prove that (x1,… , xj) is dis-
joint from  (yq+1,… , yt) . Because  xj ≠ xq , there exists some � ∈ {1,… , q} such 
that  (xj, y�) → (xq, y�) is in the path from s to  (x,  y,  z). By definition  xj ≠ y� 
and  h(xj) ≥ h(y�) . We consider the following two cases: (1)  h(xj) > h(y𝜇) and 
(2)  h(xj) = h(y�) . In case  (1), because of h(x1),… , h(xj) > h(y𝜇),… , h(yt) , the 
paths from  (c) are disjoint. In case  (2), let g ∈ {1,… , j} be the maximum index 
such that  xg ≠ xj . Since h(xg) > h(xj) = h(y𝜇) , using the same argument as in  (1), 
we have that (x1,… , xg) and (y�,… , yt) are disjoint. It only remains to show that xj 
does not appear in  (y�,… , yt) . If we assume that  xj appears in  (y�,… , yt) then 
because y� ≠ xj , we would have h(y𝜇) > h(xj) , which leads to a contradiction.

For the paths from  (d), similar arguments as in  (c) can be applied since 
yq → zq+1 ∈ Ei , xq = xq+1 , and xq+1 ≠ zq+1.

To show that the paths from  (e) are disjoint, because yq → zq+1 ∈ Ei , we have 
h(y1),… , h(yq) > h(zq+1),… , h(zt) , meaning that the paths from (e) are disjoint.

Finally, to show that the paths from (f) are disjoint, by definition we have xq = xq+1 
and h(yq) ≥ h(xq) . So for every 𝜇 > q + 1 and x� ≠ xq , it holds that h(yq) > h(x𝜇) . 
Since we also have that xq ≠ yq , the paths from (f) are disjoint. 	�  ◻

Corollary 2.4  Let Ni be a given network and r′ a dummy leaf attached to r(Ni) . For 
any two different leaves x and y in Ni that are not r′ , there are two paths from some 
internal vertex z ≠ r(Ni) in Ni to x and y that are disjoint, except for in z, if and only 
if s can reach (r�, x, y) in Nr

i
.

2.1.3 � The Fan Table and the Resolved Table

Given Nf

i
 and Nr

i
 , we define the n × n × n fan table Af

i
 and the n × n × n resolved 

table  Ar
i
 as follows. For any three different leaves  x,  y, and  z,  Af

i
[x][y][z] = 1 

if the fan triplet x|y|z is consistent with  Ni and  Af

i
[x][y][z] = 0 otherwise. 

Similarly,  Ar
i
[x][y][z] = 1 if the resolved triplet x|yz is consistent with  Ni 

and Ar
i
[x][y][z] = 0 otherwise.

With the help of Lemmas 2.1 and 2.3, both Af

i
 and Ar

i
 can be precomputed by 

depth-first traversals (starting from s) of Nf

i
 and Nr

i
 . More precisely, Af

i
[x][y][z] = 1 

if s can reach  (x,  y,  z) in  Nf

i
 and  0 otherwise, and Ar

i
[x][y][z] = 1 if s can 

reach (x, y, z) in Nr
i
 and 0 otherwise.
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Since Nf

i
 and Nr

i
 have O(|Vi|

3) vertices and O(|Vi|
2|Ei|) edges, the time needed 

to build Af

i
 and Ar

i
 by depth-first traversals is O(|Vi|

3 + |Vi|
2|Ei|) = O(|Vi|

2|Ei|).

2.2 � Triplet Distance Computation

Algorithm  1 summarizes the steps for computing the triplet distance between 
two networks N1 and N2 . The main procedure,  D(), uses Equation  (1.1) to calcu-
late D(N1,N2) . It first builds the fan table Af

i
 and the resolved table Ar

i
 for each Ni , 

i ∈ {1, 2} , in a preprocessing step, and then relies on the procedure S() for count-
ing shared triplets. The shared fan triplets and shared resolved triplets are counted 
by iterating over all possible triplets and using the fan and resolved tables to deter-
mine the consistency of any triplet with each of the two networks. The correctness is 
ensured by Lemmas 2.1 and 2.3.

To analyze the running time, building the data structures Nr
i
 and Nf

i
 for i ∈ {1, 2} 

on line  3 takes O(|V1|
2|E1| + |V2|

2|E2|) time. Building the tables  Ar
i
 and  Af

i
 on 
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lines 4’7 requires O(|V1|
2|E1| + |V2|

2|E2|) time as well. After the preprocessing is 
finished, the procedures Sf () and  Sr() take  O(n3) time because each of the 

4

(
n

3

)

= O(n3) triplets can be checked in O(1) time by table lookups. Hence, the 

total running time of the algorithm becomes O(|V1|
2|E1| + |V2|

2|E2| + n3) . By the 
definitions of N and M (see Sect. 1), the time complexity is O(N2M + n3) . We have 
obtained the following theorem:

Theorem 2.5  The triplet distance between two networks N1 and N2 can be computed 
in O(N2M + n3) time.

3 � A Second Approach

In this section, we show how to compute D(N1,N2) in O(M + Nk2d2 + n3) time.
Overview. Algorithm 1 in the previous section computed D(N1,N2) by iterating 

over all possible triplets and using the fan and resolved tables for N1 and N2 to iden-
tify which triplets were consistent with both networks. To refine this idea, for every 
block of Ni , we will define a network of approximately the same size as the block, 
which we call a contracted block network. For every such contracted block network, 
we build a fan and resolved graph and the corresponding fan and resolved table. Fur-
thermore, by replacing the blocks of Ni by single vertices, we obtain a tree structure 
called the block tree. The new algorithm in this section combines the block tree and 
all the fan and resolved tables of the contracted block networks of Ni to efficiently 
determine whether or not any specified triplet is consistent with Ni.

3.1 � Preprocessing

Let Ni be a network. Note that every block B of Ni contains one vertex whose height 
is greater than the heights of all other vertices in B. This vertex will be called the 
root of  B and denoted by  r(B). If B contains only one edge u → v and v ∈ L(Ni) 
then B is called a  leaf block; otherwise, B  is called a non − leafblock . Recall from 
Sect. 1.2 that we assume without loss of generality that: (i) all leaves have in-degree 
at most 1 (so that every leaf has a leaf block); and (ii) the input networks have no 
uninformative blocks. Lemma 3.1 presents an important property of the blocks in Ni.

Lemma 3.1  All blocks of a given network Ni are edge-disjoint.

Proof  For the purpose of obtaining a contradiction, suppose that Ni has two 
different blocks B1 = (V1,E1) and B2 = (V2,E2) that share an edge. Define 
B = (V1 ∪ V2,E1 ∪ E2) . Let U(B1) , U(B2) , and U(B) be the subgraphs of U(Ni) cor-
responding to B1 , B2 , and B. Since U(B1) and U(B2) are connected graphs that share 
an edge, U(B)  is also connected. Furthermore, if any vertex is removed from  B, 



1799

1 3

Algorithmica (2021) 83:1786–1828	

U(B)  will still be connected. Therefore, U(B1)  and U(B2) are not maximal bicon-
nected subgraphs of U(Ni) , which means B1 and B2 are not blocks of Ni . Hence, we 
have reached a contradiction and the lemma follows. 	�  ◻

3.1.1 � The Block Tree

From a high-level perspective, we will remove the cycles in U(Ni) by replacing the 
non-leaf blocks by internal nodes to obtain a rooted tree on the leaf label set L(Ni) . 
A similar idea was previously used by Choy et al. in the proof of Lemma 2 in [14] to 
bound the number of reticulation vertices in a network, and later by Byrka et al. [27] 
to efficiently check if a resolved triplet is consistent with a network. Below, we will 
show that it is also useful for checking if a fan triplet is consistent with a network.

Formally, let Ti = (V �,E�) be a rooted tree, from now on referred to as the block 
tree, with vertex set V ′ and edge set E′ constructed as follows: 

1.	 For every block Bj in Ni , create a vertex bj in Ti.
2.	 Let B1 , B2 be two blocks in Ni with r(B1) ≠ r(B2) . If r(B2) is also a vertex in B1 

then create the edge b1 → b2 in Ti.
3.	 Create a root vertex r in Ti . For every block Bj that has r(Ni) as a root, create the 

edge r → bj in Ti.
4.	 If Bj is a leaf block, rename bj in Ti by the label of the leaf in Bj.

Figure 4 gives an example of a network Ni and its block tree Ti . The set of blocks 
in Ni and the vertex set V � − r(Ti) , i.e., the set of all vertices of Ti except the root, are 
in one-to-one correspondence. An edge b1 → b2 in Ti means that the corresponding 
blocks B1 and B2 in Ni do not have the same root and the root vertex r(B2) is a shared 
vertex between B1 and B2 . Note that by the definition of a block, an edge connecting 
two vertices can define a block of its own (for example, block B9 in Fig. 4).

The following lemma states some properties of Ti.

Lemma 3.2  Let Ti = (V �,E�) be the block tree of a given network Ni . The block tree 
Ti is a rooted tree that has n leaves, |V �| = O(n) , and |E�| = O(n).

Proof  We start by showing that Ti is a rooted tree. Since every edge of Ti is 
directed, Ti is a directed graph. Let U(Ti) be the undirected version of that graph. 
Since U(Ni) is connected, U(Ti) is connected as well according to the construction. 
Next, we prove that Ti is a tree by contradiction. Suppose that U(Ti) has a cycle. 
Then there exists a vertex  b in Ti with in(b) > 1 . If B is the corresponding block 
of b in Ni , this in turn implies the existence of two different blocks B1 and B2 in Ni 
such that r(B) ≠ r(B1) and r(B) ≠ r(B2) , and with r(B) being a vertex in both B1 
and B2 . By the definition of Ni , the root r(Ni) has a path to every vertex in Ni , so 
r(B1) and r(B2) must have a common ancestor. This means that the two blocks B1 and 
B2 could be merged to create an even larger block that contains both of them, contra-
dicting that B1 and B2 are blocks of Ni . Thus, Ti is a rooted tree.
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Next, we count the number of vertices and edges in Ti . By assumption (i) men-
tioned above, there are no leaves with in-degree greater than 1 in Ni . Thus, Ni con-
tains n  leaf blocks and there will be exactly n  leaves in Ti . To count the internal 
vertices in Ti , we distinguish between vertices having in-degree 1 and out-degree 1, 
from now on referred to as extra vertices, and non-extra vertices. First, to count 
the non-extra vertices in Ti , observe that if we were to contract its extra vertices, 
i.e., add an edge from the parent of every such vertex u to the child of u and then 
remove u, we would obtain a tree T ��

i
= (V ��,E��) with n leaves in which every inter-

nal vertex has in-degree 1 and out-degree at least 2. This means that |V ��| = O(n) 
and |E��| = O(n) . Secondly, to count the extra vertices, observe that any extra vertex 

(a)

r
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b12 b13

a10a9a8a7
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a15 a16 a17 a18 a19 a20
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a23
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Fig. 4   a An example network Ni . The blocks containing leaves are highlighted in red. All other blocks 
are colored gray. b The corresponding block tree Ti
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corresponds to an uninformative block in Ni or a non-leaf block of Ni containing 
a single edge. By assumption  (ii) above, Ni  has no uninformative blocks. By the 
definition of a network, Ni has no vertex u with in(u) = out(u) = 1 , so every extra 
vertex in Ti must be the parent of at least one non-extra vertex. Because Ti is a tree, 
no two extra vertices are parents of the same non-extra vertex. If follows that there 
are O(n) extra vertices in Ti . In total, the number of vertices and edges in Ti is given 
by |V �| = O(n) and |E�| = O(n) . 	�  ◻

Since the set of blocks of Ni and the set V � − r(Ti) are in one-to-one correspond-
ence, we also have:

Corollary 3.3  The network Ni contains O(n) blocks.

The following lemma shows that the block tree Ti can be built efficiently:

Lemma 3.4  The block tree Ti = (V �,E�) of a given network Ni can be constructed in 
O(|Ei|) time.

Proof  Constructing Ti when the blocks of Ni are given is performed by scanning the 
vertices of Ni and the list of components that every vertex belongs to, while adding 
edges to Ti according to the definition of V ′ and E′ . This requires O(|Vi|) time. Find-
ing the blocks takes O(|Ei|) time by applying the algorithm by Hopcroft and Tarjan 
in  [16]. Lastly, |Vi| ≤ |Ei| because Ni is a connected graph, so we can build Ti in 
O(|Ei|) time. 	�  ◻

3.1.2 � Contracted Block Networks

Each block in Ni can be viewed as a network, to which we may apply the techniques 
from Sect. 2 for detecting those triplets that are anchored within. To be able to do 
so, we first take each block B, make some adjustments to it as described next, and 
call the resulting network CB the contracted block network of Ni corresponding to 
block B. See Figs. 5 and 6 for an example of the construction.

For a given network Ni , a block B in Ni , and a vertex u in B, initialize Lu
B
 as the set 

of leaves that can be reached from u without using edges in B. For example, for the 
block B shown in Fig. 5, Lv3

B
= {a5, a6, a7, a19} and Lv10

B
= {a15} . Next, construct the 

network CB = (V �,E�) with vertex set V ′ and edge set E′ and update the Lu
B
-sets by 

applying the following operations: 

1.	 Let CB be a copy of Ni.
2.	 Delete every edge and vertex from CB that is not in B.
3.	 For every edge u1 → u2 in CB , if in(u1) = out(u1) = in(u2) = out(u2) = 1 then con-

tract the edge as follows: Let u2 → u3 be the edge outgoing from u2 , create an edge 
u1 → u3 , delete u2 and its two incident edges, and let Lu1

B
= L

u1
B
∪ L

u2
B

.
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4.	 For every vertex uj in CB with Luj
B
≠ ∅ , attach a child leaf sj representing the set of 

leaves Luj
B
 . Also attach another child leaf s′

j
 called a copy leaf, to be used later on 

to count triplets.
5.	 Insert an artificial leaf r′ as a child of the root r(CB).

Observe that every edge between two internal vertices in  CB corresponds 
to a path in  B. For example, the edge v8 → v14 in Fig.  6 corresponds to the path 
(v8, v9, v15, v14) in Fig. 5, while the edge v13 → v14 corresponds to the length-1 path 
(v13, v14).

The following lemma bounds the size of CB:

Lemma 3.5  Let Ni be a network, B a block in Ni , and CB = (V �,E�) the contracted 
block network of Ni that corresponds to block  B. It holds that |V �| = O(kidi + 1) , 
|E�| = O(kidi + 1) , and |L(CB)| = O(kidi + 1).

v1

v2
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v4
v5
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v10

v7

v8
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v11

v12
v13

v14
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a8 a9
a10

a11
a12

a13

a14

a15

a16

a17

a18

a19

v′

a20

v15

Fig. 5   In this example, Ni  is a level-3 network that contains a block B whose vertices are v2, v3,… , v15 
and whose edges are drawn with solid lines. Here, r(B) = v2
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Proof  If ki = 0 then B consists of a single edge of Ni , meaning that CB is a binary 
tree on three leaves (a leaf of the form sj , its copy leaf s′

j
 , and the artificial leaf r′ ). In 

this case, |V �| = 5 , |E�| = 4 , and |L(CB)| = 3.
If ki ≥ 1 , there are two possibilities. If B contains only one edge then CB is a 

binary tree on three leaves as in the case ki = 0 above. Otherwise, proceed as follows 
to derive the bounds. Call a non-reticulation vertex of CB that is the parent of at least 
two internal vertices of CB a branching vertex (e.g., v2 and v7 in Fig. 6), and a non-
reticulation vertex of CB that is the parent of exactly one internal vertex a path vertex 
(e.g., v3 , v5 , v6 , v8 , v10 , and v13 in Fig. 6). We apply a technique from [27] to count the 
branching vertices and note that every branching vertex is the beginning of at least 
one new directed path that has to end at a reticulation vertex. Since each reticulation 
vertex can end at most di such paths and there are at most ki reticulation vertices 
in CB , the number of branching vertices is at most kidi . Every path vertex is the par-
ent of either a branching vertex or a reticulation vertex, and every reticulation vertex 
has at most di parents, so the number of path vertices is at most 2kidi . Therefore, the 
total number of internal vertices is at most ki(3di + 1) . Next, at most two leaves are 
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(a) CB

Fig. 6   The contracted block network  CB for the block  B from Fig.  5. The internal vertices  v3 
and  v4 in  B have been merged in CB , and similarly for  v8,  v9 , and v15 . The set of leaves in CB is 
{si, s

�
i
∶ i ∈ {3, 5, 6, 7, 8, 10, 12, 13, 14}}
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attached to each internal vertex, so |L(CB)| ≤ 2ki(3di + 1) and |V �| ≤ 3ki(3di + 1) . 
As for the edges, there are at most kidi edges ending at reticulation vertices, at most 
kidi edges ending at branching vertices, at most 2kidi edges ending at path vertices, 
and |L(CB)| edges ending at leaves. Adding them together gives |E�| ≤ 10kidi + 2ki.

Hence, the lemma statement holds for every ki ≥ 0 . 	�  ◻

3.1.3 � Constructing All Contracted Block Networks Efficiently

We first introduce some additional notation. For a given network Ni and a block B 
in Ni , a leaf x in Ni is said to associate with B if there exists a vertex u in B such that 
u ≠ r(B) and x ∈ Lu

B
 . As an example, in Fig. 5, the leaf a16 associates with B, but the 

leaves a2 and a3 do not associate with B. For any leaf x associated with a block B 
of Ni , define:

•	 qB(x) : The vertex in B from which there is a path to x that does not use any edges 
in B. That is, x ∈ L

qB(x)

B
.

•	 pB(x) : The leaf in CB representing x.
•	 p�

B
(x) : The copy leaf of pB(x).

For example, in Figs.  5 and  6, qB(a5) = v3 , pB(a5) = s3 , p�B(a5) = s�
3
 , qB(a8) = v4 , 

and pB(a8) = s3.
Lemma  3.1 yields an algorithm for constructing all block networks of  Ni in 

O(|Ei|) time. As shown in the next lemma, by properly relabeling the leaves of Ni 
and using an additional O(n2) time, it is possible to build the block networks so that 
we can subsequently compute, for any block B and any leaf l ∈ L(Ni) , the values 
of qB(l) and pB(l) in O(1) time.

Lemma 3.6  For any network Ni , all the contracted block networks of Ni can be com-
puted in O(|Ei| + n2) time, after which qB(l) and pB(l) for any block B and any leaf 
l ∈ L(Ni) can be retrieved in O(1) time.

Proof  Perform the following steps: 

1.	 Identify all the blocks of Ni . Let B1 … ,Bs be the blocks of Ni and let the cor-
responding vertex sets be V(B1),… ,V(Bs) . Note that for every j ∈ {1,… , s} , it 
holds that V(Bj) ⊆ Vi.

2.	 The leaves of Ni are relabeled as follows. A leaf receives the label i, where 
i ∈ {1, 2,… , n} , if it is the i − th leaf in order that is discovered by a depth-first 
traversal of Ni . This traversal starts from r(Ni) . Let u be a vertex in Ni and part of 
the blocks B1,… ,Bj . Let B′ be the block from B1,… ,Bj , such that r(B�) has the 
largest height among all roots of B1,… ,Bj . During the traversal, every child u′ 
of u that is not part of B′ is visited first. This is to ensure that the labels in Lu

B′ are 
consecutive and defined by a range of numbers [uleft, uright].
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3.	 For every j ∈ {1,… , s} the process of building CBj
= (Vj,Ej) is initialized as fol-

lows. Set Vj = V(Bj) . For every edge u → v in Ei , if both u and v are in Vj then add 
that edge to Ej . Finally, for any vertex u1 in Vj , if L

u1
Bj
≠ ∅ create the leaf s1 repre-

senting Lu1
Bj

 , the copy leaf s′
1
 , add the edges u1 → s1 and u1 → s′

1
 to Ej , and set 

QBj
[l] = u1 for every l ∈ {uleft,… , uright}.

4.	 For every j ∈ {1,… , s} the edges of CBj
 are contracted, following the definition 

of a contracted block network. While performing the contraction, for 
every  j ∈ {1,… , s} , we build the table  PBj

[1,… , n] , defined so that for 
every l ∈ {1,… , n} we have PBj

[l] = pBj
(l) . The value of PBj

[l] is updated once 
the final set in which the leaf l will reside has been determined. After contracting 
all the edges, we also add the artificial leaf r′

j
.

Step  1 is performed by using the algorithm from [16], which takes O(|Ei|) time. 
Step  2 is performed by a depth-first traversal of  Ni , thus requiring  O(|Ei|) 
time as well. Since the blocks of Ni are edge-disjoint (see Lemma  3.1), we 
have 

∑s

j=1
�Ej� ≤ �Ei� , thus the time spent on adding and contracting vertices and 

edges in steps 3 and 4 is O(|Ei|) . For every contracted block network CB , we spend 
O(n) time to update the Q- and P-tables. By Corollary 3.3, there are O(n) blocks, so 
the time needed to update every Q- and P-table is O(n2) . Hence, the total time taken 
is O(|Ei| + n2) . 	�  ◻

Finally, for any block B in Ni , we denote the fan graph of its contracted block 
network CB by Cf

B
 and the resolved graph of CB by Cr

B
 . Moreover, we let Af

B
 be the fan 

table of CB and Ar
B
 the resolved table of CB . The following lemma bounds the time 

required to build Cf

B
 , Cr

B
 , Af

B
 , and Ar

B
 for all the blocks of a network Ni.

Lemma 3.7  Given a network Ni and all of its contracted block networks, building Cf

B
 , 

Cr
B
 , Af

B
 , and Ar

B
 for every block B of Ni takes O(|Vi|(k

2
i
d2
i
+ 1)) time in total.

Proof  We simply apply the method from Sect. 2 to each contracted block network. 
To analyze the time that this will take, let {B1,B2,… ,Bt} be the blocks in Ni . For 
each block Bx in Ni , let b(x) be the number of vertices in Bx , c(x)  the number of 
vertices in the contracted block network CBx

 , and e(x)  the number of edges in the 
contracted block network CBx

.
We first express the total size of the contracted block networks in terms of  N. 

When CBx
 is constructed from Bx , each vertex in Bx will either be deleted or remain 

and introduce at most two leaves, so c(x) ≤ 3 ⋅ b(x) . Next, since the blocks decom-
pose Ni into edge-disjoint subgraphs by Lemma 3.1, and the total number of times 
that blocks overlap each other is equal to the number of edges E′ in the block tree Ti , 
we have 

t∑

x=1

b(x) ≤ �Vi� + �E�� . By Lemma  3.2, |E�| = O(n) . Then, using n ≤ |Vi| 

gives 
t∑

x=1

c(x) ≤ 3 ⋅
t∑

x=1

b(x) = O(�Vi�).

Now, we analyze the total time for all the blocks. According to Sect. 2, building 
each  Cf

Bx
 , Cr

Bx
 , Af

Bx
 , and Ar

Bx
 takes O(c(x)2e(x)) time. The total time is thus 
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t∑

x=1

O(c(x)2e(x)) . Lemma 3.5 says that c(x) = O(kidi + 1) and e(x) = O(kidi + 1) , so 

we can rewrite the total time needed as 
O(

t∑

x=1

(kidi + 1)2c(x)) = O((kidi + 1)2
t∑

x=1

c(x)) = O(�Vi�(k
2
i
d2
i
+ 1)) . 	�  ◻

3.2 � Checking If a Triplet is Consistent with a Network

Sections  3.2.1 and  3.2.2 below describe how to determine if any given fan or 
resolved triplet, respectively, is consistent with Ni in O(1)  time, assuming that the 
data structures from Sect. 3.1 have already been built.

A more precise definition of triplet consistency that can associate specific loca-
tions in the network to triplets that are consistent with it will be needed in this sec-
tion. Let B be a block of a network Ni . We say that x|y|z is a fan triplet consistent 
with B if and only if there exists a vertex u in B such that there are three directed 
paths in Ni from u to x, from u to y, and from u to z that are disjoint except for in u. 
We also say that x|y|z is rooted at u in B. Since u belongs to Ni , this means that x|y|z 
is rooted at  u in Ni as well. Next, we say that xy|z is a resolved triplet consistent 
with B if and only if there exist two vertices u and v ( u ≠ v ) in B such that there are 
four directed paths in Ni from u to v, from v to x, from v to y, and from u to z that 
are disjoint except for in u and v, and the path from u to z does not pass through v. 
Moreover, we say that xy|z is rooted at u and v in B and in Ni.

Observe that if x|y|z is a fan triplet consistent with a block B, then it is also con-
sistent with Ni . In the same way, if xy|z is a resolved triplet consistent with B, it is 
also consistent with Ni.

3.2.1 � Checking a Fan Triplet

First, we show how to determine if a given fan triplet x|y|z is consistent with a given 
block B (Lemma 3.8). The procedure, named IsFanInBlock, requires that the lowest 
common ancestor (in the block tree Ti ) of x and y, the lowest common ancestor of x 
and z, and the lowest common ancestor of y and z are the same, and that this node 
corresponds to the block B being examined.

After that, the procedure IsFanInBlock is used as a subroutine in another proce-
dure, named IsFan, to determine if a given fan triplet x|y|z is consistent with a net-
work (Lemma 3.9). Whenever IsFanInBlock’s requirement on the lowest common 
ancestors cannot be met, IsFan instead considers the different cases for the locations 
of the lowest common ancestor of every pair (x, y), (x, z), and (y, z) in Ti . Since every 
vertex in Ti except r(Ti) corresponds to a block in Ni , it can then apply the available 
data structures to determine if Ni has the necessary disjoint paths.
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Lemma 3.8  Let Ni be a given network and Ti its block tree, and suppose that the 
preprocessing from Lemma 3.7 has been performed on Ni . Consider any x, y, z ∈ Λ 
such that the lowest common ancestor of every pair (x, y), (x, z), and (y, z) is a node 
w in Ti . If w ≠ r(Ti) , Algorithm 2 determines whether or not the fan triplet x|y|z is 
consistent with the block B in Ni corresponding to w in O(1) time.

Proof  For every l ∈ {x, y, z} , we let  pl = pB(l) , p�l = p�
B
(l) , ql = qB(l) , and hl be the 

height of ql in Ni . By construction (see Lemmas 3.4 and 3.6), we know that px , py , 
and pz are not the root of CB . The algorithm uses the tables Q and P to check all the 
possible cases for the values of px , py , pz , qx , qy , and qz , and return a true or false 
value, indicating a positive and a negative answer respectively. We have the follow-
ing cases: 

1.	 px = py = pz : 
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(a)	 hx = hy = hz : We have qx = qy = qz and x|y|z is rooted at qx . Hence, x|y|z is 
consistent with B (e.g., a5|a6|a7 in Fig. 5).

(b)	 ((hx = hy) ∧ (hx > hz)) ∨ ((hx = hz) ∧ (hx > hy)) ∨ ((hy = hz) ∧ (hy > hx))  . 
W.l.o.g., assume true for ((hx = hy) ∧ (hx > hz)) : Then, we have 
qx = qy ∧ qx ≠ qz and x|y|z is rooted at qx . Hence, x|y|z is consistent with B 
(e.g., a5|a6|a8 in Fig. 5).

(c)	 hx ≠ hy ≠ hz : Then qx ≠ qy ≠ qz , thus x|y|z is not consistent with B (e.g., 
a13|a14|a20 in Fig. 5).

2.	 ((px = py) ∧ (px ≠ pz)) ∨ ((px = pz) ∧ (px ≠ py)) ∨ ((py = pz) ∧ (py ≠ px)) . W.l.o.g., 
assume true for (px = py ∧ px ≠ pz) : 

(a)	 hx = hy : We have qx = qy . If p′x|px|pz is a fan triplet in CB , then x|y|z is rooted 
at qx , thus x|y|z is consistent with B (e.g., a8|a9|a15 in Fig. 5). If p′

x
|px|pz is 

not a fan triplet in CB , x|y|z is not rooted at any vertex in B, thus x|y|z is not 
consistent with B (e.g., a8|a9|a11 in Fig. 5).

(b)	 hx ≠ hy : Then qx ≠ qy and either qx or qy was contracted when creating CB . 
Moreover, both x and y are now in the set of leaves defined by px . Since we 
also have pz ≠ px , the triplet x|y|z is not consistent with B (e.g., a7|a8|a15 in 
Fig. 5).

3.	 px ≠ py ≠ pz : If px|py|pz is consistent with CB , then there exists a vertex u in B 
such that x|y|z is rooted at u. Hence, x|y|z is consistent with B (e.g., a8|a11|a16 in 
Fig. 5). If px|py|pz is not consistent with CB, x|y|z is not rooted at any vertex in B, 
thus x|y|z is not consistent with B (e.g., a14|a16|a17 in Fig. 5).

In every case above, testing if a fan triplet is consistent with CB translates to finding 
a path that starts from s in Cf

B
 and ends in a vertex of Cf

B
 defined by the leaves of the 

fan triplet. Hence, every case can be handled in O(1) time. In Algorithm 2, the above 
cases are summarized in a procedure. 	�  ◻
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Lemma 3.9  Let Ni be a given network and Ti its block tree, and suppose that the 
preprocessing from Lemma 3.7 has been performed on Ni . For any x, y, z ∈ Λ , Algo-
rithm 3 determines whether or not the fan triplet x|y|z is consistent with Ni in O(1) 
time.

Proof  For a block B of Ni and a vertex u in B that can reach a leaf x of Ni , define hB(x) 
to be the height of qB(x) in Ni . In Algorithm 3 we have the procedure for testing the 
consistency of the fan triplet x|y|z. It considers the following cases: 

1.	 x|y|z is consistent with Ti : Let w be the lowest common ancestor of x, y, and z in 
Ti . 
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(a)	 w = r(Ti) : x|y|z is rooted at r(Ni) , thus x|y|z is consistent with Ni 
(e.g., a23|a9|a20 in Fig. 4).

(b)	 w ≠ r(Ti) : w corresponds to a block B in Ni , thus we use Lemma 3.8 to 
determine if x|y|z is consistent with B. If x|y|z is consistent with B, then 
it is also consistent with Ni . If x|y|z is not consistent with B, then it is not 
consistent with Ni (e.g., a3|a9|a12 in Fig. 4).

2.	 xy|z ∨ xz|y ∨ yz|x is consistent with Ti . Assume w.l.o.g. that xy|z is consistent 
with Ti . Let w = lca(x, y) in Ti and � = lca(x, z) in Ti , and let B be the block in Ni 
corresponding to w and F the block in Ni corresponding to � : 

(a)	 � is not the parent of w in Ti : then x|y|z is not rooted at any vertex in Ni , thus 
x|y|z is not consistent with Ni (e.g., a2|a4|a13 in Fig. 4).

(b)	 � is the parent of w in Ti . By the definition of Ti , B is rooted at a vertex u of 
F that is not r(F): 

	 i.	 (pB(x) = pB(y)) : then x|y|z is not rooted at any vertex in Ni , thus x|y|z 
is not consistent with Ni (e.g., a2|a3|a4 in Fig. 4).

	 ii.	 (pB(x) ≠ pB(y)) ∧ (� = r(Ti)) : If r�|pB(x)|pB(y) is consistent with CB , 
where r′ is the dummy leaf in CB (see Corollary 2.2), then x|y|z is 
rooted at r(Ni) , thus x|y|z is consistent with Ni (e.g., a1|a11|a15 in 
Fig. 4). Otherwise, x|y|z is not rooted at any vertex in Ni , thus x|y|z 
is not consistent with Ni (e.g., a12|a13|a15 in Fig. 4).

	 iii.	 (pB(x) ≠ pB(y)) ∧ (� ≠ r(Ti)) : 

A.	 (pF(x) = pF(z)) ∧ (hF(z) ≤ hF(x)) : Since B is rooted at a vertex of F, 
we have qF(x) = qF(y) , thus hF(x) = hF(y) . Using Corollary 2.2, if 
r�|pB(x)|pB(y) is a fan triplet in CB , where r′ is the dummy leaf in 
CB , then x|y|z is rooted at qF(x) , thus x|y|z is a fan triplet in Ni (e.g., 
a1|a4|a8 in Fig. 4). Otherwise, x|y|z is not rooted at any vertex in Ni , 
thus x|y|z is not consistent with Ni (e.g., a1|a24|a8 in Fig. 4).

B.	 (pF(x) = pF(z)) ∧ (hF(z) > hF(x)) : Since B is rooted at a vertex of F, 
we have qF(x) = qF(y) and hF(x) = hF(y) . Hence, x|y|z is not consist-
ent with Ni (e.g., a1|a4|a21 in Fig. 4).

C.	 pF(x) ≠ pF(z) : Using Corollary 2.2, if r�|pB(x)|pB(y) is a fan triplet 
in CB , where r′ is the dummy leaf in CB , and pF(x)|p�F(x)|pF(z) is a 
fan triplet in CF , then x|y|z is rooted at qF(x) . Hence, x|y|z is consist-
ent with Ni (e.g., a1|a4|a9 in Fig. 4). Otherwise, x|y|z is not rooted at 
any vertex of Ni , thus x|y|z is not consistent with Ni (e.g., a1|a4|a12 
in Fig. 4).

	�  ◻
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3.2.2 � Checking a Resolved Triplet

The strategy for determining if a given resolved triplet xy|z is consistent with a 
network is analogous to the case of fan triplets just described. The procedure 
IsResolvedInBlock (see Lemma 3.10) first considers consistency with a block B 
in the case where it holds in the block tree Ti that the lowest common ancestor 
of x and y, the lowest common ancestor of x and z, and the lowest common ances-
tor of  y and  z are the same. Next, the procedure IsResolved (see Lemma  3.11) 
uses IsResolvedInBlock and the available data structures to take care of the gen-
eral case.

Lemma 3.10  Let Ni be a given network and Ti its block tree, and suppose that the 
preprocessing from Lemma 3.7 has been performed on Ni . Consider any x, y, z ∈ Λ 
such that the lowest common ancestor of every pair (x, y), (x, z), and (y, z) is a node 
w in Ti . If w ≠ r(Ti) , Algorithm 4 determines whether or not the resolved triplet xy|z 
is consistent with the block B in Ni corresponding to w in O(1) time.

Proof  Like in the case of fan triplets in Lemma  3.8, for every  l ∈ {x, y, z} , we 
let pl = pB(l) , p�l = p�

B
(l) , ql = qB(l) , and hl be the height of ql in Ni . By construction 

(see Lemmas 3.4 and 3.6), we know that px , py , and pz are not the root of CB . The 
algorithm uses the tables Q and P to check all the possible cases for the values of 
px , py , pz , qx , qy , and qz , and return a true or false value, indicating a positive and a 
negative answer respectively. We have the following cases: 
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1.	 px = py = pz : 

1.	 (hz > hx) ∧ (hz > hy) . W.l.o.g., let hx ≥ hy : Then, xy|z is rooted at qz and qx , 
thus xy|z is a resolved triplet in B (e.g., a8a9|a6 in Fig. 5).

2.	 (hz ≤ hx) ∨ (hz ≤ hy) : Because px = py = pz , xy|z is not rooted at any pair of 
vertices in B, thus xy|z is not consistent with B (e.g., a8a6|a9 in Fig. 5).

3.	 (px = py) ∧ (px ≠ pz) . W.l.o.g., assume hx ≥ hy : If p′xpx|pz is consistent with CB , 
there exists u ≠ qx in B such that xy|z is rooted at u and qx in B. Hence, xy|z is 
consistent with B (e.g., a5a8|a17 in Fig. 5). If p′

x
px|pz is not consistent with CB , xy|z 

is not rooted at any pair of vertices in B, thus xy|z is not consistent with B (e.g., 
a5a8|a15 in Fig. 5).

4.	 ((px = pz) ∧ (px ≠ py)) ∨ ((py = pz) ∧ (py ≠ px)) . W.l.o.g., assume (px = pz) ∧ (px ≠ py) : 

1.	 hz > hx : If p′x|px|py is a fan triplet in CB , then xy|z is rooted at qz and qx , 
thus xy|z is consistent with B (e.g., a14a17|a13 in Fig. 5). If p′

x
|px|py is not 

consistent with CB, xy|z is not rooted at any pair of vertices in B, thus xy|z is 
not consistent with B (e.g., a14a16|a13 in Fig. 5.).

2.	 hz ≤ hx : Since px = pz , the resolved triplet xy|z cannot be consistent 
with B (e.g., a14a17|a20 in Fig. 5).

3.	 px ≠ py ≠ pz : If pxpy|pz is consistent with CB , then there exist two different verti-
ces u, v in B such that xy|z is rooted at u and v, thus xy|z is consistent with B (e.g., 
a12a13|a18 in Fig. 5). If pxpy|pz is not consistent with CB , xy|z is not rooted at any 
pair of vertices in B, thus xy|z is not consistent with B (e.g., a12a18|a13 in Fig. 5).

Similarly to fan triplets, testing if a resolved triplet is consistent with CB translates to 
finding a path that starts from s in Cr

B
 and ends in a vertex of Cr

B
 defined by the leaves 

of the resolved triplet. Hence, every case can be handled in O(1) time. Algorithm 4 
summarizes the above cases in a procedure. 	� ◻
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Lemma 3.11  Let Ni be a given network and Ti its block tree, and suppose that the 
preprocessing from Lemma 3.7 has been performed on Ni . For any x, y, z ∈ Λ , Algo-
rithm 5 determines whether or not the resolved triplet xy|z is consistent with Ni in 
O(1) time.

Proof  For a block B of Ni and a vertex u in B that can reach a leaf x of  Ni , 
define hB(x) to be the height of qB(x) in Ni . In Algorithm 5 we have the procedure for 
testing the consistency of the resolved triplet xy|z. We consider the following cases, 
which are similar to the cases for fan triplets in Lemma 3.9: 

1.	 x|y|z is consistent with Ti : Let w be the lowest common ancestor of x, y, and z in Ti . 
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(a)	 w = r(Ti) : xy|z is not rooted at any pair of vertices in Ni , thus xy|z is not 
consistent with Ni (e.g., a23a9|a20 in Fig. 4).

(b)	 w ≠ r(Ti) : w corresponds to a block B in Ni , thus we use Lemma 3.10 to 
determine if xy|z is consistent with B. If xy|z is consistent with B, then it is 
also consistent with Ni . If xy|z is not consistent with B, then it is not consist-
ent with Ni (e.g., a1a9|a12 in Fig. 4).

2.	 xy|z ∨ xz|y ∨ yz|x is consistent with Ti . Assume w.l.o.g. that xy|z is consistent 
with Ti . Let w = lca(x, y) in Ti and � = lca(x, z) in Ti , and let B be the block in Ni 
corresponding to w and F the block in Ni corresponding to � : 

(a)	 � is not the parent of w in Ti : then there exists a vertex u in B and a vertex v 
in F such that xy|z is rooted at v and u, thus xy|z is consistent with Ni (e.g., 
a2a4|a13 in Fig. 4).

(b)	 � is the parent of w in Ti . By the definition of Ti , B is rooted at a vertex u of 
F that is not r(F). We consider the following cases: 

	 i.	 pB(x) = pB(y) : W.l.o.g., assume hB(x) > hB(y) . Then, xy|z is root-
ed at either r(B) and qB(x) , or qF(z) and qB(x) , or r(F) and qB(x) . 
Hence, xy|z is consistent with Ni (e.g., a2a3|a4 in Fig. 4).

	 ii.	 (pB(x) ≠ pB(y)) ∧ (� = r(Ti)) : Using Corollary 2.4, if we have that 
pB(x)pB(y)|r

� is consistent with CB , where r′ is the dummy leaf in 
CB , then there exists a vertex u in B such that xy|z is rooted at r(Ni) 
and u. Hence, xy|z is consistent with Ni (e.g., a11a13|a15 in Fig. 4). 
Otherwise, xy|z is not rooted at any pair of vertices in Ni , thus xy|z 
is not consistent with Ni (e.g., a1a13|a15 in Fig. 4).

	 iii.	 (pB(x) ≠ pB(y)) ∧ (� ≠ r(Ti)) : 

A.	 (pF(x) = pF(z)) ∧ (hF(z) ≤ hF(x)) : Since B is rooted at a vertex of F, 
we have qF(x) = qF(y) , thus hF(x) = hF(y) . Using Corollary 2.4, if 
pB(x)pB(y)|r

� is consistent with CB , where r′ is the dummy leaf in CB , 
then there exists a vertex u in B such that xy|z is rooted at qF(x) and 
u. Hence, xy|z is consistent with Ni (e.g., a1a4|a8 in Fig. 4). Other-
wise, xy|z is not rooted at any pair of vertices in Ni , thus xy|z is not 
consistent with Ni (e.g., a1a25|a22 in Fig. 4).

B.	 (pF(x) = pF(z)) ∧ (hF(z) > hF(x)) : Since B is rooted at a vertex of F, 
we have qF(x) = qF(y) and hF(x) = hF(y) . Then, there exists a vertex 
u in B such that xy|z is rooted at qF(z) and u, thus xy|z is consistent 
with Ni (e.g., a1a4|a21 in Fig. 4).

C.	 pF(x) ≠ pF(z) : Using Corollary 2.4, if pB(x)pB(y)|r� is consistent with 
CB , where r′ is the dummy leaf in CB , then there exists a vertex u 
in B such that xy|z is rooted at either r(B) and u, or qF(z) and u, or 
r(F) and u. If pF(x)p�F(x)|pF(z) is consistent with CF , then w.l.o.g. if 
hF(x) > hF(y) we have that xy|z is rooted at some vertex u of F and 
qF(x) . In both cases, xy|z is consistent with Ni (e.g., a1a4|a12 in Fig. 4). 
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If both cases are false, xy|z is not rooted at any pair of vertices in Ni , 
thus xy|z is not consistent with Ni (e.g., a1a25|a26 in Fig. 4).

	�  ◻

3.3 � Triplet Distance Computation

Our second algorithm for computing the triplet distance between two given net-
works N1 and N2 is listed in Algorithm 6. It has the same basic structure as the algo-
rithm in Sect. 2.2, but it applies the procedures presented in Sect. 3.2.1 and 3.2.2 to 
check triplet consistency. The main procedure is named D(). In the preprocessing 
step, for i ∈ {1, 2} , the algorithm builds the block tree Ti , an n × n table for Ti in 
order to later answer lowest common ancestor queries between pairs of leaves in Ti 
in O(1) time, all the contracted block networks of Ni , and finally, for every block B, 
the fan graph Cf

B
 and the resolved graph Cr

B
 as well as the corresponding Af

B
 - and 

Ar
B
-tables for the contracted block network CB . The algorithm then calls the proce-

dure S() to count shared fan and resolved triplets, which is done by enumerating all 
possible triplets and calling IsFan and IsResolved to see which of them are consist-
ent with both N1 and N2 . The final answer is calculated according to Equation (1.1).
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From Lemma 3.4, computing T1 and T2 requires O(|E1| + |E2|) time. Building 
the two tables for answering lowest common ancestor queries in T1 and T2 takes 
O(n2) time by bottom-up traversals. From Lemma 3.6, constructing all the con-
tracted block networks requires O(|E1| + |E2| + n2) time. From Lemma  3.7, the 
total time required to build Cf

B
 , Cr

B
 , Af

B
 , and Ar

B
 for every block B of N1 and N2 

is O(|V1|(k
2
1
d2
1
+ 1) + |V2|(k

2
2
d2
2
+ 1)) . Since |Vi| = O(|Ei|) , the preprocessing time 

sums up to O(|E1| + |E2| + |V1|k
2
1
d2
1
+ |V2|k

2
2
d2
2
+ n2).

Using Lemmas 3.9 and 3.11, after the preprocessing step we can determine the 
consistency of a triplet with N1 or N2 in O(1) time. Since the number of triplets 

that need to be checked is exactly 4
(
n

3

)

 , the total running time of the algorithm 

is O(|E1| + |E2| + |V1|k
2
1
d2
1
+ |V2|k

2
2
d2
2
+ n3) . Using the definitions of  N, M, k, 

and  d from Sect.  1, the running time can be expressed as O(M + Nk2d2 + n3) . 
Hence, we obtain the following theorem:
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Theorem  3.12  The triplet distance between two networks N1 and N2 can be com-
puted in O(M + Nk2d2 + n3) time.

4 � Implementation and Experiments

This section presents the implementations of the two algorithms from Sects. 2 and 3, 
and experimental results demonstrating their practical performance. Both simulated 
and real datasets were used in the experiments.

4.1 � Algorithm Implementation

From here on, the algorithm from Sect. 2 will be referred to as NTDfirst and the 
algorithm from Sect. 3 as NTDsecond. Both algorithms were implemented in the 
C++ programming language and the source code is publicly available at:

https://github.com/kmampent/ntd

Since no other implementations for computing the rooted triplet distance between 
two networks of arbitrary levels are available, the correctness of our program code 
was verified by trying a large number of pairs of input networks under varying 
parameters and making sure that the output of NTDfirst (which is simple to imple-
ment) was identical to the output of NTDsecond in all cases.

4.2 � The Setup

The experiments were performed on a machine with 16GB RAM and Intel(R) 
Core(TM) i5-3470 CPU @ 3.20GHz. The operating system was Ubuntu 16.04.2 
LTS, and the compiler used was g++ 5.4 with cmake 3.11.0.

4.3 � Experiment 1: Performance

The first set of experiments were designed to measure the running times and mem-
ory usage of our implementations of NTDfirst and NTDsecond. To do so system-
atically, we used simulated datasets. The Input. Given three parameters n, p, and e, 
where n ≥ 1 is an integer, 0 ≤ p ≤ 1 , and e ≥ 0 is an integer, an input network N′ 
was built according to the following method:

•	 Generate a random rooted binary tree T with n leaves in the uniform model [29].
•	 For each internal vertex w in T except r(T), contract the edge between the parent 

of w and w with probability p.
•	 For each vertex w in T, let d(w) be the number of edges on the path from r(T) 

to w. Let N� = T .
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•	 Until e edges have been added or it is impossible to add any more edges: Add 
an edge between two vertices in N′ chosen uniformly at random, under the con-
straint that an edge u → v is created in N′ only if d(u) < d(v) . (In other words, if 
the total number of edges that can be added is y and y < e , then only add those 
y edges.)

Experimental Results. We applied NTDfirst and NTDsecond to pairs of net-
works generated with the method above for varying values of n, p, and e, and meas-
ured their running times and memory usage. In the graphs shown below, every data 
point corresponds to the average taken over 30 runs with a set of fixed parameters. 
Reticulation events are typically rare in nature [30], so we used relatively small val-
ues for e, i.e., e ≤ 50 when n ≤ 500 , to make the experiments more realistic.

The results of Experiment 1 are reported below. 

1.	 The two algorithms’ running times and memory usage increase as n increases 
according to the plots in Figs. 7 and 8. The first figure shows the CPU time in 
seconds taken when p = 0 and e ∈ {10, 20, 30, 40, 50} . For NTDfirst we used 
10 ≤ n ≤ 230 , and for NTDsecond we used 10 ≤ n ≤ 500 . Space is the reason 
behind the restrictions on n. As can be seen in Fig. 8a, at n = 230 the memory 
usage of NTDfirst is getting close to the limit of the available 16GB RAM. 
When n ≥ 240 , the memory requirements exceed the limit, and the operating 
system initiates highly time-consuming communication with the disk.

2.	 Both algorithms take more time as the parameter e increases due to the additional 
edges in the generated networks, with NTDsecond suffering more than NTD-
first. Again, see Fig. 7. The explanation for this behavior is as follows. The main 
purpose of extending the algorithm from Sect. 2 in Sect. 3 was to avoid having 
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Fig. 7   The running times of NTDfirst and NTDsecond for increasing values of n and with p = 0 and 
e ∈ {10, 20, 30, 40, 50}
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to build the highly time- and memory-consuming fan and resolved graph on the 
entire input network, and instead build several such graphs on smaller blocks. 
Figure 9 shows that a larger value of e implies a higher level k as well as fewer 
non-leaf blocks in N′ , which in turn implies more time spent by NTDsecond 
building the fan and resolved graphs. An extreme situation is when e is so large 
that N′ has a really small number of non-leaf blocks, one of which is roughly as 
large as N′ itself. Then, given that the preprocessing of NTDsecond is more 
complex than that of NTDfirst, NTDsecond will be slower than NTDfirst. 

NTDfirst, p=0

9

12

15

190 200 210 220 230
n

sp
ac

e 
(G

B
)

e 10 20 30 40 50

(a)

NTDsecond, p=0

0

3

6

9

12

0 100 200 300 400 500
n

sp
ac

e 
(G

B
)

e 10 20 30 40 50

(b)

Fig. 8   The memory usage of the two algorithms for increasing values of  n and with p = 0 and 
e ∈ {10, 20, 30, 40, 50} , as reported by the Maximum Resident Size parameter when calling the execut-
able of each algorithm with /usr/bin/time -v 
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Fig. 9   The effect of e and n on k (the generated network’s level) and the amount of non-leaf blocks



1820	 Algorithmica (2021) 83:1786–1828

1 3

An example of where this happens can be found in Fig. 10a when the parameters 
are n = 90 , p = 0 , and e = 50.

	   In contrast, when p is large, e.g., p = 0.8 in Fig. 10b, the effect of e on the run-
ning times is small. This holds especially for NTDsecond. There will be fewer 
internal vertices in the generated networks, which means that the number of edges 
that can be added decreases as well.

3.	 The effect of the parameter p on the relative running times of the two algorithms 
is shown in Fig. 11. In general, the difference in the two algorithms’ running 
times becomes smaller as the value of p increases. For certain combinations of 
the parameters such as n = 90 , p = 0 , and e = 50 in Fig. 11c, NTDfirst is faster 
than NTDsecond, as observed earlier.

4.4 � Experiment 2: Limitations of the Rooted Triplet Distance

The second set of experiments applied the algorithms to real datasets. The goal was 
to see how informative the current definition of the rooted triplet distance is in prac-
tice when comparing phylogenetic networks, and to investigate any potential short-
comings. The Input. For the real datasets, we borrowed six networks from Table S4 
in [31] that describe biologically motivated alternative ‘scenarios’ for the evolution-
ary history of the Viola genus. They are named NA , NB , NC , ND , NE , and NF below. 
The first five networks correspond to the five scenarios A, B, C, D, and E in [31], 
and NF is “Scenario E, CHAM and MELVIO resolved”, which is actually the same 
as scenario E but with two of the subclades (overlapping subtrees) expanded.

p=0

0

5

10

15

20

50 90 130 170 210
n

di
ffe

re
nc

e 
in

 c
pu

 ti
m

e 
(s

ec
on

ds
)

e 10 20 30 40 50

(a)

p=0.8

0.0

2.5

5.0

7.5

50 90 130 170 210
n

di
ffe

re
nc

e 
in

 c
pu

 ti
m

e 
(s

ec
on

ds
)

e 10 20 30 40 50

(b)

Fig. 10   The running time of NTDfirst minus the running time of NTDsecond for 
e ∈ {10, 20, 30, 40, 50} and p ∈ {0, 0.8} . a Observe that when n = 90 , p = 0 , and e = 50 , the difference 
is negative, which means NTDfirst is faster than NTDsecond. b When p is large (like the case p = 0.8 
shown here), the number of edges that can be added to the generated networks is small and the differ-
ences in running times for varying values of e less significant
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Only two of the six networks are shown here; the network NB is displayed in 
Fig. 12a, and ND in Fig. 12b. For the other four networks’ branching structures, the 
reader is referred to Table S4 in [31].

The networks in Table S4 in [31] were inferred from a set of multilabeled trees. 
(A multilabeled tree is a generalization of a phylogenetic tree in which identical leaf 
labels are allowed to occur more than once.) The method that was used to construct 
the networks is explained in detail in Step 3 (“Inference of the Most Parsimonious 
Network from Multilabeled Gene Trees”) in the Materials and Methods-section 
of  [31]. Table S4 in  [31] also provides these multilabeled trees. In order to repre-
sent the multilabeled trees as distinctly leaf-labeled trees as well, [31]  replaced 
any repeated leaf label x by unique leaf labels of the form x.1, x.2,… , x.i ; e.g., one 
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Fig. 11   The effect of different values of  p on the running time of NTDfirst minus the running time 
of NTDsecond, for e ∈ {10, 30, 50} . When n = 90 , p = 0 , and e = 50 , NTDfirst is faster than NTD-
second 
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occurrence of the leaf label Tridens was changed to Tridens.1, another one to 
Tridens.2, another one to Tridens.3, and so on. These (distinctly leaf-labeled) 
trees were also considered in our experiments and are referred to as TA , TB , TC , TD , 
TE , and TF.

The size of the leaf label set of TA , TB , TC , TD , TE , and TF is 16, 20, 21, 21, 22, and 
50 leaves, respectively. For every s ∈ {A,B,C,D,E} , Ns contains 8 leaves, and NF 
contains 16 leaves. Note that for all s ∈ {A,B,C,D,E,F} , the number of leaf labels 
in Ts is larger than than the number of leaf labels in Ns due to the leaf relabeling pro-
cess just described to obtain distinctly leaf-labeled trees.

In our implementations, the input trees are represented in standard Newick format 
and the input networks in extended Newick format [32]. We employ the graph-the-
oretic standard adjacency list to store the input networks, making it easy to support 
different input formats at the same time.

Experimental Results. We used the trees  Ts and networks  Ns , where 
s ∈ {A,B,C,D,E,F} , from Table  S4 in  [31], as explained above. In the experi-
ments, we computed the rooted triplet distance between each  Ts and  Ns 
and also between pairs of these networks. According to Equation  (1.1), 
D(Ts,Ns) = S(Ts, Ts) + S(Ns,Ns) − 2S(Ts,Ns) . To make L(Ts) = L(Ns) when com-
puting D(Ts,Ns) , if a leaf x in Ns appeared as several leaves  x.1,… , x.i in Ts then 
we replaced x in Ns by leaves labeled x.1,… , x.i , attaching each of them as a child 
of the parent of x. The maximum time spent by any of our algorithms was when 
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Fig. 12   The networks NB and ND from [31]
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computing D(TF,NF) , with NTDfirst requiring only 0.18 seconds to run and NTD-
second 0.05 seconds.

Our findings are summarized in Tables  2 and  3. By inspecting the tables, 
Experiment  2 reveals two ways that the current definition of the rooted triplet 
distance for networks could be improved: 

1.	 Table  2 shows S(Ts, Ts) , S(Ns,Ns) , S(Ts,Ns) , and D(Ts,Ns) for every 
s ∈ {A,B,C,D,E,F} . The values of D(Ts,Ns) seem quite large compared to 
the number of triplets in each Ts (given by S(Ts, Ts) ). This is because of the 
resolved triplets that arise when Ns is created from a multilabeled tree using the 
method in [31], and the fan triplets that are created whenever a leaf x is replaced 
by x.1,… , x.i in Ns . Consequently, it would be desirable to give less weights to 
such triplets. A more flexible definition of the rooted triplet distance that can 
assign different weights to different triplets could therefore be useful.

2.	 Next, Table 3 lists the triplet distance D(Ns,Ns� ) for all pairs s, s� ∈ {A,B,C,D,E} . 
The networks NA,… ,NE have identical leaf label sets, but the leaf label set of NF 
is different, which is why NF is excluded from Table 3. Interestingly, although the 
two networks NB and ND are structurally different (see Fig. 12), their triplet dis-
tance is 0. This suggests that alternative definitions of the rooted triplet distance 
for networks may be better in practice, as discussed in Sect. 5 below.

Table 2   Experiments on the real 
datasets

The computed values of S(T
s
,T

s
) , S(N

s
,N

s
) , S(T

s
,N

s
) , and D(T

s
,N

s
)

s S(T
s
,T

s
) S(N

s
,N

s
) S(T

s
,N

s
) D(T

s
,N

s
)

A 560 716 443 390
B 1140 1870 840 1330
C 1330 2185 965 1585
D 1330 2205 964 1607
E 1540 1996 983 1570
F 19,600 43,710 16,553 30,204

Table 3   Experiments on the real 
datasets, continued

The computed values of D(N
s
,N

s�
) . In particular, observe that 

D(N
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D
) = 0
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20 0 1 0 10
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20 0 1 0 10
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E

10 10 9 10 0
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5 � Final Remarks

We have developed two new algorithms for computing the rooted triplet distance 
between two phylogenetic networks over the same leaf label set. We have also pre-
sented an implementation of the algorithms and evaluated their performance on sim-
ulated and real datasets.

Future work involves creating new algorithms that are even more efficient than 
the algorithms given here, as well as to research variants of the studied problem that 
may provide more biologically meaningful ways for comparing networks. An exam-
ple of such a variant is motivated by the experiments on the real dataset in Sect. 4.4. 
Recall that the two networks NB and ND were structurally different, yet their triplet 
distance was 0. The reason is that, unlike in the case of trees, the same triplet can 
appear several times in a network, and for two networks N1 and N2 to be compared, 
if a triplet appears 1000 times in N1 and only once in N2 , it would contribute 0 under 
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Fig. 13   Next to every vertex marked with a circle is the number of different pairs of disjoint paths from 
that vertex to the leaves with labels Tridens and Chilenium, and the number of different disjoint 
paths from the root to the vertex. With definition A of multiplicity for resolved triplets, the resolved tri-
plet ������� ��������� | �������� appears (4 + 6 + 2 + 1 + 2 + 1) ⋅ 1 + 1 ⋅ 2 = 18 times in  NB and 
(5 + 5 + 8 + 2 + 2 + 2 + 1 + 1) ⋅ 1 + 1 ⋅ 2 = 28 times in ND . With definition  B, this triplet appears 7 
times in NB and 9 times in ND
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the current definition of D(N1,N2) . However, extending the definition of the triplet 
distance for networks to capture information about the frequencies of triplets in the 
networks can be done in different ways, leading to different outcomes. For example, 
consider the following two alternative definitions of multiplicity for a resolved triplet 
xy|z, where u and v are the vertices used in the definition of the consistency of a 
resolved triplet with a network in Sect. 1: 

A.	 The  to t a l  number  o f  quad r up le s  o f  pa t h s  o f  t he  fo r m 
((u ⇝ v), (v ⇝ x), (v ⇝ y), (u ⇝ z)) that are disjoint except for in u and v, and 
furthermore, the path from u to z does not pass through v.

B.	 The total number of pairs of vertices (u, v) such that there exist four paths of the 
form (u ⇝ v), (v ⇝ x), (v ⇝ y), (u ⇝ z) that are disjoint except for in u and v, and 
furthermore, the path from u to z does not pass through v.

The definitions for the case of fan triplets are analogous. Now consider the two net-
works NB and ND . As shown in Fig. 13, if we follow definition A of multiplicity, 
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Fig. 14   Next to every vertex marked with a circle is the number of different pairs of disjoint paths 
from that vertex to the leaves with labels Chilenium and CHAM_clade, and the number of differ-
ent disjoint paths from the root to the vertex. With definition  A of multiplicity for resolved triplets, 
the resolved triplet ��������� ����_����� | �������� appears (1 + 2 + 1) ⋅ 1 = 4 times in NB and 
(2 + 2 + 1) ⋅ 1 = 5 times in ND . With definition B, this triplet appears three times in both networks
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the resolved triplet ������� ��������� | �������� appears 18  times in NB and 
28 times in ND (and we could thus let it contribute 10 to the extended rooted triplet 
distance). If we choose definition B instead, this resolved triplet appears 7 times in 
NB and 9  times in ND . On the other hand, according to Fig.  14, the resolved tri-
plet ��������� ����_����� | �������� appears 4 times in NB and 5 times in ND 
according to definition A, but 3 times in both networks according to definition B.

In summary, definition B seems somewhat simpler to compute than definition A, 
but it fails to distinguish between certain cases that definition  A can handle. To 
determine under what circumstances definition B is good enough in practice is an 
open problem and a future research topic.

Finally, Cardona et al.  [33] gave an alternative generalization of the rooted tri-
plet distance from trees to networks. While the extension proposed by Gambette and 
Huber  [13] is closer to the definition of the widely studied rooted triplet distance 
for trees, efficient algorithms for Cardona  et al.’s extension might also be useful. 
However, as pointed out in  [13] and  [33], neither one of them yields a metric for 
all classes of phylogenetic networks (see Corollary 1 in  [13] and Figs. 19 and 20 
in [33]), so another open problem is to find even more informative generalizations.
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