Algorithmica (2021) 83:1829-1860
https://doi.org/10.1007/s00453-021-00805-y

®

Check for
updates

Parameterized Counting of Partially Injective
Homomorphisms

Marc Roth'2

Received: 17 July 2019 / Accepted: 15 January 2021/ Published online: 11 March 2021
© The Author(s) 2021

Abstract

We study the parameterized complexity of the problem of counting graph homo-
morphisms with given partial injectivity constraints, i.e., inequalities between pairs
of vertices, which subsumes counting of graph homomorphisms, subgraph counting
and, more generally, counting of answers to equi-join queries with inequalities. Our
main result presents an exhaustive complexity classification for the problem in fixed-
parameter tractable and #W([1]-complete cases. The proof relies on the framework of
linear combinations of homomorphisms as independently discovered by Chen and
Mengel (PODS 16) and by Curticapean, Dell and Marx in the recent breakthrough
result regarding the exact complexity of the subgraph counting problem (STOC 17).
Moreover, we invoke Rota’s NBC-Theorem to obtain an explicit criterion for fixed-
parameter tractability based on treewidth. The abstract classification theorem is then
applied to the problem of counting locally injective graph homomorphisms from small
pattern graphs to large target graphs. As a consequence, we are able to fully classify
its parameterized complexity depending on the class of allowed pattern graphs.

Keywords Parameterized complexity theory - Counting problems - Graph
homomorphisms - Matroid lattices - Mobius function

1 Introduction

In his seminal work on the complexity of computing the permanent, Valiant [56]
introduced counting complexity which has since then evolved into a well-studied sub-

An extended abstract of this work has been published in the conference proceedings of the 25th Annual
European Symposium on Algorithms (ESA 2017) [50].

B Marc Roth
marc.roth@merton.ox.ac.uk

Cluster of Excellence (MMCI), Saarland Informatics Campus (SIC), Saarbriicken, Germany
2 Merton College, University of Oxford, Oxford, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00805-y&domain=pdf
http://orcid.org/0000-0003-3159-9418

1830 Algorithmica (2021) 83:1829-1860

field of computational complexity theory. Despite some surprising positive results,
such as polynomial time algorithms for counting perfect matchings in planar graphs
by the FKT method [37,38,54], counting spanning trees by Kirchhoff’s Matrix Tree
Theorem (cf. [44]) or counting Eulerian cycles in directed graphs using the “BEST”-
Theorem [1], most of the interesting counting problems turned out to be intractable.
Therefore, several relaxations such as restrictions of input classes [55,57,60] and
approximate counting [3,23,31,36] were introduced. Another possible relaxation, the
one this work deals with, is to consider parameterized counting problems as indepen-
dently introduced by Flum and Grohe [26] and McCartin [45]. Here, problems come
with an additional parameter k£ and a problem is fixed-parameter tractable (FPT) if it
can be solved in time g(k) - poly(n) where n is the input size and g is a computable
function, which yields fast algorithms for large instances with small parameters. On
the other hand, a problem is considered intractable if it is #W[1]-hard. This stems
from the fact that #W[1]-hard problems do not allow an FPT algorithm unless stan-
dard assumptions such as the Exponential Time Hypothesis (ETH) are wrong (cf. [18,
Chapter 14.4]).

When investigating a family of related (counting) problems, one could aim to simul-
taneously solve the complexity of as many problems as possible, rather than tackling
a (possibly infinite) number of problems by hand. For example, instead of proving
that counting paths in a graph is hard, then proving that counting cycles is hard and
then proving that counting stars is easy, one should, if possible, find a criterion that
allows a classification of those problems in hard and easy cases. Unfortunately, there
are results such as Ladner’s Theorem [39] (stating that there are problems neither in P
nor NP-hard, assuming P %= NP), which give a negative answer to that goal in general.
However, there are families of problems that have enough structure to allow so-called
dichotomy results. One famous example, and to the best of the author’s knowledge
the first such result, is Schaefer’s dichotomy [52], stating that every instance of the
generalized satisfiability problem is either polynomial-time solvable or NP-complete.
Since then much work has been done to generalize this result, culminating in recent
proofs [5,61] of the Feder-Vardi-Conjecture [24]. This question was open for almost
twenty years and indicates the difficulty of proving such dichotomy results, at least
for decision problems. In counting complexity, however, it seems that obtaining such
results is less cumbersome. One reason for this is the existence of some powerful
techniques like polynomial interpolation [55], the Holant framework [2,6—-10,33,58]
as well as the principle of inclusion-exclusion which all have been used to establish
very revealing dichotomy results.

Examples of dichotomies in parameterized counting complexity are the complete
classifications of the homomorphism counting problem due to Dalmau and Jons-
son [19] and the subgraph counting problem due to Curticapean and Marx [17]. For
the latter, one is given graphs H and G and aims to count the number of subgraphs of
G isomorphic to H, parameterized by the size of H. It is known that this problem is
polynomial-time solvable if there is a constant upper bound on the size of the largest
matching of H and #W[1]-hard otherwise'. The first step in the proof of that result

! On the other hand the complexity of the decision version of this problem, that is, finding a subgraph of
G isomorphic to H, is still unresolved. Only recently it was shown in a major breakthrough that finding
bicliques is hard [40].

@ Springer



Algorithmica (2021) 83:1829-1860 1831

was the hardness result of counting matchings of size k due to Curticapean [14], which
turned out to be the minimal obstruction and was then reduced to the general problem.

The approach of first establishing minimal obstructions for tractability and then
reducing to the general case seemed to be the canonical way to tackle such prob-
lems. However, recently Curticapean, Dell and Marx [16] discovered that a result of
Lovasz [41] implies the existence of parameterized reductions that, inter alia, allow a
far easier proof of the general subgraph counting problem. Lovasz result states that,
given simple graphs H and G, the following holds true:

#Emb(H — G) = Y _ (@, p) - #Hom(H /p — G). (1
=0

In Equation (1) the sum is over the elements of the partition lattice of V (H),Emb(H —
G) is the set of embeddings® from H to G and Hom(H/p — G) is the set of
homomorphisms from H/p to G, where the quotient graph H /p is obtained from H
by identifying vertices along p. Furthermore, u is the Mobius function of the partition
lattice. In their work Curticapean, Dell and Marx established what is now called the
principle of complexity monotonicity [11,16,20,51]. Informally, it states that a linear
combination

4
G ZAI- -#Hom(H; — G)

i=1

for pairwise non-isomorphic graphs H; is hard to compute if and only if at least one
of the pattern graphs H; for which A; # 0 has large treewidth.

Using complexity monotonicity, one only has to show two properties of (1) to obtain
the dichotomy for counting subgraph embeddings: First, one has to show that a high
matching number of H implies that one of the graphs H/p has high treewidth and
second, that two (or more) terms with high treewidth and isomorphic graphs H/p and
H /o do not cancel out; note that the Mobius function might be negative. As there is a
closed form for the Mobius function over the partition lattice it was possible to show
that the sign of the Mobius function is equal whenever H/p and H /o are isomorphic.

1.1 Contributions

In the current work, we strengthen the previously outlined framework to the more
general case of partially injective homomorphisms. This notion of graph homomor-
phisms interpolates between unrestricted homomorphisms and subgraph embeddings,
i.e., fully injective homomorphisms. Informally, we consider pairs (H, I') of graphs
H and inequalities / between the vertices of H. Given a further graph G, we say that
a homomorphism from H to G is partially injective with respect to I if for every
inequality “u # v”e I, the homomorphism maps u and v to different vertices. Note
that a subgraph embedding can be modelled by choosing as I the set of all inequalities.

2 Note that embeddings and subgraphs are equal up to automorphisms, that is, counting embeddings and
counting subgraphs are essentially the same problems.

@ Springer



1832 Algorithmica (2021) 83:1829-1860

Furthermore, a reader familiar with database theory might recognize partially injective
homomorphisms as answers to equi-join queries (cf. [47]) with inequalities: Here one
is given a database B and a query

O =Xl,...,XgapNay/\---Nay,

where the x; are variables and the a; are inequalities x; # x; or atoms R(x;, x;, xx)
for some relation R of the database. The goal is then to compute the number of tuples
(vy, ..., vg) of elements of the database B for which all relational constraints and
inequalities are satisfied. We emphasize that all results we obtain in this paper for par-
tially injective homomorphisms hold as well for equi-join queries with inequalities.’
Now, for the statement of our results, we adopt the notation of [16] and say that a
graph F is a spasm of a graph with inequalities (H, I) if F can be obtained from H
by contracting vertices along inequalities in 7; the formal definition is given in Sect. 2.
Furthermore, we write t(H, I) for the maximum treewidth of spasms of (H, I). The
following result is shown in Sect. 3 and establishes an exhaustive classification for the
parameterized complexity of counting partially injective homomorphisms.

Theorem 1 Let 'H be a recursively enumerable class of graphs with inequalities. Given
(H,I) € H and an arbitrary graph G, we wish to compute the number of partially
injective homomorphisms from H to G with respect to I.

When parameterized by |V (H)|, this problem is fixed-parameter tractable if there
exists a constant upper bound on the treewidth of all spasms of pairs (H, 1) € H.
Otherwise, the problem is #W[1]-complete and cannot be solved in time

gV (H)|) - |V(G)[eUH D/ log(H. D))

for any computable function g unless the Exponential Time Hypothesis (ETH) fails.
In particular, we obtain the following algorithmic result.

Theorem 2 There exists a computable function g such that the number of partially
injective homomorphisms from a graph H to a graph G with respect to a set of
inequalities I can be computed in time

gUV(H))) - [V(G)"H-DFL

We remark that Theorems 1 and 2 yield an almost tight conditional lower bound on the
fine-grained complexity of counting partially injective homomorphisms. The missing
gap of log(t(H, I)) is due to the unresolved open problem of whether it is possible to
“beat treewidth” [42].

3 Note that partially injective homomorphisms and answers to equi-join queries are equivalent if only
one binary relation E is allowed; in this case a database is a graph. Reductions from (counting) answers
to database queries to (counting) graph homomorphisms are ubiquitous in the CSP community (cf. [19]
and [27, Chapter 13]) and we refer the reader to e.g. Sect. 6.2 in the full version [21] of [20] for a construction
that applies without modification to the results for graphs in the current paper.

@ Springer



Algorithmica (2021) 83:1829-1860 1833

We will see that the previous results can easily be applied to fully understand the
parameterized complexity of a wide range of counting problems. We chose counting
of locally injective homomorphisms as an exemplary problem, which is studied in
Sect. 4. Here, a homomorphism from H to G is called locally injective if it maps
two vertices of H to different vertices of G if they have a common neighbour in H.
The study of locally injective homomorphisms goes back to NeSetfil [46]; a particular
application is given by what is called distance constrained labellings of graphs (cf.
[25]).

Corollary 1 Let H be a recursively enumerable class of graphs and let H be the set
of all graphs that can be obtained from graphs in 'H by identifying vertices that have
a common neighbour. Given H € 'H and an arbitrary graph G, we wish to count the
locally injective homomorphisms from H to G.

When parameterized by |V (H)|, this problem is fixed-parameter tractable if there
exists a constant upper bound on the treewidth of all graphs in H. Otherwise, the
problem is #W[1]-complete.

We will see that the results on the fine-grained complexity of counting locally injective
homomorphisms transfer from the general case as well.

A further question considered is whether counting of locally injective homomor-
phisms admits “real” fixed-parameter tractable cases, that is, instances of H for which
the previous problem is fixed-parameter tractable but not solvable in polynomial time
under standard assumptions; note that neither counting of homomorphisms nor count-
ing of subgraph embeddings admits real fixed-parameter tractable cases [17,19]. The
subsequent result establishes that the set of all trees induces a real fixed-parameter
tractable case for counting of locally injective homomorphisms.

Theorem 3 The problem of counting locally injective homomorphisms from a tree T
to a graph G is #P-hard and fixed-parameter tractable when parameterized by |V (T)|.

The proof of the previous theorem relies on the following #P-hardness result regard-
ing the subgraph counting problem restricted to trees; it is shown in Sect. 4.1 and might
be of independent interest.

Theorem 4 The problem of, given trees T\ and T,, computing the number of subtrees
of T» that are isomorphic to Ty is #P-hard.

Finally, Sect. 5 establishes a generalization of Theorem 1 to computing linear com-
binations of partially injective homomorphisms. Intuitively, this will enable us to
consider not only the problem of computing the number of partially injective homo-
morphisms from a fixed graph, but also from a set of graphs of equal size. A particular
example of the latter is the problem of counting acyclic subgraphs of size k.

1.2 Techniques

The main ingredient of our proofs is the framework of linear combinations of homo-
morphisms and complexity monotonicity. We decided to present this framework using

@ Springer



1834 Algorithmica (2021) 83:1829-1860

Lovasz’ notion of a quantum graph [41, Chapter 6], which is defined to be a formal
linear combination of simple graphs with finite support:

Q=) in-H,
H

where the sum is over all graphs and Az # 0 holds only for finitely many graphs.
Graph parameters extend to quantum graphs linearly. Consider e.g.

#Hom(Q — G) := ZAH -#Hom(H — G).
H

Using quantum graphs, the principle of complexity monotonicity can be rephrased
as follows: Computing homomorphisms from Q is precisely as hard as computing
the hardest term #Hom(H — G) for which Ay # 0. Fortunately, the complexity of
counting (unrestricted) graph homomorphisms is fully understood by the classification
of Dalmau and Jonsson [ 19]: Informally, their result states that computing #Hom(H —
G) is fixed-parameter tractable if the treewidth of H is bounded and #W[1]-complete
otherwise; this is made formal in Sect. 2.

Given a graph with inequalities (H, I), we use Mobius inversion over a certain
geometric lattice to construct a quantum graph Q[H, I] such that the number of
partially injective homomorphisms from H to a graph G with respect to I equals
#Hom(Q[H, I] — G).However, the crucial part will be the study of the coefficients of
Q[H, I]. By complexity monotonicity, it is necessary to understand which coefficients
of Q[H, I] are non-zero to resolve the complexity of counting partially injective
homomorphisms from (H, ). Unfortunately, it has turned out that the analysis of the
coefficients of a quantum graph seems to be much more involved than establishing
its existence, as witnessed by recent publications [16,20,51]. In case of subgraph
embeddings, Curticapean, Dell and Marx [16] used Equation (1) and the explicit
formula of the Mobius function of the partition lattice to obtain both, a quantum graph
and an explicit criterion on whether a coefficient vanishes.

In the current paper, we establish a connection between the coefficients of Q[H, I]
and the graphic matroid induced by the inequalities / on the vertex set of H. In
particular, it turns out that the lattice over which we perform Mobius inversion in the
construction of Q[H, I] is precisely the so-called lattice of flats of this matroid. This
will allow us to rely on Rota’s NBC Theorem [49] and we obtain an explicit expression
of the set of graphs for which the coefficients in Q[H, I] are non-zero.

The classification for counting locally injective homomorphisms turns then into an
application of the general theorem. For #P-hardness of the subgraph counting problem
restricted to trees, we adapt the idea of the “skeleton graph” by Goldberg and Jerrum
[28] and reduce directly from computing the permanent, the latter of which is #P-hard
as shown by Valiant [56]. To transfer this result to locally injective homomorphisms
we use the well-known observation that every locally injective homomorphism from
a tree to a tree is fully injective.

@ Springer



Algorithmica (2021) 83:1829-1860 1835

Fig.1 Left: A graph H with 1 5

vertex set <
V(H) =1{1,2,3,4,5,6}. Right: f
. 2. .6

The quotient graph H /§ for the
partition

§ ={{1,2,3, 5}, {47}, {68}} 30_07

2 Preliminaries

Given a finite set A, we write #A or |A| for its cardinality and given a natural number
k € N, we write [k] for the set {1, ..., k}. The sign of a real number r is denoted by
sign(r) and defined tobe 1 if r > 0, —1 if » < 0 and O if » = 0. Given sets A and
B and a function f : A — B, we write supp(f) = f~'(B \ {0}) for the support
of f. Furthermore, given a subset S C A, we write f|g for the restriction of f to S.
A partition of a finite set A is a set of pairwise disjoint and non-empty sets, called
blocks, whose union is A.

2.1 Graph Theory

Graphs in this work are considered simple, undirected and without self-loops, unless
stated otherwise. More precisely, a graph G is a pair of a finite set V (G) of vertices
and a symmetric and irreflexive relation E(G) C V(G)?. We might only write V and
E for vertices and edges if the graph is clear from the context. Furthermore we write
{u, v} to denote edges, emphasizing undirectedness. If # and v are vertices of G and
e = {u, v} is an edge of G we call u and v adjacent and say that u and v are incident
to e. Given a vertex v of G we write Ng(v) for the subset of vertices of G that are
adjacent to v; if G is clear from the context, we just write N (v). Throughout this paper,
we use n for the number of vertices and m for the number of edges.

If a graph H is obtained from G by deleting a set of edges and a set of vertices of
G, including incident edges, then H is called a subgraph of G. Given a subset V of
V(G) we write G[V] for the graph with vertices V and edges EN V2. The resulting
graph is called an induced subgraph of G.

Given a graph H and a partition é of V(H), the quotient graph H /é contains a
vertex for each block of 8, and two blocks B and B’ are made adjacent if there are
u € Band v € B’ such that {u, v} € E(H) (see Fig. 1). Note that B and B’ might be
equal; in particular H /§ may contain self-loops. Intuitively, H /§ is obtained from H
by contracting the vertices that are contained in the same set of § and deleting multiple
edges, but keeping self-loops.

2.1.1 Treewidth
Intuitively, the treewidth of a graph measures how tree-like it is. In particular, graphs
with small treewidth allow a decomposition in small separators. These decompositions

are the basis of many efficient dynamic programming algorithms (DPs) for problems

@ Springer



1836 Algorithmica (2021) 83:1829-1860

that are computationally infeasible on graphs without the promise of having small
treewidth. Roughly speaking, those algorithms can be seen as generalizations of known
and simple DPs that solve the corresponding problems on trees. Although we will
mainly need the concept in a black-box manner, we decided give the formal definition
for reasons of self-containment.

Definition 1 (See e.g. Chapt. 7.2 in [18]) Let G be a graph. A tree decomposition of
G consists of a tree T and a collection of subsets B; € V(G) forall t € V(T') called
bags such that

L Uevr) B = V(G),

2. for every edge {u, v} € E(G) there exists a vertex ¢ of T such that {u, v} C By,
and

3. for every vertex v € V(G) the graph T[{r € V(T) | v € B;}] is connected.

The width of a tree decomposition is max;cy (r) | B;| — 1 and the treewidth of a graph
G, denoted by tw(G), is the minimum width a tree decomposition of G can have. We
say that a class of graphs has bounded treewidth if there exists a constant ¢ such that
the treewidth of every graph in the class is at most c.

2.1.2 Homomorphisms and Subgraph Embeddings
A homomorphism from a graph H to a graph G is a mapping
h:V(H)— V(G)

that preserves edges. In other words, for every edge {u, v} € E(H) it holds that
{h(u), h(v)} € E(G).

An embedding, also called subgraph embedding, is an injective homomorphism
and a strong embedding from H to G is an embedding / such that for all pairs u and v
of vertices of H we have that

{u,v} € E(H) & {h(u),h(v)} € E(G).

A bijective strong embedding is called an isomorphism and we say that two graphs
H and G are isomorphic, denoted by H >~ G, if there exists an isomorphism from H
to G.* An isomorphism from a graph to itself is called an automorphism and we write
Aut(H) for the set of all automorphisms of a graph H. We will furthermore use the
following notations for sets of homomorphisms and its variants.

Definition 2 Let H and G be graphs.

1. Hom(H — G) denotes the set of homomorphisms from H to G.
2. Emb(H — G) denotes the set of embeddings from H to G.
3. Sub(H — G) denotes the set of subgraphs of G isomorphic to H.

4 We will implicitly identify graphs by their isomorphism types which allows us to refer e.g. to the complete
graph on k vertices.

@ Springer



Algorithmica (2021) 83:1829-1860 1837

It will be very convenient to write #Hom(H — ) for the function that maps a graph
G to the number #Hom(H — G). The functions

#Emb(H — *) and #Sub(H — *)

are defined likewise. Observe that the set Emb(H — G) can be partitioned by the
images of its elements. Furthermore, all classes of the induced equivalence relations
have size #Aut(H). As the images of the embeddings from H to G are precisely the
subgraphs of G isomorphic to H, we obtain the following well-known fact.

Fact1 (Folklore) Let H be a graph. We have that
H#EMb(H — %) = #Aut(H) - #Sub(H — ).

2.2 Counting Problems

A counting problem is a function P : iSigma* — N. Here i Sigma denotes a fixed
finite alphabet which the reader can assume to be {0, 1} for all purposes in this work.

2.2.1 Parameterized Counting Complexity

The field of parameterized counting was introduced by Flum and Grohe [26] and by
McCartin [45] with the goal of adapting the relaxation of parameterization for decision
problems to the counting realm. A parameterized counting problem is a pair (P, k)
of a counting problem and a computable parameterization « : iSigma* — N. The
following are two parameterized counting problems that are crucial for this work.

#CLIQUE Input: A graph G and a positive integer k.
Parameter: « (G, k) := k.
Output: The number of cliques of size k in G.
#HoM(H) Input: A graph G and a graph H € 'H.
Parameter: « (G, H) := |V(H)]|.
Output: #Hom(H — G), i.e., the number of homomorphisms from H
to G.

Note that in the last example, H is a fixed, possibly infinite set of graphs that is not
part of the input. If we choose H as the set of all complete graphs, then #HOM(H) and
#CLIQUE are equivalent up to a factor of k!, because the image of a homomorphism
from a clique of size k is itself a clique of size k. Let us furthermore remark that we
will omit defining « explicitly from now on as it will be clear from the context.

A parameterized counting problem (P, k) is called fixed-parameter tractable (FPT)
if there exists a computable function f and a deterministic algorithm A that, on input x,
computes P(x) in time

fle(x)) - [x]OD)

@ Springer



1838 Algorithmica (2021) 83:1829-1860

In particular, A is called an FPT algorithm. For the theory of parameterized hardness,
especially for counting problems, it is common to rely on the following variant of
Turing-reductions.

Definition 3 Let (P, ) and (P’, k') be parameterized counting problems. A param-
eterized Turing-reduction from (P, k) to (P’, k') is an FPT algorithm A that solves
(P, k) and is given oracle access to (P’, ). Furthermore, every oracle query y that
is posed by A on input x must satisfy «’(y) < g(k(x)) for some computable function
g independent of x.

We write (P, k) fprt (P’, k) if a parameterized Turing reduction from (P, k)
to (P’, k') exists.
A problem (P, «) is called #W[1]-hard if #CLIQUE §prt (P, k) and it is called
#WI[1]-complete if additionally (P, k) StTpt #CLIQUE. The following parameterized
classification of the homomorphism counting problem is due to Dalmau and Jonsson
and will be the basis for the hardness results in this paper.

Theorem 5 ([19]) Let H be a recursively enumerable class of graphs. If H has bounded
treewidth then #HOM(H) is polynomial-time solvable. Otherwise #HOM(H) is #W[1]-
complete.

The tractable case in the previous theorem stems from the following algorithmic result
for counting graph homomorphisms.

Theorem 6 ([22], see also the full version of [16]) Let H be a graph with k vertices
and treewidth t and let G be a graph with n vertices. Then #Hom(H — G) can be
computed in time

poly(k) - n'*1.
2.2.2 Fine-Grained Complexity Theory

The conditional lower bounds in this work are based on the Exponential Time Hypoth-
esis (ETH) which is due to Impagliazzo and Paturi [34] and asserts that 3- SAT cannot
be solved in time exp(o(m)), where m is the number of clauses of the input formula.

It is known that #W[1]-hard problems are not fixed-parameter tractable unless ETH
fails. An even stronger result states that #CLIQUE cannot be solved in time g (k) - no®)
for any function g unless ETH fails [12,13]. We will rely on the following result about
the fine-grained complexity of #HOM () which is an easy consequence of Marx” work
on the fine-grained complexity of the constraint satisfaction problem.®

5 Let us remark that we slightly abuse notation here: Containment in #W[1] is usually defined via param-
eterized parsimonious reductions [26]. Hence, formally, our notion of #W[1]-completeness does not imply
containment in #W[1] but rather “equivalence” for #W[1] (see e.g. [20]).

6 The reader familiar with Marx” work is encouraged to take a look at [42, Corollary 6.2] which states a
similar version of Theorem 7 for the Partitioned Subgraph Isomorphism Problem. However, the latter admits
a tight reduction to counting of vertex-colourful subgraphs embeddings, the clearest presentation of which
can be found in the Thesis of Curticapean [15, Lemma 5.5]. Vertex-colourful subgraph embeddings are
precisely vertex-colourful homomorphisms, as colourfulness implies injectivity. Finally, reducing counting
of vertex-colourful homomorphisms to counting of uncoloured homomorphism is an easy application of
the inclusion-exclusion principle.

@ Springer



Algorithmica (2021) 83:1829-1860 1839

Theorem 7 ([42]) Let H be a recursively enumerable class of graphs of unbounded
treewidth. Then #HOM(H) cannot be solved in time

g(V(H)|) - [V(G)|* WD/ log(tw(H))

for any function g, unless ETH fails.

2.3 Quantum Graphs

We follow the notation of the textbook of Lovdsz—see Chapt. 6 in [41].

Definition 4 (Quantum graphs) A quantum graph is a formal linear combination of
simple graphs without self-loops with finite support and rational coefficients. We write

Q=Z)»H'H,

where the sum is over all (isomorphism types of) graphs and Az € Q is zero for all but
finitely many H. We write supp(Q) for the support of Q, that is, the set containing
all graphs with a non-zero coefficient in Q. Furthermore, we call graphs in supp(Q)
constituents of Q.

The functions we have seen in the preceding section extend to quantum graphs
linearly. We make it explicit for the case of homomorphisms:

#Hom(Q — G) := ZAH - #Hom(H — G).

The study of homomorphism numbers of quantum graphs has far-reaching conse-
quences for the complexity classification of counting problems that require to count
small structures in large graphs. They were first (implicitly) used in this context by
Curticapean, Dell and Marx in a breakthrough result regarding the exact complexity of
the subgraph counting problem [16]. Roughly speaking, they provided a construction
of a quantum graph Q[H], given a graph H, such that

#Hom(Q[H] — %) = #Sub(H — ).

After that, they established that computing the number of homomorphisms from a
quantum graph is precisely as hard as counting homomorphisms from the hardest
constituent. This property is referred to as complexity monotonicity and allows to obtain
exhaustive complexity classifications for counting problems that can be expressed as
homomorphisms numbers from quantum graphs by ultimately relying on the fact that
the problem of counting homomorphisms is fully understood by Theorem 5.

We are now able to provide a formal statement of complexity monotonicity.

Theorem 8 (Complexity Monotonicity [16]) Let Q = Zi E H; be a fixed quan-
tum graph with constituents {H;};c(x). There exists a computable function f and an

@ Springer



1840 Algorithmica (2021) 83:1829-1860

algorithm A that is given a graph G with n > 0 vertices as input and has oracle
access to

#Hom(Q — x),

and computes #Hom(H; — G) for all i € [k] in time f(Q) - n. Additionally, every
graph G’ that is posed as oracle query has at most f(Q) - n vertices.

We point out that the principle of complexity monotonicity was independently (and
less explicitly) discovered by Chen and Mengel [11] in the context of counting answers
to conjunctive queries. In particular, their version of complexity monotonicity is proved
for the more general case of logical structures with constant arity and, additionally,
allows to include existentially quantified variables.

2.4 Combinatorics

A partially ordered set (poset) is a pair (L, <) of a finite universe L and a binary
relation < over L which is reflexive, transitive and anti-symmetric. We write o < p
if (o, p) is contained in < and we write o > pif p < o.

A pair o, p € L has a least upper bound o Vv p if

—oVp>ocando V p > p,and
— forall § € L withé > o and § > p it holds that§ > o V p.

A pair o, p € L has a greatest lower bound o A p if

—oAp<ocando A p < p,and
— forall§ € L withé <o and§ < pitholdsthatd <o V p.

A poset (L, <) is called a lattice if every pair o, p € L has a least upper bound and a
greatest lower bound.

2.4.1 Matroids

We will follow the notation of the first chapter of the standard textbook of Oxley [48].

Definition 5 A matroid M is a pair (E,Z) of a finite set E and a non-empty subset
7 C P(E) such that for every pair A, B C E we have that

1. if AeZ and B C A then B € Z, and
2. if A, B € 7 and |B| < |A]| then there exists an element a € A \ B such that
BU{a} eX1.

We call E the ground set of M. Furthermore, elements of 7 are referred to as inde-
pendent sets of M. In particular, a subset-maximal element of Z is called a basis of M
and the rank of M, denoted by rk(M), is defined to be the size of a basis.

We point out that rk(M) is well-defined as every basis has the same cardinality due
to (2). Now given a subset X C E we write rk(X) for the rank of X which is defined to

@ Springer



Algorithmica (2021) 83:1829-1860 1841

be the size of the largest independent set A € X. Furthermore, we define the closure
of X to be
cd(X):={ee E|rk(XU{e}) =rk(X)}.

By definition we have that rk(X) = rk(cl(X)). Furthermore, we call X aflat if cl(X) =
X. Now given a matroid M = (E, Z) we write L (M) for the set of all flats of M and
observe that subset inclusion over L (M) constitutes a lattice, called the lattice of flats
of M. The least upper bound of two flats X and Y is given by cl(X UY) and the greatest
lower bound is given by X N Y. We point out that the lattices of flats are precisely the
geometric lattices and refer the interested reader to e.g. Chapt. 3 of [59] and Chapt. 1.7
of [48] for a treatment of the latter.

We will be particularly interested in graphic matroids and their lattices of flats in
this work. In what follows, given a subset A of edges of a graph G = (V, E), we write
G[A] for the graph with vertices V and edges A, that is, G[A] := (V, A).

Definition 6 Let G = (V, E) be a graph. The graphic matroid M(G) has as ground
set the edges E of G and a set of edges A C E is independent if the graph G[A] does
not contain a cycle.

If G = (V, E) is connected then the bases of M(G) are precisely the spanning
trees of G. If G consists of several connected components then every basis of M (G)
induces a spanning tree for each of the components and vice versa. Now given a subset
of edges X C E, it is known that

rk(X) = |V| — comp(G[X]),

where comp denotes the number of connected components (see, for instance,
Chapt. 1.7 of [48]). Note that, in particular, every isolated vertex of G[ X]is a connected
component.

2.4.2 Mobius Inversion

The Mobius inversion theorem is a crucial ingredient in the construction of the quantum
graph Q[H, I] and the analysis of its coefficients in Sect. 3. We provide a concise and
self-contained introduction in what follows. An excellent and comprehensive treatment
of this topic can be found in the standard textbook of Stanley [53, Chapt. 1-3].

Definition 7 Let (L, <) be a poset and let f : L — C be a function. Then the zeta
transformation ¢ f : L — C is given by

tf@) =Y fp).

p=c
Theorem 9 (Mdbius Inversion, cf. Proposition 3.7.2 in [53]) Let (L, <) be a poset.

There exists a computable function pyp : L x L — 7 such that forall f : L — C
and o € L we have that

@ Springer



1842 Algorithmica (2021) 83:1829-1860

@)= nrlo.p)-¢f(p).

pz0
The function iy, is called the Mobius function of L.

If the poset is clear from the context we will drop the L and only write p. We will
furthermore depend on the following corollary of Rota’s NBC Theorem which is
concerned with the sign of the Md&bius function over a lattice of flats; note that ¥ is
the (unique) smallest element of every such lattice.

Theorem 10 (Theorem 4 in [49]) Let (L, <) be the lattice of flats of some matroid
and let p € L be a flat. Then we have that

sign(ur (9, p)) = (=1

We point out that the empty set ¢ is the (unique) smallest element of the lattice of flats
of any matroid.

3 Partially Injective Homomorphisms

A graph with inequalities is a pair (H, I) where H is a graph and [ is an irreflexive and
symmetric relation I C V (H)?. We say that [ is a set of inequalities. Intuitively, given
a graph G and a graph with inequalities (H, I), a homomorphism 4 € Hom(H — G)
satisfies [ if for every inequality {u, v} € I, it holds that h(u) # h(v). Formally,
we define the set of homomorphisms that satisfy 7/ in terms of partially injective
homomorphisms

Partinj(H, I — G) := {h € Hom(H — G) | Y{u,v} € I : h(u) # h(v)}.

Given a class ‘H of graphs with inequalities, we write #PARTINJ(H) for the param-
eterized counting problem of, given (H,I/) € H and a graph G, computing
#Partinj(H, I — G); the parameter is |V (H)|.

Now let (H, I) be a graph with inequalities. It will be very convenient to assume
that 7 does not contain an edge of H and, indeed, we can make this assumption
without loosing generality. To see this, observe that whenever {u, v} is an edge of
H, no homomorphism in Hom(H — G) can map u and v to the same vertex in
G, because otherwise the image of u and v would have a self-loop. As we do not
allow input graphs G with self-loops, every homomorphism % satisfies h(u) # h(v),
regardless of whether {u, v} € I.

Our classification theorem requires us to generalize quotient graphs to sets of
inequalities as follows. Let (H, I') be a graph with inequalities and let p be a sub-
set of /. Now consider the graph with vertices V (H) and edges p. The connected
components of this graph induce a partition Part(p) of V (H). In particular, every iso-
lated vertex constitutes a singleton in the partition. We abuse notation and write H /p
for the quotient graph H /Part(p) in what follows; consult Fig. 2 for an illustration.

@ Springer



Algorithmica (2021) 83:1829-1860 1843

Fig.2 Left: A graph H (solid lines) with inequalities 7 (dotted lines). Right: The graph H /p for the subset
p = {{1,4}, {1, 5}, {2, 3}} of I. Note that the connected components of the graph with vertices V (H) and
edges p are precisely {1, 4, 5}, {2, 3}, {6}, {7} and {8}, which constitutes a partition of V(H). As H/p does
not contain a self-loop, it is a spasm of (H, I') and hence a constituent of the quantum graph Q[H, I] by
Theorem 11

Graphs H/p for p € I will turn out to be constituents of the quantum graph
for (H, I) if they do not contain self-loops.” For this reason, we adopt the notation
of [16] and call a graph F a spasm of (H, I) if F does not contain self-loops and is
isomorphic to a graph H/p for p C I. In other words, F is a spasm of (H, I) if it can
be obtained from H by successively identifying vertices of H along inequalities in /
without creating self-loops.

We write Spasm(H, I) for the set of all spasms of (H, /) and we set

t(H,I) := max tw(F).
FeSpasm(H,I)

Given a class ‘H of graphs with inequalities, we define Spasm(H) to be the set con-
taining every graph F that is the spasm of some (H, I) € H.
The following is the main result of the current section.

Theorem 11 Let (H, I) be a graph with inequalities. Then there exists a quantum
graph Q[H, I] which satisfies

#Partlnj(H, I — x) = #Hom(Q[H, I] — *).
In particular, the mapping (H, 1) — Q[H, I] is computable and
supp(Q[H, I]) = Spasm(H, I) .

Let us first emphasize the following consequence of Theorem 11 for the parame-
terized and fine-grained complexity of #PARTINI(H).

Corollary 2 (Theorem 1, restated) Let H be a recursively enumerable class of graphs
with inequalities. If the treewidth of Spasm(H) is bounded, then #PARTINI(H) is fixed-
parameter tractable. Otherwise #PARTINI(H) is #W[1]-complete and cannot be solved
in time

7 Recall that quotient graphs may contain self-loops. More precisely, this happens if two adjacent vertices
are contained in the same block of the partition. However, since the input graphs of our problem do not
contain self-loops, we will see that we can safely ignore those partitions.

@ Springer



1844 Algorithmica (2021) 83:1829-1860

gV (H)|) - |V(G)[etH D/ logt(H, D))

for any computable function g unless ETH fails.

Proof We show that the problems #PARTINJ(H) and #HOM(Spasm(H)) are interre-
ducible with respect to parameterized Turing-reductions. For the reduction

#PARTINI(H) sgpt #HoM(Spasm(H)) we observe that by Theorem 11

#Partinj(H, I — %) = #Hom(Q[H, I] — *) = Z Ap - #HOM(F — #),
FeSpasm(H,I)
)
for computable coefficients A .

For the reduction #HoM(Spasm(H)) ftT‘pt #PARTINI(H), we let F be a spasm
in Spasm(H) and G be an instance of #HOM(Spasm(H)). As H is recursively
enumerable, we can find (H, I) € ‘H with F € Spasm(H, I) in time only depend-
ing on F. By complexity monotonicity (Theorem 8) we can use the oracle for
#Partinj(H, I — x) = #Hom(Q[H, I] — ) to compute #Hom(F — G).

The classification in fixed-parameter tractable and #W[1]-complete cases follows
then by Theorem 5. Furthermore, we observe that all reductions are tight in the sense
that the running time is linear in the size of the target graphs G and that every oracle
query only increases the size of the target graphs by a factor depending on the param-
eter. Consequently, the conditional lower bound under ETH holds by Theorem 7. O

The algorithm for counting partially injective homomorphisms follows in a similar
way:

Proof of Theorem 2 Holds by Equation (2) and the treewidth-based dynamic program-
ming algorithm for counting homomorphisms as given by Theorem 6. O

The proof of Theorem 11 consists of two steps. In the first one, we will invoke
Mobius inversion over the lattice of flats of the graphic matroid induced by the inequal-
ities. This will allow us to construct the quantum graph Q[H, I]. In the second step,
we will then use Theorem 10 to prove that the constituents of Q[H, I] are precisely
the spasms of (H, I).

Starting with the first step, we consider the inequality graph I1(H, I) of a given
graph with inequalities (H, I). The vertices of [(H, I) are V (H) and the edges are 1.
We write M (H, I) for the graphic matroid of I(H, I) and we write L(H, I') for the
lattice of flats of M (H, I'). Recall thata flatof M (H, I) isasubset p of [ satisfying that
adding any elementi € I \ p to p will decrease the number of connected components
by 1. Now observe that, given p € I, we can define I(H, I)/p similar to H/p, as
both, I(H, I)/p and H have the same vertex set V (H). In particular, we write I/p
for the edges of I(H, I)/p and obtain that (H /p, I/p) is a graph with inequalities as
well. This allows us to prove correctness of the following zeta transformation.

Lemma 1 Let (H, I) be a graph with inequalities and let o be a flat of M(H , I). Then

#Hom(H /o — %) = Z #Partinj(H /p, 1/p — *),

p=o

@ Springer



Algorithmica (2021) 83:1829-1860 1845

where the sum is over flats p of M(H, I).

Proof Let G be a graph. We define
Hom(H — G)[o] :={h €e Hom(H — G) | Y{u,v} € o : h(u) = h(v)}.

Observe that #Hom(H /o — G) = #Hom(H — G)[o]. We will now partition the
set Hom(H — G)[o] by the inequalities that are satisfied. To this end, given some
h € Hom(H — G)[o], we set

p(h) = {{u,v} € I | h(u) = h(v)} 3)

and claim that p(h) is a flat of M (H, I) which is greater than, i.e., a superset of o.
Assume for contradiction that p (/) is not a flat. Then there exists an inequality {a, b} €
I\ p(h) such that p(h) and p(h) U {a, b} induce the same connected components of
I(H, I). Consequently, there is a path from a to b in [(H, I) only consisting of edges
in p(h). Inductively applying (3) thus yields #(a) = h(b) and hence {a, b} € p(h)
which contradicts the assumption.

This allows us to define an equivalence relation on Hom(H — G)[o] by setting
h ~ hif p(h) = ,o(fz). In particular, the equivalence classes are uniquely identified
by flats greater or equal to o. Furthermore, the elements of a class [p]] for p > o are
precisely those homomorphisms 4 € Hom(H — G) satisfying

Y{u,v} el :h(u) =hw) & {u,v}ep,
and consequently
#pll = #Partinj(H/p, I /p — G).
It follows that

#Hom(H /o — G) = #Hom(H — G)[o]

=) #lel

p=0

=) #Partinj(H/p.1/p — G),

p=o
which concludes the proof. O

We are now ready to define the quantum graph for Theorem 11. To this end,
let (H, I') be a graph with inequalities and let L = L(H, I). We set

QIH.Il:= Y p-F,

FeSpasm(H,I)

@ Springer



1846 Algorithmica (2021) 83:1829-1860

where

M=y uL@.p). )
pel
F~H/p

Corollary 3 #Hom(Q[H, I — *) = #Partinj(H, I — *).

Proof Invoking Mdbius inversion (Theorem 9) on the zeta transformation given by
Lemma 1 yields

#Partinj(H, I — ») = Z“L(@’ 0) - #Hom(H /p — *).
p=0

The claim then follows by deleting terms for which H/p contains a self-loop and
collecting for isomorphic graphs afterwards. In particular, there exists a flat p for
every spasm F such that F ~ H /p: Recall that spasms of (H, I) are defined in such
a way that they are isomorphic to H /p for some subset p of I that is not necessarily a
flat. However, we can take the closure p := cl(p) of p, that is, we add elements of I to
0 as long as the induced connected components inI(H, ) do not change. We conclude
by the fact that the closure p = cl(p) is a flat by definition and H/p = H/p. O

What follows is one of the main structural insights of this work. We show that all
spasms of (H, I) are constituents of Q[H, I]. Note that this is far from obvious as
there might be many flats p for which H/p is isomorphic to the same spasm F. Hence
A is the sum of different values of the Mobius function that might, a priori, differ in
sign and cancel out to zero. The following lemma shows that we rely on Theorem 10
to prove that such cancellations are impossible.

Lemma2 Let F be a spasm of (H, I) and let Af be as in (4). Then we have that
sign(Ap) = (=)VEDI=IVL

We provide an illustration of the previous lemma in Fig. 3.

Proof Let L = L(H,I) and let p € L be a flat such that F' is isomorphic to H/p. It
suffices to prove that

sign(ur (9, p)) = (—=DHIVEDI=IVEL

First, we observe that |V(H /p)| = |V (F)| as otherwise H/p and F would not be
isomorphic. Now recall that the graph H/p is obtained from H by identifying every
pair of vertices u and v for which {u, v} € p. Consequently, the number of connected
components of the induced subgraph of I(H, 1) with edges p is equal to |V (H/p)|.
As furthermore I(H, I) is by definition the underlying graph of the graphic matroid
M(H, I), we have that

tk(p) = IVAH, D)| = |V(H/p)| = |V(H)| = |V(F)|.

@ Springer



Algorithmica (2021) 83:1829-1860 1847

10, 13

VXEN D AN

(H, I) I(H,I) F € Spasm(H, I)

Fig. 3 Illustration of Lemma 2. Despite the fact that there is more than one flat p of the matroid
M(H, I) for which H/p is isomorphic to F, Lemma 2 guarantees that Ay # 0. Examples are
given by the flats p; = {{l1, 12}, {1, 4}, {3,6},{6,7}, {7, 3}, {8, 15}, {9, 16}}, as well as by pr =
{{9, 16}, {15, 16}, {8, 15}, {1, 2}, {1, 4}, {2, 4}, {2, 5}, {4, 5}}. Now both, p; and po have rank 6, which
equals |V(H)| — |V(F)| = 17 — 11. Hence sign(Ap) = (—l)6 = 1. In particular, the number of vertices
of the graph F' >~ H /p1 >~ H p, equals the number of connected components induced by p1 and p3 in the
inequality graph I(H, I)

Now we can invoke Theorem 10 and obtain that
sign(ur (4, p)) = (_Drk(,o) = (_1)|V(H)|—|V(F)\ )

O

Proof of Theorem 11 Let Q[H, I] be as in (4). The claim follows then by Corollary 3
and Lemma 2. m|

One might wonder, whether the tractable cases in Theorem 11 are not only fixed-
parameter tractable, but also polynomial-time solvable. We have seen that this is the
case if we count homomorphisms without inequalities (Theorem 5) or homomorphisms
with all inequalities, that is, subgraph embeddings [17]. However, we will show that
for partial injectivity constraints, there are fixed-parameter tractable cases that are
not polynomial-time solvable unless P = #P. We will encounter an example for this
phenomenon in the subsequent section, in which we consider the problem of counting
locally injective homomorphisms.

4 Locally Injective Homomorphisms

A homomorphism & from H to G is locally injective if for every v € V(H) it holds
that /1| y(y) is injective. We denote Li-Hom(H — G) as the set of all locally injective
homomorphisms from H to G and given a class of graphs H, we define #L1- HOM(H)
as the problem of, given graphs H € H and G, computing #Li-Hom(H — G); the
parameter is |V (H)|.

It is immediate to express local injectivity as partial injectivity.

Fact2 Let H be a graph and I := {{u,v} | Jw € V(H) : u,v € N(w)}. Then the
following holds true for every graph G:

Li-Hom(H — G) = Partinj(H, I — G).

@ Springer



1848 Algorithmica (2021) 83:1829-1860

®.

ANA NS
ZVANIVAN

‘@ o

Fig. 4 Tllustration of the windmill graph Wg and a spasm of (Wg, ) that contains the clique of size 4 as
a minor: The dotted lines in the right picture constitute a flat of the inequality graph w.r.t. I as every pair
of vertices of the matching has the common neighbour a. If the graph is contracted along this flat and
afterwards a is removed, we obtain the desired K4

Consequently, the classification for counting partially injective homomorphisms com-
pletely resolves the complexity of counting locally injective homomorphisms:

Proof of Corollary 1 Holds by Fact 2 and Corollary 2. O

In particular, we are able to transfer the conditional lower bound under ETH as well.
We provide an example using windmill graphs. To this end, given n € N, we define
W, as the graph obtained from the matching M, of size n by adding a new vertex a
and connecting it to all vertices of the matching.

Corollary 4 Let W be the set of all windmill graphs W, forn € N. Then #L1- HOM(W)
is #W[1]-complete and cannot be solved in time

gV (WD) - [V (G| */ o0
for any function g, unless ETH fails.

Proof Let F be an arbitrary graph with k edges and let F be the graph obtained from F
by adding a new vertex a that is made adjacent to all vertices of F. We claim that F
is a spasm of (W, I) where [ is defined as in Fact 2. To see this, we observe that the
edges of My in Wy can be arranged according to F' and then be identified according to
the inequalities between every pair of vertices of the matching; consult Fig. 4 for an
illustration. Therefore F is the minor of some spasm of (W, I) and consequently, the
set of spasms of (W, I) for all k € N contains all graphs as minors and is therefore
of unbounded treewidth. #W[1]-completeness follows hence by Corollary 2.

For the conditional lower bound, we rely on the fact that there exists an infinite and
recursively enumerable class £ of graphs such that every graph H € & has treewidth
O (|V(H)|) and is sparse, i.e., |[E(H)| € ©(|V(H)|). In fact, every explicit construc-
tion of d-regular expanders has this property (cf. [30] and [18, Exercise 7.34]). By the
previous observation, we have that each graph H € € is a minor of a spasm of W|g (x|
Now assume there exists a function g and an algorithm that solves #L1- HOM()V) in
time

g(IV(Wp))) - [V (G)|o*/Togh)

@ Springer



Algorithmica (2021) 83:1829-1860 1849

By Fact 2, Theorem 11 and complexity monotonicity (Theorem 8), this algorithm can
be used to solve the problem #HOM(E) in time

SUVH)D - [V(G) [P 180 = s (|V (H)|) - |V(G)|7WEH)/ logw(H))

for some function g only depending on g, which violates ETH by Theorem 7. O
On the other hand, we obtain the following tractability result.

Corollary 5 (Second part of Theorem 3, restated) Let T be the set of all trees. Then
#L1- HOM(7) is fixed-parameter tractable.

Proof Let T be a tree and let [ as in Fact 2. Then every spasm of (7', I) is a tree as
well and has hence treewidth 1. Fixed-parameter tractability thus follows by Fact 2
and Corollary 2. O

However, #L.I- HOM(7') is an exemplary instance of the problem of counting locally
injective homomorphisms that is most likely not solvable in polynomial time.

Lemma 3 (First part of Theorem 3, restated) #L1- HOM(7') is #P-hard.

The class #P is the classical counting analogue of NP. A formal definition, including
a rough introduction to classical counting, and the proof of the above lemma can
be found in the following subsection. Roughly speaking, the idea is to reduce from
subgraph counting on trees, which is shown to be #P-hard as well.

4.1 Counting Subtrees of a Tree

We start by giving an introduction to classical counting complexity which was
established by Valiant in his seminal work about the complexity of computing the
permanent [56]. Recall that a (non-parameterized) counting problem is a function
F : {0, 1}* — N. The class of all counting problems solvable in polynomial time is
called FP. On the other hand, the notion of intractability is #P-hardness. #P is the class
of all counting problems that are polynomial-time (many-one) reducible® to #SAT, the
problem of computing the number of satisfying assignments of a given CNF formula.
A counting problem F is #P-hard if there exists a polynomial-time Turing-reduction
from #SAT to F, that is, an algorithm with oracle access to F' that solves #SAT in
polynomial time.

For the proof of Lemma 3, we will first show #P-hardness of the following inter-
mediate problem: Given two trees 71, T>, compute the number #Sub(7; — T5) of
subtrees of 7 that are isomorphic to 77. We call this problem #SUB(7, 7).

Lemma4 ( Theorem 4, restated) #SUB(7, 7)) is #P-hard.

8 (Many-one) reductions in counting complexity differ slightly from many-one reductions in the decision
world. However, for the purpose of this work we only need Turing-reductions. We recommend Chapter 6.2
in [29] to the interested reader.

@ Springer



1850 Algorithmica (2021) 83:1829-1860

%
:

1
-]

.
Aed A b MM\J\X

Fig.5 Trees Tid5 (left) and Ty (right)

N
N e e
A
N A
RN
.
S

Related results are #P-hardness for counting all subtrees of a given graph due to Jer-
rum [35] or even counting all subtrees of a given tree due to Goldberg and Jerrum [28].
As the number of non-isomorphic trees with n vertices is not bounded by a polyno-
mial in n, we do not know how to reduce directly from those problems. Instead we use
a construction quite similar to the “skeleton” graph in the construction of Goldberg
and Jerrum [28] to reduce from the problem of computing the permanent: Recall that
a matrix with the same number of rows and columns is called quadratic. Given a
quadratic matrix A with elements (a; ;)i je[n] the permanent of A is defined by

n
perm(A) = Z nai,n(i)’

meSym,, i=1

where Sym,, is the symmetric group with n elements.

Theorem 12 ([56]) Computing the permanent is #P-hard even when restricted to matri-
ces with entries in {0, 1}.

Proof of Lemma 4 We reduce from computing the permanent of matrices with entries
from {0, 1}. Given a quadratic matrix A of size n, we construct a tree 74 as follows:

1. For every entry a; ;j we create a vertex v; ; and add edges {v; j, viy1, ;) for every
i € [n—1]andevery j € [n].

2. Whenever ¢; ; = 1 we create a vertex b; ; and add edges {b; ;, v; ;).

3. For every column c¢; we create a vertices u;, wj, x;, y;, z; and add the edges
{uj, v1 i} v j wik{w), xj}{w;, yj} and {wj, z;}.

4. Finally, we create a vertex r and add edges {r, u;} forall j € [n]. In what follows,
we call r the root.

We give an example in Fig. 5 for the matrix

10100
01011
B:=]10100
01010
01001

@ Springer



Algorithmica (2021) 83:1829-1860 1851

We claim that for all quadratic matrices A of size n > 5 with entries from the set {0, 1}
the following holds true

perm(A) = #Sub(Tig, — Ta),

where id,, is the quadratic matrix of size n with 1s on the diagonal and Os everywhere
else. In the following we write v for a vertex in T4 and v’ for a vertex in Tiq, . To prove
the claim we first observe that whenever a subtree of T4 is isomorphic to Tiq,, the
root r’ of Tig, has to be mapped to the root r of T4 by the isomorphism as the roots
are the only vertices with degree n (which is why we needed n > 5 as every other
vertex has degree < 4). It follows that the vertices u/, ..., u,, of Tig, are mapped to
the vertices uy, ..., u, of T4 which induces a permutation on n elements, that is, an
element w € Sym,,.

We will now partition the subtrees of T4 isomorphic to Tiy, by those permutations
and write #Sub(Tiq, — T4)[7] for the number of subtrees that induce 7. Now fix
7 and consider a subtree that induces 7. It holds that for all j € [n] the vertex w’,
has to be mapped to wy ;) as those are the only vertices with degree exactly 4 and
furthermore, the vertices x}, y;, z’j have to be mapped t0 xx(jy, Yz (j) Zn(j) (possibly
permuted but the subtree of T4 is the same). Now vlf ¥ is adjacent to b; i foreachi € [n]
and thus v; ;) has to be adjacent to b; (i), thatis a; »(;y = 1.If thisis not the case then
there is no subtree that induces partition 7. Furthermore there is at most one subtree
isomorphic to Tiy, inducing 77 because the image is enforced by the vertices r’, w}
and v} ; forall i, j € [n]. Consequently

#Sub(Tig, — Ta)lm] =1,
if for all i € [n] it holds that a; ;) = 1, and otherwise

#Sub(Tig, — Ta)[7]=0.
Hence #Sub(Tig, — Ta)[7] = []/_, di »() and therefore

n
perm(A) = > [[aixiy= Y _ #Sub(Tig, — Ta)lrw] = #Sub(Tig, —> Tx).
meSym,, i=1 TESy

Now the reduction works as follows: If the input matrix A has size < 4 we brute-
force the output and otherwise we compute #Sub(7iy, — T4) using the oracle for
#SUB(7, 7). O

The proof of Lemma 3 relies on the fact that locally injective homomorphisms from
a tree to a tree are embeddings.

Proofof Lemma 3 1t is a well-known fact that a locally injective homomorphism %
from a tree T to a tree T is (fully) injective. To see this, assume that there are vertices

@ Springer



1852 Algorithmica (2021) 83:1829-1860

v and u in T that are mapped to the same vertex in 7>. As 77 is a tree there exists
exactly one path

UV=wp, Wi, ..., W, W1 = U

between v and u in 77. It holds that £ > 1 as otherwise v and u would be adjacent
and hence h(u) = h(v) would have a self-loop in 7> which is impossible. As &
is locally injective we have that A(v) # h(w;), hence u # w,, and as & is edge-
preserving there are edges {/(v), h(w;)} and {h(w1), h(w2)} and a path from A (w>)
to h(we41) = h(u) = h(v) in T>. This induces a cycle and contradicts the fact that 7>
is a tree.

Therefore #Emb(T} — T) = #Li-Hom(T}, — T3). By Fact 1, we have that for all
H and G the following is true

#Sub(H — G) = TEmb(H = G)
#AUt(H)

If H is a tree then H is planar and thus #Aut(H) can be computed in poly-
nomial time [32,43]. Therefore #P-hardness of #Li1- HoM(7") follows by reducing
from #SUB(7, 7)), which is hard by Lemma 4: Given trees 77 and 7> we obtain
#Li-Hom(7T7; — T3) by querying the oracle and compute #Aut(77) in polynomial
time. Finally, we output

#Li-Hom(T; — To) _ #Emb(T| — T»)

= = #Sub(T), — T»).
#Aut(Ty) #Aut(Ty)

5 Quantum Graphs with Inequalities

We will now go one step further and consider linear combinations of partially injective
homomorphisms. In particular, this allows for generalizing subgraph counting in the
sense, that we do not only wish to count subgraphs isomorphic to a single graph H, but
rather to count subgraphs that are isomorphic to some graph in a given set of graphs.
An example for the latter is the problem of counting acyclic subgraphs of size k.
We emphasize that the subsequent results for subgraphs have already been observed
by Curticapean, Dell and Marx [16]. We extend their results to partial injectivity
constraints.

It will be convenient to express the problems in this section by quantum graphs
with inequalities, which are defined to be formal linear combinations of graphs with
inequalities of finite support. We write

T= Y hun-(H.I),
(H.I)

@ Springer



Algorithmica (2021) 83:1829-1860 1853

where the sum is over all (isomorphism types of) graphs and inequality constraints. In
particular, Z might contain the constituents (H, I) and (H, I’) for I # I’. Counting
partially injective homomorphisms extends to Z linearly.

#Partin(Z — ») := Y A1) - #Partinj(H, [ — »).
(H.I)

If all constituents (H, I) of T satisfy that [ is the full injectivity constraint, then
#Partlnj(Z — ) computes a linear combination of subgraph embeddings, given by

#Partin(Z — %) = Y Ay - #HEmb(H — #).
H

where the sum is over all graphs and Ay = Ay 1) if (H, I) is a constituent of 7 and
Ag = 0 otherwise.

We point out that #PartIlnj(Z — «) does not allow for complexity monotonicity
in general, even if there are no negative coefficients. To see this, recall that counting
homomorphisms is the zeta transformation of counting subgraph embeddings (invoke
Lemma 1 with I being the set of all inequalities). In particular, the following holds
true for the k-matching Mjy:

#Hom(M) — %) = Z#Emb(Mk/p — %)
P

Consequently, assuming thatk = (g), this constitutes a linear combination of subgraph
embeddings, such that the r-clique is contained with a non-zero coefficient. However,
as matchings have treewidth 1, #Hom(M} — %) can be computed in time poly(k) -
n?®M by Theorem 6, whereas cliques of size » cannot be counted in time

poly(r) - n®Y = poly(k) - n”",

unless ETH fails [12,13].

Now observe that quantum graphs with inequalities yield linear combinations
of partially injective homomorphisms and the latter are again linear combinations
of homomorphisms. Consequently, it is possible to express the number of partially
injective homomorphisms from a quantum graph with inequalities as the number of

homomorphisms from a quantum graph without inequalities; recall the definition of
Q[H, I]in (4):

#Partinj(Z — %) ©)

= > Aoy - #Partnj(H, I — %) (6)
(H.D)

= Y gy - #HOm(QIH, I] — #) @)
(H.D)

@ Springer



1854 Algorithmica (2021) 83:1829-1860

=> hun- Y, > wwwn®@, p) | #Hom(F — %), (8)
(H,I) FeSpasm(H,I) | peL(H,I)
F~H/p

where (6) is the definition of #PartInj(Z — %), (7)is Corollary 3 and (8) is the definition
of Q[H, I]. This induces the following quantum graph Q[Z] (without inequalities)
which given by

ol7] :=ZVF-F,
F

where

VF 1= Z AH, D) Z /LL(H,I)(Qv 0)

(H,I) peL(H,I)
FeSpasm(H,I) F~H/p

We will now provide a criterion that, if satisfied, allows us to give the support of
Q[Z] explicitly.

Theorem 13 Let T be a quantum graph with inequalities. Then
#PartInj(Z — x) = #Hom(Q[Z] — ).

If, additionally, no coefficient of T is negative and every pair (H, I), (H', I') of con-
stituents of T satisfies |V (H)| = |V (H')|, then

supp(QIZ) = |J  Spasm(H.1).
(H,Iesupp(T)

Proof #PartInj(Z — %) = #Hom(Q[Z] — *) holds by (8) and collecting for isomor-
phic terms. For the second claim, we first observe that

supp(Q[Z]) < U Spasm(H, I)
(H,I)esupp(Z)

by the definition of the coefficients vp. Now let F' € Spasm(H, I) for some constituent
(H,I)ofZ andletk = |V (H)|. Then we have that

sign Z Hrn (@, p) =(_1)k—|V(F)|
peL(H,I)
F~H/p

@ Springer



Algorithmica (2021) 83:1829-1860 1855

by Lemma 2. Consequently

sign | A1 Z wrar.n (@, p) =(—1)k_IV(F)I
peL(H.I)
F~H/p

as A,y = 0 by assumption and Ay ) 7 0 as (H, I) is a constituent of Z. Thus
sign(vg) = (— DIV and hence vy # 0. ]

Note that it was crucial in the above proof that all graphs H for which (H, I) is
a constituent of 7 have the same number of vertices. If this is not the case, then we
cannot guarantee that the terms

sign A(H,I) Z /’LL(H,I)(V)’ ol = (_1)|V(H)*|V(F)|
peL(H,I)
F~H/p

are equal for different constituents and hence there might be cancellations. Going back
to the example of computing #Hom(M} — %), we observe that the expression as a
linear combination of subgraph embeddings does indeed contain constituents with
different numbers of vertices. In other words, those cancellations must occur in the
general case (unless ETH fails).

We furthermore point out that the proof of Theorem 13 actually shows the following,
more general statement.

Remark 1 The second claim of Theorem 13 holds true even if we only require that all
non-zero coefficients have the same sign and that the number of vertices of constituents
of 7 have the same parity.

Now, arguably, Theorem 13 might seem artificial at first glance. Let us hence
provide a concrete application which shows its utility. We define the problem
#VERTEXFORESTS as follows: Given a graph G and a positive integer k, the task
is to compute the number of acyclic subgraphs with k vertices® in G. The problem is
parameterized by k. The following hardness result follows implicitly from [16]. We
include a proof only for illustrating an application of Theorem 13.

Lemma5 #VERTEXFORESTS is #W[1]-complete.

Proof Let Fy be the set of all acyclic graphs with k vertices. Furthermore, given some
graph F, we write full(F) for the set of all possible inequalities between vertices of

9 We emphasize in the name of the problem, that we are interested in subgraphs with k vertices, not with k
edges. The latter is also known to be hard, but the proof is more involved and does not use quantum
graphs [4].

@ Springer



1856 Algorithmica (2021) 83:1829-1860

F. Now the number of acyclic subgraphs of size k of a graph G equals

> #Sub(F — G) = Y #Aut(F)~' - #Emb(F — G)

FeFy FeFy

Z #AUt(F)~" - #Partinj(F, full(F) — G)
FeFy

= #Partinj(Z — G),

where

I= Y #Aut(F)~'-(F.full(F))

(F, full(F))
FeFy

is a quantum graph with inequalities. As, by definition, all graphs in F; have k vertices
and the terms #Aut(F)~! are all greater than zero, we can invoke Theorem 13 and
obtain the quantum graph Q[Z] such that ZFE]_—k #Sub(F — G) = #Hom(Q[Z] —
G) and

supp(QIZ]) = | J Spasm(F. full(F)).
FeFy

Now, similarly to the proof of Corollary 2, we invoke complexity monotonicity and
obtain that #VERTEXFORESTS is interreducible with #HOM(Q) with respect to param-
eterized Turing reductions, where

Q =1{H e€Spasm(F,full(F)) | F € U Fr
keN

As for every k € N, Fy; contains the matching My, we conclude that Q contains for
every k all (connected) graphs with k edges and is therefore of unbounded treewidth.
The lemma hence holds by Theorem 5. O

Remark 2 The problem #TREES of counting connected acyclic subgraphs with k ver-
tices can be proved #W[1]-complete similarly, as shown in [16]. We emphasize that the
framework of quantum graphs significantly simplifies the original #W[1]-completeness
proof of #TREES [4].

6 Conclusions and Future Work
We established an exhaustive classification of the parameterized complexity of count-

ing partially injective homomorphisms and have thus fully understood the complexity
of counting answers to equi-join queries with inequalities, subsuming not only the prior

@ Springer



Algorithmica (2021) 83:1829-1860 1857

classification of the subgraph counting problem, but also inducing a novel dichotomy
for counting locally injective homomorphisms.

Building upon the works of Chen and Mengel [11] and Curticapean, Dell and
Marx [16] our proof illustrates once more the potential of the framework of complexity
monotonicity for the field of parameterized counting. In particular, it allows a canonical
generalization to logical structures of bounded arity such as equi-join queries and, even
further, to conjunctive queries (implicitly in [11], explicitly in [20]), which, together
with our result on quantum graphs with inequalities, might find further applications for
first-order model counting problems, especially in the context of relational databases.

Acknowledgements The author is very grateful to Holger Dell and Radu Curticapean for fruitful discus-
sions, as well as to an anonymous reviewer for pointing out the applicability of the framework to equi-join
queries. Furthermore the author thanks Cornelius Brand for saying “Tutte Polynomial” every once in a
while, and Philip Wellnitz for providing valuable feedback on early drafts of the full version of this work.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. Simon Stevin:
Wis- en Natuurkundig Tijdschrift 28, 203-217 (1951)

2. Backens, M.: A Complete Dichotomy for Complex-Valued Holant¢. In: 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pp. 12:1-12:14 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.12

3. Barvinok, A.I.: Combinatorics and Complexity of Partition Functions, Algorithms and combinatorics,
vol. 30. Springer (2016). https://doi.org/10.1007/978-3-319-51829-9

4. Brand, C., Roth, M.: Parameterized Counting of Trees, Forests and Matroid Bases. In: Computer
Science - Theory and Applications - 12th International Computer Science Symposium in Russia, CSR
2017, Kazan, Russia, June 8-12, 2017, Proceedings, pp. 85-98 (2017). https://doi.org/10.1007/978-
3-319-58747-9_10

5. Bulatov, A.A.: A Dichotomy Theorem for Nonuniform CSPs. In: 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,2017, pp. 319-330
(2017). https://doi.org/10.1109/FOCS.2017.37

6. Cai,J., Fu, Z., Guo, H., Williams, T.: A Holant Dichotomy: Is the FKT Algorithm Universal? In: IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pp. 1259-1276 (2015). https://doi.org/10.1109/FOCS.2015.81

7. Cai, J., Huang, S., Lu, P.: From Holant to #CSP and Back: Dichotomy for Holant® Problems. Algo-
rithmica 64(3), 511-533 (2012). https://doi.org/10.1007/s00453-012-9626-6

8. Cai, J., Lu, P.: Holographic algorithms: From art to science. J. Comput. Syst. Sci. 77(1), 41-61 (2011).
https://doi.org/10.1016/j.jcss.2010.06.005

9. Cai, J., Lu, P, Xia, M.: Holographic Algorithms with Matchgates Capture Precisely Tractable Planar
#CSP. STAM J. Comput. 46(3), 853-889 (2017). https://doi.org/10.1137/16M 1073984

10. Cai, J., Lu, P, Xia, M.: Dichotomy for Real Holant® Problems. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pp. 1802-1821 (2018). https://doi.org/10.1137/1.9781611975031.118

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPIcs.ICALP.2018.12
https://doi.org/10.1007/978-3-319-51829-9
https://doi.org/10.1007/978-3-319-58747-9_10
https://doi.org/10.1007/978-3-319-58747-9_10
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2015.81
https://doi.org/10.1007/s00453-012-9626-6
https://doi.org/10.1016/j.jcss.2010.06.005
https://doi.org/10.1137/16M1073984
https://doi.org/10.1137/1.9781611975031.118

1858 Algorithmica (2021) 83:1829-1860

11. Chen, H., Mengel, S.: Counting Answers to Existential Positive Queries: A Complexity Classification.
In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 315-326 (2016). https://
doi.org/10.1145/2902251.2902279

12. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.: Tight lower bounds
for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216-231 (2005). https://doi.org/10.
1016/j.1¢.2005.05.001

13. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized com-
plexity. J. Comput. Syst. Sci. 72(8), 1346-1367 (2006). https://doi.org/10.1016/j.jcss.2006.04.007

14. Curticapean, R.: Counting Matchings of Size k is W[1]-Hard. In: Automata, Languages, and Program-
ming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
I, pp. 352-363 (2013). https://doi.org/10.1007/978-3-642-39206-1_30

15. Curticapean, R.: The simple, little and slow things count: On parameterized counting complexity. Ph.D.
thesis, Saarland University (2015). http://scidok.sulb.uni-saarland.de/volltexte/2015/6217/

16. Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pp. 210-223 (2017). https://doi.org/10.1145/3055399.
3055502

17. Curticapean, R., Marx, D.: Complexity of Counting Subgraphs: Only the Boundedness of the Vertex-
Cover Number Counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pp. 130-139 (2014). https://doi.org/10.
1109/FOCS.2014.22

18. Cygan, M., Fomin, E.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3

19. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from the other side. Theor.
Comput. Sci. 329(1-3), 315-323 (2004). https://doi.org/10.1016/].tcs.2004.08.008

20. Dell, H., Roth, M., Wellnitz, P.: Counting Answers to Existential Questions. In: 46th International Col-
loquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece.,
pp. 113:1-113:15 (2019). https://doi.org/10.4230/LIPIcs. ICALP.2019.113

21. Dell, H., Roth, M., Wellnitz, P.: Counting Answers to Existential Questions. CoRR abs/1902.04960
(2019)

22. Diaz, J., Serna, M.J., Thilikos, D.M.: Counting H-colorings of partial k-trees. Theor. Comput. Sci.
281(1-2), 291-309 (2002). https://doi.org/10.1016/S0304-3975(02)00017-8

23. Dyer, M.E., Goldberg, L.A., Jerrum, M.: An approximation trichotomy for Boolean #CSP. J. Comput.
Syst. Sci. 76(3-4), 267-277 (2010). https://doi.org/10.1016/].jcss.2009.08.003

24. Feder, T., Vardi, M.Y.: The Computational Structure of Monotone Monadic SNP and Constraint Satis-
faction: A Study through Datalog and Group Theory. SIAM J. Comput. 28(1), 57-104 (1998). https://
doi.org/10.1137/S0097539794266766

25. Fiala, J., Kratochvil, J.: Locally constrained graph homomorphisms - structure, complexity, and appli-
cations. Computer Science Review 2(2), 97-111 (2008). https://doi.org/10.1016/j.cosrev.2008.06.001

26. Flum, J., Grohe, M.: The Parameterized Complexity of Counting Problems. SIAM J. Comput. 33(4),
892-922 (2004). https://doi.org/10.1137/S0097539703427203

27. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X

28. Goldberg, L.A., Jerrum, M.: Counting Unlabelled Subtrees of a Tree is #P-complete. LMS Journal of
Computation and Mathematics 3, 117-124 (2000). https://doi.org/10.1112/S1461157000000243

29. Goldreich, O.: Computational Complexity - A Conceptual Perspective. Cambridge University Press,
(2008)

30. Grohe, M., Marx, D.: On tree width, bramble size, and expansion. J. Comb. Theory, Ser. B 99(1),
218-228 (2009). https://doi.org/10.1016/].jctb.2008.06.004

31. Guo, H,, Liao, C., Lu, P., Zhang, C.: Zeros of Holant problems: locations and algorithms. In: Proceed-
ings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pp. 2262-2278 (2019). https://doi.org/10.1137/1.9781611975482.
137

32. Hopcroft, J.E., Tarjan, RE.: A V2 Algorithm for Determining Isomorphism of Planar Graphs. Inf.
Process. Lett. 1(1), 32-34 (1971). https://doi.org/10.1016/0020-0190(71)90019-6

@ Springer


https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1007/978-3-642-39206-1_30
http://scidok.sulb.uni-saarland.de/volltexte/2015/6217/
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.4230/LIPIcs.ICALP.2019.113
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1016/j.cosrev.2008.06.001
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1112/S1461157000000243
https://doi.org/10.1016/j.jctb.2008.06.004
https://doi.org/10.1137/1.9781611975482.137
https://doi.org/10.1137/1.9781611975482.137
https://doi.org/10.1016/0020-0190(71)90019-6

Algorithmica (2021) 83:1829-1860 1859

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

Huang, S., Lu, P.: A Dichotomy for Real Weighted Holant Problems. Computational Complexity 25(1),
255-304 (2016). https://doi.org/10.1007/s00037-015-0118-3

Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367-375 (2001).
https://doi.org/10.1006/jcss.2000.1727

Jerrum, M.: Counting Trees in a Graph is #P-Complete. Inf. Process. Lett. 51(3), 111-116 (1994).
https://doi.org/10.1016/0020-0190(94)00085-9

Jerrum, M., Sinclair, A.: Approximating the Permanent. STAM J. Comput. 18(6), 1149-1178 (1989).
https://doi.org/10.1137/0218077

Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a
quadratic lattice. Physica 27(12), 1209-1225 (1961). https://doi.org/10.1016/0031-8914(61)90063-5
Kasteleyn, P.W.: Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4(2), 287—
293 (1963). https://doi.org/10.1063/1.1703953

Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155-171 (1975). https://
doi.org/10.1145/321864.321877

Lin, B.: The Parameterized Complexity of the k-Biclique Problem. J. ACM 65(5), 34:1-34:23 (2018).
https://doi.org/10.1145/3212622

Lovasz, L.: Large Networks and Graph Limits, Colloquium Publications, vol. 60. American Mathe-
matical Society (2012). http://www.ams.org/bookstore- getitem/item=COLL-60

Marx, D.: Can You Beat Treewidth? Theory of Computing 6(1), 85-112 (2010). https://doi.org/10.
4086/toc.2010.v006a005

Mathon, R.: A Note on the Graph Isomorphism Counting Problem. Inf. Process. Lett. 8(3), 131-132
(1979). https://doi.org/10.1016/0020-0190(79)90004-8

Maurer, S.B.: Matrix Generalizations of Some Theorems on Trees, Cycles and Cocycles in Graphs.
SIAM Journal on Applied Mathematics 30(1), 143—148 (1976). https://doi.org/10.1137/0130017
McCartin, C.: Parameterized counting problems. Ann. Pure Appl. Logic 138(1-3), 147-182 (2006).
https://doi.org/10.1016/j.apal.2005.06.010

Nesetiil, J.: Homomorphisms of derivative graphs. Discrete Mathematics 1(3), 257-268 (1971). https://
doi.org/10.1016/0012-365X(71)90014-8

Olteanu, D., Zavodny, J.: Size Bounds for Factorised Representations of Query Results. ACM Trans.
Database Syst. 40(1), 2:1-2:44 (2015). https://doi.org/10.1145/2656335

Oxley, J.G.: Matroid theory, 2nd edn. Oxford University Press, (2011)

Rota, G.C.: On the foundations of combinatorial theory I. Theory of Mobius functions. Zeitschrift fiir
Wahrscheinlichkeitstheorie und verwandte Gebiete 2(4), 340-368 (1964)

Roth, M.: Counting Restricted Homomorphisms via Mobius Inversion over Matroid Lattices. In: 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pp.
63:1-63:14 (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.63

Roth, M., Schmitt, J.: Counting induced subgraphs: A Topological Approach to #W[1]-hardness. In:
13th International Symposium on Parameterized and Exact Computation, IPEC 2018, August 20-24,
2018, Helsinki, Finland, pp. 24:1-24:14 (2018). https://doi.org/10.4230/LIPIcs.IPEC.2018.24
Schaefer, T.J.: The Complexity of Satisfiability Problems. In: Proceedings of the 10th Annual ACM
Symposium on Theory of Computing, May 1-3, 1978, San Diego, California, USA, pp. 216-226
(1978). https://doi.org/10.1145/800133.804350

Stanley, R.P.: Enumerative Combinatorics: vol. 1. Cambridge University Press, (2011)

Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact result. The Philo-
sophical Magazine: A Journal of Theoretical Experimental and Applied Physics 6(68), 1061-1063
(1961). https://doi.org/10.1080/14786436108243366

Vadhan, S.P.: The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM J. Comput.
31(2), 398-427 (2001). https://doi.org/10.1137/S0097539797321602

Valiant, L.G.: The Complexity of Computing the Permanent. Theor. Comput. Sci. 8, 189-201 (1979).
https://doi.org/10.1016/0304-3975(79)90044-6

Valiant, L.G.: The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 8(3),
410-421 (1979). https://doi.org/10.1137/0208032

Valiant, L.G.: Holographic Algorithms. SIAM J. Comput. 37(5), 1565-1594 (2008). https://doi.org/
10.1137/070682575

Welsh, D.J.: Matroid theory. Courier Corporation (2010)

Xia, M., Zhang, P., Zhao, W.: Computational complexity of counting problems on 3-regular planar
graphs. Theor. Comput. Sci. 384(1), 111-125 (2007). https://doi.org/10.1016/j.tcs.2007.05.023

@ Springer


https://doi.org/10.1007/s00037-015-0118-3
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/0020-0190(94)00085-9
https://doi.org/10.1137/0218077
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1063/1.1703953
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/3212622
http://www.ams.org/bookstore-getitem/item=COLL-60
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1016/0020-0190(79)90004-8
https://doi.org/10.1137/0130017
https://doi.org/10.1016/j.apal.2005.06.010
https://doi.org/10.1016/0012-365X(71)90014-8
https://doi.org/10.1016/0012-365X(71)90014-8
https://doi.org/10.1145/2656335
https://doi.org/10.4230/LIPIcs.ESA.2017.63
https://doi.org/10.4230/LIPIcs.IPEC.2018.24
https://doi.org/10.1145/800133.804350
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1137/S0097539797321602
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0208032
https://doi.org/10.1137/070682575
https://doi.org/10.1137/070682575
https://doi.org/10.1016/j.tcs.2007.05.023

1860 Algorithmica (2021) 83:1829-1860

61. Zhuk, D.: A Proof of CSP Dichotomy Conjecture. In: 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pp. 331-342 (2017).
https://doi.org/10.1109/FOCS.2017.38

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1109/FOCS.2017.38

	Parameterized Counting of Partially Injective Homomorphisms
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Techniques

	2 Preliminaries
	2.1 Graph Theory
	2.1.1 Treewidth
	2.1.2 Homomorphisms and Subgraph Embeddings

	2.2 Counting Problems
	2.2.1 Parameterized Counting Complexity
	2.2.2 Fine-Grained Complexity Theory

	2.3 Quantum Graphs
	2.4 Combinatorics
	2.4.1 Matroids
	2.4.2 Möbius Inversion


	3 Partially Injective Homomorphisms
	4 Locally Injective Homomorphisms
	4.1 Counting Subtrees of a Tree

	5 Quantum Graphs with Inequalities
	6 Conclusions and Future Work
	Acknowledgements
	References




