
ar
X

iv
:1

80
7.

05
55

4v
1

 [
cs

.D
S]

 1
5

Ju
l 2

01
8

A new lower bound for classic online bin packing

János Balogh ∗ József Békési † György Dósa‡ Leah Epstein§ Asaf Levin¶

Abstract

We improve the lower bound on the asymptotic competitive ratio of any online algo-

rithm for bin packing to above 1.54278. We demonstrate for the first time the advantage

of branching and the applicability of full adaptivity in the design of lower bounds for the

classic online bin packing problem. We apply a new method for weight based analysis,

which is usually applied only in proofs of upper bounds. The values of previous lower

bounds were approximately 1.5401 and 1.5403.

1 Introduction

The bin packing problem [20, 13, 9] is a well-studied combinatorial optimization problem with

origins in data storage and cutting stock. The input consists of items of rational sizes in (0, 1],

where the goal is to split or pack them into partitions called bins, such that the total size

of items for every bin cannot exceed 1. The online bin packing problem [10, 9] is its variant

where items are presented one by one, and the algorithm assigns each item to a bin before it

can see the next item.

For an algorithm A and an input I, let A(I) be the cost (number of bins) used by A

for I. The algorithm A can be an online or offline algorithm, and it can also be an optimal

offline algorithm OPT. The absolute competitive ratio of algorithm A for input I is the

ratio between A(I) and OPT (I). The absolute competitive ratio of A is the worst-case (or

supremum) absolute competitive ratio over all inputs. Given an integer N , we can consider

the worst-case absolute competitive ratio over inputs where OPT (I) is not smaller than N .

Taking this sequence and letting N grow to infinity, the limit is the asymptotic competitive

ratio of A. This measure is the standard one for analysis of the bin packing problem, and it

is considered to be more meaningful than the absolute ratio (which is affected by very small

inputs).

∗Department of Applied Informatics, Gyula Juhász Faculty of Education, University of Szeged, Hungary.

balogh@jgypk.u-szeged.hu
†Department of Applied Informatics, Gyula Juhász Faculty of Education, University of Szeged, Hungary.

bekesi@jgypk.u-szeged.hu
‡Department of Mathematics, University of Pannonia, Veszprém, Hungary, dosagy@almos.vein.hu.
§Department of Mathematics, University of Haifa, Haifa, Israel. lea@math.haifa.ac.il.
¶Faculty of Industrial Engineering and Management, The Technion, Haifa, Israel.

levinas@ie.technion.ac.il.

1

http://arxiv.org/abs/1807.05554v1

The current best online algorithm with respect to the asymptotic competitive ratio has

an asymptotic competitive ratio no larger than 1.57829 [2], which was found recently by

development of new methods of analysis. Previous results were achieved via a sequence of

improvements [14, 15, 22, 16, 18, 19, 12]. In this work, we consider the other standard aspect

of the online problem, namely, of establishing lower bounds on the asymptotic competitive

ratio that can be achieved by online algorithms.

The first lower bound on the asymptotic competitive ratio was found by Yao [22], and it

uses an input with at most three types of items: 1
7 + ε, 1

3 + ε, and 1
2 + ε (where ε > 0 is

sufficiently small). For this input, if the entire input is presented, every bin of an optimal

solution has one item of each type (and otherwise there are larger numbers of items in a bin,

but all bins are still packed identically). It is possible to start the sequence with smaller

items, for example, it can be started with 1
1807 +ε and then 1

43 +ε, which increases the result.

This was discovered by Brown and Liang (independently) [17, 8], who showed a lower bound

of 1.53635. Van Vliet [21] found an interesting method of analysis and showed that the same

approach (the same sequence with additional items) gives in fact a lower bound of 1.5401474.

Finally, Balogh, Békési, and Galambos [5] showed that the greedy sequence above is actually

not the best one among sequences with batches of identical items, and proved a lower bound

of 248/161 ≈ 1.5403726 (see also [6] for an alternative proof). Their sequence starts with

decreasing powers of 1
7 plus epsilon (it can be started with items complementing the other

items to 1 but it does not change the bound), and after 1
49 + ε the other items are exactly

those used by Yao [22]. This result of [5] is the previously best known lower bound.

One drawback of the previous lower bounds is that while the exact input was not de-

termined in advance, the set of sizes used for it was determined prior to the action of the

algorithm by the input provider and it was known to the algorithm. Moreover, for classic

bin packing, in all previously designed lower bound inputs, sizes of items were slightly larger

than a reciprocal of an integer, and optimal solutions consisted of bins with identical packing

patterns. The possible item sizes and numbers of items were known to the algorithm, but the

stopping point of the input was unknown, and it was based on the action of the algorithm.

It seemed unlikely that such examples are indeed the worst-case examples. We show here

that different methods for proving lower bounds and new approaches to sizes of items give an

improved lower bound.

New features of our work. Previous lower bound constructions for standard bin packing

were defined for inputs without branching. Those are inputs where the possible inputs differ

only by their stopping points. Here, we use an input with branching, which makes the analysis

harder, as those branches are related (the additional items may use the same existing bins in

addition to new bins), but at most one of them will be presented eventually. It is notable that

branching was used to design an improved lower bound for the case where the input consists

of three batches [4] (where for each one of the batches, all items are presented at once), but it

was unknown whether it can be used to design improved lower bounds for standard online bin

2

packing. That is, it was unknown if the impact of branching in [4] is similar to one additional

batch or if it gives the adversary more power that can be used in the general settings as well.

It was also not known whether one can exploit methods of constructing fully adaptive

inputs, where in some parts of the input every item size is based precisely on previous decisions

of the algorithm. Such results were previously proved for online bin packing with cardinality

constraints, where (in addition to the constraint on the total size) every bin is limited to

containing k items, for a fixed parameter k ≥ 2 [7, 1, 11, 3]. Thus, in addition to branching

we will use the following theorem proved in [3] (see the construction in Section 3.1 and

Corollary 3 in [3]).

Theorem 1 Let N ≥ 1 be a large positive integer and let k ≥ 2 be an integer. Assume

that we are given an arbitrary deterministic online algorithm for a variant of bin packing

and a binary condition Con1 on the possible behavior of an online algorithm for one item

(on the way that the item is packed). An adversary is able to construct a sequence of values

ai (1 ≤ i ≤ N) such that for any i, ai ∈
(

k−2N+3

, k−2N+2
)

, and in particular ai ∈
(

0, 1
k4

)

(defining item sizes is done using a given linear function of the values ai), such that for any

item i1 satisfying Con1 and any item i2 not satisfying Con1, it holds that
ai2
ai1

> k.

Examples for the condition Con1 can be the following: “the item is packed as a first item

of its bin”, “the item is packed into a non-empty bin”, “the item is packed into a bin already

containing an item of size above 1
2”, etc. Here, the condition Con1 will be that the item is

not packed into an empty bin (or a new bin).

Our method of analysis is based on a new type of a weighting function. This kind of

analysis is often used for analyzing bin packing algorithms, that is, for upper bounds. It

was used for lower bounds [6] and by van Vliet [21] (where the term weight is not used, and

the values given to items are based on the dual linear program, but the specific kind of dual

variables and their usage can be adapted to a weighting function). However, those weights

were defined for inputs without branching and we extend the use of these weights for inputs

with branching for the first time, which adds technical challenges to our work also in the

analysis. The advantage of weights is that we do not need to test all packing patterns of an

algorithm, whose number can be very large, and thus we obtain a complete and verifiable

proof with much smaller number of cases than that of pattern based proofs (see for example

[11]).

2 The input

Let t ≥ 3 be an integer, let ε > 0 be small constant, let M be a large integer and let

N = M · 42t (N is a large integer divisible by 6 · 7t). The condition on ε is: ε < 1
(2058)t .

Given a specific algorithm ALG, we will analyze it for the set of inputs defined here, where

the input depends on the actions of ALG both with respect to stopping the input, but also

3

some of the sizes will be based on the exact action of ALG, and on the previously presented

items and their number.

Let Ct =
1

6·7t−1 −294ε, and for 2 ≤ j ≤ t−1, let Cj =
1+28ε
7j

. The input starts with batches

of N items of the sizes Cj, for every j = t, t− 1, . . . , 2, where the input may be stopped after

each one of these batches. An item of size Cj is called a Cj–item.

Afterwards, there are N items called A–items. The sizes of A–items will be all strictly

larger than 1+ε

7 but strictly smaller than 1+2ε
7 . Any A–item packed as a first item into a bin

will be called a large A–item, and any other A–items will be called a small A–item. During

the construction, based on the actions of the algorithm, we will ensure that for any large

A–item, its difference from 1+ε

7 is larger by a factor of more than 4 than the difference from
1+ε

7 of any small A–item. The details of attaining this property are given below (see Lemma

2).

Let γ > 0 be such that the size of every small A–item is at most 1+ε+γ

7 while the size of

every large A–item is above 1+ε+4γ
7 (where γ < ε

4). The input may be stopped after A–items

are introduced (the number of A items is N no matter how many of them are small and

how many are large). Let nL denote the number of large A–items, and therefore there are

N − nL small A–items. Even though the A–items will have different sizes and they cannot

be presented at once to the algorithm, we see them as one batch.

If the input is not stopped after the arrival of A–items, there are three options to continue

the input (i.e., we use branching at this point). In order to define the three options, we

first define the following five items types. A B11–item has size 1+2ε
2 . A B21–item has size

1+ε

3 and a B22–item has size 1+ε

2 . A B31–item has size 5−2ε−3γ
14 and a B32–item has size

7+γ

14 = 1
2 +

γ

14 < 1
2 +

ε

56 (this size is above 1
2).

The first option to continue is with B11–items, such that a batch of N
3 such items arrive.

The second option is with a batch of B21–items, possibly followed by a batch of B22–items.

In this option, the number of items of each batch is N . The third option is that a batch of

B31–items arrive, possibly followed by a batch of B32–items. In the last case, we define the

numbers of items based on nL as follows. The number of B31–items (if they are presented)

is n31 = 7N−7nL

6 . The number of B32–items (if they are presented) is n32 = 7N−5nL

6 . This

concludes the description of the input (see Figure 1 for an illustration).

We conclude this section by showing that indeed we can construct the batch (or subse-

quence) of A–items satisfying the required properties.

Lemma 2 The sizes of A–items can be constructed as described.

Proof. We use Theorem 1. Condition Con1 is that the item is packed into a bin that already

contains at least one item (this item may be of a previous batch of items). Let k = ⌈1
ε
⌉.

The items sizes are 1+ε+ai
7 . We find that all item sizes are in (1+ε

7 , 1+2ε
7). We also have for

two items of sizes
1+ε+ai1

7 and
1+ε+ai2

7 , where the second item does not satisfy Con1 while

the first one satisfies Con1 that
ai2
ai1

> k. Let γ be the maximum size of any value ai of an

4

Figure 1: An illustration of the input. Every box contains a set of items, and the input may

be stopped after presenting the items of any box. In cases with branching, at most one path

is selected, and any such path may be presented as an input.

item satisfying Con1. Then, we have
1+ε+ai1

7 ≤ 1+ε+γ

7 and
1+ε+ai2

7 ≥ 1+ε+kγ
7 > 1+ε+4γ

7 , as

required.

In order to give some motivation regarding the sizes of items, note that by ε < 1
(2058)t , we

have 5−2ε−3γ
14 ≥ 5

14 − 2.75
14 · ε > 0.35714, while 1+ε

3 < 0.33334.

3 Bounds on the optimal costs

We find upper bounds on optimal costs. We denote the optimal cost after the batch of items

of sizes Cj is presented by OPTj (for j ≥ 2). Similarly, we denote an optimal cost after the

batch of A–items by OPT1.

Lemma 3 For t ≥ j ≥ 2, we have OPTj ≤
N

6·7j−1 , and OPT1 ≤ N
6 . Furthermore, let j ≥ 1,

then the total size of one item of each batch up to the batch of Cj–items (if j ≥ 2) or up to

the batch of A–items (if j = 1) is at most 1
6·7j−1 − 293ε.

Proof. First, consider j ≥ 2. The total size of t − j + 1 items, each of a different size

out of Ct, Ct−1, . . . , Cj is Ct +
∑t−1

i=j Cj = 1
6·7t−1 − 294ε +

∑t−1
i=j

1+28ε
7j

= 1
6·7t−1 − 294ε +

1+28ε
7j

∑t−1
i=j

1
7i−j = 1

6·7t−1 − 294ε+ 1+28ε
7j

· 7−1/7t−j−1

6 = 1
6·7t−1 − 294ε+(1+28ε)1/7

j−1−1/7t−1

6 <

1
6·7j−1 − 293ε, as

∑t−1
i=j

1
7i−j =

∑t−j−1
i=0

1
7i

= 1−1/7t−j

6/7 = 7−1/7t−j−1

6 . Thus, it is possible to

pack 6 · 7j−1 items of each size into every bin and get a feasible solution with N
6·7j−1 bins, so

OPTj ≤
N

6·7j−1 .

5

A similar bound can be used for the input up to the batch of A–items as well. In this

case the total size of one item of each size Cj together with one A–item (small or large) is at

most 1
6·7t−1 − 294ε + (1 + 28ε)1/7−1/7t−1

6 + 1+2ε
7 < 1

6 − 293ε. Thus, OPT1 ≤ N
6 (by packing

six items of each batch into every bin).

We let OPT11, OPT21, OPT22, OPT31, OPT32, denote costs of optimal solutions for the

inputs after the batches of B11–items, B21–items, B22–items, B31–items, and B32–items were

presented, respectively. In the next lemma we present upper bounds on these optimal costs.

Lemma 4 We have OPT11 ≤ N
3 , OPT21 ≤ N

2 , OPT22 ≤ N , OPT31 ≤ 7N−5nL

12 , and

OPT32 ≤
7N−5nL

6 .

Proof. We have OPT11 ≤
N
3 , as it is possible to pack three items of each batch and one B11–

item into each bin of a feasible solution, since their total sizes are below 3(16−293ε)+ 1+2ε
2 < 1.

We have OPT21 ≤
N
2 , as it is possible to pack two items of each batch and two B21–items

into each bin of a feasible solution, since their total sizes are below 2(16 − 293ε) + 21+ε

3 < 1.

We have OPT22 ≤ N , as it is possible to pack one item of each batch, one B11–item and

one B21–item into each bin, since their total sizes are below (16 − 293ε) + 1+ε

3 + 1+ε

2 < 1.

If the third option for continuing the input is used, we define solutions as follows. The

first solution is for the input up to B31–items. There are bins with six large A–items, and

six items of each one of the preceding batches, there are bins with two B31–items and two

small A–items, and finally there are bins with two B31–items and 12 items of each of the

sizes Ct, Ct−1, . . . , C2. The numbers of bins of the three types are nL

6 , N−nL

2 , and N−nL

12 ,

respectively. We next argue that this is a feasible solution. The number of B31–items that

are packed is 7N−nL

6 , the number of large A–items that are packed is nL, the number of small

A–items that are packed is N − nL, and for every j (2 ≤ j ≤ t), the number of Cj–items is

nL+(N−nL) = N , so all items are packed. The bins are valid as the total size of items packed

into a bin is at most 1− γ

7 < 1, as we show now. For a bin of the first type, the total size of

items is at most 6(1+2ε
7)+6(1

42−293ε) < 1−290ε ≤ 1− γ

7 . The total size of items packed into a

bin of the second type is at most 2(1+ε+γ

7)+2(5−2ε−3γ
14) = 1− γ

7 . Finally, the total size of items

packed into a bin of the third type is at most 12(1
42 − 293ε) + 2(5−2ε−3γ

14) < 1− 290ε ≤ 1− γ

7 .

Thus, OPT31 ≤
nL

6 + N−nL

2 + N−nL

12 = 7N−5nL

12 .

The second solution is for the input up to B32–items. Every bin has one B32–item. The

other contents are as follows. There are bins with three large A–items, and three items of

each one of the preceding batches, there are bins with one B31–item and one small A–item,

and finally there are bins with one B31–item and 6 items of each of the sizes Ct, Ct−1, . . . , C2.

Those are halves of the contents of the bins in the case that B32–items do not arrive, and

the total sizes of such halves are at most
1−γ

7

2 . The total size packed into each bin is at most

(1− γ

7)/2 + (7+γ

14) = 1. Thus, OPT32 ≤
7N−5nL

6 .

We next prove that the optimal costs are at least M (for all possible inputs). We have

Ct =
1

6·7t−1 − 294ε > 1
6·7t−1 − 294 · 1

2058t > 1
6·7t−1+1

, as 1
6·7t−1 −

1
6·7t−1+1

= 1
6·7t−1(6·7t−1+1)

while

294 · 1
2058t = 1

6t−1·73t−2 , and 6 · 7t−1(6 · 7t−1 +1) < 6t−1 · 7t−1 · 7t < 6t−1 · 73t−2 by t ≥ 2. Thus,

6

as all inputs contain the first batch of Ct–items, and every bin has at most 6 ·7t−1 such items,

we get that an optimal solution has at least N
6·7t−1 > M bins.

4 An analysis using weights

In this section we provide a complete analytic proof of the claimed lower bound that we

establish using our construction. In fact we verified the tightness of our analysis (for this

construction) by solving a mathematical program for some very small values of t. Our analytic

proof is based on assigning weights to items, defining prices to bins using the weights and bin

types, and finally using these prices to establish the lower bound.

The assignment of weights to items. We assign weights to items as follows. For a Cj–

item, where 2 ≤ j ≤ t− 1, we let its weight be 1
7j−1 . The weight of a Ct–item is 1

6·7t−2 . The

weight of a large A–item is denoted by w where w ∈ [1, 1.5]. The weight of any other item is

1, those are B11–items, B21–items, B22–items, B31–items, B32–items, and small A–items.

Definition of bin type. For a bin packed by the algorithm, we say that it has type j if it

has a Cj–item for some 2 ≤ j ≤ t and no smaller items (i.e., for any k such that j < k ≤ t,

it has no Ck–item). We say that it has type 1 if it has an A–item and no smaller items (i.e.,

it has no Ck–item for all 2 ≤ k ≤ t). We say that it is a double bin if it has a B21–item or

a B31–item and no smaller items (i.e., no Ck–item for all 2 ≤ k ≤ t and no A–item), and we

say that it is a single bin if it has only items of sizes above 1
2 , i.e., a B11–item or a B22–item

or a B32–item (where every such bin has exactly one item).

The price of a bin type. We define the price of a bin type as follows. A bin D of a

certain type may receive additional items after its first batch of items out of which its first

item comes. Moreover, its contents may differ in different continuations of the input (due

to branching). Consider the contents of D for all continuations simultaneously (taking into

account the situation where these items indeed arrive), and define a set of items S(D) based

on this (one can think of S(D) as a virtual bin, which is valid for any possible input). For

example, if the bin has one (large) A–item, and in the first continuation it will receive a

B11–item, in the second continuation it will receive one B21–item and one B22–item, and in

the third continuation it would receive two B31–items, then the set S(D) contains six items

(one of size approximately 1
7 , one of size approximately 1

3 , two of sizes approximately 1
2 , and

two of sizes approximately 5
14). The price of D is defined as the total weight of items of S(D)

(for the example, this price is w + 5). The price of a bin type is the supremum price of any

bin of this type.

Calculating the prices of the bin types. Let Wj denote the price of bin type j, for

1 ≤ j ≤ t, let Wd denote the price of a double bin, and let Ws denote the price of a single

bin.

7

Lemma 5 For the weights defined above, we have Ws = 1, Wd = 2, and W1 = w + 5.

Proof. We have Ws = 1 and Wd = 2 as all items of sizes above 1
3 have weights of 1. This

holds as a single bin has exactly one item, while for a double bin D, |S(D)| ≤ 2 and there is

just one continuation to be considered (so it either has two identical items, or its second item

has size above 1
2 , and in both cases the price is 2).

Consider now type 1 bins. For such a bin D1, we consider S(D1). This is a bin whose first

item is an A–item, it has one large A–item and possibly also small A–items. The weight of

its large A–item is w, and we calculate the weight of other items, and show that it is at most

5. The number of small A–items of S(D1) is between zero and five (as the sizes of A–items

are above 1
7).

• If S(D1) has at least four small A–items, it has no space for further items (as the total

size would be above 5
7 +

1
3 > 1). In this case, |S(D1)| ≤ 6, and its price is at most w+5.

• If S(D1) has exactly three small A–items, the space for other items is below 1
2 , so S(D1)

can have one B21–item and one B31–item, and its price is again w + 5.

• If S(D1) has exactly two small A–items, S(D1) can have one item for every continuation,

and |S(D1)| ≤ 6, so its price is again w + 5.

• If S(D1) has exactly one small A–item, S(D1) can have one B31–item (or one B32–item),

but it cannot have two B31–items, as the size of one small A–item, one large A–item, and

two B31–items is above (1+ε

7)+(1+ε+4γ
7)+2(5−2ε−3γ

14) = 1+ε+1+ε+4γ+5−2ε−3γ
7 = 7+γ

7 > 1.

It can contain a B11–item, and it can contain two B21–items. Thus, |S(D1)| ≤ 6, so its

price is again w + 5.

• Finally, if it has no small A–items, it can contain two B31–items or one B11–item or

two B21–items, and in this case we also have |S(D1)| ≤ 6, and a price of w + 5.

Lemma 6 For the weights defined above, we have Wj = 7 − 1
7j−1 for 2 ≤ j ≤ t − 1, and

Wt = 7.

Proof. Consider a type j bin Dj (for 2 ≤ j ≤ t). As an A–item can be large only in the case

that it is packed into an empty bin, S(Dj) may only have small A–items (and items which

are not A–items).

In the case j = t, we claim that every Ck–item for any 2 ≤ k ≤ t − 1 can be replaced

with 6 · 7t−k−1 Ct–items. The total size of items is not increased (the size of a Ck item

is above 1
7k−1 while the total size of 6 · 7t−k−1 Ct–items is below 6·7t−k−1

6·7t−1 = 1
7k
, so for any

possible continuation after the A–items, the remaining members of S(Dt) can still be packed.

Similarly, every (small) A–item is replaced with 6 · 7t Ct–items (whose total size is smaller).

The weight is unchanged since the weight of every Ct–item is 1
6·7t−2 , so the total weight of

8

6 · 7t−k−1 Ct–items is 1
7k−1 , which is the weight of a Ck–item, and this is valid for the case

k = 1 (of A–items) as well. Thus, we assume that S(Dt) has some number of Ct–items, and

calculate the number of B11–items, B21–items, and B31–items that can be packed given the

number of Ct–items (as B22 > B21 and B32 > B31, and they all have weights of 1, we consider

only single items and pairs of B21–items and pairs of B31–items).

We show what cannot be included in S(Dt). The maximum number of Ct–items is 6·7t−1 =

42 · 7t−2. We will use the following property: (28 · 7t−2 +1) · 294ε+ ε < 1
6·7t−1 . This property

holds as ε < 1
6t·73t and therefore

(28 · 7t−2 + 1) · 294ε + ε ≤ (24 · 7t+1 + 295)ε < 25 · 7t+1
ε <

25 · 7t+1

6t · 73t
<

1

6t−1 · 72t−2
,

as t ≥ 3.

• If there are at least 12 · 7t−2 + 1 Ct–items in S(Dt), there cannot be two B31–items as

(12 · 7t−2 + 1)(1
6·7t−1 − 294ε) + 2(5−2ε−3γ

14) ≥ 1 + 1
6·7t−1 − (12 · 7t−2 + 1)294ε − ε > 1.

• If there are at least 14 · 7t−2 + 1 Ct–items in S(Dt), there cannot be two B21–items as

(14 · 7t−2 + 1)(1
6·7t−1 − 294ε) + 2(1+ε

3) > 1 + 1
6·7t−1 − (14 · 7t−2 + 1)294ε > 1.

• If there are at least 21 · 7t−2 + 1 Ct–items in S(Dt), there cannot be a B11–item as

(21 · 7t−2 + 1)(1
6·7t−1 − 294ε) + (1+2ε

2) > 1 + 1
6·7t−1 − (21 · 7t−2 + 1)294ε > 1.

• If there are at least 28 · 7t−2 + 1 Ct–items in S(Dt), there cannot be a B21–item and

there cannot be a B31–item as (28 · 7t−2 + 1)(1
6·7t−1 − 294ε) + (1+ε

3) > 1 + 1
6·7t−1 − (28 ·

7t−2 + 1)294ε > 1 and the fact that a B31 item is larger than a B21–item.

Now, we can find upper bounds on the prices in all cases.

• If the number of Ct–items is at most 12 · 7t−2, the price is at most 5 + 12·7t−2

6·7t−2 = 7.

• If the number of Ct–items is at least 12 · 7t−2 + 1 and at most 14 · 7t−2, the price is at

most 4 + 14·7t−2

6·7t−2 < 7.

• If the number of Ct–items is at least 14 · 7t−2 + 1 and at most 21 · 7t−2, the price is at

most 3 + 21·7t−2

6·7t−2 < 7.

• If the number of Ct–items is at least 21 · 7t−2 + 1 and at most 28 · 7t−2, the price is at

most 2 + 28·7t−2

6·7t−2 < 7.

• If the number of Ct–items is at least 28 · 7t−2 + 1, the price is at most 42·7t−2

6·7t−2 = 7.

Next, we consider Dk for k < t, and show that the price is slightly smaller. No bin can

contain more than 7k − 1 Ck–items (as their sizes are above 1
7k
). Here, we can replace every

item of size Cj (for 2 ≤ j < k) by exactly 7k−j Ck–items without modifying the total weight

and similarly we can replace every small A item by 7k−1 Ck items without changing the total

9

weight. Thus, we will assume that Dk does not contain such items. We will use the properties

that the numbers 7k − 1 and 7k +2 are divisible by 3, and the numbers 7k − 1 and 7k +1 are

divisible by 2.

• If there are at least 2 · 7k−1 Ck–items in S(Dk), there cannot be two B31–items as

(2 · 7k−1)(1+28ε
7k

) + 2(5−2ε−3γ
14) > 1 + 7ε.

• If there are at least (7k + 2)/3 Ck–items in S(Dk), there cannot be two B21–items as

((7k + 2)/3)(1+28ε
7k

) + 2(1+ε

3) > 1.

• If there are at least (7k + 1)/2 Ck–items in S(Dk), there cannot be a B11–item as

((7k + 1)/2)(1+28ε
7k

) + (1+2ε
2) > 1.

• If there are at least (9 · 7k−1 + 1)/2 Ck–items in S(Dk), there cannot be a B31–item as

((9 · 7k−1 + 1)/2)(1+28ε
7k

) + (5−2ε−3γ
14) ≥ 1 + 1

2·7k − ε > 1.

• If there are at least (2 · 7k + 1)/3 Ck–items in S(Dk), there cannot be a B21–item as

((2 · 7k + 1)/3)(1+28ε
7k

) + (1+ε

3) > 1.

Now, we can find upper bounds on the price in all cases.

• If the number of Ck–items is at most 2 · 7k−1 − 1, the price is at most 5 + 2·7k−1−1
7k−1 =

7− 1
7k−1 = 7k−1

7k−1 .

• If the number of Ck–items is at least 2 · 7k−1 and at most (7k − 1)/3, the price is at

most 4 + (7k−1)/3
7k−1 = 19·7k−1−1

3·7k−1 < 21·7k−1−3
3·7k−1 = 7k−1

7k−1 , as k ≥ 2.

• If the number of Ck–items is at least (7k + 2)/3 and at most (7k − 1)/2, the price is at

most 3 + (7k−1)/2
7k−1 = 13·7k−1−1

2·7k−1 < 14·7k−1−2
2·7k−1 = 7k−1

7k−1 , as k ≥ 2.

• If the number of Ck–items is at least (7k + 1)/2 and at most (9 · 7k−1 − 1)/2, the price

is at most 2 + (9·7k−1−1)/2
7k−1 = 13·7k−1−1

2·7k−1 < 7k−1
7k−1 .

• If the number of Ck–items is at least (9 · 7k−1 + 1)/2 and at most (2 · 7k − 2)/3 , the

price is at most 1 + (2·7k−2)/3
7k−1 = 17·7k−1−2

3·7k−1 < 21·7k−1−3
3·7k−1 = 7k−1

7k−1 , as k ≥ 2.

• If the number of Ck–items is at least (2 · 7k + 1)/3, the price is at most 7k−1
7k−1 .

This concludes the proof.

Using the prices of bin types to establish the lower bound on the asymptotic

competitive ratio. Let νj denote the number of bins opened for Cj–items (bins used for

the first time when the batch of Cj–items is presented). Let ν1 denote the number of bins

opened for A–items. Let νkℓ denote the number of bins opened for Bkℓ–items, for (k, ℓ) ∈ ISB,

where ISB = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2)}. Moreover, as large A–items are exactly those

A–items that are packed as first items of their bins, we have ν1 = nL.

10

Let ALGj denote the cost of the algorithm for the input up to the batch of Cj–items, and

let ALG1 denote the cost of the algorithm up to the batch of A–items. Let ALGkℓ denote

the cost of the algorithm up to the batch of Bkℓ–items for (k, ℓ) ∈ ISB.

Let R be the asymptotic competitive ratio of ALG, and let f be a function such that

f(n) = o(n) and for any input I it holds that ALG(I) ≤ R · OPT (I) + f(OPT (I)).

We have ALGj ≤ R ·OPTj + f(OPTj) for 1 ≤ j ≤ t. We also have ALGkℓ ≤ R ·OPTkℓ+

f(OPTkℓ) for (k, ℓ) ∈ ISB.

Let W denote the total weight of all items (for all branches, such that every possible item

is counted exactly once). Since 1
6·7t−2 +

∑t−1
j=2

1
7j−1 = 1

6 , we have

W = N · (
1

6 · 7t−2
+

t−1
∑

j=2

1

7j−1
) + w · nL + (N − nL) +

N

3
+ 2N + n31 + n32

=
N

6
+ (w − 1)nL +

10N

3
+

7N − 7nL

6
+

7N − 5nL

6

= w · nL − 3 · nL +
35N

6
.

Lemma 7 We have W ≤
∑t

j=1Wjνj +Wd(ν21 + ν31) +Ws(ν11 + ν22 + ν32) =
∑t

j=1Wjνj +

ν11 + 2ν21 + ν22 + 2ν31 + ν32.

Proof. The weight of every item is included in the price of exactly one bin used by the

algorithm. Thus, the total weight is equal to the total price of bins. Given the supremum

prices, we get an upper bound on the total price. This proves the inequality, the equality

holds by substituting the values of Wd and Ws.

Let n′
L = nL

N , and W ′ = W
N = w · n′

L − 3 · n′
L + 35

6 .

Lemma 8 For any value of nL (0 ≤ nL ≤ N) and for any value of w (1 ≤ w ≤ 1.5), we

have R ≥ W ′

2133/588−1.25n′
L
+ 1

7·48·49t−2 +
1

48·49
+w/7

, and therefore R ≥
w·n′

L−3·n′
L+

35

6

8533/2352−1.25n′
L
+w/7 .

Proof. As the optimal costs are not smaller than M , and M can be chosen to be sufficiently

large, we will neglect the additive term of f(OPT (I)), and assume that for every input I for

which OPT (I) ≥ M , we have ALG(I) ≤ R · OPT (I).

We will write the constraints for all possible inputs (with all stopping points and continu-

ations), and we will take a linear combination of them using positive multipliers. For an input

I, we will exhibit a formula for ALG(I) and an upper bound for OPT (I). The inequality for

this input is that the formula for ALG(I) is at most R times the upper bound for OPT (I).

This inequality is the one we multiply by the corresponding multiplier.

For 1 ≤ j ≤ t we have ALGj =
∑t

i=j νi and OPTj ≤ N
6·7j−1 . The multiplier for j ≥ 2 is

Wj −Wj−1, and the multiplier for j = 1 is W1 −Ws − 2 ·Wd = 5+w− 5 = w. For j = t, we

have Wt−Wt−1 = 7− (7− 1
7t−2) =

1
7t−2 . For 3 ≤ j ≤ t−1, we have Wj −Wj−1 = (7− 1

7j−1)−

(7− 1
7j−2) =

1
7j−2 −

1
7j−1 = 6

7j−1 . For j = 2, we have W2−W1 = (7− 1
7)−(5+w) = 13

7 −w > 0,

as w ≤ 1.5. Let ∆ =
∑t

j=1 νj.

11

For the input that ends with B11–items, ALG11 = ∆ + ν11 while OPT11 ≤ N
3 . The

multiplier is Ws = 1.

For the input that ends with B21–items, ALG21 = ∆ + ν21 while OPT21 ≤ N
2 . The

multiplier is Wd −Ws = 1.

For the input that ends with B22–items, ALG22 = ∆+ ν21 + ν22 while OPT22 ≤ N . The

multiplier is Ws = 1.

For the input that ends with B31–items, ALG31 = ∆+ν31. In this case OPT31 ≤
7N−5nL

12 .

The multiplier is Wd −Ws = 1.

For the input that ends with B32–items, ALG32 = ∆ + ν31 + ν32. In this case OPT32 ≤
7N−5nL

6 . The multiplier is Ws = 1.

Taking the sum of these inequalities (multiplied by the chosen multipliers) we have a left

hand side of

w∆+ 5∆+ ν11 + 2ν21 + ν22 + 2ν31 + ν32 +
t

∑

j=2

(Wj −Wj−1)(
t

∑

i=j

νi)

= ν11 + 2ν21 + ν22 + 2ν31 + ν32 + (5 + w)∆ +
t

∑

j=2

(Wj −W1)νj

= ν11 + 2ν21 + ν22 + 2ν31 + ν32 + (5 + w)∆ +
t

∑

j=2

Wjνj −W1

t
∑

j=1

νj +W1ν1

= ν11 + 2ν21 + ν22 + 2ν31 + ν32 + (5 + w)∆ +

t
∑

j=1

Wjνj −W1∆

=

t
∑

j=1

Wjνj + ν11 + 2ν21 + ν22 + 2ν31 + ν32 ≥ W ,

where the last inequality holds by Lemma 7.

The right hand side is R multiplied by

11N

6
+

7N − 5nL

12
+

7N − 5nL

6
+

1

7t−2
·

N

6 · 7t−1
+

t−1
∑

j=3

6

7j−1
·

N

6 · 7j−1
+ (

13

7
− w)

N

42
+ w

N

6

=
2133N

588
−

5nL

4
+

N

7 · 48 · 49t−2
+

N

48 · 49
+

w ·N

7
.

Thus, by the resulting inequality we deduce the first lower bound on R. The second inequality

(in the statement of the lemma) holds as the first one holds for all integers t ≥ 3 and by letting

t to grow unbounded, we establish the second lower bound on R from the first one.

Theorem 9 We have R ≥ 1363−
√
1387369

120 ≈ 1.5427809064729. That is, there is no online al-

gorithm for bin packing with asymptotic competitive ratio strictly smaller than 1363−
√
1387369

120 ≈

1.5427809064729.

12

Proof. Let r = 1363−
√
1387369

120 ≈ 1.5427809064729 and let w =
√
1387369−1075

96 ≈ 1.07152386690879,

where w = 3− 1.25 · r.

We have R ≥
w·n′

L
−3·n′

L
+ 35

6

8533/2352−1.25n′
L
+w/7 , and we show that this expression is equal to r (for

any n′
L, where 0 ≤ n′

L ≤ 1). The denominator is positive as 8533/2352 − 1.25n′
L + w/7 >

8533/2352 − 1.25 + 1/7 > 2, by n′
L ≤ 1 and w ≥ 1. Thus, it is equivalent to showing

w · n′
L − 3 · n′

L + 35
6 = r(8533/2352 − 1.25n′

L +w/7), which is equivalent to n′
L(w − 3 + 1.25 ·

r) + 35
6 − r(8533/2352 + w/7) = 0.

Indeed w−3+1.25·r = 0, by the choice of w and r. Additionally, 35
6 −r(8533/2352+w/7) =

35
6 − r(8533/2352 + (3− 1.25 · r)/7) = 0, by the choice of r.

Remark 10 We note that our choice of w and r are optimal in the sense that the lower bound

of Lemma 8 cannot be used to prove a higher lower bound on R using other values of w for the

formula which we obtained. This can be observed by solving the corresponding mathematical

program of maximizing (over the possible values of w) of minimizing (over the possible values

of n′
L) of the ratio function defined using these two parameters that we establish in Lemma 8.

References

[1] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing prob-

lems with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238–251, 2004.

[2] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. A new and improved algorithm

for online bin packing. CoRR, abs/1707.01728, 2017. Also in ESA 2018, to appear.

[3] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. Online bin packing with

cardinality constraints resolved. In Proc. of the 25th European Symposium on Algorithms

(ESA2017), pages 10:1–10:14, 2017.

[4] J. Balogh, J. Békési, Gy. Dósa, G. Galambos, and Z. Tan. Lower bound for 3-batched

bin packing. Discrete Optimization, 21:14–24, 2016.

[5] J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain classes of bin

packing algorithms. Theoretical Computer Science, 440:1–13, 2012.

[6] J. Békési, Gy. Dósa, and L. Epstein. Bounds for online bin packing with cardinality

constraints. Information and Computation, 249:190–204, 2016.

[7] D. Blitz. Lower bounds on the asymptotic worst-case ratios of on-line bin packing algo-

rithms. Technical Report 114682, University of Rotterdam, 1996. M.Sc. thesis.

[8] D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Coor-

dinated Science Laboratory Report no. R-864 (UILU-ENG 78-2257), 1979.

13

[9] E. G. Coffman Jr. and J. Csirik. Performance guarantees for one-dimensional bin packing.

In T. F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics,

chapter 32, pages (32–1)–(32–18). Chapman & Hall/Crc, 2007.

[10] J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and

G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages 147–177, 1998.

[11] H. Fujiwara and K. M. Kobayashi. Improved lower bounds for the online bin packing

problem with cardinality constraints. Journal of Combinatorial Optimization, 29(1):67–

87, 2015.

[12] S. Heydrich and R. van Stee. Beating the harmonic lower bound for online bin packing.

In Proc. of 43rd International Colloquium on Automata, Languages, and Programming

(ICALP2016), pages 41:1–41:14, 2016.

[13] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA,

1973.

[14] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System

Sciences, 8:272–314, 1974.

[15] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case

performance bounds for simple one-dimensional packing algorithms. SIAM Journal on

Computing, 3:256–278, 1974.

[16] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM,

32(3):562–572, 1985.

[17] F. M. Liang. A lower bound for on-line bin packing. Information Processing Letters,

10(2):76–79, 1980.

[18] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.

Journal of Algorithms, 10:305–326, 1989.

[19] S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671,

2002.

[20] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report

100, Princeton University, Princeton, NJ, 1971.

[21] A. van Vliet. An improved lower bound for online bin packing algorithms. Information

Processing Letters, 43(5):277–284, 1992.

[22] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227, 1980.

14

	1 Introduction
	2 The input
	3 Bounds on the optimal costs
	4 An analysis using weights

