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Abstract
We study the complexity of the two dual covering and packing distance-based prob-
lems Broadcast Domination and Multipacking in digraphs. A dominating broad-
cast of a digraph D is a function f ∶ V(D) → ℕ such that for each vertex v of D, 
there exists a vertex t with f (t) > 0 having a directed path to v of length at most 
f(t). The cost of f is the sum of f(v) over all vertices v. A multipacking is a set S of 
vertices of D such that for each vertex v of D and for every integer d, there are at 
most d vertices from S within directed distance at most d from v. The maximum 
size of a multipacking of D is a lower bound to the minimum cost of a dominating 
broadcast of D. Let Broadcast Domination denote the problem of deciding whether 
a given digraph D has a dominating broadcast of cost at most k, and Multipack-
ing the problem of deciding whether D has a multipacking of size at least k. It is 
known that Broadcast Domination is polynomial-time solvable for the class of all 
undirected graphs (that is, symmetric digraphs), while polynomial-time algorithms 
for Multipacking are known only for a few classes of undirected graphs. We prove 
that Broadcast Domination and Multipacking are both NP-complete for digraphs, 
even for planar layered acyclic digraphs of small maximum degree. Moreover, when 
parameterized by the solution cost/solution size, we show that the problems are 
respectively W[2]-hard and W[1]-hard. We also show that Broadcast Domination 
is FPT on acyclic digraphs, and that it does not admit a polynomial kernel for such 
inputs, unless the polynomial hierarchy collapses to its third level. In addition, we 
show that both problems are FPT when parameterized by the solution cost/solution 
size together with the maximum (out-)degree, and as well, by the vertex cover num-
ber. Finally, we give for both problems polynomial-time algorithms for some sub-
classes of acyclic digraphs.
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1  Introduction

We study the complexity of the two dual problems Broadcast Domination and Mul-
tipacking in digraphs. These concepts were previously studied only for undirected 
graphs (which can be seen as symmetric digraphs, where for each arc (u, v), the sym-
metric arc (v, u) exists). Unlike most standard packing and covering problems, which 
are of local nature, these two problems have more global features since the covering 
and packing properties are based on arbitrary distances. This difference makes them 
algorithmically very interesting.

Broadcast Domination Broadcast domination is a concept modeling a natural 
covering problem in telecommunication networks: imagine we want to cover a net-
work with transmitters placed on some nodes, so that each node can be reached by at 
least one transmitter. Already in his book in 1968 [25], Liu presented this concept, 
where transmitters could broadcast messages but only to their neighboring nodes. It 
is however natural that a transmitter could broadcast information at distance greater 
than one, at the price of some additional power (and cost). In this setting, for a given 
non-zero integer cost d, a transmitter placed at node v covers all nodes within radius 
d from its location. If the network is directed, it covers all nodes with a directed 
path of length at most d from v. For a feasible solution, the function f ∶ V(G) → ℕ 
assigning its cost to each node of the graph G (a cost of zero means the node has no 
transmitter placed on it) is called a dominating broadcast of G, and the total cost cf  
of f is the sum of the costs of all vertices of G. The broadcast domination number 
�b(G) of G is the smallest cost of a dominating broadcast of G. When all costs are 
in {0, 1} , this notion coincides with the well-studied Dominating Set problem. The 
concept of broadcast domination was introduced in 2001 (for undirected graphs) by 
Erwin in his doctoral dissertation [15] (see also [13, 16] for some early publications 
on the topic), in the context of advertisement of shopping malls – which could now-
adays be seen as targeted advertising via “influencers” in social networks. Note that 
in these contexts, directed arcs make sense since the advertisement or the influence 
is directed towards someone. The associated computational problem is as follows.

Broadcast Domination

∙ Input:A digraph D = (V ,A) , an integer k ∈ ℕ.
∙ Question: Does there exist a dominating broadcast of D of cost at most k ?

Multipacking The dual notion for Broadcast Domination, studied from the lin-
ear programming viewpoint, was introduced in [6, 30] and called multipacking. 
A set S of vertices of a (di)graph G is a multipacking if for every vertex v of G 
and for every possible integer i, there are at most i vertices from S at (directed) 
distance at most i from v. The multipacking number mp (G) of G is the maximum 
size of a multipacking in G. Intuitively, if a graph G has a multipacking S, any 
dominating broadcast of G will require to have cost at least |S| to cover the verti-
ces of S. Hence the multipacking number of G is a lower bound to its broadcast 
domination number [6]. Equality holds for many graphs, such as strongly chordal 
graphs [5] and 2-dimensional square grids [1]. For undirected graphs, it is also 
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known that �b(G) ⩽ 2mp (G) + 3 [2] and it is conjectured that the additive con-
stant can be removed. Consider the following computational problem.

Multipacking

∙ Input:A digraph D = (V ,A) , an integer k ∈ ℕ.
∙ Question: Does there exist a multipacking S ⊆ V  of D of size at least k ?

Known Results In contrast with most graph covering problems, which are usu-
ally NP-hard, Heggernes and Lokshtanov designed in [23] (see also [26]) a sex-
tic-time algorithm for Broadcast Domination in undirected graphs. This intrigu-
ing fact has motivated research on further algorithmic aspects of the problem. For 
general undirected graphs, no faster algorithm than the original one is known. 
A quintic-time algorithm exists for undirected series-parallel graphs [3]. An 
analysis of the algorithm for general undirected graphs gives quartic time when 
it is restricted to chordal graphs [23, 24], and a cubic-time algorithm exists for 
undirected strongly chordal graphs [5]. The problem is solvable in linear time 
on undirected interval graphs [9] and undirected trees [5, 11] (the latter was 
extended to undirected block graphs [24]). Note that when the dominating broad-
cast is required to be upper-bounded by some fixed integer p ⩾ 2 , then the prob-
lem becomes NP-Complete [7] (for p = 1 this is Dominating Set).

Regarding Multipacking, to the best of our knowledge, its complexity is cur-
rently unknown, even for undirected graphs (an open question posed in [30, 31]). 
However, there exists a polynomial-time (2 + o(1))-approximation algorithm for 
all undirected graphs [2]. Multipacking can be solved with the same complex-
ity as Broadcast Domination for undirected strongly chordal graphs, see [5]. 
Improving upon previous algorithms from [27, 30], the authors of [5] give a sim-
ple linear-time algorithm for undirected trees.

Our Results We study Broadcast Domination and Multipacking for directed 
graphs (digraphs), which form a natural setting for not necessarily symmetric 
telecommunication networks. In contrast with undirected graphs, we show that 
Broadcast Domination is NP-complete, even for planar layered acyclic digraphs 
(defined later) of maximum degree 4 and maximum finite distance 2. This holds 
for Multipacking, even for planar layered acyclic digraphs of maximum degree 3 
and maximum finite distance 2, or acyclic digraphs with a single source and max-
imum degree 5. Moreover, when parameterized by the solution cost/solution size, 
we prove that Broadcast Domination is W[2]-hard (even for digraphs of maxi-
mum finite distance 2 or bipartite digraphs of maximum finite distance 6 without 
directed 2-cycles) and Multipacking is W[1]-hard (even for digraphs of maximum 
finite distance 3). On the positive side, we show that Broadcast Domination is 
FPT on acyclic digraphs (DAGs for short) but does not admit a polynomial kernel 
for layered DAGs of maximum finite distance 2, unless the polynomial hierarchy 
collapses to its third level. Moreover, we show that both Broadcast Domination 
and Multipacking are polynomial-time solvable for layered DAGs with a single 
source. We also show that both problems are FPT when parameterized by the 
solution cost/solution size together with the maximum (out-)degree, and as well, 
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by the vertex cover number. Moreover it follows from a powerful meta-theorem 
from [22] that Broadcast Domination is FPT when parameterized by solution 
cost, on inputs whose underlying graphs belong to a nowhere dense class.

The resulting complexity landscape is represented in Fig. 1. We start with some 
definitions in Sect.  2. We prove our results for Broadcast Domination in Sect.  3. 
The results for Multipacking are presented in Sect. 4. We conclude in Sect. 5.

2 � Preliminaries

Directed Graphs We mainly consider digraphs, usually denoted D = (V ,A)
1, where V is the set of vertices and A the set of arcs. For an arc uv ∈ A , we 
say that v is an out-neighbor of u, and u an in-neighbor of v. Given a subset 
of vertices V ′ ⊆ V  , we define the digraph induced by V ′ as D� = (V �,A�) where 
A� = {uv ∈ A ∶ u ∈ V � and v ∈ V �} . We denote such an induced subdigraph 
by D[V �] . A directed path from a vertex p1 to pl is a sequence {p1,… , pl} such 
that pi ∈ V  and pipi+1 ∈ A for every 1 ⩽ i < l . When p1 = pl , it is a directed 
cycle. A digraph is acyclic whenever it does not contain any directed cycle as 
an induced subgraph. An acyclic digraph is called a DAG for short. The (open) 
out-neighborhood of a vertex v ∈ V  is the set N+(v) = {u ∈ V ∶ vu ∈ A} , and 

(a) (b)

Fig. 1   Complexity landscape of Broadcast Domination and Multipacking for some classes of digraphs 
(all considered digraphs are assumed to be weakly connected). An arc from class A to class B indicates 
that A is a subset of B. Parameterized complexity results are for parameter solution cost/solution size

1  Our reductions will also use undirected graphs, denoted G = (V ,E) with V = {v
1
,… , vn} and 

E = {e
1
,… , em}.
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its closed out-neighborhood is N+[v] = N+(v) ∪ {v} . We define similarly the 
open and closed in-neighborhoods of v and denote them by N−(v) and N−[v] , 
respectively. A source is a vertex v such that N−(v) = � . For the sake of read-
ability, we always mean out-neighborhood when speaking of the neighbor-
hood of a vertex. A DAG D = (V ,A) is layered when its vertex set can be parti-
tioned into {V0,… ,Vt} such that N−(V0) = � and N+(Vt) = � (vertices of V0 and 
Vt are respectively called sources and sinks), and uv ∈ A implies that u ∈ Vi and 
v ∈ Vi+1 , 0 ⩽ i < t . A single-sourced layered DAG is a layered DAG with only one 
source, that is, satisfying ||V0

|| = 1 . A digraph is bipartite or planar if its underly-
ing undirected graph has the corresponding property. Every layered digraph is 
bipartite. Given two vertices u and v, we denote by d(u, v) the length of a short-
est directed path from u to v. For a vertex v ∈ V  and an integer d, we define 
the ball of radius d centered at v by B+

d
(v) = {u ∈ V ∶ d(v, u) ⩽ d} ∪ {v} . The 

eccentricity of a vertex v in a digraph D is the largest (finite) distance between 
v and any vertex of D, denoted ecc (v) ∶= maxu∈V d(v, u) . A digraph is strongly 
connected if for any two vertices u, v, there is a directed path from u to v, and 
weakly connected if its underlying undirected graph is connected. We will assume 
that all digraphs considered here are weakly connected (if not, each component 
can be considered independently). The diameter is the maximum directed dis-
tance maxu,v∈V d(u, v) between any two vertices u and v of G. If the digraph is 
not strongly connected, then the diameter is infinite. The maximum finite dis-
tance of a digraph D is the largest finite directed distance between any two ver-
tices of G, denoted mfd (D) ∶= maxu,v∈V ,d(u,v)<∞ d(u, v) . Consider a dominating 
broadcast f ∶ V(D) → ℕ on D. The set of broadcast dominators is defined as 
Vf = {v ∈ V ∶ f (v) > 0} . For any set S ⊆ V  of vertices of D, we define f(S) as the 
value f (S) =

∑
u∈S f (u).

Parameterized Complexity A parameterized problem is a decision problem 
together with a parameter, that is, an integer k depending on the instance. A 
problem is fixed-parameter tractable (FPT for short) if it can be solved in time 
f (k) ⋅ |I|c for an instance I of size |I| with parameter k, where f is a computable 
function and c is a constant. Given a parameterized problem P, a kernel is a func-
tion which associates to each instance of P an equivalent instance of P whose size 
is bounded by a function h of the parameter. When h is a polynomial, the kernel is 
said to be polynomial. An FPT-reduction between two parameterized problems P 
and Q is a function mapping an instance (I, k) of P to an instance (f(I), g(k)) of Q, 
where f and g are computable in FPT time with respect to parameter k, and where 
I is a YES-instance of P if and only if f(I) is a YES-instance of Q. When moreo-
ver f can be computed in polynomial time and g is polynomial in k, we say that 
the reduction is a polynomial time and parameter transformation [4]. Both reduc-
tions can be used to derive conditional lower bounds: if a parameterized problem 
P does not admit an FPT algorithm (resp. a polynomial kernel) and there exists 
an FPT-reduction (resp. a polynomial time and parameter transformation) from 
P to a parameterized problem Q, then Q is unlikely to admit an FPT algorithm 
(resp. a polynomial kernel). Both implications rely on certain standard complex-
ity hypotheses; we refer the reader to the book [10] for details.
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3 � Complexity of Broadcast Domination

3.1 � Hardness Results

Theorem 1  Broadcast Domination is NP-complete, even for planar layered DAGs of 
maximum degree 4 and maximum finite distance 2.

Proof  We will reduce from Exact Cover by 3-Sets, defined as follows. 	� ◻

Exact Cover by 3-Sets

∙ Input: A set X of 3k elements (for some k ∈ ℕ ), and a set T = {t
1
,… , tn} of triples from X.

∙ Question: Does there exist a subset S of k triples from T  such that each element of X appears in 
(exactly) one triple in S ?

Exact Cover by 3-Sets is NP-hard even when the incidence bipartite graph of the 
input is planar and each element appears in at most three triples [14]. We will reduce 
any such instance (X, T) of Exact Cover by 3-Sets to an instance (D = (V �,A�), k�) of 
Broadcast Domination.

We create V ′ by taking two copies T1 , T2 of T  and one copy of X. More precisely, 
we let Tj = {t

j

i
∶ 1 ⩽ i ⩽ n } for j ∈ {1, 2} . We now add an arc from a vertex t1

i
∈ T1 

to its corresponding vertex t2
i
 in T2 , and from a vertex t2

i
∈ T2 to all elements of X 

that are contained in ti in (X, T) . See also Fig. 2. Formally:

A� = {t1
i
t2
i
∶ 1 ⩽ i ⩽ n}

⋃
{t2

i
x ∶ x ∈ ti, 1 ⩽ i ⩽ n}

Fig. 2   Sketch of the DAG built 
in the construction of the proof 
of Theorem 1
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The construction can be done in polynomial time, and there is no cycle in D: arcs go 
either from T1 to T2 or from T2 to X. Hence D is a layered DAG with three layers and 
thus, maximum finite distance 2. In fact D is obtained from the bipartite incidence 
graph of (X, T) (which is planar and of maximum degree 3) reproduced on the ver-
tices of T2 ∪ X , by adding pendant vertices (those from T1 ) to those of T2 , orienting 
the arcs as required. Thus, the maximum degree of D is 4 and D is planar.

Claim 2  The instance (X, T) is a YES-instance if and only if the digraph D has a 
dominating broadcast of cost k� = n + k.

Proof  ⇒ Given a solution S of (X, T) , set f (t1
i
) = 2 for all ti ∈ S , f (t1

i
) = 1 for each of 

the n − k remaining vertices of T1 and f (v) = 0 for all vertices of T2 and X. For every 
vertex t2

i
∈ T2, we have d(t1

i
, t2
i
) = 1 . Similarly, for every vertex x ∈ X, d(t1

i
, x) ⩽ 2 

holds for the vertex t1
i
 such that ti is in S and contains x in (X, T) . Since every vertex 

t1
i
 of T1 satisfies f (t1

i
) ⩾ 1 , it is covered by itself, and it follows that f is a dominating 

broadcast of cost n + k.
⇐ Let us now consider the case where we are given a dominating broadcast for D 

of cost n + k . Note that since the maximum finite distance is  2, we can assume 
f ∶ V �

→ {0, 1, 2} . Remark that the vertices of T1 are n sources. Therefore, any 
broadcast needs to set f (t1

i
) ⩾ 1 for each t1

i
∈ T1 , and this covers all vertices of T1 

and T2 . It remains to cover vertices of X with a cost of k, which can be done by set-
ting f (t1

i
) = 2 for some vertices of T1 and f (t2

j
) = 1 for some vertices of T2 . Notice 

that it is never useful to set f (x) = 1 for some vertex x ∈ X as setting an additional 
cost of 1 to any f (t2

i
) such that t2

i
∈ A� is always better. Hence, the corresponding set 

of triples is a valid cover of (X, T) . (And it is an exact cover because there are 3k ele-
ments covered by k triples.) 	�  ◻

We next give two parameterized reductions for Broadcast Domination.

Theorem  3  Broadcast Domination parameterized by solution cost k is W[2]-hard, 
even on digraphs of maximum finite distance 2, and on bipartite digraphs without 
directed 2-cycles of maximum finite distance 6.

Proof  We provide two reductions from the W[2]-hard Multicolored Dominating 
Set problem [8], defined as follows. 	�  ◻

Multicolored Dominating Set

∙ Input: A graph G = (V ,E) with V partitioned into k sets {V
1
,… ,Vk} , for an integer k ∈ ℕ.

∙ Question: Does there exist a dominating set S of G such that |S ∩ Vi| = 1 for every 1 ⩽ i ⩽ k . ?

We first provide a reduction that gives digraphs with directed 2-cycles.
Construction 1. We build an instance (D = (V �,A�), k�) of Broadcast Domi-

nation as follows. To obtain the vertex set V ′ , we duplicate V into two sets V1 
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and V2 . Following the partition of V into k sets, we let V1 = {V1
1
,… ,V1

k
} and 

V2 = {V2
1
,… ,V2

k
} . We then add every possible arc within V1

i
 ( 1 ⩽ i ⩽ k ), and an 

arc from a vertex v in V1 to each vertex of V2 corresponding to a vertex from the 
closed neighborhood of v in G. Altogether, V � = V1 ∪ V2 . Finally, we set k� = k . 
See Figure 3 for an illustration. Clearly mfd (D) = 2.

Claim 4  The graph G has a multicolored dominating set of size k if and only if the 
digraph D has a dominating broadcast of cost k.

Proof  ⇒ Let S ⊆ V  be a multicolored dominating set of size k of G. We claim that 
setting f (v) = 1 for every vertex v of V1 such that the corresponding vertex v of G 
is in S, yields a dominating broadcast of cost k. To see this, notice that each vertex 
v ∈ V1

i
 ( 1 ⩽ i ⩽ k ) with cost 1 covers V1

i
 . Now, since these vertices of cost 1 form 

a dominating set in G, they cover the vertices of V2 corresponding to their closed 
neighborhood in G, and hence f is a dominating broadcast.

⇐ Assume now that D has a dominating broadcast f of cost k. Notice first that 
any set V1

i
 ( 1 ⩽ i ⩽ k ) must contain a vertex v such that f (v) ⩾ 1 . Since f has cost k, 

this means that for every vertex w ∈ V2 , f (w) = 0 . It follows that one needs to cover 
the vertices of V2 using k vertices in V1 , which can be done only if there is a multi-
colored dominating set of size k in G. 	�  ◻

We now give a similar but more involved construction, which gives bipartite 
instances of maximum finite distance 6 and no directed 2-cycles.

Construction 2 We build an instance (D� = (V �,A�), k�) of Broadcast Domina-
tion as follows. To obtain the vertex set V ′ , we multiplicate V into four sets V0 , 
V1 , V2 and V3 and we will have a set M of subdivided vertices. The set V0 ∪ V1 will 
induce an oriented complete bipartite graph, while V2 ∪ V3 will induce a match-
ing. Following the partition of V into k sets, for 0 ⩽ i ⩽ 3 , we let Vi = {Vi

1
,… ,Vi

k
} . 

For a vertex v ∈ V  , for 0 ⩽ i ⩽ 3 its copy in Vi is denoted vi . We assume that 

Fig. 3   Sketch of the built 
digraph D in the first reduction 
of the proof of Theorem 3
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||Vi
|| ⩾ 2 , since otherwise one must take the only vertex in Vi . For each 1 ⩽ i ⩽ k 

we then add the following arcs:

–	 for every pair v, w of distinct vertices of Vi , we add an arc from v0 to w1;
–	 for every v ∈ Vi , we add an arc from v1 to v0;
–	 for every v ∈ Vi , we add an arc from v2 to v3.

Moreover, for every edge vw in G, we add an arc from v1 to w2 , and we subdi-
vide it once. The set of all subdivision vertices is called M. Finally, we set k� = 3k . 
The construction is illustrated in Fig. 4. It is clear that mfd (D�) = 6 (shortest paths 
of length 6 exist from vertices of V0 to vertices of V3 , but no longer shortest paths 
exist). The digraph has clearly no directed 2-cycles, and is bipartite with sets 
V0 ∪M ∪ V3 and V1 ∪ V2.

Claim 5  The graph G has a multicolored dominating set of size k if and only if the 
digraph D′ has a dominating broadcast of cost 3k.

Proof  ⇒ Let S ⊆ V  be a multicolored dominating set of size k of G. We claim 
that setting f (v1) = 3 for every vertex v1 of V1 such that v ∈ S yields a dominating 
broadcast of cost 3k. To see this, notice first that each such vertex belonging to V1

i
 , 

1 ⩽ i ⩽ k , covers the whole set V0
i
∪ V1

i
 and all the vertices of M with an in-neighbor 

in V1
i
 . Now, each vertex v1 with v ∈ S covers (at distance 3) each vertex w2 and w3 of 

V2 ∪ V3 such that w is in the closed neighborhood of v in G. Since S is dominating, f 
is thus a dominating broadcast.

Fig. 4   Sketch of the built digraph D′ in the second reduction of the proof of Theorem 3
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⇐ Assume now that D′ has a dominating broadcast f of cost 3k. First, we claim 
that for every i with 1 ⩽ i ⩽ k , we need a total cost of 3 for the vertices in V0

i
∪ V1

i
 . 

Indeed, for a vertex v ∈ Vi ,f if f (v0) = 2 , v0 does not cover V1 . If f (v1) = 2 , no ver-
tex w0 with w ≠ v and w ∈ Vi is covered. Clearly, we cannot cover the vertices of 
V0
i
∪ V1

i
 with two vertices broadcasting at cost  1. Thus, we can assume that there 

is a total cost of exactly 3 on the vertices of V0
i
∪ V1

i
 for 1 ⩽ i ⩽ k , and each vertex 

v of V2 ∪ V3 ∪M satisfies f (v) = 0 . We now prove that there exists a vertex v of 
V0
i
∪ V1

i
 , 1 ⩽ i ⩽ k such that f (v) = 3 . First, since a vertex v1 of V1

i
 with f (v1) = 2 

does not cover the vertices of V0
i
 (except for v0 ), it is not possible to cover V0

i
∪ V1

i
 

with a cost of 1 on another vertex. Similarly, since a vertex v0 of V0
i
 with f (v0) = 2 

does not cover v1 , an additional cost of 1 cannot cover v1 and all vertices of M that 
are out-neighbors of vertices in V1

i
 . Similarly, we cannot have three vertices with a 

broadcasting cost of 1 each. Thus, there is a vertex of V0
i
∪ V1

i
 with a broadcast cost 

of 3. Notice that it cannot be a vertex of V0
i
 , since otherwise the out-neighbors of 

V1
i
 in M are not covered. Thus there is a vertex v1 in V1

i
 with f (v1) = 3 . This covers, 

in particular, all the vertices w2,w3 of V2
i
∪ V3

i
 such that vw is an edge in G, and no 

other vertex of V2
i
∪ V3

i
 . It follows that the set of vertices v of V such that f (v1) = 3 

forms a dominating set of G of size k. Thus, the proof is complete. 	�  ◻

3.2 � Complexity and Algorithms for (Layered) DAGs

We now address the special cases of (layered) DAGs. Note that Dominating Set 
remains W[2]-hard on DAGs by a reduction from [29, Theorem 6.11.2]. In contrast, 
we now give an FPT algorithm for Broadcast Domination on DAGs that counter-
balances the W[2]-hardness result.

Theorem 6  Broadcast Domination parameterized by solution cost k can be solved in 
FPT time 2O(k log k)nO(1) time for DAGs of order n.

The proof relies on the following proposition, which is reminiscent of a stronger 
statement of Dunbar et al. [13] for undirected graphs (stating that there always exists 
an optimal dominating broadcast where each vertex is covered exactly once, which 
is false for digraphs). Recall that the set of broadcast dominators is denoted Vf  and 
contains all vertices v such that f (v) > 0.

Proposition 7  For any digraph D = (V ,A) , there exists an optimal dominating 
broadcast such that every broadcast dominator is covered by itself only.

Proof  Let f be an optimal dominating broadcast of D, and assume there exist 
two vertices u, v ∈ V  such that f (v) ⩾ 1 and f (u) ⩾ d(u, v) . In this case, v is cov-
ered by both u and itself. Notice that d(u, v) + f (v) > f (u) , since otherwise setting 
f(v) to 0 would result in a better dominating broadcast. We claim that setting f(u) 
to d(u, v) + f (v) and f(v) to 0 yields an optimal dominating broadcast fu . Notice 
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that since d(u, v) + f (v) > f (u) , any vertex covered by u in f is still covered in fu . 
Similarly, any vertex covered by v in f is now covered by u in fu . Finally, we have 
f (u) + f (v) ⩾ fu(u) + fu(v) since fu(u) = d(u, v) + f (v) ⩽ f (u) + f (v) and fu(v) = 0 , 
implying that the cost of fu is at most the cost of f. 	�  ◻

We can now prove Theorem 6.

Proof of Theorem 6  Let D = (V ,A) be a DAG. We consider the set V0 of sources of 
D. Observe that for every s ∈ V0, f (s) ⩾ 1 must hold. In particular, this means that 
|V0| ⩽ k (otherwise we return NO). We provide a branching algorithm based on this 
simple observation and on Proposition 7. We start with an initial broadcast f consist-
ing of setting f (s) = 1 for every vertex s in V0 . At each step of the branching algo-
rithm, we let Nf = ∪v∈Vf

B+

f (v)
(v) be the set of currently covered vertices, and we con-

sider the digraph Df = D[V ⧵ Nf ] . Notice that Df  is acyclic and hence contains a 
source u. Since every vertex of Nf ⧵ Vf  is covered, we may assume by Proposition 7 
that in the sought optimal solution, u is only covered by itself or by a vertex in Vf  . 
This means that one needs to branch on at most k + 1 distinct cases: either setting 
f (u) = 1 , or increasing the cost of one of its at most k broadcasting ancestors in Vf  . 
At every branching, the parameter k decreases by  1, which ultimately gives an 
O∗(2k log k)-time algorithm and completes the proof of Theorem 6. 	�  ◻

We will now complement the previous result by a negative one, which can be 
proved using a reduction similar to the one in Theorem 1 but from Hitting Set, 
defined as follows. 

Hitting Set

∙ Input: A universe U of elements, a collection F  of subsets of U, an integer k ∈ ℕ.
∙ Question: Does there exist a hitting set S of size k, that is, a set of k elements from U such that each 

set of F  contains an element of S ?

Theorem 8  Broadcast Domination parameterized by solution cost k does not admit 
a polynomial kernel even on layered DAGs of maximum finite distance 2, unless the 
polynomial hierarchy collapses to its third level.

Proof  We provide a reduction from Hitting Set. It is shown in [12, Theorem 5.1] 
that if Hitting Set admits a polynomial kernel when parameterized by |U| + k (a 
variant called Small Universe Hitting Set), then the polynomial hierarchy collapses 
to its third level.

We do the same reduction as the one from Exact Cover by 3-Sets from Theo-
rem 1, except that the set T of triples is replaced by U and the set X of elements 
is replaced by F  . We again obtain a DAG with three layers and maximum finite 
distance  2. The solution cost for the instance of Broadcast Domination is set to 
|U| + k , and the proof of validity of the reduction is the same.
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Since this is clearly a polynomial time and parameter transformation, the result 
follows. 	� ◻

We now show that Broadcast Domination can be solved in polynomial time on 
special kinds of DAGs.

Theorem 9  Broadcast Domination is linear-time solvable on single-sourced layered 
DAGs.

Proof  Let D = (V ,A) be a single-sourced layered DAG with layers {V0,… ,Vt} . For 
the sake of readability, sets Vi with ||Vi

|| = 1 are denoted by {si} , for 0 ⩽ i ⩽ t.
Our algorithm relies on the following structural properties of some optimal domi-

nating broadcasts for single-sourced layered DAGs. 	�  ◻

Claim 10  There always exists an optimal dominating broadcast f of D such that: 

	 (i)	 Vf ⊆
⋃t

i=0
{si}

	 (ii)	 every si ∈ Vf  , 0 ⩽ i ⩽ t , covers exactly B+

l
(si) , where l = j − i − 1 and j is the 

smallest index such that j ⩾ i + 2 and |||Vj
||| = 1.

Proof  Let f be an optimal dominating broadcast of D having the properties of 
Proposition 7.

Property (i). Let 0 ⩽ i < j ⩽ t be indices such that si covers all layers up to Vj−1 , 
where j is the smallest index such that |||Vj

||| ⩾ 2 and f (Vj) > 0 . Notice that i exists 
since f (s0) ⩾ 1 . If j does not exist, then we are done. We hence assume j is well-
defined. By the choice of i, we know that f (si) = d(si,Vj−1) = j − i − 1 . Let v1

j
 and v2

j
 

be two vertices of Vj . We first consider the case where |||Vf ∩ Vj
||| = 1 and assume 

w.l.o.g. that f (v1
j
) ⩾ 1 . This means that v2

j
 must be covered by si , which in turn cov-

ers v1
j
 , which is impossible by the choice of i (and the definition of f). We thus have |||Vj ∩ Vf
||| ⩾ 2 , and assume that f (v1

j
) ⩾ 1 and f (v2

j
) ⩾ 1 . Assume first that j = t . In 

that case, si covers all vertices in ∪t
a=i

Va−1 , and hence setting f (v1
j
) = f (v2

j
) = 0 and 

increasing f (si) by  1 leads to a dominating broadcast of smaller cost, a 
contradiction.

We thus assume j < t . We claim that the dominating broadcast fi defined by 
setting:

⎧⎪⎪⎨⎪⎪⎩

fi(si) = f (si) + max{f (v1
j
), f (v2

j
)} + 1

fi(v
1
j
) = 0

fi(v
2
j
) = 0

fi(v) = f (v) ∀ v ≠ {si, v
1
j
, v2

j
}
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is optimal. Notice first that cfi(V) ⩽ cf (V) . Now, every vertex covered by both v1
j
 and 

v2
j
 is covered by si : indeed, since si corresponds to a layer with a single vertex, it has 

a directed path of length d(si, vj−1) + max{f (v1
j
), f (v2

j
)} + 1 to every vertex covered 

by both v1
j
 and v2

j
 , which are thus still covered.

Property (ii). Suppose that f satisfies Property (i). Assume there exists two verti-
ces si and sj with 0 ⩽ i < i + 1 < j ⩽ t such that f (si) ⩾ d(si, sj) . In other words, ver-
tex si covers vertex sj . Consider that i is chosen to be minimum with this property. 
Notice that since f fulfills the properties of Proposition  7, we have f (sj) = 0 . We 
distinguish two cases:

–	 If f (si) > d(si, sj) , consider the dominating broadcast fi obtained from f by set-
ting fi(si) = d(si, sj) − 1 and fi(sj) = f (si) − d(si, sj) . Notice that every vertex 
covered by si in f is still covered in fi : indeed, si covers all vertices up to Vj−1 , 
and vertices in higher layers are now covered by sj , which covers itself. By 
construction, we have: 

 the last inequality holding since f (sj) = 0 . This leads to a contradiction since f is 
an optimal dominating broadcast. Thus this case does not happen.

–	 We may hence assume that f (si) = d(si, sj) . Since f fulfills the properties of 
Proposition 7 and Property (i), Vj+1 has to dominate itself, and thus sj+1 must 
exist, unless j = t . Consider the dominating broadcast fi obtained from f by 
setting fi(si) = d(si, sj) − 1 , fi(sj) = 1 + f (sj+1) and fi(sj+1) = 0 . If j = t we con-
sider that f (sj+1) = 0 . Notice that every vertex covered by sj+1 in f is covered 
by sj in fi . We have: 

 the last equality holding since f (sj) = 0.
We have thus obtained a dominating broadcast fi of the same cost as f, still sat-
isfying Property (i) and Proposition 7, but where every vertex sl with l ⩽ i satis-
fies (ii). If fi still does not satisfy (ii), we reiterate this process (each time, with 
increasing value of i) until (ii) is satisfied for all vertices. This concludes the 
proof of Claim 10. 	�  ◻

We thus deduce a simple top-down procedure to compute an optimal domi-
nating broadcast f. We initiate our solution by setting i = 0 . While there remain 
uncovered vertices, we let f (si) = j − i − 1 for the smallest value j such that sj 

cfi (V) = cfi (V ⧵ {si, sj}) + fi(si) + fi(sj)

= cfi (V ⧵ {si, sj}) + d(si, sj) − 1 + f (si) − d(si, sj)

< cf (V ⧵ {si, sj}) + f (si)

< cf (V)

cfi (V) = cfi (V ⧵ {si, sj, sj+1}) + fi(si) + fi(sj) + fi(sj+1)

= cfi (V ⧵ {si, sj, sj+1}) + d(si, sj) − 1 + f (sj+1) + 1

= cf (V ⧵ {si, sj, sj+1}) + f (si) + f (sj+1)

= cf (V)
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exists and j ⩾ i + 2 . In other words, si will cover all vertices below it, until the 
closest vertex of the set 

⋃t

j=0
{sj} that is not a neighbour of si . We then carry on 

by setting i = j . By Claim 10, this process leads to the construction of an optimal 
dominating broadcast. 	�  ◻

3.3 � Algorithms for Structural Parameters and Structured Classes

We now give some algorithms for structural parameters and classes.

Theorem  11  Broadcast Domination can be solved in time ��nO(�) for digraphs of 
order n and diameter �.

Proof  To solve Broadcast Domination by brute-force, we may try all the subsets 
of size k, and for each subset, try all possible kk broadcast functions. But we can 
assume that k ⩽ � , since a single vertex with cost � covers all the digraph. 	�  ◻

We next consider jointly two parameters. Recall that by Theorems 1 and 3, such a 
result probably does not hold for each of them individually.

Theorem 12  Broadcast Domination parameterized by solution cost k and maximum 
out-degree d can be solved in FPT time kk2dO(k)nO(1) on digraphs of order n.

Proof  Let (D = (V ,A), k) be an instance of Broadcast Domination such that D has 
maximum out-degree  d. Consider a dominating broadcast f of cost k. A vertex v 
with f (v) = i > 0 covers all vertices of its ball of radius  i, which has size at most ∑i

j=0
(d − 1)j + 1 ⩽ idi + 1 . Thus, if the input has more than n = k(k + 1)dk vertices, 

we can reject. Otherwise, a simple brute-force algorithm over all possible 2n possi-
ble subsets and, given a subset, all kk possible broadcasts, is FPT. The result follows. 	
� ◻

Next, we consider the vertex cover number of input digraphs, that is, the smallest 
size of a set of vertices that intersects all arcs (or, in other words, the vertex cover 
number of the underlying undirected graph).

Theorem 13  Broadcast Domination parameterized by the vertex cover number c of 
the input digraph of order n can be solved in FPT time 2cO(c)nO(1).

Proof  Let (D = (V ,A), k) be an instance of Broadcast Domination and let S ⊆ V  be 
a vertex cover of D of size c. Let us partition the set V ⧵ S (which induces no arcs) 
into equivalence classes C1,… ,Ct according to their in- and out-neighborhoods in 
S: two vertices are in the same class if and only if they have the same sets of in- and 
out-neighbors. There are t ⩽ 22c such classes.

For a given class, any broadcasting vertex out of the class either covers all verti-
ces in the class, or none. Similarly, a vertex broadcasting at radius r inside the class 
covers the same set of vertices outside the class as any other vertex from the class 
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would. Hence, we may assume that at most one selected vertex bi per class Ci broad-
casts with f (bi) > 1 . We can assume that the other vertices v in the class either all 
satisfy f (v) = 0 or all f (v) = 1 (the latter may happen if they all need to cover them-
selves, for example if they are all sources). Moreover, mfd (D) ⩽ 2c + 1 since every 
shortest path is either contained in S or has to alternate between a vertex of S and 
one of V ⧵ S , but cannot have repeated vertices.

Hence, for each equivalence class Ci , we have 2 × (2c + 1) choices: 2c + 1 
for the value of f (bi) , and two possibilities for the other vertices of Ci . Similarly, 
for each vertex of S, we have 2c + 1 possible broadcast values. In total, this gives 
(t + c)O(c) = 2c

O(c) different possible dominating broadcasts, and each of them can be 
checked in polynomial time. 	�  ◻

We next see how to apply the following powerful theorem from [22], to show that 
Broadcast Domination is FPT for any class of digraphs whose underlying graph is 
nowhere dense. We will not give a definition of nowhere dense graph classes, and 
refer to the book [28] instead. Such classes include planar graphs, graphs excluding 
a fixed (topological) minor, graphs of bounded degree, graph classes of bounded 
expansion, etc.

Theorem 14  [ [22]] Let C be a nowhere dense graph class. There exists � such that, 
given as inputs a graph G ∈ C and a first-order logic graph property � , the problem 
of deciding whether G satisfies � can be solved in time f (|�|)|G|1+� , that is, it is 
FPT when parameterized by the length of �.

Corollary 15  For every fixed nowhere dense graph class C , Broadcast Domination 
parameterized by the solution cost of the input digraph is FPT for inputs whose 
underlying graphs are in C.

Proof  We want to show that for fixed parameter value k of the solution cost, Broad-
cast Domination can be expressed in first-order logic by a formula whose length is 
bounded by a function of k, and apply Theorem 14.

To do so, we extend the classic approach for defining k -Dominating Set in first-
order logic (see e.g. [28, Chapter 18.4]).

We will use the property dp(x, y, i), stating that there is a directed path from x to y 
of length at most i. This can be expressed in first-order logic for fixed i. To this end, 
we state that either x = y , or there is an arc from x to y, or there is a directed path of 
length 2 from x to y (i.e. there exists a vertex z, x has an arc to z, and z, an arc to y), 
… or there exists a directed path of length i from x to y.

Let V1,… ,Vk denote the sets of broadcast dominators of a potential dominat-
ing broadcast f, where Vi contains the vertices broadcasting at radius  i. The union 
Vf =

⋃k

i=1
Vi has size at most k, and since k is considered to be fixed, we can ”guess” 

the size of each set Vi . To this end, we let v1
i
,… , vk

i
 be the potential vertices of Vi . 

For a given partition � of Vf  into sets V1,… ,Vk , we can express the fact that a given 
vertex x is dominated by f as the formula dom� (x, v1

1
,… , vk

k
) , which is composed of 

the conjunction of all formulae of type dp(vj
i
, x, i) , where in � , 1 ⩽ j ⩽ |Vi|.
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Now, given the set �1,… ,�t of all partitions of Vf  into sets V1,… ,Vk (note that 
t ⩽ kk ), the first-order formula for Broadcast Domination is given as

	�  ◻

We remark that Corollary  15 does not imply Theorem  12, indeed there are 
digraph classes of bounded maximum out-degree whose underlying graphs do 
not form a nowhere dense class of graphs. For example, every d-degenerate graph 
can be oriented so as to have maximum out-degree at most  d. Indeed, a graph is 
d-degenerate if its vertices can be ordered v1,… , vn such that for 2 ⩽ i ⩽ n , vi has at 
most d neighbors among v1,… , vi−1 . Thus, orienting every edge vivj with i < j from 
vj to vi produces a digraph of maximum out-degree at most d. However, for every d, 
the class of d-degenerate graphs is not nowhere dense [22, 28].

4 � Complexity of Multipacking

We will need the following results to prove our results for Multipacking.

Lemma 16  Let D = (V ,A) be a digraph. There exists a multipacking of maximum 
size containing every source of D.

Proof  Let D = (V ,A) and let S ⊆ V  be a multipacking of D of size at least k.
Assume there exists a source s ∈ V  that does not belong to S. We say that a vertex 

v ∈ V  is full w.r.t. S whenever there exists an integer p > 0 such that |B+
p
(v) ∩ S| = p . 

Assume first that s is not full w.r.t. S. In that case, one can safely add s to the multi-
packing S and obtain a new solution of size at least k. Hence, we now consider the 
case where s is full. Notice that if s is full at distance 1 (i.e. |||B

+

1
(s) ∩ S

||| = 1 ), then the 
set (S ⧵ {u}) ∪ {s} is a multipacking of size at least k (recall that s is a source), and 
thus we are done.

We hence assume that this is not the case. Let 1 ⩽ i ⩽ ecc (s) be the smallest inte-
ger such that |B+

i
(s) ∩ S| < i and |B+

i+1
(s) ∩ S| = i + 1 . Notice that |N+[s] ∩ S| = 0 , 

since otherwise s would be full at distance  1. In particular, since s is full at dis-
tance i + 1 , this means that |B+

i+1
(s) ∩ S| ⩾ 2 . Let u be any vertex of B+

i+1
(s) ∩ S . We 

claim that the set S� = (S ⧵ {u}) ∪ {s} is a multipacking of D. First, it is clear that 
|S�| = |S| . Now, since s is a source and |N+(s) ∩ S| = 0 , adding s to the multipacking 
cannot violate the constraint for any vertex v ∈ V  . Similarly, removing a vertex from 
a multipacking cannot create any new constraint, hence the result follows. 	�  ◻

The following lemma is the central result of both our polynomial-time algorithm 
(Theorem 24) and NP-completeness reduction (Theorem 20).

∃v1
1
…∃vk

k
,
(
∀x ∈ G, dom�1

(x, v1
1
,… , vk

k
)
)
∨… ∨

(
∀x ∈ G, dom�t

(x, v1
1
,… , vk

k
)
)
.
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Lemma 17  Let D = (V ,A) be a single-sourced layered DAG with layers 
V0,V1,… ,Vt . There exists a multipacking S ⊆ V  of maximum size such that for 
every 1 ⩽ i ⩽ t , |S ∩ Vi| ⩽ 1.

Proof  Let S ⊆ V  be a multipacking of D of maximum size. By definition of a multi-
packing, considering each ball centered at the source s, the following holds for every 
1 ⩽ i ⩽ t:

We will prove the result inductively, by locally modifying S in a top-down manner 
until it has the desired property. Let j ⩾ 2 be the smallest index such that |||S ∩ Vj

||| ⩾ 2 , and i < j be the largest index such that ||S ∩ Vi
|| = 0 . Notice that i is 

well-defined due to (1). Moreover, let s1
j
 and s2

j
 be two vertices of S ∩ Vj.

Case 1 We assume first that i = j − 1 . Let u1
i
 and u2

i
 be vertices of Vi such that u1

i
s1
j
 

and u2
i
s2
j
 belong to A (note that in a layered DAG every non-source vertex has a pre-

decessor in the previous layer). Since S is a multipacking, we have u1
i
≠ u2

i
 and nei-

ther u1
i
 nor u2

i
 is adjacent to both s1

j
 and s2

j
 . Moreover, a vertex si−1 in S ∩ Vi−1 cannot 

be adjacent to both u1
i
 and u2

i
 , since otherwise we would have |||B

+

2
(si−1) ∩ S

||| > 2 . 
Moreover by minimality of the index j, there is at most one vertex of S in Vi−1 . 
Assuming w.l.o.g. that u1

i
 has no predecessor in S, the set (S ⧵ {s1

j
}) ∪ {u1

i
} is a multi-

packing having the same size than S.
Case 2 We now consider the case where i < j − 1 . First, we will prove that there 

is a vertex vi in Vi with no in-neighbor in S. If S ∩ Vi−1 = � , any vertex of Vi can be 
chosen as vertex vi . Otherwise, by choice of j we have ||S ∩ Vi−1

|| = 1 . Assume 
S ∩ Vi−1 = {si−1} . We claim that si−1 is not adjacent to every vertex of Vi . Assume for 
a contradiction that this is the case. This means that si−1 is within distance j − (i − 1) 
of every vertex contained in ∪j

l=i
Vl . By the choice of indices i and j we know that 

∪
j

l=i
Vl contains at least j − (i − 1) vertices from S, which in turn implies that |||B

+

j−(i−1)
(si−1) ∩ S

||| = j − (i − 1) + 1 , contradicting (1). Thus, there is a vertex vi in Vi 
that has no in-neighbor in S. Now, we know by choices of i and j that |S ∩ Vp| = 1 for 
i < p < j . Hence the set (S ⧵ {si+1}) ∪ {vi} , where {si+1} = S ∩ Vi+1 , is a multipack-
ing of D having the same size than S. By iterating the above argument, we end up 
with i = j − 1 , in which case we can apply the argument from Case 1. Overall, after 
each iteration of Case  1, j strictly increases. The procedure terminates when the 
value of j reaches t. 	�  ◻

4.1 � Hardness Results

Theorem 18  Multipacking is NP-complete, even for planar layered DAGs of maxi-
mum degree 3 and maximum finite distance 2.

(1)
|||S ∩ ∪i

j=0
Vj
||| ⩽ i
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Proof  We provide a reduction from the NP-complete Independent Set problem [20], 
which remains NP-complete on planar cubic graphs [21]. 

Independent Set

∙ Input: A graph G = (V ,E) , an integer k ∈ ℕ.
∙ Question: Does there exist an independent set of G of size at most k ?

The construction of the instance (D = (V �,A�), k�) of Multipacking is done by set-
ting V � = E1 ∪ E2 ∪ V  where E1 = {e1

1
,… , e1

m
} and E2 = {e2

1
,… , e2

m
} are two copies 

of E. We add an arc e1
i
e2
i
 for every 1 ⩽ i ⩽ m , and two arcs from e2

i
 to the corre-

sponding vertices u and v in V (where ei = uv).
Formally:

It is clear here that D is a layered DAG with three layers and thus, mfd (D) = 2.
This reduction can also be seen as follows: given any instance of Independent 

Set, we subdivide each edge uv by adding a new vertex w with wu,wv ∈ A and a 
pending source seeing w. Doing so, most properties of the given instance (such as 
planarity and maximum degree) are preserved. One can see that the graph G has 
an independent set of size k if and only if the digraph D has a multipacking of size 
k� = m + k.

⇒ Let S be an independent set of G of size k, and let S� = E1 ∪ S . First, S′ is 
of size m + k . Then, for any e1 ∈ E1 , |N+[e1] ∩ S�| = 1 and |B+

2
(e1) ∩ S�| ⩽ 2 hold 

since S is an independent set. By similar arguments, |N+[e2] ∩ S�| ⩽ 1 holds for any 
e2 ∈ E2 , and thus no vertex of E2 can have two out-neighbors in S. All other vertices 
of D are sinks (i.e. with empty out-neighborhood), so the multipacking property is 
trivially satisfied for them. Thus S′ is a multipacking of D of size m + k.

⇐ Let S be a multipacking of maximum size in D such that |S| ⩾ m + k . Each ver-
tex of E1 is a source of D, so by Lemma 16 we can assume that E1 ⊆ S and then 
E2 ∩ S = � . So S ⧵ E1 ⊆ V  , and its size is at least k. Assume S contains two vertices 
u, v of V that are adjacent in G, then |||N+[e2

i
] ∩ S

||| ⩾ 2 with e2
i
= uv , which contra-

dicts the fact that S is a multipacking of D. Thus S ⧵ E1 is an independent set of G of 
size at least k. 	�  ◻

Remark 19  Multipacking can be solved in time O∗(2n) by trying all subsets of verti-
ces as a solution. By observing that the reduction of Theorem 18 from Independent 
Set is linear and that it is unlikely to obtain a subexponential algorithm for Inde-
pendent Set under the ETH 2 [18, Corollary 11.10], a subexpontential algorithm is 
also unlikey for Multipacking under the ETH.

A� = {e1
i
e2
i
∶ 1 ⩽ i ⩽ m} ∪ {e2

i
u, e2

i
v ∶ 1 ⩽ i ⩽ m and ei = uv}

2  The Exponential Time Hypothesis (ETH) assumes that there is no algorithm solving 3-SAT in time 
2
o(n) , where n is the number of variables in the formula.
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Theorem  20  Multipacking is NP-complete on single-sourced DAGs of maximum 
degree 5.

Proof  We provide a reduction from Independent Set problem [20], which remains 
NP-complete for cubic graphs [21]. We define the function f ∶ V → E such that 
for v ∈ V  , f (v) = ei if and only if ei is the first edge in which v appears (recall that 
E = {e1,… , em} ). We create the digraph D = (V �,A) as follows (see Fig. 5):

	�  ◻

Claim 21  The graph G has an independent set of size k if and only if the digraph D 
has a multipacking of size k� = k + 2m + 1.

Proof  ⇒ Let S be an independent set of size k of G. We set 
S� = {s} ∪ {vi, yi ∶ 1 ⩽ i ⩽ m} ∪ S . We need to show that S′ is a multipacking of 
D. Notice first that S′ contains exactly 2m + k + 1 vertices. The vertices s and p 

V � ={ui, vi,wi, xi, yi, zi ∶ 1 ⩽ i ⩽ m} ∪ V ∪ {s, p}

A ={uiwi, uixi ∶ 1 ⩽ i ⩽ m} ∪ {vixi ∶ 1 ⩽ i ⩽ m} ∪ {wiyi,wizi ∶ 1 ⩽ i ⩽ m}
⋃

{ziui+1, zivi+1 ∶ 1 ⩽ i ⩽ m − 1} ∪ {xiu, xiv ∶ 1 ⩽ i ⩽ m and ei = uv}
⋃

{uiu ∶ 1 ⩽ i ⩽ m and f (u) = ei} ∪ {sp, pu1, pv1}

Fig. 5   Sketch of the construction in the proof of Theorem  20 for edges e
1
= ab and e

2
= bc with 

f (a) = f (b) = e
1
 and f (c) = e

2
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satisfy the multipacking property since there is at most one vertex of S′ at distance 
exactly i from both these vertices for any i (and there is no vertex of S′ at distance 1 
from s and none at distance 0 from p). Each vertex of V and each vertex yi trivi-
ally satisfies the multipacking property since they are sinks. For 1 ⩽ i ⩽ m , notice 
that xi cannot have two out-neighbors in S′ since S is an independent set. Hence, 
xi and vi satisfy the multipacking property, since for the latter B+

d
(vi) = {vi, xi, u, v} 

where d is the maximum finite distance in D, uv = ei , and N+[vi] = {vi, xi} . More-
over, one can see that wi satisfies the multipacking property if and only if zi sat-
isfies it and that zi satisfies the multipacking property if and only if ui+1 satisfies 
it ( zm is a sink and hence satisfies the multipacking property). We can notice that 
B+

d
(ui) = B+

d
(wi) ∪ {xi, ui} ∪ V(ei) . We have ||S ∩ ({xi, ui} ∪ V(ei))

|| ⩽ 1 , and the fact 
that for every other vertex t of B+

d
(ui) , d(ui, t) = d(wi, t) + 1 . So if wi satisfies the 

property, then ui also does. This means that zi−1 satisfies it, and thus that wi−1 does as 
well. Using this, and the fact that zm satisfies the property, we get by induction that 
for every i, {ui,wi, zi} satisfy the property.

⇐ Let S be a multipacking of size k′ of D. First, notice that if M is a multipack-
ing of any digraph H, then for any subdigraph H′ of H, M ∩ V(H�) is a multipacking 
of H′ . Notice also that H = D[V � ⧵ V] is a single-sourced layered DAG. Let S′ be a 
multipacking of H of maximum size. Using Lemma 17, we can assume that S′ con-
tains at most one vertex per layer. For any given 1 ⩽ i ⩽ m , we are going to prove 
that for Wi = {ui, vi,wi, xi, yi, zi} , ||S� ∩Wi

|| ⩽ 2 . We can see that S� ∩ {ui, vi} is either 
empty (which is sufficient to conclude since there remain only two distinct non-
empty layers of D′ in Wi ), or S� ∩ {ui, vi} = ui (then S� ∩ {wi, xi} = � , which again is 
enough to conclude), or S� ∩ {ui, vi} = vi . In the latter case, either S� ∩ {wi, xi} = wi , 
which implies that S� ∩ {yi, zi} = � or S� ∩ {wi, xi} = � . In both cases, we get that ||S� ∩Wi

|| ⩽ 2 . One can also easily see that both s and p cannot be together in S′ . 
Thus, the maximum size of a multipacking of D′ is 2m + 1.

Thus |S ∩ (V � ⧵ V)| ⩽ 2m + 1 , and |S ∩ V| ⩾ k . We also know that for 
a, b ∈ S ∩ V  , ab ∉ E , otherwise there would exist an edge ei = ab and thus 
N+[xi] ∩ S would be of size at least 2. So we can conclude that S ∩ V  is an independ-
ent set of G of size at least k. 	�  ◻

This completes the proof. 	�  ◻

Theorem 22  Multipacking parameterized by solution size k is W[1]-hard, even on 
digraphs of maximum finite distance 3.

Proof  We provide an FPT-reduction from Multicolored Independent Set, which is 
W[1]-hard when parameterized by k [10]. 	�  ◻

Multicolored Independent Set

∙ Input: A graph G = (V ,E) with V partitioned into sets {V
1
,… ,Vk} , k ∈ ℕ.

∙ Question: Does there exist an independent set S of G s.t. |S ∩ Vi| = 1 for 1 ⩽ i ⩽ k ?
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Construction We construct an instance (D = (V �,A�), k�) of Multipacking as fol-
lows. We consider the bipartite incidence graph of G, that is we add V ∪ E to V ′ . To 
construct A′ , we add an arc from a vertex e ∈ E to a vertex v ∈ V  if and only if e 
contains v. We next group vertices of E into 

(
k

2

)
 sets Ei,j , 1 ⩽ i < j ⩽ k according to 

the colors of their corresponding endpoints, and add every possible arc within each 
set Ei,j . We next duplicate the vertices of each set Vi into a set V ′

i
 such that there is 

an arc from each vertex vi ∈ Vi to its corresponding copy v′
i
 in V ′

i
 . Finally, we add k 

vertices {s1,… , sk} such that there is an arc from si to every vertex of Vi . Notice in 
particular that the maximum finite distance is 3.

See Fig. 6 for an illustration.

Claim 23  The graph G has a multicolored independent set of size k if and only if the 
digraph D has a multipacking of size k� = 2k +

(
k

2

)
.

Proof  ⇒ Let S = {u1,… , uk} be an independent set of G of size k such that ui ∈ Vi 
for every 1 ⩽ i ⩽ k . Let S′ ⊆ V ′ be a set that contains exactly one arbitrary vertex e∗

i,j
 

for every set Ei,j ( 1 ⩽ i < j ⩽ n ), together with each vertex of V ′
i
 corresponding to 

each vertex ui of S. Finally, add {s1,… , sk} to S′ . We claim that S′ is the sought mul-
tipacking of D. To see this, notice first that |S�| = 2k +

(
k

2

)
 by construction. Moreo-

ver, every vertex contains at most one vertex from S′ in its closed out-neighborhood. 
We now prove that every vertex ei,j ∈ Ei,j contains at most two vertices from S′ in 
B+

2
(ei,j) . Assume for a contradiction this is not the case; then, apart from e∗

i,j
 , there 

are two other vertices a and b in B+

2
(ei,j) . We have that a ∈ V �

i
 and b ∈ V �

j
 . By con-

struction, this means that ab is an edge of G, contradicting the fact that S is an inde-
pendent set. Finally, since every vertex si ( 1 ⩽ i ⩽ k ) has vertices from only one set 
V ′
i
 in its distance 2 neighborhood, and since S is a multicolored set, the result fol-

lows. The only vertices for which checking their distance  3 neighborhood is needed 
are vertices from Ei,j for every 1 ⩽ i < j ⩽ n . One can notice that for any ei,j ∈ Ei,j , 
B+

3
(ei,j) ⊆ Ei,j ∪ V �

i
∪ V �

j
∪ Vi ∪ Vj , which contains at most 3 vertices of S′ since 

|S� ∩ (V �
i
∪ V �

j
∪ Vi ∪ Vj))| = 2 and |S� ∩ Ei,j| = 1 by construction.

Fig. 6   Sketch of the construction of the digraph D in the proof of Theorem 22
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⇐ Assume that D has a multipacking S′ ⊆ V ′ of size k� = 2k +
(
k

2

)
 . By Lemma 16, 

we can assume that S′ contains {s1,… , sk} . In particular, this means that S� ∩ Vi = � 
for every 1 ⩽ i ⩽ k . Moreover, at distance 2, we have |S� ∩ V �

i
| ⩽ 1 for 1 ⩽ i ⩽ k since 

otherwise there would be three vertices from S′ in B+

2
(si) , for some vertex si . Moreo-

ver, for 1 ⩽ i < j ⩽ n , |Ei,j ∩ S�| ⩽ 1 since Ei,j is a bi-directed clique. Thus, by the 
size of S′ , the only possibilities are to pick exactly one vertex in each set V ′

i
 and one 

vertex ei,j in each set Ei,j . This can be done only if there exists a multicolored inde-
pendent set of size k in G: otherwise one would have to select two vertices a ∈ Vi 
and b ∈ Vj , i ≠ j such that ab ∈ E , which in turn would imply that the vertex from 
Ei,j corresponding to the edge ab has three vertices in its distance-2 neighborhood 
(namely ei,j , a and b).

Thus, the proof is complete. 	�  ◻

4.2 � Algorithms

Next, we present a linear-time algorithm.

Theorem  24  Multipacking can be solved in linear time on single-sourced layered 
DAGs.

Proof  Let D = (V ,A) be a single-sourced layered DAG. By Lemma  17, in every 
single-sourced layered DAG there is a multipacking of maximum size that is a 
maximum-size set of vertices with at most one vertex per layer such that two cho-
sen vertices of consecutive layers are not adjacent. We thus give a polynomial-time 
bottom-up procedure to find such a set of vertices. At each step of the procedure, a 
layer Vi is partitioned into a set of active vertices and a set of universal ones, denoted 
respectively Ai and Ui . Our goal will be to select exactly one vertex in each set of 
active vertices. We initiate the algorithm by setting At = Vt and Ut = � . Now, for 
every i with 0 ⩽ i < t , we set Ui = {u ∈ Vi ∶ Ai+1 ⊆ N+(u)} and Ai = Vi ⧵ Ui . In 
other words, Ui contains the vertices of layer Vi that are adjacent to all active vertices 
of Vi+1 . During the procedure, if some layer Vi satisfies Ai = � , we let Ai−1 = Vi−1 
and repeat this process until V0 is reached.

To construct a multipacking of maximum size, we start from V0 , and for each 
0 ⩽ i ⩽ t we pick a vertex si in each non-empty set Ai of active vertices. Every time 
a vertex si is picked, we remove its closed neighborhood from D. Notice that by con-
struction, every time a vertex si is picked, there exists a vertex si+1 ∈ Ai+1 such that 
sisi+1 does not belong to A (otherwise si would belong to Ui).

To prove the optimality of our algorithm, let 0 ⩽ i < t be such that Ai = � , and 
j > i be the smallest integer greater than i such that Vj = Aj . Such a j exists since 
At = Vt . 	� ◻

Claim 25  Let S be a multipacking with at most one vertex per layer. Then S satisfies:
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Proof  Let S be an optimal multipacking with at most one vertex per layer. Assume 
by contradiction that ���S ∩

⋃j

k=i
Vk
��� > j − i + 1 , and call sk the vertex in Vk ∩ S for 

every i ⩽ k ⩽ j . We know that si ∈ Ui , and since every vertex in Ai+1 is an out-neigh-
bor of si , then si+1 ∈ Ui+1 . By induction, for every i ⩽ k ⩽ j , we have sk ∈ Uk , but 
Uj = � by choice of j, leading to a contradiction. 	�  ◻

Notice that Claim  25 gives one less vertex than what Lemma  17 implies, and 
that it is the value reached by our algorithm, since for i ⩽ k ⩽ j the only layer with 
Uk = Vk is Vi . Since the sets of active and universal vertices can be constructed by 
standard graph searching, the whole algorithm takes O(|V| + |A|) time. 	� ◻

We now give algorithms for structural parameters. We next give a simple algo-
rithm for digraphs of bounded diameter.

Theorem 26  Multipacking can be solved in time nO(�) for digraphs of order n and 
diameter �.

Proof  To solve Multipacking by brute-force, we may try all the subsets of size k, 
and for each subset, check its validity. But in a YES-instance, we have k ⩽ � , since 
any ball of radius � contains all vertices. 	�  ◻

The next algorithm considers jointly two parameters. Recall that by Theorems 18 
and 22, such a result is unlikely to hold for each of them individually.3

Theorem 27  Multipacking parameterized by solution size k and maximum degree d 
can be solved in FPT time 2O(kdk) + O(dkn) for digraphs of order n.

Proof  Let (D = (V ,A), k) be an instance of Multipacking such that D has maximum 
degree d.

First, we try to find a packing of at least k pairwise disjoint balls of radius k in 
D (here the undirected distance in the underlying graph of D is considered). If such 
a packing P exists, then the set S of k centers of the balls of P is a valid solution to 
Multipacking. Indeed, for every integer i ⩽ k , for each vertex v of D, there is at most 
one vertex of S at directed distance at most i from v. We can solve this problem by 
reducing to Set Packing, defined as follows. 

Set Packing

∙ Input: A universe U of elements, a collection F  of subsets of U, an integer k ∈ ℕ.
∙ Question: Does there exist a packing S of size k, that is, a set of k subsets from F  that are pairwise 

disjoint ?

(2)
|||S ∩ ∪

j

k=i
Vk
||| ⩽ j − i

3  Note that in the conference version of this paper [19], we have claimed the same algorithm for the 
maximum out-degree, instead of the maximum degree. However, this algorithm was based on an incor-
rect claim (Lemma 8 in [19]).
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For the reduction, we let U = V(D) and F  be the family of all balls of radius k of 
D. This set system can be computed in time O(dkn) using n breadth-first searches. 
Indeed, each ball of radius k in D has size at most 

∑k

i=0
(d − 1)i + 1 , which is O(dk) . 

It is known that Set Packing can be solved in FPT time 2O(�k) + n [17], where � is 
the maximum size of a set in F  ; here � = O(dk) . Hence, applying this reduction 
gives us a running time of 2O(kdk) + O(dkn).

If the answer of the previous algorithm is YES, we accept. Otherwise, consider a 
hypothetical maximum-size packing P of balls of radius k in D: we know that P has 
size at most k − 1 . Let S be the set of centers of the balls in P. Now, every vertex of 
D that is not inside a ball in P, is at (undirected) distance at most 2k from some ver-
tex in S (otherwise, we could select such a vertex as the center of an additional ball 
of radius k, and obtain a packing P′ of larger size than P, contradicting the maximal-
ity of P). Thus D can be covered by |P| ⩽ k − 1 balls of radius 2k, and so there are 
n ⩽ (k − 1)

∑2k

i=0
(d − 1)i + 1 vertices in D, which is dO(k) . A brute-force algorithm 

take time nO(k) , which is thus dO(k2) , and this is subsumed by the term 2O(kdk) from the 
running time of the first part. 	�  ◻

Next, we consider the vertex cover number, already considered for Theorem 13.

Theorem 28  Multipacking parameterized by the vertex cover number c of the input 
digraph of order n can be solved in FPT time 22O(c)nO(1).

Proof  Let (D = (V ,A), k) be the input of Multipacking and let S be a vertex cover of 
D of size c. As for Theorem 13, we partition the set V ⧵ S (which induces no arcs) 
into equivalence classes C1,… ,Ct according to their in- and out-neighborhoods in 
S. There are t ⩽ 22c such classes.

By Lemma  16, we can assume that all sources belong to an optimal solution. 
Consider any class Ci . Its vertices are either all sources, or none of them are. If they 
are not sources, they all have a common in-neighbor, and thus at most one vertex of 
Ci can belong to a multipacking. It is not important which one is selected, since all 
vertices in Ci are twins. We may thus simply try all possibilities of selecting at most 
one vertex per class Ci , and all possibilities of selecting vertices of S. Thus, there are 
2t+c = 22

O(c) potential multipackings of D containing all sources. Each of them can be 
checked in polynomial time. This is an FPT algorithm. 	�  ◻

5 � Conclusion

We have studied Broadcast Domination and Multipacking on various subclasses of 
digraphs, with a focus on DAGs. It turns out that they behave very differently than 
for undirected graphs. We feel that Multipacking is slightly more challenging.

Indeed, we managed to solve some questions for Broadcast Domination, that we 
leave open for Multipacking. For example, it would be interesting to see whether 
Multipacking is FPT for DAGs, and whether it remains W[1]-hard for digraphs 
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without directed 2-cycles. Also, Broadcast Domination is FPT for nowhere dense 
graphs, as it can be expressed in first-order logic. However, it is not clear whether 
this holds for Multipacking. It is also unknown whether Multipacking is NP-hard on 
undirected graphs, as asked in [30, 31].

On the other hand, we showed that Multipacking is NP-complete for sin-
gle-sourced DAGs, but we do not know whether the same holds for Broadcast 
Domination.

We note that in most of our hardness reductions, the maximum finite distance is 
very small (which helps us to control the problems at hand), but the actual diameter 
is infinite (as our digraphs are not strongly connected). It seems a challenging ques-
tion to derive hardness results for strongly connected digraphs, which can be seen 
as an intermediate class between the two extremes that are undirected graphs, and 
DAGs.

We have also shown that both problems are FPT when parameterized by the ver-
tex cover number. What about smaller parameters such as tree-width or DAG-width?

Finally, can our FPT algorithms for both problems parameterized by the solu-
tion cost/solution size and maximum (out-)degree be strengthened to a polynomial 
kernel?
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