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Abstract
In IWOCA 2019, Ruangwises and Itoh introduced stable noncrossing matchings, 
where participants of each side are aligned on each of two parallel lines, and no 
two matching edges are allowed to cross each other. They defined two stability 
notions, strongly stable noncrossing matching (SSNM) and weakly stable noncross-
ing matching (WSNM), depending on the strength of blocking pairs. They proved 
that a WSNM always exists and presented an O(n2)-time algorithm to find one for 
an instance with n men and n women. They also posed open questions of the com-
plexities of determining existence of an SSNM and finding a largest WSNM. In this 
paper, we show that both problems are solvable in polynomial time. Our algorithms 
are applicable to extensions where preference lists may include ties, except for one 
case which we show to be NP-complete. This NP-completeness holds even if each 
person’s preference list is of length at most two and ties appear in only men’s prefer-
ence lists. To complement this intractability, we show that the problem is solvable in 
polynomial time if the length of preference lists of one side is bounded by one (but 
that of the other side is unbounded).

Keywords  Stable marriage · Noncrossing matching · Polynomial-time algorithms · 
NP-completeness

1  Introduction

In the classical stable marriage problem [9], there are two sets of participants, 
traditionally illustrated as men and women, where each person has a preference 
list that strictly orders all the members of the opposite gender. A matching is a 
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set of (man, woman)-pairs where no person appears more than once. A blocking 
pair for a matching M is (informally) a pair of a man and a woman who are not 
matched together in M but both of them become better off if they are matched 
together. A matching that admits no blocking pair is a stable matching. The stable 
marriage problem is one of the recently best-studied topics, with a lot of applica-
tions to matching and assignment systems, such as high-school match [1, 2] and 
medical resident assignment [23]. See some textbooks [11, 19, 21, 25] for more 
information.

Recently, Ruangwises and Itoh [26] incorporated the notion of noncrossing 
matchings [3, 7, 17, 20, 27] to the stable marriage problem with incomplete lists 
(denoted SMI), where a preference list may contain a subset of the members of the 
opposite side. In their model, there are two parallel lines where n men are aligned on 
one line and n women are aligned on the other line. A matching is noncrossing if no 
two edges of it cross each other. A stable noncrossing matching is a matching which 
is simultaneously stable and noncrossing. They defined two notions of stability: In 
a strongly stable noncrossing matching (SSNM), the definition of a blocking pair is 
the same as that of the standard stable marriage problem. Thus the set of SSNMs is 
exactly the intersection of the set of stable matchings and that of noncrossing match-
ings. In a weakly stable noncrossing matching (WSNM), a blocking pair has an addi-
tional condition that it must not cross matching edges. Ruangwises and Itoh [26] 
proved that a WSNM exists for any instance, and presented an O(n2)-time algorithm 
for the problem of finding a WSNM (denoted Find_WSNM). They also showed 
that the same results hold for the weak stability when ties are present in preference 
lists. Furthermore, they demonstrated that an SSNM does not always exist, and that 
there can be WSNMs of different sizes. Concerning these observations, they posed 
open questions on the complexities of the problems of determining the existence of 
an SSNM (denoted Exist_SSNM) and finding a WSNM of maximum cardinality 
(denoted Max_WSNM).

Our Contributions. Table  1 summarizes previous and our results, where our 
results are described in bold. We first show that both the above mentioned open 
problems are solvable in polynomial time. Specifically, Exist_SSNM is solved in 
O(n2)-time by exploiting the well-known Rural Hospitals theorem (Proposition 1) 

Table 1   Previous and our results (our results in bold)

∗1 even if each person’s preference list contains at most two persons and ties appear in only men’s prefer-
ence lists.
∗2 if each man’s preference list contains at most one woman

Exist_SSNM Find_WSNM Max_WSNM

SMI O(n2) [Proposition 1] O(n
2
) [26] O(n4) [Theorem 3]

SMTI Super- O(n2) [Corollary 1] O(n4) [Corollary 3]
Strong O(n3) [Corollary 2] O(n4) [Corollary 3]
Weak NPC∗1 [Theorem 1] O(n

2
) [26] O(n4) [Corollary 3]

O(n)∗2 [Theorem 2]
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and Max_WSNM is solved in O(n4)-time by an algorithm based on dynamic pro-
gramming (Theorem 3).

We then consider extended problems where preference lists may include ties. 
When ties are allowed in preference lists, the problem is denoted SMTI and there 
are three stability notions, super-, strong, and weak stability [13]. We show that our 
algorithm for solving Max_WSNM is applicable to all of the three stability notions 
with slight modifications (Corollary 3). We also show that our algorithm for solving 
Exist_SSNM can be applied to super- and strong stabilities without any modifica-
tion (Corollaries 1 and 2). In contrast, we show that Exist_SSNM is NP-complete 
for the weak stability (Theorem 1).

This NP-completeness holds even for a restricted case where the length of each 
person’s preference list is at most two and ties appear in only men’s preference 
lists. To complement this intractability, we show that if each man’s preference list 
contains at most one woman (but women’s preference lists may be of unbounded 
length), the problem is solvable in O(n)-time (Theorem 2). If we parameterize this 
problem by two positive integers p and q that bound the lengths of preference lists 
of men and women, respectively, Theorem 1 shows that the problem is NP-complete 
even if p ≤ 2 and q ≤ 2 , while Theorem  2 shows that the problem is solvable in 
polynomial time if p = 1 or q = 1 (by symmetry of men and women). Thus the com-
putational complexity of the problem is completely solved in terms of the length of 
preference lists. We remark that this is a rare case since many NP-hard variants of 
the stable marriage problem can be solved in polynomial time if the length of prefer-
ence lists of one side is bounded by two [5, 6, 14, 22].

Progress from the Conference Version. A preliminary version of this paper 
appeared in the proceedings of the 31st International Workshop on Combinatorial 
Algorithms (IWOCA 2020) [12]. In [12], only NP-completeness was shown for 
Exist_SSNM in the weak stability in SMTI (of unbounded-length preference lists). 
In this journal version, we investigated the computational complexity of this prob-
lem in terms of the length of preference lists: We strengthened the reduction in the 
proof of Theorem 1 to show that NP-completeness holds even if the length of pref-
erence lists is at most two and ties appear in only men’s preference lists. Moreover, 
we added Theorem 2 that shows that the problem can be solved in polynomial time 
if the length of preference lists of one-side is at most one. As mentioned previously, 
these two theorems solve the computational complexity of this problem in terms of 
the length of preference lists.

2 � Preliminaries

In this section, we give necessary definitions and notations, some of which are taken 
from Ruangwises and Itoh [26]. An instance consists of n men m1,m2,… ,mn and 
n women w1,w2,… ,wn . We assume that the men are lying on a vertical line in an 
increasing order of indices from top to bottom, and similarly the women are lying in 
the same manner on another vertical line parallel to the first one. Each person has a 
preference list over a subset of the members of the opposite gender. For now, assume 
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that preference lists are strict, i.e., do not contain ties. We call such an instance an 
SMI-instance. If a person q appears in a person p’s preference list, we say that q 
is acceptable to p. If p and q are acceptable to each other, we say that (p, q) is an 
acceptable pair. We assume without loss of generality that acceptability is mutual, 
i.e., p is acceptable to q if and only if q is acceptable to p. If p prefers q1 to q2 , then 
we write q1 ≻p q2.

A matching is a set of acceptable pairs of a man and a woman in which each 
person appears at most once. If (m,w) ∈ M , we write M(m) = w and M(w) = m . If 
a person p is not included in a matching M, we say that p is single in M and write 
M(p) = � . Every person prefers to be matched with an acceptable person rather than 
to be single, i.e., q ≻p ∅ holds for any p and any q acceptable to p.

A pair in a matching can be seen as an edge on the plane, so we may use “pair” 
and “edge” interchangeably. Two edges (mi,wj) and (mx,wy) are said to cross each 
other if they share an interior point, or formally, if (x − i)(y − j) < 0 holds. A match-
ing is noncrossing if it contains no pair of crossing edges.

For a matching M, an acceptable pair (m,w) ∉ M is called a blocking pair for 
M (or (m, w) blocks M) if both w ≻m M(m) and m ≻w M(w) hold. A noncrossing 
blocking pair for M is a blocking pair for M that does not cross any edge of M. A 
matching M is a weakly stable noncrossing matching (WSNM) if M is noncrossing 
and does not admit any noncrossing blocking pair. A matching M is a strongly stable 
noncrossing matching (SSNM) if M is noncrossing and does not admit any blocking 
pair. Note that an SSNM is always a WSNM by definition but the converse is not 
true.

We then extend the above definitions to the case where preference lists may con-
tain ties. A tie of a person p’s preference list is a set of one or more persons who are 
equally preferred by p, and p’s preference list is a strict order of ties. We call such an 
instance an SMTI-instance. In a person p’s preference list, suppose that a person q1 is 
in tie T1 , q2 is in tie T2 , and p prefers T1 to T2 . Then we say that p strictly prefers q1 to 
q2 and write q1 ≻p q2 . If q1 and q2 are in the same tie (including the case that q1 and 
q2 are the same person), we write q1 =p q2 . If q1 ≻p q2 or q1 =p q2 holds, we write 
q1 ⪰p q2 and say that p weakly prefers q1 to q2.

When ties are present, there are three possible definitions of blocking pairs, and 
accordingly, there are three stability notions, super-stability, strong stability, and 
weak stability [13]:

•	 In the super-stability, a blocking pair for a matching M is an acceptable pair 
(m,w) ∉ M such that w ⪰m M(m) and m ⪰w M(w).

•	 In the strong stability, a blocking pair for a matching M is an acceptable pair 
(p, q) ∉ M such that q ⪰p M(p) and p ≻q M(q) . Note that the person q, who 
strictly prefers the counterpart p of the blocking pair, may be either a man or a 
woman.

•	 In the weak stability, a blocking pair for a matching M is an acceptable pair 
(m,w) ∉ M such that w ≻m M(m) and m ≻w M(w).

With these definitions of blocking pairs, the terms “noncrossing blocking pair”, 
“WSNM”, and “SSNM” for each stability notion can be defined analogously. In the 
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SMTI case, we extend the names of stable noncrossing matchings using the type 
of stability as a prefix. For example, a WSNM in the super-stability is denoted 
super-WSNM.

Note that, in this paper, the terms “weak” and “strong” are used in two differ-
ent meanings. This might be confusing but we decided not to change these terms, 
respecting previous literature.

For implementation of our algorithms, we use ranking arrays described in 
Sect. 1.2.3 of [11]. Although in [11] ranking arrays are defined for complete prefer-
ence lists without ties, they can easily be modified for incomplete lists and/or with 
ties. Then, by the aid of ranking arrays, we can determine, given persons p, q1 , and 
q2 , whether q1 ≻p q2 or q2 ≻p q1 or q1 =p q2 in constant time. Also we can deter-
mine, given m and w, if (m, w) is an acceptable pair or not in constant time.

3 � Strongly Stable Noncrossing Matchings

3.1 � SMI

In SMI, an easy observation shows that existence of an SSNM can be determined in 
O(n2) time:

Proposition 1  There exists an O(n2)-time algorithm to find an SSNM or to report 
that none exists, given an SMI-instance.

Proof  Note that an SSNM is a stable matching in the original sense. In SMI, there 
always exists at least one stable matching [11], and due to the Rural Hospitals theo-
rem [10, 23, 24], the set of matched agents is the same in any stable matching. These 
agents can be determined in O(n2) time by using the Gale-Shapley algorithm [9]. 
There is only one way of matching them in a noncrossing manner. Hence the match-
ing constructed in this way is the unique candidate for an SSNM. All we have to do 
is to check if it is stable, which can be done in O(n2) time. 	�  ◻

3.2 � SMTI

In the presence of ties, super-stable and strongly stable matchings do not always 
exist. However, there is an O(n2)-time ( O(n3)-time, respectively) algorithm that finds 
a super-stable (strongly stable, respectively) matching or reports that none exists 
[13, 18]. Also, the Rural Hospitals theorem takes over to the super-stability [15] and 
strong stability [16]. Therefore, the same algorithm as in Sect. 3.1 applies for these 
cases, implying the following corollaries:

Corollary 1  There exists an O(n2)-time algorithm to find a super-SSNM or to report 
that none exists, given an SMTI-instance.
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Corollary 2  There exists an O(n3)-time algorithm to find a strong-SSNM or to 
report that none exists, given an SMTI-instance.

In contrast, the problem becomes NP-complete for the weak stability even for a 
highly restricted case:

Theorem  1  The problem of determining if a weak-SSNM exists, given an SMTI-
instance, is NP-complete, even if each person’s preference list contains at most two 
persons and ties appear in only men’s preference lists.

Proof  Membership in NP is obvious. We show NP-hardness by a reduction from 
3SAT [8]. An instance of 3SAT consists of a set of variables and a set of clauses. 
Each variable takes either true (1) or false (0). A literal is a variable or its negation. 
A clause is a disjunction of at most three literals. A clause is satisfied if at least one 
of its literals takes the value 1. A 0/1 assignment to variables that satisfies all the 
clauses is called a satisfying assignment. An instance f of 3SAT is satisfiable if it has 
at least one satisfying assignment. 3SAT asks if there exists a satisfying assignment. 
3SAT is NP-complete even if each variable appears exactly four times, exactly twice 
positively and exactly twice negatively, and each clause contains exactly three liter-
als [4]. We use 3SAT instances restricted in this way.

Now we show the reduction. Let f be an instance of 3SAT having n variables 
xi(1 ≤ i ≤ n) and m clauses Cj(1 ≤ j ≤ m) . For each variable xi , we construct a vari-
able gadget. It consists of six men pi,1 , pi,2 , pi,3 , pi,4 , ai,1 , and ai,2 , and four women 
qi,1 , qi,2 , qi,3 , and qi,4 . A variable gadget corresponding to xi is called an xi-gadget. For 
each clause Cj , we construct a clause gadget. It consists of seven men yj,k ( 1 ≤ k ≤ 7 ) 
and nine women vj,k ( 1 ≤ k ≤ 6 ) and zj,k ( 1 ≤ k ≤ 3 ). A clause gadget corresponding 
to Cj is called a Cj-gadget. Additionally, we create a man s and a woman t, who con-
stitute a gadget called the separator.

Thus, there are 6n + 7m + 1 men and 4n + 9m + 1 women in the created SMTI-
instance, denoted I(f). Finally, we add dummy persons who have empty preference 
lists to make the numbers of men and women equal. They do not play any role in the 
following arguments, so we omit them.

Suppose that xi ’s kth positive occurrence ( k = 1, 2 ) is in the di,k th clause Cdi,k
 as 

the ei,k th literal ( 1 ≤ ei,k ≤ 3 ). Similarly, suppose that xi ’s kth negative occurrence 
( k = 1, 2 ) is in the gi,k th clause Cgi,k

 as the hi,k th literal ( 1 ≤ hi,k ≤ 3 ). The prefer-
ence lists of ten persons in the xi-gadget are constructed as shown in Fig. 1. Here, 
each preference list is described as a sequence from left to right according to prefer-
ence, i.e., the leftmost person is the most preferred and the rightmost person is the 
least preferred. Tied persons (i.e., persons with the equal preference) are included in 
parentheses. Men are aligned in the order of pi,1 , pi,3 , ai,1 , ai,2 , pi,2 , and pi,4 from top 
to bottom, and women are aligned in the order of qi,1 , qi,3 , qi,2 , and qi,4 . (See Fig. 2. 
Edges depicted in the figure are those within the variable gadget.)

It might be helpful to explain here intuition behind a variable gadget. 
People there are partitioned into two groups, {pi,1, ai,1, pi,2, qi,1, qi,2} and 
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{pi,3, ai,2, pi,4, qi,3, qi,4} . The first group corresponds to the first positive occur-
rence and the first negative occurrence of xi . It has two stable matchings 
{(pi,1, qi,1), (ai,1, qi,2)} (blue in Fig. 2) and {(ai,1, qi,1), (pi,2, qi,2)} (red). We associate 
the former with the assignment xi = 0 and the latter with the assignment xi = 1 . 
The second group corresponds to the second positive occurrence and the second 
negative occurrence of xi . It has two stable matchings {(pi,3, qi,3), (ai,2, qi,4)} (blue) 
and {(ai,2, qi,3), (pi,4, qi,4)} (red). We associate the former with xi = 0 and the lat-
ter with xi = 1 . Entanglement of two groups as in Fig. 2 plays a role of ensuring 
consistency of assignments between the first and the second group. Depending on 
the choice of the matching in the first group, edges with the same color must be 
chosen from the second group to avoid edge-crossing.

Let us continue the reduction. We then construct preference lists of clause 
gadgets. Consider a clause Cj , and suppose that its kth literal is of a variable xjk . 
Define �j,k as

The preference lists of persons in the Cj-gadget are as shown in Fig.  3. The 
alignment order of persons in each clause gadget is the same as in Fig. 3. Since a 
clause gadget is complicated, we show a structure in the leftmost figure of Fig. 4 
(three matchings Nj,1 , Nj,2 , and Nj,3 will be used later).

�j,k =

⎧⎪⎨⎪⎩

1 if this is the 1st negative occurrence of xjk
2 if this is the 1st positive occurrence of xjk
3 if this is the 2nd negative occurrence of xjk
4 if this is the 2nd positive occurrence of xjk .

Fig. 1   Preference lists of persons in x
i
-gadget. Tied persons are included in parentheses

Fig. 2   Alignment of agents 
in a variable gadget. This 
gadget admits two noncrossing 
stable matchings highlighted in 
blue and red, associated with 
assignment x

i
= 0 and x

i
= 1 , 

respectively
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Finally, each of the man and the woman in the separator includes only the 
other in the list (Fig. 5). They are guaranteed to be matched together in any stable 
matching.

Alignment of the whole instance is depicted in Fig.  6. Variable gadgets are 
placed top, then followed by the separator, clause gadgets come bottom. The sep-
arator plays a role of prohibiting a person of a variable gadget to be matched with 
a person of a clause gadget; if they are matched, then the corresponding edge 
crosses the separator.

Now the reduction is completed. It is not hard to see that the reduction can be 
performed in polynomial time and the conditions on the preference lists stated in 
the theorem are satisfied.

Fig. 3   Preference lists of persons in C
j
-gadget. Tied persons are included in parentheses

Fig. 4   Acceptability graph of a clause gadget C
j
 and its matchings N

j,1
 , N

j,2
 , and N

j,3

Fig. 5   Preference lists of the man and the woman in the separator
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We then show the correctness. First, suppose that f is satisfiable and let A be 
a satisfying assignment. We construct a weak-SSNM M of I(f) from A. For an xi
-gadget, define two matchings

•	 Mi,0 = {(pi,1, qi,1), (ai,1, qi,2), (pi,3, qi,3), (ai,2, qi,4)} (blue in Fig. 2) and
•	 Mi,1 = {(ai,1, qi,1), (pi,2, qi,2), (ai,2, qi,3), (pi,4, qi,4)} (red in Fig. 2).

If xi = 0 under A, then add Mi,0 to M; otherwise, add Mi,1 to M. For a Cj-gadget, 
we define three matchings

•	 Nj,1 = {(yj,1, vj,1), (yj,2, vj,2), (yj,3, vj,3), (yj,4, zj,2), (yj,5, vj,6), (yj,6, zj,3)},
•	 Nj,2 = {(yj,1, vj,3), (yj,2, zj,1), (yj,3, vj,4), (yj,4, vj,5), (yj,5, vj,6), (yj,6, zj,3)} , and
•	 Nj,3 = {(yj,1, vj,3), (yj,2, zj,1), (yj,4, zj,2), (yj,5, vj,4), (yj,6, vj,5), (yj,7, vj,6)},

that are depicted in Fig. 4. Note that, for each k ∈ {1, 2, 3} , only zj,k (among zj,1 , 
zj,2 , and zj,3 ) is single in Nj,k . If Cj is satisfied by the kth literal ( k ∈ {1, 2, 3} ), then 
add Nj,k to M. (If Cj is satisfied by more than one literal, then choose one arbitrar-
ily.) Finally add the pair (s, t) to M.

It is not hard to see that M is noncrossing. We show that it is weakly stable. 
Clearly, neither s nor t in the separator forms a blocking pair. Next, consider the 
xi-gadget. In Mi,0 , women qi,2 and qi,4 are matched with the first-choice man. The 
woman qi,1 is matched with the second-choice man pi,1 but her first-choice man 
ai,1 is matched with a first-choice woman qi,2 . Similarly, qi,3 ’s first-choice man ai,2 
is matched with a first-choice woman qi,4 . Men pi,1 , ai,1 , pi,3 , and ai,2 are matched 
with a first-choice woman. Hence these persons cannot be a part of a blocking 
pair; only pi,2 and pi,4 may participate in a blocking pair. Similarly, we can argue 
that, in Mi,1 , only pi,1 and pi,3 may participate in a blocking pair.

Fig. 6   Alignment of agents
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Consider a Cj-gadget. In Nj,1 , all the men except for yj,7 are matched with a first-
choice woman. yj,7 ’s unique choice vj,6 is matched with the first-choice man yj,5 . 
Hence no man in this gadget can participate in a blocking pair, and so no blocking 
pair exists within this gadget. Since zj,2 and zj,3 are matched with their respective 
first-choice woman, only the possibility is that zj,1 forms a blocking pair with pj1,�j,1

 
of a variable gadget. The same observation applies for Nj,2 and Nj,3 and we can see 
that for each k ∈ {1, 2, 3} only zj,k can participate in a blocking pair in Nj,k.

To summarize, if there exists a blocking pair, it must be of the form (pi,� , zj,k) for 
some i,�, j , and k, and both pi,� and zj,k are single in M. Suppose that � = 1 . The 
reason for (pi,1, zj,k) being an acceptable pair is that Cj ’s kth literal is ¬xi , a negative 
occurrence of xi . Since pi,1 is single, Mi,1 ⊂ M and hence xi = 1 under A. Since zj,k 
is single, Nj,k ⊂ M and hence Cj is satisfied by its kth literal ¬xi , but this is a contra-
diction. The other cases � = 2, 3, 4 can be argued in the same manner, and we can 
conclude that M is stable.

Conversely, suppose that I(f) admits a weak-SSNM M. We construct a satisfying 
assignment A of f. Before giving construction, we observe structural properties of M 
in two lemmas:

Lemma 1  For each i ( 1 ≤ i ≤ n), either Mi,0 ⊂ M or Mi,1 ⊂ M.

Proof  Note that preference lists of the ten persons of the xi-gadget include per-
sons of the same xi-gadget or some persons from clause gadgets. Hence, due to the 
separator, persons of the xi-gadget can only be matched within this gadget to avoid 
edge-crossings.

Note that a stable matching is a maximal matching. With regard to pi,1 , ai,1 , 
pi,2 , qi,1 , and qi,2 , there are three maximal matchings {(pi,1, qi,1), (ai,1, qi,2)} , 
{(ai,1, qi,1), (pi,2, qi,2)} , and {(pi,1, qi,1), (pi,2, qi,2)} , but the last one is blocked 
by (ai,1, qi,1) and (ai,1, qi,2) . Hence either the first or the second one must be in 
M. With regard to pi,3 , ai,2 , pi,4 , qi,3 , and qi,4 , there are three maximal matchings 
{(pi,3, qi,3), (ai,2, qi,4)} , {(ai,2, qi,3), (pi,4, qi,4)} , and {(pi,3, qi,3), (pi,4, qi,4)} , but the last 
one is blocked by (ai,2, qi,3) and (ai,2, qi,4) . Hence either the first or the second one 
must be in M.

If we choose {(pi,1, qi,1), (ai,1, qi,2)} , then we must choose {(pi,3, qi,3), (ai,2, qi,4)} to 
avoid edge-crossing, which constitute Mi,0 . If we choose {(ai,1, qi,1), (pi,2, qi,2)} , then 
we must choose {(ai,2, qi,3), (pi,4, qi,4)} , which constitute Mi,1 . Hence either Mi,0 or 
Mi,1 must be a part of M. 	�  ◻

Lemma 2  For a Cj-gadget, at least one of zj,1 , zj,2 , and zj,3 is unmatched in M.

Proof  Note that preference lists of the persons of the Cj-gadget include persons of 
the same Cj-gadget or some persons from variable gadgets. To avoid edge-crossing, 
persons must be matched within the same Cj-gadget.

For contradiction, suppose that all zj,1 , zj,2 , and zj,3 are matched in M. Then 
(yj,2, zj,1) , (yj,4, zj,2) , and (yj,6, zj,3) are in M (Fig.  7(1)). To avoid edge-crossing, 
(yj,3, vj,3) , (yj,3, vj,4) , and (yj,7, vj,6) must not be in M (Fig.  7(2)). The pair (yj,5, vj,4) 
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must be in M as otherwise (yj,3, vj,4) is a blocking pair (Fig.  7(3)). For M to be a 
matching, (yj,5, vj,6) must not be in M (Fig. 7(4)). Then (yj,7, vj,6) is a blocking pair, a 
contradiction. 	�  ◻

For each i, either Mi,0 ⊂ M or Mi,1 ⊂ M holds by Lemma 1. If Mi,0 ⊂ M holds then 
we set xi = 0 in A, and if Mi,1 ⊂ M holds then we set xi = 1 in A. We show that A sat-
isfies f. Let Cj be an arbitrary clause. By Lemma 2, at least one of zj,1 , zj,2 , and zj,3 is 
unmatched in M. If there are two or more unmatched women, then choose one arbitrar-
ily and let this woman be zj,k . We show that Cj is satisfied by its kth literal. Suppose not.

First suppose that the kth literal of Cj is the first positive occurrence of xi . Then, 
by construction of preference lists, (pi,2, zj,k) is an acceptable pair. If xi = 0 under A, 
then Mi,0 ⊂ M by construction of A, and hence pi,2 is single in M. Thus (pi,2, zj,k) is a 
blocking pair, which contradicts stability of M. Hence xi = 1 under A and Cj is satis-
fied by xi . When the kth literal of Cj is the second positive occurrence of xi , the same 
argument holds if we replace pi,2 by pi,4.

Next suppose that the kth literal of Cj is the first negative occurrence of xi . Then, 
by construction of preference lists, (pi,1, zj,k) is an acceptable pair. If xi = 1 under A, 
then Mi,1 ⊂ M by construction of A, and hence pi,1 is single in M. Thus (pi,1, zj,k) is a 
blocking pair, which contradicts stability of M. Hence xi = 0 under A and Cj is satis-
fied by ¬xi . If the kth literal of Cj is the second negative occurrence of xi , the same 
argument holds if we replace pi,1 by pi,3 . Thus A is a satisfying assignment of f and 
the proof is completed. 	�  ◻

Next we give a positive result.

Theorem 2  The problem of determining if a weak-SSNM exists, given an SMTI-
instance, is solvable in O(n)-time if each man’s preference list contains at most one 
woman.

Fig. 7   Situation in the proof of Lemma 2. Red solid edges are those confirmed to be in M, blue dashed 
edges are those confirmed not to be in M, and black dashed edges are uncertain



2689

1 3

Algorithmica (2021) 83:2678–2696	

Proof  Let I be an input SMTI-instance. First, we construct the bipartite graph 
GI = (UI ,VI ,EI) , where UI and VI correspond to the sets of men and women in I, 
respectively, and (m,w) ∈ EI if and only if m is a first-choice of w. For a vertex 
v ∈ VI , let d(v) denote its degree in GI . Since acceptability is mutual, if a woman 
w’s preference list in I is nonempty, d(w) ≥ 1 holds. Note that it can happen that 
d(w) ≥ 2 because preference lists may contain ties. In the following lemma, we char-
acterize (not necessarily noncrossing) stable matchings of I.

Lemma 3  M is a stable matching of I if and only if M ⊆ EI and each woman w ∈ VI 
such that d(w) ≥ 1 is matched in M.

Proof  Suppose that M is stable. If M ⊈ EI , there is an edge (m,w) ∈ M ⧵ EI . The 
fact (m,w) ∉ EI means that m is not w’s first-choice so there is an edge (m�,w) ∈ EI 
such that m′ ≻w m . Since (m,w) ∈ M , m′ is single in M. Therefore, (m�,w) is a block-
ing pair for M, a contradiction. If there is a woman w ∈ VI such that d(w) ≥ 1 but w 
is single in M, then any man m such that (m, w) is an acceptable pair is a blocking 
pair because m is also single in M, a contradiction.

Conversely, suppose that M satisfies the conditions of the right hand side. Then 
each woman who has a nonempty list is matched with a first-choice man, so there 
cannot be a blocking pair. 	� ◻

By Lemma 3, our task is to select from EI one edge per woman w such that 
d(w) ≥ 1 , in such a way that the resulting matching is noncrossing. We do this 
greedily. M is initially empty, and we add edges to M by processing vertices of 
VI from top to bottom. At wi ’s turn, if d(wi) ≥ 1 , then choose the topmost edge 
that does not cross any edge in M, and add it to M. If there is no such edge, then 
we immediately conclude that I admits no weak-SSNM. If we can successfully 
process all the women, we output the final matching M, which is a weak-SSNM.

In the following, we formalize the above idea. A pseudo-code of the whole 
algorithm Weak-SSNM-1 is given in Algorithm 1.

Algorithm 1 Weak-SSNM-1
Input: An SMTI-instance I.
Output: A weak-SSNM M or “No” if none exists.
1: Construct the bipartite graph GI = (UI , VI , EI).
2: Let M := ∅.
3: for i = 1 to n do
4: if d(wi) ≥ 1 then
5: Let j∗ (if any) be the smallest j such that (mj , wi) ∈ EI and M ∪ {(mj , wi)} is a

noncrossing matching.
6: Let M := M ∪ {(mj∗ , wi)}.
7: if no such j∗ exists then
8: Output “No” and halt.
9: end if
10: end if
11: end for
12: Output M .
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We show the correctness. Suppose that Weak-SSNM-1 outputs a matching M. M 
is noncrossing by the condition of line 5, and M is stable because the construction of 
M follows the condition of Lemma 3.

Conversely, suppose that I admits a weak-SSNM M∗ . We show that Weak-
SSNM-1 outputs a matching. Suppose not, and suppose that Weak-SSNM-1 failed 
when processing woman (vertex) wk . Let M̄ be the matching constructed so far by 
Weak-SSNM-1. Then for each i ( 1 ≤ i ≤ k − 1 ), wi is single in M∗ if and only if she 
is single in M̄ . Also, since M∗ ⊆ EI by Lemma 3, we can show by a simple induction 
that for each i ( 1 ≤ i ≤ k − 1 ), if M∗

(wi) = mp and M̄(wi) = mq , then q ≤ p . Then, at 
line 5, we could have chosen (M∗

(wk),wk) to add to M̄ , a contradiction.
Finally, we consider time-complexity. Since the preference list of each man con-

tains at most one woman, the graph GI at line 1 can be constructed in O(n)-time 
and contains at most n edges. The for-loop can be executed in O(n)-time because 
each edge is scanned at most once in the loop; whether or not an edge crosses edges 
of M at line 5 can be done in constant time by keeping the maximum index of the 
matched men in M at any stage. 	�  ◻

4 � Maximum Cardinality Weakly Stable Noncrossing Matchings

In this section, we present an algorithm to find a maximum cardinality WSNM. For 
an instance I, let opt(I) denote the size of the maximum cardinality WSNM.

4.1 � SMI

Let I′ be a given instance with men m1,… ,mn and women w1,… ,wn . To sim-
plify the description of the algorithm, we translate I′ to an instance I by adding 
a man m0 and a woman w0 , each of whom includes only the other in the prefer-
ence list, and similarly a man mn+1 and a woman wn+1 , each of whom includes 
only the other in the preference list. It is easy to see that, for a WSNM M′ of I′ , 
M = M�

∪ {(m0,w0), (mn+1,wn+1)} is a WSNM of I. Conversely, any WSNM M of I 
includes the pairs (m0,w0) and (mn+1,wn+1) , and M�

= M ⧵ {(m0,w0), (mn+1,wn+1)} 
is a WSNM of I′ . Thus we have that opt(I) = opt(I�) + 2 . Hence, without loss of 
generality, we assume that a given instance I has n + 2 men and n + 2 women, with 
m0 , w0 , mn+1 , and wn+1 having the above mentioned preference lists.

Let M = {(mi1
,wj1

), (mi2
,wj2

),… , (mik
,wjk

)} be a noncrossing matching of I such 
that i1 < i2 ⋯ < ik and j1 < j2 ⋯ < jk . We call (mik

,wjk
) the maximum pair of M. 

Suppose that (mx,wy) is the maximum pair of a noncrossing matching M. We call 
M a semi-WSNM if each of its noncrossing blocking pairs (mi,wj) (if any) satisfies 
x ≤ i ≤ n + 1 and y ≤ j ≤ n + 1 . Intuitively, a semi-WSNM is a WSNM up to its 
maximum pair. Note that any semi-WSNM must contain (m0,w0) , as otherwise it is 
a noncrossing blocking pair. For 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1 , we define X(i, j) as 
the maximum size of a semi-WSNM of I whose maximum pair is (mi,wj) ; if I does 
not admit a semi-WSNM with the maximum pair (mi,wj) , X(i, j) is defined to be −∞.
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Lemma 4  opt(I) = X(n + 1, n + 1).

Proof  Note that any WSNM of I includes (mn+1,wn+1) , as otherwise it is a noncross-
ing blocking pair. Hence it is a semi-WSNM with the maximum pair (mn+1,wn+1) . 
Conversely, any semi-WSNM with the maximum pair (mn+1,wn+1) does not include a 
noncrossing blocking pair and hence is also a WSNM. Therefore, the set of WSNMs 
is equivalent to the set of semi-WSNMs with the maximum pair (mn+1,wn+1) . This 
completes the proof. 	�  ◻

To compute X(n + 1, n + 1) , we shortly define quantity Y(i, j) ( 0 ≤ i ≤ n + 1,

0 ≤ j ≤ n + 1 ) using recursive formulas, and show that Y(i, j) = X(i, j) for all i and 
j. We then show that these recursive formulas allow us to compute Y(i, j) in poly-
nomial time using dynamic programming.

We say that two noncrossing edges (mi,wj) and (mx,wy) ( i < x, j < y ) are con-
flicting if they admit a noncrossing blocking pair between them; precisely speak-
ing, (mi,wj) and (mx,wy) are conflicting if the matching {(mi,wj), (mx,wy)} admits 
a blocking pair (ms,wt) such that i ≤ s ≤ x and j ≤ t ≤ y . Otherwise, they are non-
conflicting. Intuitively, two conflicting edges cannot be consecutive elements of a 
semi-WSNM.

Now Y(i, j) is defined in the Eqs. (1)–(4). For convenience, we assume that 
−∞+ 1 = −∞ . In Eq. (4), Y(i�, j�) in max{} is taken among all (i�, j�) such that 
(i) 0 ≤ i� ≤ i − 1 , (ii) 0 ≤ j� ≤ j − 1 , (iii) (mi� ,wj� ) is an acceptable pair, and (iv) 
(mi,wj) and (mi� ,wj� ) are nonconflicting. If no such (i�, j�) exists, max{Y(i�, j�)} is 
defined as −∞ and as a result Y(i, j) is also computed as −∞.

Lemma 5  Y(i, j) = X(i, j) for any i and j such that 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1.

Proof  We prove the claim by induction. We first show that Y(0, 0) = X(0, 0) . The 
matching {(m0,w0)} is the unique semi-WSNM with the maximum pair (m0,w0) , 
so X(0, 0) = 1 by definition. Also, Y(0, 0) = 1 by Eq. (1). Hence we are done. We 
then show that Y(0, j) = X(0, j) for 1 ≤ j ≤ n + 1 . Since (m0,wj) is an unacceptable 
pair, there is no semi-WSNM with the maximum pair (m0,wj) , so X(0, j) = −∞ 

(1)Y(0, 0) = 1

(2)Y(0, j) = −∞ (1 ≤ j ≤ n + 1)

(3)Y(i, 0) = −∞ (1 ≤ i ≤ n + 1)

Y(i, j) =

{
1+ max{Y(i�, j�)} (if (mi,wj) is an acceptable pair)

−∞ (otherwise)

(4)(1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1)
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by definition. Also, Y(0, j) = −∞ by Eq. (2). We can show that Y(i, 0) = X(i, 0) for 
1 ≤ i ≤ n + 1 by a similar argument.

Next we show that Y(i, j) = X(i, j) holds for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n + 1 . As an 
induction hypothesis, we assume that Y(a, b) = X(a, b) holds for 0 ≤ a ≤ i − 1 and 
0 ≤ b ≤ j − 1 . First, observe that if X(i, j) ≠ −∞ , then X(i, j) ≥ 2 . This is because 
two pairs (m0,w0) and (mi,wj) must be present in any semi-WSNM having the maxi-
mum pair (mi,wj).

We first consider the case that X(i, j) ≥ 2 . Let X(i, j) = k . Then, there is a semi-
WSNM M with the maximum pair (mi,wj) such that |M| = k . Let M�

= M ⧵ {(mi,wj)} 
and (mx,wy) be the maximum pair of M′ . It is not hard to see that M′ is a semi-
WSNM with the maximum pair (mx,wy) and that |M�| = k − 1 . Therefore, 
X(x, y) ≥ k − 1 by the definition of X, and Y(x, y) = X(x, y) ≥ k − 1 by the induction 
hypothesis. Since M is a semi-WSNM, (mi,wj) and (mx,wy) are nonconflicting, so (x, 
y) satisfies the condition for (i�, j�) in Eq. (4). Hence Y(i, j) ≥ 1 + Y(x, y) ≥ k . Sup-
pose that Y(i, j) ≥ k + 1 . By the definition of Y, this means that there is (i�, j�) that 
satisfies conditions (i)–(iv) for Eq. (4), and Y(i�, j�) ≥ k . By the induction hypoth-
esis, X(i�, j�) = Y(i�, j�) ≥ k . Then there is a semi-WSNM M′ with the maximum pair 
(mi� ,wj� ) such that |M′| ≥ k . Since M′ is a semi-WSNM, and (mi� ,wj� ) and (mi,wj) 
are nonconflicting, M = M�

∪ {(mi,wj)} is a semi-WSNM with the maximum pair 
(mi,wj) such that |M| = |M�| + 1 ≥ k + 1 . This contradicts the assumption that 
X(i, j) = k . Hence Y(i, j) ≤ k and therefore Y(i, j) = k as desired.

Finally, consider the case that X(i, j) = −∞ . If (mi,wj) is unacceptable, then the 
latter case of Eq. (4) is applied and Y(i, j) = −∞ . So assume that (mi,wj) is accept-
able. Then the former case of Eq. (4) is applied. It suffices to show that for any 
(i�, j�) that satisfies conditions (i)–(iv) (if any), Y(i�, j�) = −∞ holds. Assume on 
the contrary that there is such (i�, j�) with Y(i�, j�) = k . Then X(i�, j�) = k by the 
induction hypothesis, and there is a semi-WSNM M′ such that |M�| = k , (mi� ,wj� ) 
is the maximum pair of M′ , and (mi� ,wj� ) and (mi,wj) are nonconflicting. Then 
M = M�

∪ {(mi,wj)} is a semi-WSNM such that (mi,wj) is the maximum pair and 
|M| = |M�| + 1 = k + 1 , implying that X(i, j) = k + 1 . This contradicts the assump-
tion that X(i, j) = −∞ and the proof is completed. 	�  ◻

Now we analyze time-complexity of the algorithm. Computing each Y(0, 0), Y(0, 
j), and Y(i, 0) can be done in constant time. For computing one Y(i, j) according to 
Eq. (4), there are O(n2) candidates for (i�, j�) . For each (i�, j�) , checking if (mi� ,wj� ) 
and (mi,wj) are conflicting can be done in constant time with O(n4)-time preproc-
essing described in subsequent paragraphs. Therefore one Y(i, j) can be computed 
in time O(n2) . Since there are O(n2) Y(i, j)s, the time-complexity for computing all 
Y(i, j)s is O(n4) . Adding the O(n4)-time for preprocessing mentioned above, the total 
time-complexity of the algorithm is O(n4).

In the preprocessing, we construct three tables S, A, and B.

•	 S is a Θ(n4)-sized four-dimensional table that takes logical values 0 and 1. For 
0 ≤ i� ≤ i ≤ n + 1 and 0 ≤ j� ≤ j ≤ n + 1 , S(i�, i, j�, j) = 1 if and only if there 
exists at least one acceptable pair (m, w) such that m ∈ {mi� ,mi�+1,… ,mi} and 
w ∈ {wj� ,wj�+1,… ,wj} . Since S(i, i, j, j) = 1 if and only if (mi,wj) is an accept-
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able pair, it can be computed in constant time. In general, S(i�, i, j�, j) can be com-
puted in constant time as follows. 

 Hence S can be constructed in O(n4) time by a simple dynamic programming.
•	 A is a Θ(n3)-sized table. For convenience, we introduce an imaginary person � 

who is acceptable to any person, where q ≻p 𝜆 holds for any person p and any 
person q acceptable to p. For 0 ≤ i ≤ n + 1 and 0 ≤ j� ≤ j ≤ n + 1 , A(i, j�, j) 
stores the woman whom mi most prefers among {wj� ,… ,wj, �} . Then, for i and j, 
A(i, j, j) = wj if (mi,wj) is an acceptable pair and A(i, j, j) = � otherwise. A(i, j�, j) 
can be computed as the better of A(i, j�, j − 1) and A(i, j, j) in mi ’s list. By the 
above arguments, each element of A can be computed in constant time and hence 
A can be constructed in O(n3) time.

•	 B plays a symmetric role to A; for 0 ≤ i� ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1 , B(i�, i, j) 
stores the man whom wj most prefers among {mi� ,… ,mi, �} . B can also be con-
structed in O(n3) time.

It is easy to see that (mi� ,wj� ) and (mi,wj) are conflicting if and only if one of the fol-
lowing conditions hold. Condition 1 can be clearly checked in constant time. Thanks 
to the preprocessing, Conditions 2–4 can also be checked in constant time. 

1.	 (mi� ,wj) or (mi,wj� ) is a blocking pair for the matching {(mi� ,wj� ), (mi,wj)}.
2.	 S(i� + 1, i − 1, j� + 1, j − 1) = 1 . (If this holds, there is a blocking pair (m, w) such 

that m ∈ {mi�+1,mi�+2,… ,mi−1} and w ∈ {wj�+1,wj�+2,… ,wj−1}.)
3.	 mi prefers A(i, j� + 1, j − 1) to wj or mi′ prefers A(i�, j� + 1, j − 1) to wj′ . (If 

this holds, there exists a blocking pair (m, w) such that m ∈ {mi� ,mi} and 
w ∈ {wj�+1,… ,wj−1}.)

4.	 wj prefers B(i� + 1, i − 1, j) to mi or wj′ prefers B(i� + 1, i − 1, j�) to mi′ . (If this 
holds, there exists a blocking pair (m, w) such that m ∈ {mi�+1,… ,mi−1} and 
w ∈ {wj� ,wj}).

This completes the explanation on preprocessing, and from the discussion so far, we 
have the following theorem:

Theorem  3  There exists an O(n4)-time algorithm to find a maximum cardinality 
WSNM, given an SMI-instance.

4.2 � SMTI

Similarly to the SMI case, a weak-WSNM exists in any SMTI-instance, as remarked 
in page 415 of [26]: Given an SMTI-instance I, break all the ties arbitrarily and 
obtain an SMI-instance I′ . Let M be a WSNM of I′ . Then it is not hard to see that 
M is also a weak-WSNM of I. In contrast, there is a simple instance that admits 
neither a strong- nor a super-WSNM (Fig.  8). The empty matching is blocked by 

S(i�, i, j�, j) =

{
1 (if (mi,wj) is an acceptable pair)

S(i�, i − 1, j�, j) ∨ S(i�, i, j�, j − 1) (otherwise)
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any acceptable pair. The matching {(m1,w1)} is blocked by (m2,w2) . The matching 
{(m2,w2)} is blocked by (m1,w1) . The matching {(m1,w1), (m2,w2)} is blocked by 
(m2,w1) . The matching {(m2,w1)} is blocked by (m1,w1).

Nevertheless, the algorithm in Sect. 4.1 can be applied to SMTI straightforwardly. 
Necessary modifications are summarized as follows:

•	 As mentioned above, existence of a WSNM is not guaranteed. If our algorithm 
outputs Y(n + 1, n + 1) = −∞ , then it means that no solution exists.

•	 The definition of two edges (mi,wj) and (mx,wy) being conflicting must be modi-
fied depending on one of the three stability notions.

•	 The definitions of the tables A and B need to be modified as follows. A(i, j�, j) 
stores one of the women whom mi most prefers among {wj� ,… ,wj, �} . Similarly, 
B(i�, i, j) stores one of the men whom wj most prefers among {mi� ,… ,mi, �}.

•	 In the SMI case, A(i, j�, j) is computed as the better of A(i, j�, j − 1) and A(i, j, 
j) in mi ’s list. But now it can happen that A(i, j�, j − 1) =mi

A(i, j, j) , in which 
case A(i, j�, j) can be either A(i, j�, j − 1) or A(i, j, j). (Strictly speaking, this 
treatment was needed already in the SMI case because there can be a case that 
A(i, j�, j − 1) = A(i, j, j) = � , but there we took simplicity.)

•	 Conditions 3 and 4 in checking confliction of two edges need to be modified 
as follows. In the super- and strong stabilities, “prefers” should be replaced by 
“weakly prefers”. In the weak stability, “prefers” should be replaced by “strictly 
prefers”.

With these modifications, whether two edges are conflicting or not can be checked 
in constant time. Therefore, we have the following corollary:

Corollary 3  There exists an O(n4)-time algorithm to find a maximum cardinality 
super-WSNM (strong-WSNM, weak-WSNM) or report that none exists, given an 
SMTI-instance.

5 � Conclusion

In this paper, we have shown algorithms and complexity results for the problems of 
determining existence of an SSNM and finding a maximum cardinality WSNM, in 
the settings both with and without ties.

One of interesting future works is to consider optimization problems. For exam-
ple, in SMI we have shown that it is easy to determine if there exists an SSNM with 
zero-crossing. What is the complexity of the problem of finding an SSNM with the 
minimum number of crossings, and if it is NP-hard, is there a good approximation 

Fig. 8   An instance that admits neither a strong-WSNM nor a super-WSNM
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algorithm for it? Also, it might be interesting to consider noncrossing stable match-
ings for other placements of agents, e.g., on a circle or on general position in 
2-dimensional plane.
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