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Abstract
In online edge- and node-deletion problems the input arrives node by node and an 
algorithm has to delete nodes or edges in order to keep the input graph in a given 
graph class Π at all times. We consider only hereditary properties Π , for which opti-
mal online algorithms exist and which can be characterized by a set of forbidden 
subgraphs F  and analyze the advice complexity of getting an optimal solution. We 
give almost tight bounds on the Delayed Connected F -Node-Deletion Problem, 
where all graphs of the family F  have to be connected and almost tight lower and 
upper bounds for the Delayed H-Node-Deletion Problem, where there is one for-
bidden induced subgraph H that may be connected or not. For the Delayed H-Node-
Deletion Problem the advice complexity is basically an easy function of the size 
of the biggest component in H. Additionally, we give tight bounds on the Delayed 
Connected F -Edge-Deletion Problem, where we have an arbitrary number of for-
bidden connected graphs. For the latter result we present an algorithm that computes 
the advice complexity directly from F  . We give a separate analysis for the Delayed 
Connected H-Edge-Deletion Problem, which is less general but admits a bound 
that is easier to compute.
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1  Introduction

A number of classical online problems can be formulated as follows: Given an 
instance I = (x1,… , xn) as a series of elements ordered from x1 to xn , an algorithm 
receives them iteratively in this order, having to decide immediately whether to 
include xi into its solution. It can base this decision only on the previously revealed 
x1,… , xi−1 and must neither remove xi from its solution later nor include any of the 
previously discarded elements. A way to measure the performance of such an online 
algorithm is the competitive ratio, which compares how much worse it performs 
compared to an optimal offline algorithm [8]. An algorithm is strictly c-competitive 
if the competitive ratio of the algorithm is bounded by a constant c.

In most classical online problems such as the  k -Server Problem, the Paging 
Problem, or the Knapsack Problem, receiving the next xi requires immediate action. 
This makes a lot of sense in the mentioned problems, but sometimes there is no 
“need to act” immediately, which is often the case for the problem that we study in 
this work: Informally, the requests are single nodes of a graph that are iteratively 
revealed and our task is to keep the graph induced by these nodes free of a set F  of 
forbidden induced subgraphs by deleting nodes or edges. Obviously, there are sets 
F  and instances in which an arbitrary number of nodes can be revealed before any 
forbidden induced substructure appears.

In the offline world graph modification problems are well studied. Already a long 
time ago Yannakakis proved that node-deletion problems are NP-hard for every 
non-trivial hereditary graph property and that many edge-deletion problems are NP-
hard, too  [24]. Cai analyzed the parameterized complexity of graph modification 
problems [9]. All variants are fixed-parameter tractable with respect to the solution 
size if the graph property can be characterized by a finite set of forbidden induced 
subgraphs.

The modified online model that we use was first introduced by Komm et al. [19] 
as the preemptive model. We give a slightly different formulation, which more 
closely matches our problem and call it the delayed decision model. We consider 
an instance I = (x1,… , xn) of an online minimization problem for which a solu-
tion S ⊆ I has to satisfy some condition C. Again, an algorithm ALG has to decide 
whether to include any element into its solution S. We denote the intermediate solu-
tion of an algorithm on an instance I at the revelation of element xi—before the deci-
sion on whether to include it in S—by SI

i
(ALG) . While in the classical definition, 

an algorithm has to decide on whether to include an element into its solution at the 
point of revelation, the algorithm may now wait until the condition C is violated by 
SI
i
(ALG) . It may then include any of the previously revealed elements into its solu-

tion, but must never remove any element from it.
Some online problems that do not allow for competitive algorithms, such as the 

Minimum Vertex Cover Problem and in particular general node- and edge-deletion 
problems allow for competitive algorithms in the delayed decision model.

In the Minimum Vertex Cover Problem, the input I is a series of induced sub-
graphs G[{v1}],G[{v1, v2}],… ,G[{v1,… , vn}] for which C states: “ SI

i
(ALG) is a 

vertex cover on G[{v1,… , vi}] ”. In the delayed decision model, an algorithm has 
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to include nodes into its current solution only when an edge is revealed that is 
not covered yet. While the Minimum Vertex Cover Problem does not allow for 
competitive algorithms in the classical online setting [11], a competitive ratio of 
2 can be proven for the delayed decision setting: The upper bound is given by 
always taking both nodes of an uncovered edge into the solution (this is the clas-
sical 2-approximation offline algorithm). The lower bound can be achieved by 
presenting an edge vivj and adding another edge to either vi or vj , depending on 
which node is not taken into the solution by a deterministic online algorithm. If 
both nodes are taken into the solution then no additional edge is introduced. This 
gadget can be repeated and forces a deterministic algorithm to take two nodes 
into the vertex cover where one suffices.

The competitive ratio is the classical method to analyze online algorithms and a 
relatively new alternative is the advice complexity introduced by Dobrev et al. [13], 
revised by Hromkovič et al. [17], and refined by Böckenhauer et al. [4]. The advice 
complexity measures the amount of information about the future that is necessary 
to solve an online problem optimally or with a given competitive ratio. There is an 
oracle called advisor who knows the whole input instance and gives the online algo-
rithm advice in the form of a binary string that can be read from a special advice 
tape. Many problems have been successfully analyzed in this model including the 
k -server problem  [14], the Knapsack Problem  [6], Job-Shop Scheduling  [3], and 
many more. One criticism of the advice model is that in the real world such a pow-
erful advisor usually cannot exist. However, the new research area of learning-
augmented algorithms uses an AI-algorithm to guide classical algorithms to solve 
optimization problems and they are closely related to the advice complexity  [20, 
21]. A strong application of advice complexity are the lower bounds it provides: For 
example, the online knapsack problem can be solved with a competitive ratio of two 
by a randomized algorithm. It has been shown that this competitive ratio cannot be 
improved with o(log n) advice bits [2, 5, 6].

In this paper we are not concentrating on the running time, but as we will be con-
sidering advice given by an oracle it has to be noted that the oracle will usually be 
solving NP-hard problems when preparing the advice string, while the online algo-
rithm itself usually performs only simple calculations.

We base our work on the definitions of advice complexity from Komm [18] and 
Böckenhauer et  al. [4], with a variation due to the modified online model we are 
working on: The length of the advice string is often measured as a function of the 
input length  n, which usually almost coincides with the number of decisions an 
online algorithm has to make during its run. In the delayed decision model, the num-
ber of decisions may be smaller than n by a significant amount and we can measure 
the advice as a function of the size of the optimum solution. This usually does not 
work in classical online algorithms.

In this work, we give a lower bound of ⌈opt ⋅ log s⌉ and an upper bound of 
⌈opt ⋅ log s⌉ + log opt + 2 log log opt on the advice complexity of the Delayed 
Connected F -Node-Deletion Problem, where s is the size of the biggest 
graph in  F  and opt is the size of the optimal solution. We show lower and 
upper bounds for the Delayed H-Node-Deletion Problem, which are roughly 
opt ⋅ log |V(Cmax)| + Ω(log opt) and opt ⋅ (log |V(Cmax + |CH|)| + O(log opt) 
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respectively, with Cmax being the biggest component of H. More precise results are 
given in Theorems 4 and 5.

In the second main part, we give a tight bound for the Delayed Connected F
-Edge-Deletion Problem, namely m(F) ⋅ optF(G) + O(1) , where computing m(F) 
is rather involved. We provide an algorithm that computes m(F) for every con-
crete F  . Afterwards, since the results for the Delayed Connected F -Edge-Dele-
tion Problem are only computable with some work for concrete sets of forbidden 
graphs, we provide results for a specialized version of the problem, namely the 
Delayed Connected H-Edge-Deletion Problem. The advice complexity for this 
problem is a simple function in the size of the optimal solution, lower bounded 
by ⌈opt ⋅ log(��H��)⌉ bits where ||H|| denotes the number of edges in H and upper 
bounded by ⌈opt ⋅ log ��H��⌉ + log opt + 2 log log opt . We leave open the exact 
advice complexity for the general Delayed F -Node-Deletion Problem and Delayed 
F -Edge-Deletion Problem, for which we can only provide lower bounds.

An overview over all possible problem types, references to the concrete theorems 
and open problems, can be found in Tables 1 and 2.

An example that we will examine throughout this paper is the class of trivially 
perfect graphs, which were first studied by Wolk [23]. They are exactly the graphs 
without any induced path and cycle on 4 nodes, i.e. . We will see in 
Example  1 that the advice complexity for this graph class is exactly 2 ⋅ opt when 
tasked with deleting nodes. Example  3 will show that log 3 ⋅ opt + O(1) advice 
bits are necessary and sufficient to optimally solve the problem in the case of edge 
deletions.

Table 1   Advice complexity 
for variations of node-deletion 
problems

A dagger ( † ) symbolizes a remaining gap

Node-deletion Single graph H forbidden Family F  of 
graphs forbid-
den

All graphs connected Theorem 3† Theorem 3†

Arbitrary graphs Theorems 4 and 5† Open

Table 2   Advice complexity 
for variations of edge-deletion 
problems

A dagger ( † ) symbolizes a remaining gap

Edge-deletion Single graph 
H forbidden

Family F  of graphs forbidden

All graphs connected Theorem 9† Theorems 6 and 7
Arbitrary graphs Open Open
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2 � Preliminaries

We will use the usual notation for graphs, which will always be simple, undirected, 
and loop-free.

For a graph G = (V ,E) we write |G| to denote |V(G)| and ||G|| to denote |E(G)|. 
We use the symbol ⊴ to denote an induced subgraph relation, i.e. A ⊴ B iff A is an 
induced subgraph of B. We write G to denote the set of all graphs. We denote by 
H a finite graph and by F  a finite set of finite graphs, if not stated otherwise.

We write G − U for G[V(G) − U] and G − u for G − {u} and also use G − E 
similarly for an edge set E. For graphs H and G we write H ⊴𝜑 G if there exists 
an isomorphism � such that 𝜑(H) ⊴ G . A graph G is called F -free if there is 
no Hi ⊴𝜑 G for any Hi ∈ F  . A path with k nodes and a clique with k nodes are 
denoted by Pk and Kk respectively. An edge between nodes x and y is called xy.

For a problem Π we denote the optimal solution size on an input I by opt
Π
(I) . 

If Π is the class of F -free graphs, then we also write optF(I) instead of opt
Π
(I) 

and optH(I) = opt
{H}

(I) . As it is always clear whether we refer to a node- or edge-
deletion problem, we do not specifically mention it in the notation.

If the context is clear or we do not refer to a concrete instance or even problem, 
we sometimes abbreviate the notation for the optimal solution size to opt.

By log(n) we always denote the logarithm to base 2.

3 � General Graph Deletion Problems

Let us look at a simple introductory example: Cluster deletion. A cluster graph is a 
collection of disjoint cliques. Given a graph G the cluster deletion problem asks for 
a minimum set D of edges whose deletion turns G into a cluster graph. In our model 
we receive the graph G piecewise vertex by vertex. Each time we receive a new ver-
tex that turns the graph into a non-cluster graph, we have to insert edges into D such 
that Gi[E(Gi) − D] is a cluster graph. It is clear that in the worst case we have no 
chance to compute an optimal D in this way. It turns out that we can find an optimal 
solution of the same size online if we are given opt advice bits: Whenever we find an 
induced P3 in our graph we have to delete at least one of its edges. We can read one 
advice bit to find out which one is the right one. As a graph is a cluster graph iff it 
does not contain P3 as an induced subgraph the algorithm is correct.

It is also easy to see that this simple algorithm is optimal: An adversary can 
present k times a P3 which is in the next step expanded into a P4 on either side. To 
be optimal the algorithm has to choose the correct edge to delete each time of the 
k times. This makes 2k possibilities and the algorithm cannot act identically for 
any pair of these possibilities. Hence, the algorithm needs at least k advice bits.

In this paper we consider similar problems and find ways to compute their 
exact advice complexity.

If we are facing a Π graph modification problem for a graph class Π there are 
special cases we can consider for Π . If we know nothing about Π we can still 
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show that opt log n advice bits are sufficient to solve the Π-edge-deletion problem 
optimally on a graph with n nodes.

Theorem 1  Let Π be a hereditary graph property.

(1)	 The Π-node-deletion problem can be solved optimally with ⌈opt ⋅ log n⌉ advice 
bits.

(2)	 The Π-edge-deletion problem can be solved optimally with at most 2opt ⋅ log n 
advice bits.

Proof  (1) Whenever the algorithm detects that the graph is not in Π , a node has to 
be deleted. There at most n nodes to choose so the correct one can be encoded with 
log n bits and there are at most nopt possibilities to choose opt nodes. Such a number 
can be encoded with ⌈opt ⋅ log n⌉ many bits.

In that way an optimal set of vertices is deleted. As Π is hereditary, all induced 
subgraphs seen by the algorithm in-between also belong to Π if the same optimal 
solution is deleted from them.

(2) If the algorithm detects that the graph is not in Π , one or more edges have to 
be deleted. There at most n2∕2 edges in total to choose from. There are only (n2∕2)opt 
possibilities to choose a set of opt edges. We need only ⌈log((n2∕2)opt)⌉ ≤ 2opt ⋅ log n 
advice bits. 	�  ◻

While Theorem 1 gives us a simple upper bound on the advice complexity, it is 
often too pessimistic and we can find a better one. On the other hand, it will turn 
out that there are very hard edge-deletion problems where the bound of Theo-
rem 1 is almost optimal.

One ugly, but sometimes necessary, property of the bound in Theorem 1 is that 
the number of advice bits can get arbitrarily big even if the size of the optimal 
solution is bounded by a constant. Let us look at some special cases, where this is 
not the case and the number of advice bits is bounded by a function of the solu-
tion size.

Theorem 1 is restricted to hereditary properties Π , i.e., properties that are closed 
under taking induced subgraphs. It is well known that such properties can be char-
acterized by a set of forbidden induced subgraphs. If F  is such a set we can always 
assume that it does not contain two graphs H1 and H2 such that H1 is an induced sub-
graph of H2 because H2 would be redundant. Under this assumption F  is determined 
completely by Π and can be finite or infinite and we say that F  is unordered.

Definition 1  A set of graphs F  is called unordered if for every H1,H2 ∈ F  with 
H1 ≠ H2 it holds that H1 ⋬ H2.

Moreover, it is also clear that if a hereditary class Π contains at least one graph 
then it also contains the null graph with no vertices (because that is an induced 
subgraph of any graph). There is a vast number of important hereditary graph 
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properties, for example planar graphs, outerplanar graphs, forests, genus-bounded 
graphs, chordal graph, bipartite graphs, cluster graphs, line graphs, etc. etc.

Hereditary graph properties are exactly those properties that can be solved 
optimally in this model if “optimal” means that the online solution is not big-
ger than the best offline solution that has to modify only one graph G (while the 
online algorithm has to modify a sequence of induced subgraphs leading to G).

Theorem  2  The online Π-edge and Π-node-deletion problems can be solved opti-
mally with respect to the smallest offline solution if and only if Π is hereditary, even 
if arbitrarily many advice bits can be used.

Proof  Theorem 1 already shows that an optimal solution can be found for hereditary 
properties.

Let now Π be a graph property that is not hereditary. Then there are graphs G1 
and G2 such that (1) G1 ∉ Π , (2) G2 ∈ Π , and (3) G1 is an induced subgraph of G2.

An adversary can present first G1 and later G2 . Any correct algorithm has to delete 
something from G1 , but the optimal offline solution is to delete nothing. 	�  ◻

Because of Theorem 2 we will look only at hereditary graph properties in this 
paper. It should be noted, however, that a sensible treatment of non-hereditary graph 
properties is possible if the definition of online optimality is adjusted in the right 
way. In particular, the amount of advice bits cannot be dependent only on the size 
of the optimal solution. For example, if the input graph has n nodes, any Π-node-
deletion problem can be optimally solved with n bits of advice.

We now give definitions for the main problems that we study in this work.

Definition 2  Let F  be an unordered set of graphs. Let I be a sequence of growing 
induced subgraphs G[{v1}],… ,G[{v1,… , vn}] . Then the F -Node-Deletion Prob-
lem is to delete a minimum size set of nodes S from G such that G − S is F -free. We 
call SI

i
⊆ {v1,… , vi} an (intermediate) solution for the F -Node-Deletion Problem 

on G[{v1,… , vi}] if G[{v1,… , vi}] − SI
i
 is F -free.

The Delayed F -Node-Deletion Problem is defined accordingly, with the condi-
tion C stating “The graph G[{v1,… , vi} − SI

i
(ALG)] is F -free” for all i ∈ {1,… , n} 

and some feasible algorithm ALG. F -Edge-Deletion and Delayed F -Edge-Dele-
tion are defined accordingly, with the solution being a set of edges. The graph is 
always revealed as a sequence of nodes. We will denote the Delayed F -Node-Dele-
tion Problem for F = {H} as the Delayed H-Node-Deletion Problem.

We start by giving a short proof that the F -Node-Deletion Problem does not 
generally admit a constant competitive ratio. We continue by giving upper bounds 
for the preemptive model in which no advice is used.

Lemma 1  Let H be a connected graph with |H| > 1. Then there is no algorithm for 
the H-Node-Deletion Problem that is c-competitive for any constant c.
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Proof  Any correct online algorithm has to delete a node from each copy of H. The 
adversary starts constructing a copy of H. If an algorithm chooses to delete any node 
before H is completed, the copy is not completed by the adversary. In this special 
case, the adversary instead chooses to construct another node-disjoint copy of H.

If any algorithm instead chooses to delete a node only once a copy of H is com-
pleted, it can only do so by deleting the node vi that was last presented. The rest 
of the instance then consists of an arbitrary number of copies of vi which repair H 
repeatedly. An optimal algorithm simply deletes a single vj ∈ V(H), vj ≠ vi , that is 
not a copy of vi . 	�  ◻

Lemma 1 is not surprising. It generalizes that Vertex Cover admits no con-
stantly bounded competitive ratio [11].

Note however that this does not mean that there are no F  for which the prob-
lem admits a constantly bounded competitive ratio. An example is the F -Node-
Deletion Problem with F = {K1K1,P2} , i.e. both two isolated nodes and an edge 
are forbidden. For this problem, an algorithm can simply delete any node that is 
presented after the first one. As the optimal solution for any graph over this F  is 
deleting every node except for a single one, this algorithm is optimal.

Lemma 2  There is at least one F  for which the F -Edge-Deletion Problem does not 
admit any c-competitive algorithm for any constant c.

Proof  Let F = {Pk} for any fixed k > 3 . Any correct online algorithm has to delete 
an edge from each copy of the path Pk . The adversary starts constructing a copy of 
Pk finishing with a vertex at the end of the path. If an algorithm chooses to delete 
any edge before Pk is completed, the copy is not completed by the adversary. In this 
special case, the adversary instead chooses to construct another node-disjoint copy 
of Pk.

If any algorithm instead chooses to delete an edge only once a copy of Pk is com-
pleted, it can only do so by deleting an edge ej presented last adjacent to the new-
est node vi . The rest of the instance then consists of an arbitrary number of cop-
ies of vi which repair Pk repeatedly. An optimal algorithm simply deletes a single 
ek ∈ E(Pk), ek ∉ ej . 	�  ◻

Next, we take a look at a bound on the competitive ratio for algorithms that use 
the delayed model.

Lemma 3  The Delayed F -Node-Deletion Problem admits an algorithms that is 
k-competitive for k = maxH∈F{|H|} and the Delayed F -Edge-Deletion Problem 
admits and algorithm that is k-competitive for k = maxH∈F{||H||}.

Proof  Whenever an algorithm finds an induced H, it deletes all of its nodes, resp. 
edges. 	�  ◻
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Note that this may seem like a very rough upper bound at first, but there are 
sets F  for which this bound on the Delayed F -Node-Deletion Problem is tight, 
as we will show now. For the following lemma, Ck denotes a cycle with k nodes.

Lemma 4  Let k > 4 and F = {Ck}. Then any algorithm solving the Delayed F
-Node-Deletion Problem cannot achieve a competitive ratio better than k.

Proof  There are k adversarial strategies. The ith strategy is the following: First, a Ck 
is presented. Whenever a node is deleted, another node with the same current neigh-
borhood of the deleted node is reinserted. This is done for all nodes except for the 
node vi of the cycle. We call the set of these reinserted nodes V ′ . We call the graph 
built by the ith strategy Gi.

We now want to show that deleting the last node of the cycle makes the gadget Ck

-free. Since this last node is chosen arbitrarily, this would show that we can force any 
algorithm to use k deletions for a gadget for which one deletion would be sufficient.

It is clear by construction that deleting any other single node does not make the 
gadget Ck-free due to the reinsertions. For a contradiction we assume that there 
remains an induced Ck in the gadget after the deletion of vi.

First, it is clear that deleting any v ∈ V � and thus forcing a reinsertion of a copy v′ 
does not produce any new Ck : If Cv

k
 is a cycle for which v ∈ V(Cv

k
) and Cv′

k
 is a cycle 

for which v� ∈ V(Cv�

k
) then Cv�

k
− v� = Cv

k
− v . Each replacement node only closes 

new C4 in Gi − vi . W.l.o.g. we look at a gadget for which only one copy of each 
replacement node is presented, i.e., |V �| = k − 1.

As there are only k − 1 replacement nodes, any Ck in the gadget - except for the 
original Ck - has to consist of at least one node of the original Ck and at least one of 
the replacement nodes.

We break any Ck that consists of k − 1 of the original nodes and one replacement 
node by deleting vk , as there is no replacement node for vk by construction.

Thus, at least two nodes of V ′ have to be in any remaining Ck and none of the 
nodes of any Ck may include vk.

Since by construction, every node of V ′ closes a new C4 , any bigger cycle of the 
graph must have at least one edge that connects two non-neighboring nodes, thus not 
inducing any cycle of length bigger than four. Thus, there are no additional Ck in the 
graph. 	�  ◻

It is easy to see that this proof holds even if F  is a family of cycles of length at 
least 5.

4 � The Delayed H‑Node‑Deletion Problem with Advice

If F  consists of connected subgraphs, we can provide a simple proof giving us an 
almost tight bound on the advice complexity as follows.

In the following we use a gluing operation that works as follows: Given two 
graphs G and G′ , we identify a single node from G and a single node from G′ . A 
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small example where the identified nodes are marked black is the following: Glu-
ing  together with  results in .

Theorem  3  Let F  be a not necessarily finite set of connected graphs and G the 
input graph. To be optimally solved the Delayed Connected F -Node-Deletion 
Problem requires at least ⌈optF(G) ⋅ log s⌉ many advice bits, where s is the size of 
the biggest graph in F . There is an algorithm almost matching this bound using 
⌈optF(G) ⋅ log s⌉ + log optF(G) + 2 log log optF(G) advice bits. If s = ∞ then no 
algorithm can be optimal with f (opt) advice bits for any function f.

Proof  Let H be the biggest graph in F  and u be an arbitrary node in H. If we glue 
two disjoint copies of H together at u by identifying the respective nodes, the result-
ing graph Hu contains H as an induced subgraph and there is exactly one node (i.e., 
u) that we can delete in order to make Hu H-free. However, when deleting u from Hu 
the remaining graph becomes disconnected and both components are proper induced 
subgraphs of H. Hence, the components are F -free and therefore Hu − u is also F
-free.

An adversary can simply present first H and then add nodes to build Hu for 
u ∈ V(H) . In this way the adversary has |H| possibilities to continue and to be opti-
mal when seeing only H the algorithm has to delete the correct u. By repeating this 
k times there are |H|k different possibilities and they have all to be distinguished. 
Hence we need at least log(|H|k) = k ⋅ log(|H|) advice bits. It is easy to see—using 
self-delimiting encoding as in [7]—that ⌈k ⋅ log s⌉ + log k + 2 log log k bits are also 
sufficient if k = optF(G) because the algorithm has to pick the right node of H when 
finding H ∈ F  as an induced subgraph. The self-delimiting encoding is of course 
not needed if the size of s is a power of 2. In this case, the bound is tight.

If s is infinite, one can take an arbitrarily big H, so no finite amount of advice bits 
is sufficient. 	�  ◻

Example 1  Given . To compute the advice complexity, we identify the 
size of the biggest H ∈ F  , which is 4. Thus, the advice complexity as stated in The-
orem 3 is exactly ⌈optF(G) ⋅ log 4⌉ = 2 ⋅ optF(G).

The problem becomes harder when the graphs in F  are disconnected, as we 
will see in the proof of Theorem  4. We solve it partially by determining the 
advice complexity for the Delayed H-Node-Deletion Problem, where H can be 
disconnected.

We occasionally speak of “deleting a graph” in this section. By this we refer to 
the removal of nodes such that a given substructure is no longer induced. If not spec-
ified further, assume that the minimum number of nodes is removed.

Definition 3  Let CG = {C1,C2,… ,Cj} denote the set of components of G.

If a forbidden graph H is disconnected, it may contain multiple copies of the 
same component, e.g., three disjoint triangles among other components. If we were 
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only to delete triangles, we would thus have to delete all but two copies to make the 
graph of an instance H-free. We introduce some notation to determine the number 
and the actual copies of a type of component.

We are restricting the classical notion of a packing to only include graphs in the 
same packing if they are not connected by an edge as follows.

Definition 4  Given a graph G. For a connected graph C we define the packing pC(G) 
of C in G as the family of sets of pairwise node-disjoint copies of C in G and the 
packing number of C in G, �C(G) , as maxH∈pC(G)

(|H|) . We further demand that there 
is no edge between two graphs of such a set.

In other words, �C(G) is the maximal number of C’s that can be packed disjointly 
into G.

We use the multiplicity of components in H in a lower-bound proof where we 
force any algorithm to leave specific components such as the two specific triangles 
in our small example untouched. To punish a wrong selection, we use a redundancy 
construction that maps a component C into a C′ such that C ⊴ C′ and there is still a 
copy of C in C�

− {v} for every v, while C′ does not contain two disjoint copies of C.
In other words: We transform a component C in such a way that a single node 

deletion is not sufficient to remove C from the transformed graph, while not intro-
ducing additional copies of C in the process.

Definition 5  Let �1 ∶ G → G , �2 ∶ G → G be isomorphisms. We call the graph H′ a 
redundancy construction of a connected graph H with |H| > 1 if:

•	 For all v ∈ V(H�
) there exists a �1 with 𝜑1(H) ⊴ H�

− v

•	 For all �1 : �1(H) ⋬ H�
− V(�2(H)) if V(𝜑2(H)) ⊆ V(H�

)

To show that such a redundancy construction actually exists, we use the follow-
ing transformation.

Definition 6  Given a connected graph H = (V ,E) with V = {v1,… , vn} , n > 1 , in 
some order and some k ∈ [2, n] s.t. (v1, vk) ∈ E(H) . H′ is then constructed in the fol-
lowing way: V(H

�
) = V(H) ∪ {v

�

i
∣ vi ∈ V(H), i ≥ 2} and E(H

�
) = E(H)∪

∣ (vi, vj) ∈ E(H), v�
i
, v�

j
∈ V(H�

)} ∪ {(v1, v
�

i
) ∣ (v1, vi) ∈ E(H)} ∪ {(vk , v

�

j
) ∣ (v1, vj) ∈ E(H)}.

Intuitively, we create a copy of H except for a single arbitrary node v1 . The cop-
ied neighbors of v1 ( v′

3
 and v′

4
 in Example  2) are then connected with  v1 . Lastly, 

some copied node is chosen and connected with the original neighbors of v1 ( v′5 in 
Example 2).

Example 2  A graph H and its redundancy construction H′ : 
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Lemma 5  The transformation in Definition 6 is a redundancy construction.

Proof  Given any connected graph H with |H| > 1 . Let H′ be the graph we obtain 
from Definition 6. If any single node v ∈ V(H�

), v ≠ v1 , is removed from H′ , there 
remains a copy of H in H� ⧵ {v} , as we copied H except for v1 and the graphs were 
joined together at v1 . If on the other hand we remove v1 , the node vk that is used in 
Definition 6 acts as a substitution for v1 , as by construction, N(vk) ⊇ N(v1).

The total number of nodes is 2 ⋅ |H| − 1 which means that removing any copy of 
H from H′ results in less than |H| nodes.

Thus, both properties of a redundancy construction hold for H′ . 	�  ◻

We denote an optimal solution of the Delayed H-Node-Deletion Problem on a 
graph G by solH(G).

4.1 � Lower Bound

The lower bound uses two building blocks: Selecting a correct node for deletion in 
each component as in the proof of Theorem 3 as well as selecting the correct copies 
of a component by using redundancy constructions.

Theorem 4  Let H be a graph. Let Cmax be a component of H of maximum size. Any 
online algorithm optimally solving the Delayed H-Node-Deletion Problem uses at 
least optH(G) ⋅ log |V(Cmax)| + (�Cmax

(H) − 1) ⋅ log optH(G) many advice bits on 
input G.

Proof  Let CH = {C1,… ,Cj} and |V(C1)| ≤ ⋯ ≤ |V(Cj)| . The adversary first pre-
sents k ≥ max{ �Ci

(H) ∣ Ci ∈ CH } disjoint copies of each Ci ∈ CH in an iterative 
way such that in each iteration one copy of each Ci is revealed node by node. W.l.o.g. 
we assume that any algorithm does not delete any nodes before an H is completed 
and then only deletes nodes of any H in the graph until no H is any longer induced 
in the graph.
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As soon as G is no longer H-free, any algorithm has to delete some node(s). For 
a Ci ∈ CH it can either delete all Ci except for �Ci

(H) − 1 occurrences and optionally 
some additional node(s). Obviously, deleting an additional node is not optimal, as 
the adversary would simply stop presenting nodes.

The following strategy will force an optimal online algorithm always to 
delete copies of Cmax . After all k copies of all Ci ∈ CH are presented, addition-
ally maxCi∈CH

{�Ci
(H)} − �Cmax

(H) + 1 copies of each Ci ∈ CH ⧵ Cmax are pre-
sented. Deleting all Cmax except for �Cmax

(H) − 1 occurrences will thus only need 
k − �Cmax

(H) + 1 deletions, while deleting any other component will need at least 
k −maxCi∈CH

{�Ci
(H)} + 1 +maxCi∈CH

{�Ci
(H)} − �Cmax

(H) + 1 = k − �Cmax
(H) + 2 

deletions. Thus, it is always optimal for any algorithm to focus on Cmax for deletion.
After all components have been revealed—and some deletion(s) had to be 

made—a redundancy construction such as the one from Definition 6 is used in order 
to repair an arbitrary set of �Cmax

(H) − 1 copies of Cmax . Every optimal algorithm 
will leave exactly �Cmax

(H) − 1 copies of Cmax after G is completely revealed. There 
are 

(optH (G)+�Cmax (H)−1

optH (G)

)
 many different ways to distribute the affected components onto 

all components and an algorithm without advice cannot distinguish them. In particu-
lar, each of these instances is part of a different, unique optimal solution, which 
deletes a node from all but the �Cmax

(H) − 1 subgraphs. If an algorithm has chosen to 
delete a node from a component that is affected by the redundancy construction, this 
component is now repaired and demands an additional deletion. By definition, 
applying the redundancy construction does not result in additional disjoint copies of 
Cmax . Thus, it is still optimal to focus on Cmax for deletion.

Finally, for every component that is not affected by a redundancy construction, 
the adversary glues a copy of Cmax to one of its nodes. It has |V(Cmax)| ways to do so 
for each copy of Cmax.

We now measure how much advice an algorithm needs at least. First of all, it 
is easy to see that the adversary is able to present |V(Cmax)|optH (G) many different 
instances regarding the deletion of nodes for the copies of Cmax not selected for the 
redundancy construction.

Assuming 𝜈Cmax
(H) > 1 , any algorithm needs to determine the correct subset of 

optH(G) components out of k − 1 presented ones to delete one node from. As the 
adversary has 

(optH (G)+�Cmax (H)−1

optH (G)

)
 different ways to distribute these redundancies and 

since every single of these instances has a different unique optimal solution, any 
correct algorithm has to get advice on the complete distribution in the size of at least 
log

(optH (G)+�Cmax (H)−1

optH (G)

)
≥ (�Cmax

(H) − 1) ⋅ log(optH(G)) advice bits. 	�  ◻

4.2 � Upper Bound

For simplicity of writing down the algorithm, we will assume in this section that we 
are only ever presented instances in which the graph induces at least one forbidden 
subgraph H. Our algorithm can be easily transformed into one that only starts to read 
any advice once the first forbidden subgraph is completely revealed. Additionally, 
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the algorithm only looks at a single Co to focus on for deletion. In most cases except 
for some corner cases, this is optimal. In the general case, the adversary gives the 
algorithm a list as in line 5 for each single component of H. This list is empty for 
all components except for those from which we need to delete nodes. The algorithm 
then labels the components in the same way as Co in lines 12–16 and cycles through 
all lists for deletion. Our arguments for the case of a single Co can be easily general-
ized for this case of multiple components. We call this complete version of the algo-
rithm the extended version. 

For an instance with an online graph G with V(G) = {v1,… , vn} and a forbidden 
subgraph H, the advisor first computes the advice the algorithm is going to read dur-
ing its run. It first runs an optimal offline algorithm on G and determines which is the 
component that is focussed on for deletion, named Co from here on. Finally, the advi-
sor computes a list L of labels by simulating the online algorithm. These labels will 
thus coincide with the labels given by the algorithm to copies of Co which are not to 
be deleted in an optimal solution. As there are at most �Co

(H) ⋅ optH(G) disjoint cop-
ies of H in G and as Lemma 8 states that our algorithm uses at most optH(G) + O(1) 
labels, we can limit the range of possible labels by [1, optH(G) + O(1)] . Finally, a 
number of advice bits is used for every deletion of a concrete node in each copy 
of Co.

The algorithm starts by reading from the advice tape which component Co to 
focus on for deletion and the list L, using self-delimiting encoding.

Whenever the next node xi is revealed that fulfills H ⊴𝜑 Gi , the algorithm will 
delete nodes from the graph as described in the following, otherwise the algorithm 
simply waits for the next node to be revealed.
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To identify which node(s) of Gi are to be deleted, the algorithm first identifies 
all biggest packings of Co . Of them it identifies a set P of which the most compo-
nents have already received a label. Then all previously unlabeled copies of Co ∈ P 
receive a new unique label. The algorithm now looks at the label list L given by the 
advisor. Every copy of Co ∈ P whose label is not in L is now marked for deletion. 
The algorithm reads advice about which concrete node out of every copy of Co is 
optimal to delete.

Lemma 6  The extended version of Algorithm 1 is correct.

Proof  The algorithm is correct iff whenever H ⊴𝜑 Gi holds, a set of nodes S ⊆ V(Gi) 
is deleted such that Gi − S is H-free. The condition of the if-branch in line 11 trig-
gers when there already is an isomorphic copy of H in the graph. A largest packing 
of copies of a Co from H is then chosen in G in line 12, with the set including the 
most labeled components being chosen if the choice is ambiguous. All members of 
this set are then labeled in lines 15 and 16. |P| − �Co

(H) copies need to be deleted 
from Gi in order to make the graph H-free. In line 17 the algorithm reads from L 
which of at most �Co

(H) copies of H are not to be deleted and deletes all other cop-
ies. If the graph is not yet H-free, the algorithm repeats this process with the next 
component that has a non-empty list of labels, making the graph ultimately H-free at 
the end of line 20, i.e. before the next node is revealed. 	�  ◻

Lemma 7  The extended version of Algorithm 1 is optimal.

Proof  We already know by Lemma 6 that Algorithm 1 is correct and that our algo-
rithm only deletes nodes from types of components that an optimal algorithm would 
delete from as well. Thus, we only have to show that each node deleted by the algo-
rithm is part of the solution of an optimal offline algorithm.

Our algorithm determines a node for deletion by reading advice telling it from 
which labeled component it should delete a node. It then also reads advice which 
node of the selected copy it should delete. Thus, it can only not simulate an optimal 
offline algorithm if no set of labeled components covers a component such that it 
is the only optimal extension of the algorithms current solution. This component 
then does not have a label. By definition, it shares at least one node with a labeled 
component of the same type from which we do delete a node in this step or it is con-
nected with by an edge with a labeled component.

Each time H ⊴𝜑 Gi holds (especially the first time), we cover a complete copy of 
H by our labeled components. If we assume that none of the covered components 
was optimal for deletion, a supposedly optimal offline algorithm would leave all 
of these components in the graph after doing some other deletions. Thus, H ⊴𝜑 Gi 
would still hold. This means that any optimal offline algorithm has to delete at least 
one of the labeled components. We can communicate which of these components 
our algorithm should delete by advice.

Thus, Algorithm 1 simulates an optimal offline algorithm. 	�  ◻
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Definition 7  Given graphs G, H and a labeling function l ∶ G → � . We call a fam-
ily C of induced subgraphs of G a configuration if every element of C is isomorphic 
to H, C is a packing and l(C) ≠ 0 for each C ∈ C . The size of a configuration is the 
number of induced subgraphs it contains.

Informally speaking, a configuration is a set of disjoint induced subgraphs of G 
that already have a label.

The following lemma refers to the simple version of the algorithm but can be eas-
ily generalized, as each component type is labeled independently of all others. This 
is discussed briefly after the proof.

Lemma 8  Given an online graph G, a forbidden graph H, as well as a graph C ∈ CH 
(as in line  4 of the algorithm) of which there may be at most k = �C(H) − 1 dis-
joint copies present in G. Algorithm 1 assigns no more than �C(H) ⋅ optH(G) + O(1) 
labels to G.

Proof  In the worst case, whenever H ⊴𝜑 Gi holds, the biggest configuration that 
we can find does not contain a single labeled component, thus the algorithm labels 
every member of the configuration. 	� ◻

It is possible that our algorithm labels more than one type of component, as they 
may pairwise overlap and the connecting node could be the optimal one to delete. 
Thus, we can bound the total number of labels over all components by optH(G) ⋅ |CH|
.
Theorem 5  Let H be a graph and Cmax be a component of H of maximum size and G 
be an online graph. The Delayed H-Node-Deletion Problem can be solved optimally 
using at most optH(G) ⋅ (log |V(Cmax)| + |CH|) + O(log optH(G)) advice bits.

Proof  We count the number of advice bits used by Algorithm  1. We know by 
Lemmata  6 and 7 that it is correct and optimal. The advice in line  4 is of con-
stant size. As each L only contains the labels for components which are not to 
be deleted and we limited the number all labels by optH(G) ⋅ |CH| in Lemma  8, 
optH(G) ⋅ |CH| + O(log optH(G)) advice bits—using self-delimiting encoding to 
encode optH(G)—are needed in line 5.

Finally, the algorithm reads advice on which node of each copy of Cmax that is 
part of solH(G) to delete in line 20. This can be done using optH(G) ⋅ log |V(Cmax)| 
advice bits in total. 	�  ◻

5 � The Delayed Connected F ‑Edge‑Deletion Problem

The problem of deleting edges from a graph needs a separate approach from that of 
deleting nodes. There is a simple example that highlights a problem which makes it 
hard to simply adapt the ideas of node deletion to the task of edge-deletion: Let 
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F = {P3,K3} , i.e. a path with two edges and a triangle. Obviously, P3 ⋬� K3 , but delet-
ing any single edge from the K3 produces a P3 . This is a problem that does not occur in 
the case of node deletions, as the graphs are induced by their nodes. In this section we 
present a way to calculate the advice complexity for each Delayed Connected F-Edge-
Deletion Problem directly from F  . Since our tight bounds on the advice complexity 
are not trivial to calculate for a concrete problem instance, we give a separate analysis 
for the case that only a single graph is forbidden in the following section, which results 
in an almost tight bound that is a simple function of the size of the number of edges of 
this forbidden graph.

In contrast to Sect. 4, "deleting a graph" means removing all of its nodes.

Definition 8  Let F  be a family of forbidden connected induced subgraphs and 
H ∈ F  . Let S ⊆ 2E(H) . 

1.	 A set D ⊆ E(H) is H-optimal for a graph G if H ⊴ G and G − D is F -free and 
optF(G) = |D|.

2.	 A set D ⊆ E(H) is H-good for a graph G if H ⊴ G and D is a non-empty subset 
of some D̄ ⊆ E(G) where optF(G) = |D̄| and G − D̄ is F -free.

3.	 S is H-sound if H − D is F -free for every D ∈ S.
4.	 S is H-sufficient if for every connected graph G with H ⊴ G there is a D ∈ S such 

that D is H-good for G.
5.	 S is H-minimal if for every D ∈ S , there is a graph G such that D is H-good for 

G, but every D�
∈ S , D′ ≠ D is not.

Lemma 9  Let F = {H1,… ,Hk} be a family of connected graphs, G a graph and 
D ⊆ E(Hi) that is Hi-good for G. Then there is a subgraph G′ ⊆ G such that D is Hi

-optimal for G′.

Proof  As D is Hi-good for G there must be some D̄ ⊇ D that is optimal for G by 
the definition of goodness. Let us construct the graph G�

= G − (D̄ − D) , i.e., we 
get G′ from G by removing all edges that are in D̄ , but not in D. Let us assume that 
D is not optimal for G′ . Then there must be an optimal D′ for G′ with |D′| < |D| . 
Then, however, G − ((D̄ − D) ∪ D�

) = G�
− D� is also F -free by construction, which 

is impossible because (D̄ − D) ∪ D� is smaller than the already optimal D̄ . Hence, D 
is optimal for G. 	�  ◻

5.1 � Upper Bound

An important tool that we will use in the analysis of the number of advice bits is the 
solution of a special recurrence relation: Let (d1,… , dk) ∈ �

k . Let m(n) be the solution 
to the recurrence relation with

(1)m(n) =

�∑k

i=1
m(n − di) if n ≥ max{d1,… , dk}

cn otherwise
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where cn ≥ 0 and some ci > 0 for 0 ≤ i < max{d1,… , dk} . Let 
�(d1,… , dk) = inf�{ � ∣ m(n) = O(�n) } . Note that � does not depend on the ci ’s and 
that m(n) does depend on the di’s.

If S = {D1,… ,Dk} is a family of sets, we define �(S) = �(|D1|,… , |Dk|).
A homogeneous linear recurrence relation with constant coefficients usually 

has a solution of the form Θ(nk−1�n) if � is the dominant root of the characteristic 
polynomial with multiplicity k [15]. However, in (1) the coefficients of the char-
acteristic polynomial are real numbers and there is exactly one sign change. By 
Descartes’ rule of signs there is exactly one positive real root and therefore its 
multiplicity has to be one [12, 16]. Therefore m(n) = Θ(�(S)n).

Theorem 6  Let F = {H1,… ,Hk} be a family of connected graphs and let Si be Hi

-sound and Hi-sufficient for all i ∈ {1,… , k} . Then there is an m ∈ � and an algo-
rithm that solves the Delayed Connected F -Edge-Deletion Problem for every graph 
G with m ⋅ optF(G) + O(1) many advice bits where 2m ≤ �(Si) for all i ∈ {1,… , k}.

Proof  The algorithm receives optF(G) ⋅ log(maxi{�(Si)}) + O(1) many advice bits 
and then a graph G as a sequence of growing induced subgraphs. The algorithm 
interprets the advice as a number that can be between 0 and O((maxi{�(Si)})

optF(G)).
The algorithm will delete in total exactly optF(G) edges. We analyze the total 

number of different advice strings the algorithm might use when deleting optF(G) 
edges.

When the algorithm receives a new node and its incident edges to form the next 
graph G it proceeds as follows: While G is not F -free, choose some Hi ∈ F  for 
which Hi ⊴𝜑 G . The advisor chooses one D ∈ Si for which �(D) is �(Hi)-good for 
the graph at hand and puts it in the advice.

The advice string is therefore partitioned into |Si| subsets, one for each 
D ∈ Si . After deleting �(D) the algorithm proceeds on the graph G − �(D) , 
where optF(G) is now by |D| smaller. If m( optF(G)) is the total number of advice 
strings we get the recurrence m( optF(G)) = maxi

�∑
D∈Si

m( optF(G) − �D�)
�
 

if optF(G) is at least as big as every D ∈ Si . Standard techniques show that 
m( optF(G)) = O(max{�(S1),… , �(Sk)}

optF(G)) . 	�  ◻

In Fig.  1 you can find the behavior of an algorithm that solves the Delayed 
Connected F -Edge-Deletion Problem with S1 = {D1,D2,D3} and |D1| = 2 , 
|D2| = |D3| = 1 when it encounters only the forbidden  H1 as a tree of pos-
sible different computation paths. In the tree nodes you find the number 
of edges that will still be deleted. This corresponds to the recurrence 
m(n) = m(n − 2) + m(n − 1) + m(n − 1) for n ≥ 2 and m(0) = 1 , m(1) = 2 . Then 
m(5) = 70 and m(n) = Θ((

√
2 + 1)n) because �(2, 1, 1) =

√
2 + 1 . The exact solu-

tion is m(n) = 1

4
(

√
2 + 1)n(

√
2 + 2) −

1

4
(1 −

√
2)n(

√
2 − 2).
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5.2 � Lower Bound

Let F = {H1,… ,Hk} be a family of connected graphs. Let A be a correct algorithm 
for the Delayed Connected F -Edge-Deletion Problem.

We define the sets Si = Si(A) for i = 1,… , k as follows: D ∈ Si if and only if there 
is some input sequence G1,G2,… ,Gt such that algorithm  A deletes the edge set 
D′ from Gt . Moreover, there is a set X and an isomorphism � such that G[X] ≅ Hi , 
� ∶ V(H) → X , and �(D) = D�

∩ E(G[X]) . Informally speaking, the edge sets in Si 
are those that are deleted from some isomorphic copy of Hi by algorithm A in some 
scenario.

We will need the following technical lemma. It states that we can find a match-
ing with special properties in every connected bipartite graph. Figure 2 shows an 
example. Let U be the vertices on top and V on the bottom. The vertices in U are 
ordered according to their label and drawn from left to right in ascending order in 
the figure. The matching should have the following properties. Let U′ be the nodes in 
the matching on top and V ′ on the bottom. In the example U�

= {1, 3, 4, 6} and V ′ are 
the nodes marked in gray.

The first property is N(U�
) = V  , i.e., every node in V is connected to at least one 

node in U′ . To check that this property is fulfilled in Fig. 2 you have to check that 
every node on the bottom is connected to one in U′ . The second property states that 
we have an induced matching, i.e., that the graph induced by U�

∪ V � is a matching. 
The third property concerns the vertices in V ′ : If v ∈ V � then N(v) contains several 
vertices from U, but exactly one node in U′ , i.e., its partner in the matching. We 
require that this partner is the smallest one in N(v). You can check the third property 
in the figure easily: Just verify that the matching edge is the leftmost emerging edge 
of each v ∈ V � . For example m has two neighbors 6 and 7. The smaller one is its 
partner in the matching and hence in U′.

Lemma 10  Let G = (U,V ,E) be a bipartite graph where U = {u1,… , uk} . Let ≤ be 
a reflexive and transitive relation on U such that u1 ≤ ⋯ ≤ uk. Moreover, assume 
that V ⊆ N(U), i.e., every node in V is connected to some node in U. Then there is a 
U′ ⊆ U and V ′ ⊆ V  such that

1.	 N(U�
) = V ,

2.	 G[U�
∪ V �

] is a matching,
3.	 minN(v) ∈ U� for every v ∈ V �.

Proof  We claim that Algorithm 2 computes sets U′ and V ′ that fulfill the three prop-
erties stated in the lemma. As G[U�

∪ V �
] is an induced matching in G, the matching 

can be found easily from U′ and V ′ . 



2738	 Algorithmica (2021) 83:2719–2753

1 3

We prove all three properties separately. 

1.	 “N(U�
) = V  ”: The precondition of the lemma states that N(U) = V  and therefore 

that N(v) ≠ � for every v ∈ V  . In line 1 we add to U′ a neighbor of each v ∈ V  , 
which already guarantees N(U�

) = V .
	   We have to prove that the invariant N(U�

) = V  is maintained in the for-
loop. Only in line 7 a node is removed from U′ , which could destroy the prop-
erty N(U�

) = V  . However, we remove u only if there is no v ∈ V  for which u is 
the only neighbor. Hence, every v retains at least one other neighbor in U′.

Fig. 1   Possible ways to delete H1’s

Fig. 2   An example for the algorithm in the proof of Lemma 10. The sets U′ (top, ordered from left to 
right), V ′ (bottom) and the matching are highlighted
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2.	 “G[U�
∪ V �

] is a matching”: If in the end u ∈ U� , then u was not removed from 
U′ in line 7, which means that line 5 was executed and a v added to V ′ with 
N(v) ∩ U�

= {u} . At this point of time v has only one neighbor in U′ . Afterwards 
U′ is only shrinking, so v cannot have more than one neighbor in U′ at the end. 
Also, afterwards u cannot be deleted from U′ as each u is only considered once in 
the body of the for-loop. This means that at the end each v ∈ V � has exactly one 
neighbor in U′ . There cannot be a u ∈ U� with no neighbor in V ′ because it would 
have been removed in line 7. Hence, U�

∪ V � induces a matching.
3.	 “minN(v) ∈ U� for every v ∈ V � ”: Directly after line 2 the statement is obviously 

true.
	   Let us assume that this property does not hold at any later point. Then there is a 

v ∈ V � and minN(v) = u , where u ∉ U� . For this to hold, there must be a different 
u� ∈ U�, u� ∈ N(v) that is matched to v because U�

∪ V � induces a matching. After 
line 1 was executed, U′ thus contained u and u′ . Because u ≤ u′ and in line 3 the 
vertices in U′ are visited in descending order, u′ was visited before u.

	   We are now looking at the moment when u′ was visited in line 3. Then U′ 
still contained both u, u� ∈ U� and u, u� ∈ N(v) . u′ cannot be matched with v at 
this point, as |N(v) ∩ U�| > 1 . This means that after u′ was considered in the if-
condition in line 4, either u′ was removed from U′ or u′ was matched with a node 
from V ⧵ v , both leading to a contradiction.

	�  ◻

Lemma 11  Let F = {H1,… ,Hk} be a family of connected graphs and Si be Hi-
sound and Hi-sufficient for all i ∈ {1,… , k}. Then there are S′

i
⊆ Si such that S′

i
 is Hi

-sound, Hi-sufficient and Hi-minimal and moreover.

For every D�
∈ S�

i
 there is a graph G with Hi ⊴ G such that D′ is Hi-good for G 

and for every D ∈ Si ⧵ S
�

i
 that is also Hi-good for G, it holds that |D| ≥ |D′|.

Proof  We will use Lemma 10. In the following we look at a fixed i and write H for 
Hi , S for Si , and S′ for S′

i
.

If H ⊴ G1 and H ⊴ G2 , then we define that G1 ≡S G2 iff for all D ∈ S it holds 
that D is H-good for G1 if and only if D is H-good for G2 . There are only 2|S| many 
possibilities which D ∈ S are H-good for some G and consequently the equivalence 
relation ≡S has at most 2|S| many equivalence classes. Assume that R = {G1,… ,Gm} 
is a set of representatives of all equivalence classes.

We build a bipartite graph (S, R, E) where there is an edge between D ∈ S and 
Gi ∈ R iff D is H-good for Gi . Furthermore we define a reflexive and transitive 
relation on S by defining D ≤ D′ iff |D| ≤ |D′| . By Lemma 10 there is a matching 
between S and R that fulfills all three conditions that are stated there. In particular, 
we can determine the set S′ ⊆ S that corresponds to U′ in the lemma.

We prove that S′ then also fulfills the conditions stated in this lemma: 

1.	 S′ is H-sound because it is a subset of S, which is H-sound itself.
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2.	 S′ is H-sufficient because by Lemma 10 we know that N(S�) = R in the bipartite 
graph. That means that there is an edge from every Gi to some D ∈ S� , which 
means there is some D ∈ S� such that D is H-good for Gi.

3.	 S′ is H-minimal, because for every D ∈ S� , its matched graph is covered exactly 
by D, as G[U�

∪ V �
] is an induced matching.

4.	 Lemma 10 states that G[S� ∪ R] is a matching. By the Hi-minimality of S′ , for 
every D�

∈ S� there is a graph G such that only D′ is Hi-good for G and no other 
member of S′ . This is exactly the graph Gi ∈ R matched with D′ , as G[S� ∪ R] is an 
induced matching. By condition 3 of Lemma 10, the cardinally smallest neighbor 
of Gi is D′ , thus there cannot be a D ∈ S that is smaller than D′ . 	�  ◻

Theorem 7  Let F = {H1,… ,Hk} be a family of connected graphs and assume that 
there is an algorithm A that can solve the Delayed Connected F -Edge-Deletion 
Problem for all inputs G with at most m ⋅ optF(G) + O(1) advice for some m ∈ �

. Then there exist S′
i
 that are Hi-sound, Hi-sufficient, and Hi-minimal and �(S�

i
) ≤ 2m 

for every i ∈ {1,… , k}.

Proof  By Lemma  11 there is an S�
i
= {D1,… ,Dr} ⊆ Si that is Hi-sound, Hi-suffi-

cient, and Hi-minimal. It additionally has the property that for every D�
∈ S�

i
 there is 

a graph G with Hi ⊴ G such that D′ is Hi-good for G and for every D ∈ Si ⧵ S
�

i
 that is 

also Hi-good for G, it holds that |D| ≥ |D′|.
Let l ∈ � . The adversary prepares Θ(�(S�)l) many instances by repeating the fol-

lowing procedure in several rounds until the size of the optimum solution for the 
presented graph exceeds l −max{|D1|,… , |Dr|} . 

1.	 The adversary presents a disjoint copy of Hi.
2.	 Then the adversary computes Gj with Hi ⊴ Gj for which Dj is Hi-good, but all 

Dj� ∈ S�
i
 with j′ ≠ j are not Hi-good, for all 1 ≤ j ≤ r . The existence of the graph 

Gj is guaranteed by the Hi-minimality of S′
i
 . In particular there is a D̄j ⊇ Dj such 

that D̄j is Hi-optimal for Gj . Let D�

j
= D̄j − Dj . Let G�

j
= Gj − D�

j
 . It is easy to see 

that Dj is Hi-optimal for G′

j
.

We show that no other Dj� ∈ S�
i
 is Hi-good for G′

j
 . Assume otherwise. If Dj′ is Hi-

good for G′

j
 then there must be a D̄j′ ⊇ Dj′ that is Hi-optimal for G′

j
 . Then 

Gj − Dj� − ((D̄j� − Dj� ) ∪ D�

j
) is F -free. This implies that Dj′ is Hi-good for Gj con-

tradicting the Hi-minimality of S′
i
 . Next the adversary transforms the Hi into one 

of the r possible G′

j
 s and presents the new vertices. Then optF(G�

j
) = |Dj| . Hence, 

the optimal solution size increases by |Dj|.
In each round the input graph grows and the optimal solution size grows by |Dj| . 

As soon as that size exceeds l −max{|D1|,… , |Dr|} the adversary keeps presenting 
disjoint copies of Hi without turning them into bigger connected graphs until the 
size reaches exactly l. The number N(l) of different instances is given by the follow-
ing recurrence:
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It is easy to see that N(l) = Θ(�(S�
i
)
l
) . The algorithm has to react differently on 

all of these instances: When the algorithm sees a new Hi to be turned into one of 
G�

1
,… ,G�

r
 , it deletes different edge sets for each of the r possibilities.

The adversary constructed an instance that consists of a sequence of disjoint 
graphs G�

i1
,… ,G�

it
 from the set {G�

1
,… ,G�

r
} of which the total size is at least 

∑t

j=1
optF(Gij

) −max{�D1�,… , �Dr�} and O(1) many copies of Hi . If G is the whole 
constructed instance we have optF(G) = l + O(1) because optF(Hi)F = O(1) . 
Together with N(l) = Θ(�(S�

i
)
l
) this means that Algorithm  A uses at least 

logN(l) = l ⋅ log �(S�
i
) + O(1) = optF(G) ⋅ log �(S

�

i
) + O(1) advice bits. Assume 

Algorithm A uses at most m ⋅ optF(G) + O(1) advice bits on every graph G as stated 
in the precondition above. Then m cannot be smaller than log �(S�

i
) for every 

i ∈ {1,… , k} because optF(G) can be become arbitrarily big. 	�  ◻

Lemma 12  Let F  be a family of connected forbidden graphs, H ∈ F , and S ⊆ 2E(H). 
There is an algorithm that can decide whether S is H-sufficient.

Proof  It is sufficient to verify for all connected graphs G with H ⊴ G that some 
D ∈ S is H-good for G, i.e., there is an optimal solution for G that contains D. By 
Lemma 9 we can restrict our search to all such G’s that have an optimal solution 
that is a subset of  E(H). There are infinitely many graphs G to check. To over-
come this we define the unfolding of G, written Υ(G) , as the set of the follow-
ing graphs: Remember that H ⊴ G . If there is some H�

∈ F  with H′ ⊴𝜑 G then 
G[E(H) ∪ E(�(H�

))] ∈ Υ(G) (for every possible � ). If, however, Υ(G) contains two 
graphs G′ and G′′ that are isomorphic via an isomorphism that is the identity on 
V(H), then only the lexicographically smaller one is retained.

This means that the unfolding of G contains all induced subgraphs that consist of 
H and one other copy of some forbidden induced subgraph from F  that must overlap 
with H in some way (because we assumed that G has an optimal solution that con-
sists solely of edges from  H). Here is a small example: Let 

. Then .
It is easy to see that deleting some D ⊆ E(H) from G makes it F -free iff deleting 

the same D from all graphs G�
∈ Υ(G) makes all of them F -free. Hence, there is an 

optimal solution for G that is a subset of E(H) iff there is such a subset that is “opti-
mal” for Υ(G) (i.e., deletion of no smaller edge set can make all graphs in Υ(G) F
-free).

There are only finitely many possibilities for Υ(G) and we can enumerate all of 
them. Let us say this enumeration is Υ1,… ,Υt . For each Υi we first find out whether 
there is a G with Υ(G) = Υi . We can do this by enumerating all graphs G up to a 
size that does not exceed the sum of the sizes of all graphs in Υi and computing 
Υ(G) for them. If indeed Υ(G) = Υi then we test whether some D ∈ S is H-good 
for G. Iff these tests pass for all i then S is indeed H-sufficient. 	� ◻

N(l) =

�∑r

j=1
N(l − �Dj�) if l ≥ max{�D1�,… , �Dr�}

1 otherwise
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Theorem  8  Let F = {H1,… ,Hk} be connected graphs. The advice complex-
ity for Delayed Connected F -Edge-Deletion is m ⋅ optF(G) + O(1) where 
m = maxi∈{1,…,k} min{ log 𝛽(S) ∣ S ⊆ 2E(H), S is Hi-sound and Hi-sufficient} . There is 
an algorithm that can compute m from F . More specifically, there is an algorithm 
that gets F  and t ∈ � as the input and returns the tth bit of the binary representation 
of m.

Proof  “≤ ” by Theorem 6. “ ≥ ” by Theorem 7. An algorithm can enumerate all pos-
sible S ⊆ E(H) and then test if S is Hi-sound and Hi-sufficient (by Lemma 12). Then 
�(S) is computed by finding the only real root of the characteristic polynomial of the 
corresponding recurrence relations [15]. 	�  ◻

We will now give an example on how to apply this theorem to the class of trivi-
ally perfect graphs. For demonstrative purposes we will not use the algorithm 
described in Lemma 12, but manually construct the sets Si , such that the reader may 
get a better intuition why the constructed sets are indeed Hi-sound and Hi-sufficient.

Example 3  Given . In order to be able to apply Theorem 8, we need to 
compute sets Si ⊆ 2E(Hi) that are Hi-sound and Hi-sufficient. We start with .

A single edge cannot be in S1 , as this would violate the demanded H1-soundness 
by leaving a P4 in the graph. S1 may not only consist of edge subsets of size three or 
larger, as this would violate the H1-sufficiency for the graph  . Thus, S1 contains at 
least one two-element subset of E(H1) . Indeed, every subset including exactly two 
edges is part of S1 , as the following construction shows, which is also visualized 
in Figure 3. By constructing an input graph which extends one of the nodes of the 
cycle to a P3 , each pair of neighboring edges is exactly the optimal solution. On the 
other hand, if we attach an edge to each of two neighboring nodes of the cycle, we 
need to delete exactly two opposing edges of . As we cover each two-element edge 
subset of , we do not need to look at edge subsets bigger than size two (even if 
including them would not necessarily violate our two conditions, but increase the 
size of �(S1)).

We continue by computing S2 for , which is a bit simpler. S2 may not only 
consist of edge subsets of size two or larger, as this would violate the H2-sufficiency 
for the graph . On the other hand, every one-edge subset of E(H2) is part of S2 . 
The outer edges of the path are optimal for deletion if we attach a P2 to either end of 
the original P4 . The middle edge is optimal for deletion if we attach an edge to both 
ends of the path. Again, as we cover every single-edge subset, we do not need to 
look at bigger subsets for S2.

Thus, S1 consists of six sets of size two and S2 of three sets of size one. We obtain 
𝛽(S1) = 𝛽(2, 2, 2, 2, 2, 2) < 2.5 and �(S2) = �(1, 1, 1) = 3 . Thus, by Theorem  8 the 
advice complexity is log 3 ⋅ optF(G) + O(1).
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6 � The Delayed H‑Edge‑Deletion Problem and Further Edge‑Deletion 
Problems

As announced in the previous section, we now deal with the simpler case of forbid-
ding only a single connected graph. For this, we give the following definition, which 
allows us to glue two graphs together at an edge.

Definition 9  Let G and H be graphs and xy ∈ E(G) , uv ∈ E(H) . We define two oper-
ations that glue G and H together along their edges xy and uv. First, G xy⊕uv H is the 
graph that we get by identifying u with x and v with y (and replacing the double edge 
by a single one). If G and H are not vertex-disjoint we replace them by disjoint cop-
ies first. We say that G xy⊕uv H consists of two parts, one is the induced subgraph by 
V(G) and the other by V(H). The two parts overlap in x and y. Second, G xy⊖uv H is 
the same except that the edges xy and uv are removed completely.

We abbreviate G⊕xy G ∶= G xy⊕xy G and G⊖xy G ∶= G xy⊖xy G . Figure  4 
shows an example.

A crucial difference between these two ways of gluing is that basically “nothing 
can go wrong” when gluing graphs at a node and then deleting the node because 
the graph becomes disconnected and the parts are induced subgraphs of the original 
graphs. This is no longer true when gluing along edges. The next definition tries to 
capture the idea of “nothing can go wrong” by labeling edges as critical if we can 
use them without producing a graph that contains graphs from F .

Definition 10  Let F  be a collection of graphs and H ∈ F  . We classify all edges in H 
as critical or non-critical. An edge xy ∈ E(H) is critical iff there is an H�

∈ F  and 
an edge uv ∈ E(H�

) such that H xy⊖uv H
′ does not contain any graph from F  as an 

induced subgraph.
Let #critF(H) denote the number of critical edges in H and 

#crit(F) = max{ #critF(H) ∣ H ∈ F }.

If we would define “critical nodes” in a similar way for node-deletion problems 
it would turn out that all nodes are critical. In the following we will establish that 
the number of critical edges plays a crucial role in the advice complexity of online 
edge-deletion problems and ways how to compute the number of critical edges for 
special families F  . Please note first that it is quite easy to compute #crit(F) if given 

Fig. 3   In Example  3 the set S1 contains six edge sets shown here as dashed lines. The corresponding 
supergraphs of  are depicted demonstrating that all six sets in S1 are necessary
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a finite F  . A simple algorithm can achieve this by a polynomial number of subgraph 
isomorphism tests, which are of course by themselves NP-complete. The graphs in 
typical families F  are usually small, so long running times are not a practical issue 
here.

Let us look at a very simple example. Let F = {P3,K3} . Because of symmetry 
we have to look only at three different gluing operations: P3 to P3 , K3 to K3 , and P3 
to K3 . Whenever K3 is involved, the resulting graph contains P3 as an induced sub-
graph. For example, gluing K3 to itself results in a cycle of length four, which is iso-
morphic to K3 ⊖e K3 . This means that the edges in K3 are not critical. Gluing P3 to 
itself can be done in two ways. The first result are two disjoint edges and the second 
is again P3 . Hence, the edges in P3 are critical. In total, #crit(F) = 2.

Lemma 13  Let G be a graph and e ∈ E(G) . Then G is two-connected iff G⊖e G is 
two-connected.

Proof  A connected graph is two-connected iff it has no cut-vertex. Let e = xy . 
Assume first that G has a cut-vertex. If it is x or y then it is also a cut vertex in 
G⊖e G . Otherwise both parts of G⊖e G have the corresponding vertex as a cut-
vertex. The other direction of the proof is similar. 	�  ◻

Lemma 14  Let G be a graph that contains vertices x, y, u, v and these four condi-
tions hold:

1.	 x and y are connected by an edge.
2.	 There are two vertex-disjoint paths from u to x and from u to y.
3.	 There are two vertex-disjoint paths from v to x and from v to y.
4.	 The edge xy is not on any of those four paths.

Then u and v are two-connected in G.
Proof  u, x, and y are on a cycle and therefore in the same two-connected component. 
The same holds for v, x, and y. 	�  ◻

The proof of the next lemma is surprisingly complicated. What it states about 
all two-connected graphs is also true for many other graphs and it can be checked 
easily for a concrete graph  G. It opens a path to proving lower bounds on the 
advice complexity of edge-deletion problems in a similar way of how Theorem 3 
works for node-deletion problems.

Fig. 4   From left to right: G, H, G xy⊕uv H , G xy⊖uv H



2745

1 3

Algorithmica (2021) 83:2719–2753	

Lemma 15  Let G be a two-connected graph and e = xy ∈ E(G) one of its edges. 
Then G⊖e G does not contain a subgraph that is isomorphic to G.

Proof  Let us assume the contrary and that G is a minimal counter-example with 
respect to taking subgraphs. If u ∈ V(G) then let u1 and u2 be the respective copies 
of u in both parts of G⊖e G . In particular x1 = x2 , y1 = y2 and u1 ≠ u2 if u ∉ {x, y}.

We assume that indeed there is a H ⊆ G⊖e G and H ≃ G . Because of its number 
of edges, H contains edges in both parts of G⊖e G as one part has only ||G|| − 1 
edges. Hence, H contains x1 or  y1 . Because H (being isomorphic to  G) is two-
connected it must contain both x1 and y1 ; otherwise H would contain a cut-vertex 
( {x1, y1} is a separator in G⊖e G).

In the following we establish some notation.
If u1v1 ∈ E(H) , then we say that

•	 u1v1 is a 12-edge if u2v2 ∈ E(H).
•	 u1v1 is a 1-edge if u2v2 ∉ E(H).

If u2v2 ∈ E(H) , then we say that

•	 u2v2 is a 12-edge if u1v1 ∈ E(H).
•	 u2v2 is a 2-edge if u1v1 ∉ E(H).

In Fig. 5 the graph H has five edges. The 12-edges are x1u1 and x2u2 , u2w2 is a 
2-edge and u1v1 , v1y1 are 1-edges.

From H we construct a new graph H′ (which will be a sub-
graph of G) as follows: The vertices of H′ will be a subset of V(G). Let 
V(H�

) = { u ∈ V(G) ∣ u1 ∈ V(H) or u2 ∈ V(H) } . The graph H′ contains the edge uv 
iff u1v1 ∈ E(H) or u2v2 ∈ E(H) and additionally the edge xy. Then H′ is clearly a 
subgraph of G.

What happens if we consider H′ ⊖xy H
′ ? It must be a supergraph of H, which is 

isomorphic to G, which again contains H′ as a subgraph:

As H contains x1 and y1 , H′ contains x and y by definition. As H is two-connected 
there must be at least two vertex-disjoint paths between any pair of vertices in H. 
Let u1 and v2 be such a pair. One of the paths between them has to go through x1 and 
the other through y1 . Both paths start with a subpath consisting of only 1-edges and 
then end with a subpath of 2-edges. Let us call these subpaths p1, q1, p2, q2 where p1 
connects u1 with x1 and p2 connects x1 with v2 . In H′ there are isomorphic copies of 
these paths that need no longer be disjoint. There are, however, two disjoint paths p′

1
 

and q′
1
 connecting u to x and y, and two other disjoint paths p′

2
 and q′

2
 connecting to 

v to x and y (see Fig. 6). By Lemma 14 then u and v are also two-connected in H′ . If 
u and v do not originate from u1 and v2 in H, but, say, from u1 and v1 , the situation is 

(2)H� ⊖xy H
� ⊇ H ≃ G ⊇ H�
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simpler because then all paths are automatically disjoint. Altogether, this means that 
H′ is two-connected.

We have established the following three facts:

•	 e ∈ E(H�
) (by construction of H′)

•	 H′ is two-connected (previous paragraph)
•	 H′ ⊖e H

′ contains a subgraph that is isomorphic to H′ , see (2)

If we look at the preconditions of Lemma 15 we see that H′ is another counter-
example. Moreover, H′ ⊆ G . We have assumed that G is a minimal counterexam-
ple, so it cannot contain another smaller subgraph that is also a counterexample. 
Hence, H�

= G.
Because H ≃ G the graphs H and H′ must have the same number of vertices. 

This, however, cannot be the case if there is at least one 12-edge in H. One endpoint 
of a 12-edge has to be outside {x1, y1} because x1y1 ∉ E(H) . Let us assume x1u1 is 
such a 12-edge. Then there exists also the 12-edge x2u2 = x1u2 . The graph H′ con-
tains the vertex u iff H contains u1 or u2 . As H contains both u1 and u2 , the number of 
vertices in H is higher than in H′.

As this is impossible, the only remaining possibility is that there is not even a sin-
gle 12-edge in H. The number of edges in H is h1 + h2 + h12 , if we denote the num-
ber of 1-, 2-, and 12-edges by h1 , h2 , and h12 . Then the number of edges in G = H� is 
h1 + h2 + h12∕2 + 1 (note that h12 is always an even number). If indeed G and H are 
isomorphic, these counts must coincide, which is impossible if h12 = 0 . This contra-
diction shows that our first assumption must have been wrong and the assumption 
was simply that Lemma 15 is wrong. 	�  ◻

The condition that G is two-connected in Lemma  15 is necessary. Figure  7 
shows that gluing an arbitrary connected graph to itself on a vertex yields a graph 
that is connected, but not two-connected and is a counterexample to the statement 
in Lemma 15. The next lemma shows that if we use G yx⊖xy G instead, a similar 
statement holds for graphs that are just connected.

Lemma 16  Let G be a connected graph and e = xy ∈ E(G) one of its edges. Then 
G yx⊖xy G does not contain a subgraph that is isomorphic to G.

Proof  The outline of the proof is similar to the proof of Lemma 15. First we assume 
that there is a connected graph G and an edge xy ∈ G(H) such that H ⊆ Gyx⊖xy and 
H is isomorphic to G. Moreover, we assume without loss of generality that G is a 
minimal counterexample with respect to taking subgraphs. From this assumption we 
will derive a contraction.

We define H′ analogous to H′ in Lemma 15 and the only difference is that now 
x1 = y2 and y1 = x2 . This time H′ “automatically” contains both x and y: Because H 
has too many edges to fit in one part of Gyx⊖xy it has to use x1 or y1 . In either case H′ 
contains both x and y.

As before we get a contradiction if there is no 12-edge:
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On the other hand, if there is at least one pair of 12-edges, say u1v1 and u2v2 then H′ 
must be connected: G is connected therefore yx⊕xy is also connected. If yx⊖xy is dis-
connected then only the missing edge x1y1 can be responsible. Then H would consist 
of two connected components, one in the upper part and connected to x1 , the other in 
the lower part and connected to y1 = x2 (or the other way around). The correspond-
ing parts in H′ share the node u and therefore H′ is connected after all. As above this 
shows that H′ is another counterexample. Because of the assumption that G is mini-
mal and H′ ⊆ G we get H�

= G . On the other hand h12 > 1 implies that H′ has fewer 
edges than G, a contradiction. 	�  ◻

Please note that Lemmas 15 and 16 have several consequences. First, it means 
that #crit({G}) = ||G|| . It is also the key to the next theorem, which gives an almost 
tight bound for the Delayed Connected H-Edge-Deletion Problem, and is much 
simpler than using the techniques from Sect. 5.

Theorem 9  Let H be a connected graph and G be an arbitrary graph. Every online 
algorithm requires ⌈ optH(G) ⋅ log(��H��)⌉ advice bits to solve the Delayed H-Edge-
Deletion Problem optimally on input G. There is a deterministic algorithm that 
solves this problem using ⌈ optH(G) ⋅ log ��H��⌉ + log optH(G) + 2 log log optH(G) 
advice bits.

||G|| = ||H||, ||H|| = h1 + h2 + h12, h1 + h2 ≤ ||G|| − 1.

Fig. 5   A graph G is depicted left. The corresponding graph G⊖xy G is on the right (here x1 = x2 and 
y1 = y2 ). Note that the edge corresponding to xy is missing in the right graph. An subgraph H is indicated 
by the dotted outline. (Please note that H is not isomorphic to G, which would be impossible by the very 
lemma we are about to prove.)
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Proof  The adversary prepares a set I  of ||H||k different instances. We will show 
that every fixed algorithm (deterministic and using no advice) can solve at most one 
instance in I  correctly.

Let e1,… , em = E(H) and Hi = H xy⊕yx H where xy = ei . Each instance is a 
graph that has k components that are presented one after another by the adversary. 
Each component is some Hi.

It is clear that making Hi H-free requires removing of at least one edge and can 
be accomplished by removing exactly the edge ei by Lemma 15: Removing ei from 
Hxy⊕yx leaves H xy⊖yx H , which does not contain H as an (induced) subgraph. On 
the other hand, removing any other edge will result in a graph that still contains H as 
an induced subgraph.

If there are less than ⌈k ⋅ log(��H��)⌉ advice bits, the algorithm will react in the 
same way for two different instances. At least one of them will then be solved in a 
non-optimal way.

For an upper bound, whenever some H is found as an induced subgraph, one edge 
of it belongs to some optimal solution known to the oracle. This edge can be com-
municated by a number between 1 and ||H||. As only k times an edge is selected, k 
such numbers suffice and we can encode them using ⌈k ⋅ log ��H��⌉ bits. Assuming k 
is not a power of 2, we communicate its size using self-delimiting encoding using an 
additional log k + 2 log log k bits. 	�  ◻

Fig. 6   u1 and v2 are two-connected in H (left). The resulting vertices u and v in H′ are then also two-
connected (right)
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7 � Further Discussion of General F ‑Edge‑Deletion Problems

The following theorem generalizes the lower bound from Theorem  9 to arbitrary 
families F  . Its small disadvantage is that it uses #crit(F) , which has to be estab-
lished for each F  individually, which is a lot of work by hand, but easy with the help 
of a computer. A bigger disadvantage is the missing matching upper bound for the 
general case, which we discuss after stating and proving the theorem.

Theorem  10  Let F  be a set of graphs and G be an arbitrary graph. Solving the 
online Delayed F -Edge-Deletion Problem requires at least ⌈optF(G) ⋅ log(#crit(F))⌉ 
advice bits on input G.

Proof  The proof is very similar to the proof of Theorem 9. The adversary chooses 
H ∈ F  such that #critF(H) = #crit(F) . Let C be the critical edges in H. Now again 
|C|k different instances are generated. For xy ∈ C let Hxy ∈ F  be another graph 
and uv ∈ Hxy be an edge such that H xy⊖uv Hxy is F -free. Such a graph and edge 
exist by the definition of a critical edge. The instance presented by the adversary is 
H xy⊕uv Hxy.

An optimal online algorithm has to delete exactly the edge xy when confronted 
with H xy⊕uv Hxy as the deletion of any other edge either leaves H or Hxy as an 
induced subgraph. Deleting, however, xy turns H xy⊕uv Hxy into H xy⊖uv Hxy , which 
is F -free.

Again, there are |C|k different instances by repeating such choice k times. 	�  ◻

It would be nice to have a matching upper bound for Theorem  10, too, but 
it is easy to see that Theorem  10 is not always optimal. For example, consider 
claw- and diamond-free graphs. The edges in the diamond are not critical and 
Theorem 10 gives us only opt ⋅ log(3) as a lower bound on the advice complexity. 
However, you can find five different supergraphs that induce a diamond that all 
require a different edge of the diamond to be removed in order to make it claw- 
and diamond-free.

Nevertheless, the following algorithm provides a matching upper bound in 
many, but not all, cases. The algorithm actually consists of the online algorithm 
and the behavior of the oracle providing the advice string.

Fig. 7   Lemma 15 does not hold 
for single-connected graphs
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The online algorithm proceeds as follows: It waits until the graph is no longer 
F -free and then identifies one graph H ∈ F  that is present as an induced sub-
graph. If there is no H′ ⊆ H such that H�

∈ F  and H′ has a critical edge then it 
deletes an arbitrary edge from H. Otherwise it asks the oracle to name one criti-
cal edge in an appropriate subgraph H′ and deletes it. It is easy to see that only 
⌈log(#crit(F)opt)⌉ advice bits are used.

The oracle provides the following advice when the algorithm asks to identify a 
critical edge. The oracle identifies the edge in H that would be deleted by an opti-
mal offline algorithm. If e is critical, it provides its number as advice. Otherwise 
it provides an arbitrary number.

It turns out that this algorithm is correct even for some extreme cases. For 
example, if F  consists of all cycles then the problem is to delete the minimum 
number of edges to make the graph acyclic. This is a very simple problem that 
can be solved greedily without any advice. It turns out that here all edges are 
non-critical. The online algorithm would just delete an arbitrary edge in a cycle 
it finds.

Another example is F = {P3,K3} . Remember that P3 contains critical and K3 
non-critical edges. Hence, as P3 ⊆ K3 the algorithm would ask the oracle which 
of two given edges in a triangle has to be deleted. With correct advice this yields 
an optimal solution and the algorithm matches the bound of Theorem 10.

Unfortunately, the algorithms does not work in all cases and indeed such an 
algorithm cannot exist because the lower bound in Theorem  10 is not optimal. 
Figure 8 shows a family F  with #crit(F) = 3 . The first graph has no critical edges 
at all. An adversary can, however, present the first graph and any algorithm has to 
delete one edge. It is not hard to see that the adversary can force the algorithm to 
make a non-optimal decision if the algorithm is not able to choose the right petal 
from which to delete the edge.

An important open question left is to find a construction for an optimal algorithm 
for every family F  . While we are able to provide tight bounds for the family F  of 
Fig. 8 using Theorem 8, we leave open the problem of finding an upper bound and 
a better lower bound for the general Delayed F -Edge-Deletion Problem as well as 
for the general Delayed F -Node-Deletion Problem.

The last example we consider shows a problem whose advice complexity is not 
bounded by any function of opt.

A graph is distance hereditary if the distance between two vertices does not 
change if we delete other vertices as long as they stay connected [1]. Surprisingly 
many graph classes are distance hereditary although it seems to be a severe restric-
tion (which it is!). Among those graph classes are, e.g., ptolemaic graphs and clus-
ter graphs. Let us call the corresponding problem the Delayed DH-Edge-Deletion 
Problem. Its complexity is at least very close to the trivial upper bound from Theo-
rem 1 and it is not bounded by a function of the size of the optimal solution.

Theorem 11  Given a set F  of all distance hereditary graphs and an arbitrary graph 
G as an input graph. The Delayed DH-Edge-Deletion Problem requires at least 
optF(G) ⋅ (log(n − 1) − 2) advice bits.
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Proof  We construct k graphs of size 4t + 1 depicted in Fig. 9 for t = 9 . The adver-
sary presents first the cycle that consists of the long lower edge and the path going 
through the middle of the gadget. When the cycle is completed the algorithm is 
for the first time confronted with a graph that is not distance hereditary. Hence, 
the algorithm has to delete an edge. The only optimal choice is to delete the long 
edge making the graph distance hereditary. Because of rotation symmetry the 
adversary can construct t such gadgets and for each of them a different edge has 
to be deleted. Since there are k such gadgets arriving one after another, the adver-
sary can choose between tk instances in total. The optimal solution deletes only 
k = opt edges. The online algorithm therefore requires k log t advice bits. The graph 
has size n = 4t + 1 , so t = (n − 1)∕4 , making the number of advice bits at least 
k log((n − 1)∕4) = k(log(n − 1) − 2) . 	�  ◻

F =
{

,
}

Fig. 8   A counterexample to the optimality of Theorem 10. The adversary presents the big graph in F  . 
The algorithm has to delete an edge e. Then the adversary adds another vertex as shown on the right 
side. The optimal solution is to delete two edges. The algorithm is not optimal if it did not choose e 
from the correct petal out of ten. Repeating this scheme for k rounds leads to opt = 2k and at least 
log(10k) = log(10)∕2 ⋅ opt > 1.66opt advice bits to achieve optimality. Theorem  10 provides a lower 
bound of only ⌈opt ⋅ log 3⌉ ≤ ⌈1.59opt⌉

Fig. 9   Gadget for DH-edge deletion
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