
Approximation algorithms for maximally balanced connected graph

partition

Yong Chen∗ Zhi-Zhong Chen† Guohui Lin‡§ Yao Xu¶ An Zhang∗

October 8, 2019

Abstract

Given a simple connected graph G = (V,E), we seek to partition the vertex set V into k

non-empty parts such that the subgraph induced by each part is connected, and the partition

is maximally balanced in the way that the maximum cardinality of these k parts is minimized.

We refer this problem to as min-max balanced connected graph partition into k parts and denote

it as k-BGP. The general vertex-weighted version of this problem on trees has been studied

since about four decades ago, which admits a linear time exact algorithm; the vertex-weighted

2-BGP and 3-BGP admit a 5/4-approximation and a 3/2-approximation, respectively; but no

approximability result exists for k-BGP when k ≥ 4, except a trivial k-approximation. In this

paper, we present another 3/2-approximation for our cardinality 3-BGP and then extend it to

become a k/2-approximation for k-BGP, for any constant k ≥ 3. Furthermore, for 4-BGP, we

propose an improved 24/13-approximation. To these purposes, we have designed several local

improvement operations, which could be useful for related graph partition problems.

Keywords: Graph partition; induced subgraph; connected component; local improvement;

approximation algorithm

1 Introduction

We study the following graph partition problem: given a connected graph G = (V,E), we want to

partition the vertex set V into k non-empty parts denoted as V1, V2, . . ., Vk such that the subgraph

G[Vi] induced by each part Vi is connected, and the cardinalities (or called sizes) of these k parts,

|V1|, |V2|, . . . , |Vk|, are maximally balanced in the way that the maximum cardinality is minimized.

We call this problem as min-max Balanced connected Graph k-Partition and denote it as k-BGP for

short. k-BGP and several closely related problems with various applications (in image processing,

clustering, computational topology, information and library processing, to name a few) have been

investigated in the literature.

∗Department of Mathematics, Hangzhou Dianzi University. Hangzhou, China. {chenyong,anzhang}@hdu.edu.cn
†Division of Information System Design, Tokyo Denki University. Saitama, Japan. zzchen@mail.dendai.ac.jp
‡Department of Computing Science, University of Alberta. Edmonton, Alberta T6G 2E8, Canada.

guohui@ualberta.ca
§Correspondence author.
¶Department of Computer Science, Kettering University. Flint, MI, USA. yxu@kettering.edu

1

ar
X

iv
:1

91
0.

02
47

0v
1

 [
cs

.D
S]

 6
 O

ct
 2

01
9

2 Y. Chen et al.

Dyer and Frieze [9] proved the NP-hardness for k-BGP on bipartite graphs, for any fixed

k ≥ 2. When the objective is to maximize the minimum cardinality, denoted as max-min k-BGP,

Chleb́ıková [7] proved its NP-hardness on bipartite graphs (again), and that for any ε > 0 it is

NP-hard to approximate the maximum within an absolute error guarantee of |V |1−ε. Chataigner

et al. [5] proved further the strong NP-hardness for max-min k-BGP on k-connected graphs, for

any fixed k ≥ 2, and that unless P = NP, there is no (1 + ε)-approximation algorithm for max-min

2-BGP problem, where ε ≤ 1/|V |2; and they showed that when k is part of the input, the problem,

denoted as max-min BGP, cannot be approximated within 6/5 unless P = NP.

When the vertices are non-negatively weighted, the weight of a part is the total weight of the

vertices inside, and the objective of vertex-weighted k-BGP (vertex weighted max-min k-BGP,

respectively) becomes to minimize the maximum (maximize the minimum, respectively) weight of

the k parts. The vertex weighted k-BGP problem is also called the minimum spanning k-forest

problem in the literature. Given a vertex-weighted connected graph G = (V,E), a spanning k-forest

is a collection of k trees T1, T2, . . . , Tk, such that each tree is a subgraph of G and every vertex of

V appears in exactly one tree. The weight of the spanning k-forest {T1, T2, . . . , Tk} is defined as

the maximum weight of the k trees, and the weight of the tree Ti is measured as the total weight of

the vertices in Ti. The objective of this problem is to find a minimum weight spanning k-forest of

G. The equivalence between these two problems is seen by the fact that a spanning tree is trivial

to compute for a connected graph. The minimum spanning k-forest problem is defined on general

graphs, but was studied only on trees in the literature [17, 3, 10, 11], which admits an O(|V |)-time

exact algorithm.

Not too many positive results from approximation algorithms perspective exist in the literature.

Chleb́ıková [7] gave a tight 4/3-approximation algorithm for the vertex-weighted max-min 2-BGP

problem; Chataigner et al. [5] proposed a 2-approximation algorithm for vertex-weighted max-min

3-BGP on 3-connected graphs, and a 2-approximation algorithm for vertex-weighted max-min 4-

BGP on 4-connected graphs. Approximation algorithms for the vertex-weighted k-BGP problem

on some special classes of graphs can be found in [20, 21, 19]. Recently, on general vertex weighted

graphs, Chen et al. [6] showed that the algorithm by Chleb́ıková [7] is also a 5/4-approximation algo-

rithm for the vertex-weighted 2-BGP problem; and they presented a 3/2-approximation algorithm

for the vertex-weighted 3-BGP problem and a 5/3-approximation algorithm for the vertex-weighted

max-min 3-BGP problem.

Motivated by an expensive computation performed by the computational topology software

RIVET [15], Madkour et al. [16] introduced the edge-weighted variant of the k-BGP problem,

denoted as k-eBGP. Given an edge non-negatively weighted connected graph G = (V,E), the

weight of a tree subgraph T of G is measured as the total weight of the edges in T , and the weight

of a spanning k-forest {T1, T2, . . . , Tk} is defined as the maximum weight among the k trees. The

k-eBGP problem is to find a minimum weight spanning k-forest of G, and it can be re-stated

as asking for a partition of the vertex set V into k non-empty parts V1, V2, . . . , Vk such that for

each part Vi the induced subgraph G[Vi] is connected and its weight is measured as the weight

of the minimum spanning tree of G[Vi], with the objective to minimize the maximum weight of

the k parts. Madkour et al. [16] showed that the k-eBGP problem is NP-hard on general graphs

for any fixed k ≥ 2, and proposed two k-approximation algorithms. Vaishali et al. [18] presented

an O(k|V |3)-time exact algorithm when the input graph is a tree, and proved that the problem

Approximating balanced connected graph partition (v: October 8, 2019) 3

remains NP-hard on edge uniformly weighted (or unweighted) graphs. It follows that our k-BGP

problem is NP-hard (again), for any fixed k ≥ 2. However, the two k-approximation algorithms for

k-eBGP do not trivially work for our k-BGP problem.

There are works more distantly related to ours. Andersson et al. [2] considered the special case

of the k-eBGP problem that arises from applications in shipbuilding industry, where the vertices

are points in the two-dimensional plane and the weight of an edge is the Euclidean distance between

the two endpoints. They showed that this special case remains NP-hard for any constant k ≥ 2

and presented an O(|V | log |V |)-time approximation algorithm, which has a worst-case performance

ratio of 4
3 + ε when k = 2, and a ratio of 2 + ε when k ≥ 3, for any ε > 0.

In a slightly more general case where the input graph is an edge-weighted complete graph and the

non-negative edge weights satisfy triangle inequalities, Guttmann-Beck and Hassin [12] considered

a constrained version of the k-eBGP problem in which the vertex set V must be partitioned into

k equal-sized parts. They proved that this constrained variant (as well as another objective [13]

to minimize the total weight of the k trees inside the spanning k-forest) is NP-hard even for k = 2

and presented an O(|V |3)-time (k + ε)-approximation algorithm, for any ε > 0. Motivated by

applications from wireless sensor networks, cooperative robotics and music information retrieval,

Caraballo et al. [4] investigated an alternative quality measure of a part of the vertex set partition,

which is the ratio between the minimum edge weight of its outgoing edges and the maximum edge

weight of its minimum spanning tree; they proposed an O(k2|V |3)-time exact algorithm for this

variant.

An et al. [1] studied a tree partition problem to remove at most a given b edges from the

input tree, so that the resulting components can be grouped into k groups of desired orders. They

showed that the problem is NP-complete even if these k groups have the same order of |V |/k.

Some other graph partition problems that are more distantly related to our k-BGP problem have

been examined by Cordone and Maffioli [8]. Kanj et al. [14] studied a class of graph bi-partition

problems (i.e., k = 2) from fixed-parameter algorithms perspective.

This paper focuses on designing approximation algorithms for the vertex uniformly weighted

(or unweighted) k-BGP problem for a fixed k ≥ 4, i.e., to minimize the maximum cardinality

of the k parts in a partition. One can probably easily see a trivial k-approximation algorithm,

since the maximum cardinality is always at least one k-th of the order of the input graph. We

remark that the 3/2-approximation algorithm for the vertex-weighted 3-BGP problem by Chen et

al. [6] could not be extended trivially for k-BGP for k ≥ 4. After some preliminaries introduced in

Section 2, we present in Section 3 another 3/2-approximation algorithm for 3-BGP based on two

intuitive local improvement operations, and extend it to become a k/2-approximation algorithm

for k-BGP, for any fixed k ≥ 4. In Section 4, we introduce several complex local improvement

operations for 4-BGP, and use them to design a 24/13-approximation algorithm. We conclude the

paper in Section 5.

2 Preliminaries

Recall that the k-BGP problem seeks for a partition of the vertex set V of the given connected

graph G = (V,E) into k non-empty subsets V1, V2, . . . , Vk such that G[Vi] is connected for every

i = 1, 2, . . . , k, and max1≤i≤k |Vi| is minimized. For convenience, we call max1≤i≤k |Vi| the size of

4 Y. Chen et al.

the partition {V1, V2, . . . , Vk}. In the rest of the paper, when we know these cardinalities, we always

assume they are sorted into 0 < |V1| ≤ |V2| ≤ . . . ≤ |Vk|, and thus the size of the partition is |Vk|.
For two partitions {V1, V2, . . . , Vk} and {V ′1 , V ′2 , . . . , V ′k}, if their sizes |V ′k| < |Vk|, or if |V ′k| =

|Vk| and |V ′k−1| < |Vk−1|, then we say the partition {V ′1 , V ′2 , . . . , V ′k} is better than the partition

{V1, V2, . . . , Vk}.
For any two disjoint subsets V1, V2 ⊂ V , E(V1, V2) ⊆ E denotes the edge subset between V1 and

V2; if E(V1, V2) 6= ∅, then we say V1 and V2 are adjacent. If additionally both G[V1] and G[V2] are

connected, then we also say G[V1] and G[V2] are adjacent.1

We note that obtaining an initial feasible partition of V is trivial in O(|V | + |E|) time, as

follows: one first constructs a spanning tree T of G, then arbitrarily removes k − 1 edges from T

to produce a forest of k trees T1, T2, . . . , Tk, and lastly sets Vi to be the vertex set of Ti. The fol-

lowing approximation algorithms all start with a feasible partition and iteratively apply some local

improvement operations to improve it. For k = 3, there are only two intuitive local improvement

operations and the performance analysis is relatively simple; for k = 4, we introduce several more

local improvement operations and the performance analysis is more involved, though the key ideas

in the design and analysis remain intuitive.

Given a connected graph G = (V,E), let n = |V | denote its order. Let OPT denote the size of

an optimal k-part partition of the vertex set V . The following lower bound on OPT is trivial, and

thus the k-BGP problem admits a trivial k-approximation.

Lemma 1 Given a connected graph G = (V,E), OPT ≥ 1
kn.

3 A k/2-approximation for k-BGP, for a fixed k ≥ 3

We consider first k = 3, and let {V1, V2, V3} denote an initial feasible tripartition (with |V1| ≤ |V2| ≤
|V3|). Our goal is to reduce the cardinality of V3 to be no larger than 1

2n. It will then follow from

Lemma 1 that the achieved tripartition is within 3
2 of the optimum.

Recently, Chen et al. [6] presented a 3/2-approximation algorithm for the vertex-weighted 3-

BGP problem, by noticing that a feasible tripartition “cuts” into at most two blocks (that is,

maximal 2-connected components) in the input graph. It is surely a 3/2-approximation algorithm

for our vertex unweighted 3-BGP problem too, but no better analysis can be achieved since the

algorithm (re-)assigns weights to the cut vertices. Furthermore, it is noted by the authors that

the algorithm cannot be extended trivially for k-BGP for k ≥ 4, for which one has to deal with

vertex-weighted graphs having exactly three blocks.

Our new 3/2-approximation algorithm for 3-BGP, denoted as Approx-3 and detailed in the

following, does not deal with blocks, and it can be extended to become a k/2-approximation for

k-BGP for any fixed k ≥ 4.

Clearly, during the execution of the algorithm Approx-3, if |V3| ≤ 1
2n, then we may terminate

and return the achieved tripartition; otherwise, we will execute one of the two local improvement

operations called Merge and Pull, defined in the following, whenever applicable.

Since the input graph G is connected, for any feasible tripartition {V1, V2, V3}, V3 is adjacent

to at least one of V1 and V2.

1Basically, we reserve the word “connected” for a graph and the word “adjacent” for two objects with at least one

edge between them.

Approximating balanced connected graph partition (v: October 8, 2019) 5

Definition 1 Operation Merge(V1, V2):

• precondition: |V3| > 1
2n; V1 and V2 are adjacent;

• effect: the operation produces a new tripartition {V1 ∪ V2, V31, V32}, where {V31, V32} is an

arbitrary feasible bipartition of V3.

Lemma 2 Given a connected graph G = (V,E) and a tripartition {V1, V2, V3} of the vertex set V

with |V3| > 1
2n, the achieved partition by the operation Merge(V1, V2) is feasible and better.

Proof. Note from the precondition of the operation Merge(V1, V2) that the size of the new part

V1 ∪V2 is |V1|+ |V2| < 1
2n < |V3|; the sizes of the other two new parts V31 and V32 partitioned from

V3 are clearly strictly less than |V3|. This proves the lemma. 2

Definition 2 Operation Pull(U ⊂ V3, Vi), where i ∈ {1, 2},

• precondition: |V3| > 1
2n; both G[U] and G[V3 \ U] are connected, U is adjacent to Vi, and

|Vi|+ |U | < |V3|;

• effect: the operation produces a new tripartition {V3 \ U, Vi ∪ U, V3−i} (see for an illustration

in Figure 1).

U V3

Vi

Figure 1: An illustration of the operation Pull(U ⊂ V3, Vi) that transforms the tripartition

{V1, V2, V3} to a better tripartition {V3 \ U, Vi ∪ U, V3−i}.

Lemma 3 Given a connected graph G = (V,E) and a tripartition {V1, V2, V3} of the vertex set V

with |V3| > 1
2n, the achieved partition by the operation Pull(U ⊂ V3, Vi) is feasible and better.

Proof. From the precondition of the operation Pull(U ⊂ V3, Vi) we conclude that the achieved

new tripartition {V3 \U, Vi∪U, V3−i} is feasible; also, since |Vi|+ |U | < |V3| and |V3−i| < 1
2n < |V3|,

its size is strictly less than |V3|. This proves the lemma. 2

Lemma 4 Given a connected graph G = (V,E), when none of the Merge and Pull operations is

applicable to the tripartition {V1, V2, V3} of the vertex set V with |V3| > 1
2n,

6 Y. Chen et al.

1) |V1|+ |V2| < 1
2n (and thus |V1| < 1

4n); V1 and V2 aren’t adjacent (and thus both are adjacent

to V3);

2) let (u, v) ∈ E(V3, V1); then G[V3 \ {u}] is disconnected; suppose G[V u
31], G[V u

32], . . . , G[V u
3`] are

the components in G[V3 \ {u}], then for every i, |V u
3i| ≤ |V1|, and V u

3i and V1 aren’t adjacent;

3) no vertex of V1 ∪ V2 is adjacent to any vertex of V3 other than u.

Proof. See for an illustration in Figure 2.

u

V3

V1

V2

Figure 2: An illustration of the connectivity configuration of the graph G = (V,E), with respect

to the tripartition {V1, V2, V3} and |V3| > 1
2n, on which no Merge or Pull operation is applicable.

From |V3| > 1
2n, we know |V1| + |V2| < 1

2n and thus |V1| < 1
4n. Since no Merge operation is

possible, V1 and V2 aren’t adjacent and consequently they both are adjacent to V3. This proves

Item 1).

Item 2) can be proven similarly as Lemma 3. If G[V3\{u}] were connected, then it would enable

the operation Pull({u} ⊂ V3, V1), assuming non-trivially n ≥ 5; secondly, if |V u
3i| > |V1| for some i,

then it would enable the operation Pull(V3 \ V u
3i ⊂ V3, V1), since |V3 \ V u

3i| + |V1| < |V3|; lastly, if

V u
3i and V1 were adjacent for some i, then it would enable the operation Pull(V u

3i ⊂ V3, V1), since

|V u
3i|+ |V1| ≤ 2|V1| < 1

2n < |V3|. This proves the item.

For Item 3), the above item 2) says that u is the only vertex to which a vertex of V1 can possibly

be adjacent. Recall that V2 and V3 are adjacent; we want to prove that for every i, V u
3i and V2

aren’t adjacent. Assume V2 is adjacent to V u
3i for some i. Then, due to |V u

3i| ≤ |V1|, we have

|V u
3i| + |V2| ≤ |V1| + |V2| < 1

2n < |V3|, suggesting an operation Pull(V u
3i ⊂ V3, V2) is applicable, a

contradiction. That is, u is the only vertex to which a vertex of V2 can possibly be adjacent.

This finishes the proof. 2

From Lemmas 2–4, we can design an algorithm, denoted as Approx-3, to first compute in

O(|V | + |E|) time an initial feasible tripartition of the vertex set V to the 3-BGP problem; we

then apply the operations Merge and Pull to iteratively reduce the size of the tripartition, until

either this size is no larger than 1
2n or none of the two operations is applicable. The final achieved

tripartition is returned as the solution. See Figure 3 for a high-level description of the algorithm

Approx-3. We thus conclude with Theorem 1.

Theorem 1 The algorithm Approx-3 is an O(|V ||E|)-time 3
2 -approximation for the 3-BGP prob-

lem, and the ratio 3
2 is tight for the algorithm.

Approximating balanced connected graph partition (v: October 8, 2019) 7

The algorithm Approx-3 for 3-BGP on graph G = (V,E):

Step 1. Construct the initial feasible tripartition {V1, V2, V3} of V ;

Step 2. while |V3| > 1
2n, using Lemma 4,

if a Merge or a Pull operation is applicable, then update the tripartition;

Step 3. return the final tripartition {V1, V2, V3}.

Figure 3: A high-level description of the algorithm Approx-3 for 3-BGP.

Proof. Note that in order to apply a Pull operation using Lemma 4, one can execute a graph

traversal on G[V3\{u}] to determine whether it is connected, and if not, to explore all its connected

components. Such a graph traversal can be done in O(|V | + |E|) time. A merge operation is also

done in O(|V |+|E|) time. The total number of Merge and Pull operations executed in the algorithm

is in O(|V |). Therefore, the total running time of the algorithm Approx-3 is in O(|V ||E|).
At termination, if |V3| ≤ 1

2n, then by Lemma 1 we have |V3|
OPT ≤

3
2 .

If |V3| > 1
2n, then |V1| + |V2| < 1

2n and thus |V1| < 1
4n, suggesting by Lemma 2 that V1 and

V2 aren’t adjacent. Therefore, both V1 and V2 are adjacent to V3. By Lemma 4, let u denote

the unique vertex of V3 to which the vertices of V1 ∪ V2 can be adjacent. We conclude from

Lemma 4 that G[V3 \{u}] is disconnected, there are at least two components in G[V3 \{u}] denoted

as G[V u
31], G[V u

32], . . . , G[V u
3`] (` ≥ 2), such that for each i, V u

3i is not adjacent to V1 or V2 and

|V u
3i| ≤ |V1|. That is, G = (V,E) has a very special “star”-like structure, in that these `+ 2 vertex

subsets V1, V2, V
u
31, V

u
32, . . . , V

u
3` are pairwise non-adjacent to each other, but they all are adjacent

to the vertex u. Clearly, in an optimal tripartition, the part containing the vertex u has its size at

least |V3|, suggesting the optimality of the achieved partition {V1, V2, V3}.
For the tightness, one can consider a simple path of order 12: v1-v2-v3-· · · -v11-v12, on which the

algorithm Approx-3 may terminate at a tripartition of size 6, while an optimal tripartition has

size 4. This proves the theorem. 2

Theorem 2 The k-BGP problem admits an O(|V ||E|)-time k
2 -approximation, for any constant

k ≥ 3.

Proof. Notice that we may apply the algorithm Approx-3 on the input graph G = (V,E) to

obtain a tripartition {V1, V2, V3} of the vertex set V , with |V1| ≤ |V2| ≤ |V3|.
If |V3| ≤ 1

2n, then we may continue on to further partition the largest existing part into two

smaller parts iteratively, resulting in a k-part partition in which the size of the largest part is no

larger than 1
2n (less than 1

2n when k ≥ 4).

If |V3| > 1
2n, then let u be the only vertex of V3 to which the vertices of V1∪V2 can be adjacent;

that is, G[V \ {u}] is disconnected, there are ` ≥ 4 connected components in G[V \ {u}] (see

Figure 2), each is adjacent to u and the largest (which is G[V2]) has size less than 1
2n (all the others

have sizes less than 1
4n). When k ≤ `, we can achieve a k-part partition by setting the k−1 largest

components to be the k−1 parts, and all the other components together with u to be the last part.

Such a partition has size no greater than max{|V2|,OPT}, since in an optimal k-part partition the

8 Y. Chen et al.

part containing the vertex u is no smaller than the last constructed part. When k > `, we can start

with the `-part partition obtained as above to further partition the largest existing part into two

smaller parts iteratively, resulting in a k-part partition in which the size of the largest part is less

than 1
2n.

In summary, we either achieve an optimal k-part partition or achieve a k-part partition in which

the size of the largest part is no greater than 1
2n. Using the lower bound in Lemma 1, this is a

k
2 -approximation.

Running Approx-3 takes O(|V ||E|) time; the subsequent iterative bipartitioning needs only

O(|E|) per iteration. Therefore, the total running time is still in O(|V ||E|), since k ≤ |V |.
Lastly, we remark that in the above proof, when k ≥ 4, if the achieved k-part partition is

not optimal, then its size is less than 1
2n. That is, when k ≥ 4, the ratio k

2 is not tight for the

approximation algorithm. 2

4 A 24/13-approximation for 4-BGP

Theorem 2 states that the 4-BGP problem admits a 2-approximation. In this section, we design a

better 24
13 -approximation, which uses three more local improvement operations besides the similarly

defined Merge and Pull operations. Basically, these three new operations each finds a subset of the

largest two parts, respectively, to merge them into a new part.

Let {V1, V2, V3, V4} denote an initial feasible tetrapartition, with |V1| ≤ |V2| ≤ |V3| ≤ |V4|. Note

that these four parts must satisfy some adjacency constraints due to G being connected. We try

to reduce the size of V4 to be no larger than 2
5n, whenever possible; or otherwise we will show that

the achieved partition is a 24
13 -approximation. We point out a major difference from 3-BGP, that

the two largest parts V3 and V4 in a tetrapartition can both be larger than the desired bound of
2
5n. Therefore, we need new local improvement operations.

In the following algorithm denoted as Approx-4, if |V4| ≤ 2
5n, then we may terminate and return

the achieved tetrapartition; it follows from Lemma 1 that the achieved tetrapartition is within 8
5

of the optimum. Otherwise, the algorithm will execute one of the following local improvement

operations whenever applicable.

The first local improvement operation is similar to the Merge operation designed for Approx-3,

except that it now deals with more cases.

Definition 3 Operation Merge(Vi, Vj), for some i, j ∈ {1, 2, 3}:

• precondition: |V4| > 2
5n; Vi and Vj are adjacent, and |Vi|+ |Vj | < |V4|;

• effect: the operation produces a new tetrapartition {Vi∪Vj , V6−i−j , V41, V42}, where {V41, V42}
is an arbitrary feasible bipartition of V4.

Lemma 5 Given a connected graph G = (V,E) and a tetrapartition {V1, V2, V3, V4} of the vertex set

V with |V4| > 2
5n, the achieved tetrapartition by the operation Merge(Vi, Vj), for some i, j ∈ {1, 2, 3},

is feasible and better.

Proof. The proof is similar to the proof of Lemma 2.

Approximating balanced connected graph partition (v: October 8, 2019) 9

Note from the precondition of the operation Merge(Vi, Vj) that the size of the new part Vi ∪ Vj
is |Vi|+ |Vj | < |V4|; the sizes of the other two new parts V41 and V42 partitioned from V4 are clearly

strictly less than |V4|. Let h = 6 − i − j; it follows that if |Vh| = |V4| (which implies h = 3), then

the size of the largest part is unchanged but the size of the second largest part reduces by at least

1; if |Vh| < |V4|, then the size of the largest part reduces by at least 1. Therefore, the new partition

is better. This proves the lemma. 2

The next local improvement operation is very similar to the Pull operation designed for Approx-

3, except that it now deals with more cases. See for an illustration in Figure 1, with V3 replaced

by Vj .

Definition 4 Operation Pull(U ⊂ Vj , Vi), for some pair (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},

• precondition: |V4| > 2
5n and no Merge operation is applicable; both G[U] and G[Vj \ U] are

connected, U is adjacent to Vi, and |Vi|+ |U | < |Vj |;

• effect: the operation produces a new tetrapartition {Vj \ U, Vi ∪ U, Va, Vb}, where a, b ∈
{1, 2, 3, 4} \ {i, j}.

Lemma 6 Given a connected graph G = (V,E) and a tetrapartition {V1, V2, V3, V4} of the vertex

set V with |V4| > 2
5n, the achieved tetrapartition by the operation Pull(U ⊂ Vj , Vi) is feasible and

better.

Proof. Note from the precondition that |V4| > 2
5n; thus |V1| + |V2| + |V3| < 3

5n, and further

|V1|+ |V2| < 2
5n. Since no Merge operation is applicable at the time Pull(U ⊂ Vj , Vi) is performed,

V1 and V2 aren’t adjacent. The new partition is feasible since G[Vj \U] and G[Vi∪U] are connected.

The sizes of the two new parts Vj \ U and Vi ∪ U are less than |Vj |; the sizes of the other two

parts Va and Vb are unchanged. If |V3| = |V4| (implying (i, j) 6= (3, 4), and thus i ∈ {1, 2}), then

the size of the largest part is unchanged but due to |V2| < |V3| the size of the second largest part

reduces by at least 1; if |V3| < |V4| and j = 4, then the size of the largest part reduces by at least

1; if |V3| < |V4| and j = 3, then |V2| < |V3| and the size of the largest part is unchanged but the

size of the second largest part reduces by at least 1. Therefore, the new partition is better. This

proves the lemma. 2

Lemma 7 (Structure Properties) Given a connected graph G = (V,E), when none of the Merge

and Pull operations is applicable to the tetrapartition {V1, V2, V3, V4} of the vertex set V with |V4| >
2
5n,

1) |V1| < 1
5n, |V2| < 3

10n, |V1|+ |V2| < 2
5n, and V1 and V2 aren’t adjacent;

2) if Vi and V3 are adjacent, for some i ∈ {1, 2}, then |Vi|+ |V3| ≥ |V4|;

3) if Vi and V4 are adjacent for some i ∈ {1, 2}, and there is an edge (u, v) ∈ E(V4, Vi), then

G[V4 \ {u}] is disconnected, every component G[V u
4`] in G[V4 \ {u}] has its order |V u

4`| ≤ |Vi|,
and V u

4` and Vi aren’t adjacent;

furthermore, if V u
4` and V3 are adjacent, then |V u

4` ∪ V3| ≥ |V4|;

10 Y. Chen et al.

4) if Vi and V3 are adjacent for some i ∈ {1, 2}, |Vi| < 1
3 |V4|, and there is an edge (v, u) ∈

E(V3, Vi), then G[V3 \ {v}] is disconnected, every component G[V v
3`] in G[V3 \ {v}] has its

order |V v
3`| ≤ |Vi|, and V v

3` and Vi aren’t adjacent;

5) if |V2| ≥ 1
6 |V4|, then the partition {V1, V2, V3, V4} is a 24

13 -approximation;

otherwise, we have
|V2|+ |V3| ≥ |V4|,

|V4| < 1
2n,

|V1| ≤ |V2| < 1
6 |V4| <

1
12n,

|V3| > 1
3n;

(1)

6) if both V1 and V2 are adjacent to Vj for some j ∈ {3, 4}, then the vertices of V1 ∪ V2 can be

adjacent to only one vertex of Vj.

Proof. See for an illustration in Figure 4.

v

V3

V1V2

V4

u

Figure 4: An illustration of the connectivity configuration of the graph G = (V,E), with respect to

the tetrapartition {V1, V2, V3, V4} and |V4| > 2
5n, on which no Merge or Pull operation is applicable.

Using |V1| ≤ |V2| ≤ |V3| ≤ |V4| and |V4| > 2
5n, we have |V1|+ |V2|+ |V3| < 3

5n, and consequently

|V1| < 1
5n, |V2| < 3

10n, |V1|+ |V2| < 2
5n.

Items 1) and 2) hold due to no applicable Merge operation (Definition 3).

If i = 1, item 3) can be proven similarly as Lemmas 3 and 4. Using |V1| < 1
5n and |V4| > 2

5n,

if G[V4 \ {u}] is connected, then it would enable the Pull({u} ⊂ V4, V1) operation (Definition 4,

assuming non-trivially n ≥ 5); if a component G[V u
4`] of G[V4 \{u}] has its order |V u

4`| > |V1|, then it

would enable the Pull(V4 \ V u
4` ⊂ V4, V1) operation; if V u

4` and V1 are adjacent, then it would enable

the Pull(V u
4` ⊂ V4, V1) operation.

If i = 2 and G[V4 \ {u}] is connected, then it would enable the Pull({u} ⊂ V4, V2) operation

since |V2| + 1 < 3
10n + 1 ≤ 2

5n < |V4| (assuming non-trivially n ≥ 10). For a component G[V u
4`]

of G[V4 \ {u}], similarly we have |V u
4`| ≤ |V2|. If V u

4` and V2 are adjacent, then |V u
4`| + |V2| ≥ |V4|

since otherwise the Pull(V u
4` ⊂ V4, V2) operation would be applicable. Also, for the same reason,

in this case V1 cannot be adjacent to V4, and thus V1 has to be adjacent to V3. In summary, we

have 2|V2| ≥ |V u
4`| + |V2| ≥ |V4| and |V1| + |V3| ≥ |V4|, suggesting |V4| ≤ 2

5n, a contradiction. This

contradiction proves that V u
4` and V2 aren’t adjacent. A similar contradiction using a Pull operation

shows that if V u
4` and V3 are adjacent, then |V u

4` ∪ V3| ≥ |V4|. The third item is thus proved.

Approximating balanced connected graph partition (v: October 8, 2019) 11

Item 4) can be proven similarly, as follows. We claim that |V3| ≥ |Vi|+ 2. To prove this claim,

we see that |V3| ≤ |Vi| + 1 implies |Vi| + |V3| ≤ 2|Vi| + 1 < |V4|, contradicting item 2). It follows

from the above claim that G[V3 \ {v}] is disconnected since the Pull({v} ⊂ V3, Vi) operation isn’t

applicable. For a component G[V v
3`] of G[V3\{v}], similarly we have |V v

3`| ≤ |Vi|. If |V v
3`|+|Vi| ≥ |V3|,

then 2|Vi| ≥ |V3|; from |Vi| + |V3| ≥ |V4| we have |Vi| ≥ 1
3 |V4|, a contradiction to the presumption

that |Vi| < 1
3 |V4|. Therefore, |V v

3`| + |Vi| < |V3| holds. Next, if V v
3` and Vi are adjacent, then the

Pull(V v
3` ⊂ V3, Vi) operation would be applicable; that is, V v

3` and Vi aren’t adjacent. This proves

item 4).

To prove item 5), if V1 and V2 are both adjacent to V4, but not to V3, then by item 2) we know

that the vertices of V1 ∪ V2 can be adjacent to only one vertex of V4, say u (otherwise, a Merge

operation would be applicable). Note that V3 must also be adjacent to V4. If V3 is adjacent to

a component G[V u
4`] of G[V4 \ {u}], then |V1| + |V3| ≥ |V u

4`| + |V3| ≥ |V4|. Therefore, |V2| ≥ 1
6 |V4|

implies |V4| ≤ 6
13n, suggesting the partition {V1, V2, V3, V4} is a 24

13 -approximation by Lemma 1. If

the vertices of V3 are adjacent to only the vertex u ∈ V4, then consider an optimal tetrapartition

{V ∗1 , V ∗2 , V ∗3 , V ∗4 }, and assume the vertex u is in V ∗j ; clearly, |V ∗j | ≥ |V4|, suggesting the partition

{V1, V2, V3, V4} is also optimal.

We next discuss the case where at least one of V1 and V2, say Vi, is adjacent to V3. If i = 1,

or if |V1| ≥ 1
6 |V4|, then we again have |V4| ≤ 6

13n, suggesting the partition {V1, V2, V3, V4} is a
24
13 -approximation by Lemma 1. In the other case, |V1| < 1

6 |V4| and V1 isn’t adjacent to V3 but to

V4, and by item 3) suppose V1 is adjacent to the vertex u ∈ V4. We further conclude for the same

reason that each component G[V u
4`] of G[V4 \ {u}] cannot be adjacent to either V2 or V3 (otherwise,

either a Merge operation would be applicable, or we again have |V1|+ |V3| ≥ |V u
4`|+ |V3| ≥ |V4|), and

consequently V2 and V3 are adjacent. Consider next an optimal tetrapartition {V ∗1 , V ∗2 , V ∗3 , V ∗4 }, and

assume the vertex u is in V ∗j . If all but one of the components of G[(V4 ∪V1) \ {u}] are in V ∗j , then

|V ∗j | ≥ |V4|, suggesting the partition {V1, V2, V3, V4} is also optimal; otherwise, |V ∗1 | ≤ |V ∗2 | ≤ |V1|
and thus from |V2| + |V3| ≥ |V4| we have |V ∗4 | ≥ 1

2(2 − 1
6)|V4| = 11

12 |V4|, suggesting the partition

{V1, V2, V3, V4} is a 12
11 -approximation.

In summary, if |V2| ≥ 1
6 |V4|, then the partition {V1, V2, V3, V4} is a 24

13 -approximation. Otherwise,

we have |V2| < 1
6 |V4|. Furthermore, if one of V1 and V2, say Vi, is adjacent to V3, then |V2|+ |V3| ≥

|Vi| + |V3| ≥ |V4|; if none of V1 and V2 is adjacent to V3, then the same proof earlier shows that

V3 is adjacent to a component G[V u
4`] of G[V4 \ {u}], suggesting |V1|+ |V3| ≥ |V u

4`|+ |V3| ≥ |V4|. It

follows that, either way we have |V2| + |V3| ≥ |V4| and thus n = |V1| + |V2| + |V3| + |V4| > 2|V4|.
This completes the proof of item 5).

The last item 6) can be proven by a simple contradiction by setting a proper U ⊂ Vj to enable

the Pull(U ⊂ Vj , V2) operation. 2

Proposition 1 In the following, we distinguish three cases for the tetrapartition {V1, V2, V3, V4} of

the vertex set V with |V4| > 2
5n, to which none of the Merge and Pull operations is applicable, and

Eq. (1) holds:

Case 1: none of V1 and V2 is adjacent to V3 (i.e., both V1 and V2 are adjacent to V4 only and at

the vertex u ∈ V4 only; see for an illustration in Figs. 5 and 6, to be handled in Theorems 3

and 4);

12 Y. Chen et al.

Case 2: none of V1 and V2 is adjacent to V4 (i.e., both V1 and V2 are adjacent to V3 only and at

the vertex v ∈ V3 only; see for an illustration in Figure 7, to be handled in Theorems 5 and

6);

Case 3: one of V1 and V2 is adjacent to V3 and the other is adjacent to V4 (see for an illustration

in Figure 8, to be handled in Theorems 7 and 8).

The final conclusion is presented as Theorem 9.

Lemma 7 states several structural properties of the graph G = (V,E) with respect to the

tetrapartition, which is yet unknown to be a 24
13 -approximation or not. For each of the three cases

listed in Proposition 1, Lemma 7 leads to a further conclusion, stated separately in Theorems 3, 5,

and 7.

Theorem 3 In Case 1, let V ′4 denote the union of the vertex sets of all the components of G[V4\{u}]
that are adjacent to V3; if |V ′4 | ≤ |V1| + |V2| + 11

24 |V4|, then the partition {V1, V2, V3, V4} is a 24
13 -

approximation.

Proof. From Lemma 7, we assume without loss of generality that some component of G[V4 \{u}]
is adjacent to V3, as otherwise the partition {V1, V2, V3, V4} is already optimal. It follows that

|V1|+ |V3| ≥ |V4|.
If |V ′4 | ≤ |V1|+ |V2|+ 11

24 |V4| (< 19
24 |V4| by Eq. (1)), then denote the components of G[V4 \ {u}]

not adjacent to V3 as G[V u
4i], i = 1, 2, . . . `, with ` ≥ 2. In an optimal 4-partition denoted as

{V ∗1 , V ∗2 , V ∗3 , V ∗4 }, assume u ∈ V ∗j . If V ∗j contains all these ` + 2 subsets, V1, V2, V
u
4i, i = 1, 2, . . . `,

then |V ∗j | = |V1|+ |V2|+ |V4| − |V ′4 | ≥ 13
24 |V4|. In the other case, at least one of these `+ 2 subsets

becomes a separate part in {V ∗1 , V ∗2 , V ∗3 , V ∗4 }, of which the size is at most |V2|, and thus we have

|V ∗4 | ≥ 1
3(|V1|+ |V3|+ |V4|) ≥ 2

3 |V4|. Therefore, we always have |V ∗4 | ≥ 13
24 |V4|, and thus the partition

{V1, V2, V3, V4} is a 24
13 -approximation. 2

V3

V1

V2

V4

u

Figure 5: An illustration of the connectivity configuration of the graph G = (V,E), with respect

to the tetrapartition {V1, V2, V3, V4} in Case 1.

We have seen that G[V4] exhibits a nice star-like configuration (Figure 5), due to V4 being

adjacent to V1 and V2. Since none of V1 and V2 is adjacent to V3 in Case 1, the connectivity

configuration of G[V3] is unclear. We next bipartition V3 as evenly as possible, and let {V31, V32}

Approximating balanced connected graph partition (v: October 8, 2019) 13

denote the achieved bipartition with |V31| ≤ |V32|. If |V32| ≤ 2
3 |V3|, and assuming there are multiple

components of G[V4 \ {u}] adjacent to V3i (for some i ∈ {1, 2}) with their total size greater than

|V1|, then we find a minimal sub-collection of these components of G[V4 \ {u}] adjacent to V3i with

their total size exceeding |V1|, denote by V ′4 the union of their vertex sets, and subsequently create

three new parts V4 ∪ V1 \ V ′4 , V ′4 ∪ V3i, and V3,3−i, while keeping V2 unchanged. One sees that this

new tetrapartition is feasible and better, since |V ′4 |+ |V3i| ≤ 2|V1|+ |V3i| < 1
3 |V4|+

2
3 |V3| ≤ |V4|.

In the other case, by Lemma 3, G[V3] also exhibits a nice star-like configuration centering at

some vertex v, such that G[V3 \ {v}] is disconnected and each component of G[V3 \ {v}] has size

less than 1
3 |V3|. See for an illustration in Figure 6.

v

V3

V1

V2

V4

u

Figure 6: An illustration of the “bi-star”-like configuration of the graph G = (V,E), with respect

to the tetrapartition {V1, V2, V3, V4} in Case 1.

The following Bridge-1 operation aims to find a subset V ′3 ⊂ V3 and a subset V ′4 ⊂ V4 to form

a new part larger than V1, possibly cutting off another subset V ′′4 from V4 and merging it into V3,

and merging the old part V1 into V4. This way, a better tetrapartition is achieved. We will prove

later that when such a bridging operation isn’t applicable, each component in the residual graph

by deleting the two star centers has size at most 2|V1| + |V2|, and subsequently the tetrapartition

can be shown to be a 12
7 -approximation.

Definition 5 Operation Bridge-1(V3, V4):

• precondition: In Case 1, there are multiple components of G[V4\{u}] adjacent to V3 with their

total size greater than |V1|+ |V2|+ 11
24 |V4|, and there is a vertex v ∈ V3 such that G[V3 \ {v}]

is disconnected and each component has size less than 1
3 |V3|.

• effect: Find a component G[V u
4x] of G[V4 \ {u}], if exists, that is adjacent to a component

G[V v
3y] of G[V3 \ {v}]; initialize V ′4 to be V u

4x and V ′3 to be V v
3y; iteratively,

– let C3 denote the collection of the components of G[V3 \ {v}] that are adjacent to V ′4,

excluding V ′3;

∗ if the total size of components in C3 exceeds 2|V1| − |V ′3 |, then the operation greed-

ily finds a minimal sub-collection of these components of C3 with their total size

exceeding 2|V1| − |V ′3 |, adds their vertex sets to V ′3, and proceeds to termination;

∗ if the total size of components in C3 is less than 2|V1|− |V ′3 |, then the operation adds

the vertex sets of all these components to V ′3;

14 Y. Chen et al.

– let C4 denote the collection of the components of G[V4 \ {u}] that are adjacent to V ′3,

excluding V ′4;

∗ if the total size of components in C4 exceeds |V1| − |V ′4 |, then the operation greed-

ily finds a minimal sub-collection of these components of C4 with their total size

exceeding |V1| − |V ′4 |, adds their vertex sets to V ′4, and proceeds to termination;

∗ if the total size of components in C4 is less than |V1| − |V ′4 |, then the operation adds

the vertex sets of all these components to V ′4;

– if both C3 and C4 are empty, then the operation terminates without updating the partition.

At termination, exactly one of |V ′3 | > 2|V1| and |V ′4 | > |V1| holds.

– When |V ′3 | > 2|V1|, we have |V ′4 | ≤ |V1| and |V ′3 | < 2|V1|+ 1
3 |V3|;

∗ if the collection of the components of G[V4 \ {u}] that are adjacent to V ′3, excluding

V ′4, exceeds |V1| − |V ′4 |, then the operation greedily finds a minimal sub-collection

of these components with their total size exceeding |V1| − |V ′4 |, and denotes by V ′′4
the union of their vertex sets; subsequently, the operation creates three new parts

V4 ∪ V1 \ (V ′4 ∪ V ′′4), (V ′4 ∪ V ′′4) ∪ V ′3, and V3 \ V ′3;

∗ otherwise, the operation greedily finds a minimal sub-collection of the components

of G[V4 \ {u}] that aren’t adjacent to V ′3 with their total size exceeding |V1| − |V ′4 |,
and denotes by V ′′4 the union of their vertex sets; subsequently, the operation creates

three new parts V4 ∪ V1 \ (V ′4 ∪ V ′′4), V ′4 ∪ V ′3, and (V3 \ V ′3) ∪ V ′′4 .

– When |V ′4 | > |V1|, we have |V ′4 | ≤ 2|V1| and |V ′3 | ≤ 2|V1|; the operation creates three new

parts V4 ∪ V1 \ V ′4, V ′4 ∪ V ′3, and V3 \ V ′3.

– In all the above three cases of updating, the part V2 is kept unchanged.

Lemma 8 When there are multiple components of G[V4 \ {u}] adjacent to V3 with their total

size greater than |V1| + |V2| + 11
24 |V4| in Case 1, and an operation Bridge-1(V3, V4) updates the

tetrapartition, then the updated tetrapartition is feasible and better.

Proof. Recall that there are three cases of updating the tetrapartition.

In the first two cases, the operation achieves a subset V ′3 of size |V ′3 | > 2|V1|, and by the

sub-collection minimality and each component of G[V3 \ {v}] being smaller than 1
3 |V3|, |V

′
3 | <

2|V1| + 1
3 |V3|. In the first case, V ′′4 can be located and again by sub-collection minimality we

have |V1| < |V ′4 | + |V ′′4 | ≤ 2|V1|. Therefore, for the three new parts, |V4 ∪ V1 \ (V ′4 ∪ V ′′4)| < |V4|,
|(V ′4 ∪ V ′′4) ∪ V ′3 | < 4|V1|+ 1

3 |V3| < |V4|, and |V3 \ V ′3 | < |V3|, suggesting a better partition.

In the second case, the components of G[V4 \ {u}] that aren’t adjacent to V ′3 have their total

size exceeding |V2|+ 11
24 |V4|, and thus V ′′4 can be located and again by sub-collection minimality we

have |V1| < |V ′4 | + |V ′′4 | ≤ 2|V1|. Therefore, for the three new parts, |V4 ∪ V1 \ (V ′4 ∪ V ′′4)| < |V4|,
|V ′4 ∪ V ′3 | < 3|V1|+ 1

3 |V3| < |V4|, and |(V3 \ V ′3) ∪ V ′′4 | < |V3|, suggesting a better partition.

The third case is similar to the first case. In this case, the operation achieves a subset V ′4 of

size |V ′4 | > |V1|, and by the sub-collection minimality and each component of G[V4 \ {u}] being no

larger than |V1|, |V ′4 | ≤ 2|V1|. Therefore, for the three new parts, |V4 ∪ V1 \ V ′4 | < |V4|, |V ′4 ∪ V ′3 | ≤
4|V1| < |V4|, and |V3 \ V ′3 | < |V3|, suggesting a better partition.

This proves the lemma. 2

Approximating balanced connected graph partition (v: October 8, 2019) 15

Lemma 9 When there are multiple components of G[V4 \ {u}] adjacent to V3 with their total size

greater than |V1| + |V2| + 11
24 |V4| in Case 1, no Bridge-1 operation is applicable, every connected

component of G[V \ {u, v}] has size at most max{3|V1|, |V2|} ≤ 2|V1|+ |V2|.

Proof. From the definition of the Bridge-1 operation, when it starts with a component V ′4 of

G[V4 \ {u}] (or a component V ′3 of G[V3 \ {v}], respectively), at the end it achieves |V ′4 | ≤ |V1|
and |V ′3 | ≤ 2|V1| without updating the partition. Clearly, G[V ′4 ∪ V ′3] is a connected component of

G[V \ {u, v}]. One also sees that V2 is also a connected component of G[V \ {u, v}]. Therefore,

every connected component of G[V \ {u, v}] has size at most max{3|V1|, |V2|} ≤ 2|V1|+ |V2|. 2

In the remaining case of Case 1 where the partition {V1, V2, V3, V4} is yet unknown to be a
24
13 -approximation, by Lemma 9 we know that the graph G = (V,E) exhibits a “bi-star”-like con-

figuration, with respect to the tetrapartition, in that there is a vertex u ∈ V4 (v ∈ V3, respectively)

such that G[V4 \{u}] (G[V3 \{v}], respectively) is disconnected, and every connected component of

G[V \{u, v}] has size at most 2|V1|+ |V2|. In an optimal tetrapartition denoted as {V ∗1 , V ∗2 , V ∗3 , V ∗4 },
at least two parts contain none of the two center vertices u and v, and thus their sizes are at most

2|V1|+ |V2|. Consequently |V ∗4 | ≥ 1
2(|V |−4|V1|−2|V2|) ≥ 7

12 |V4|. That is, the current tetrapartition

{V1, V2, V3, V4} is a 12
7 -approximation. We conclude the following theorem:

Theorem 4 In Case 1, if there are multiple components of G[V4 \ {u}] adjacent to V3 with their

total size greater than |V1| + |V2| + 11
24 |V4| and the Bridge-1 operation isn’t applicable, then the

partition {V1, V2, V3, V4} is a 12
7 -approximation.

In Case 2, none of V1 and V2 is adjacent to V4 (i.e., both V1 and V2 are adjacent to V3 only and

at the vertex v ∈ V3 only). One sees that Case 2 is almost symmetric to Case 1, by switching V3
with V4; nevertheless, since V3 might be strictly smaller than V4, the argument differs slightly.

We have seen that G[V3] exhibits a nice star-like configuration (Lemma 7), but the connectivity

configuration of G[V4] is unclear. We next bipartition V4 into {V41, V42} as evenly as possible with

|V41| ≤ |V42|. If |V42| ≤ 2
3 |V4|, and assuming there are multiple components of G[V3 \ {v}] adjacent

to V4i (for some i ∈ {1, 2}) with their total size greater than |V1|, then we find a minimal sub-

collection of these components of G[V3 \ {v}] adjacent to V4i with their total size exceeding |V1|,
denote by V ′3 the union of their vertex sets, and subsequently create three new parts V3 ∪ V1 \ V ′3 ,

V ′3 ∪ V4i, and V4,3−i, while keeping V2 unchanged. One sees that this new tetrapartition is feasible

and better, since |V ′3 | ≤ 2|V1| < 1
3 |V4|.

In the other case, by Lemma 3, G[V4] also exhibits a nice star-like configuration centering at

some vertex u, such that G[V4 \{u}] is disconnected and each component of G[V4 \{u}] has size less

than 1
3 |V4|. See for an illustration in Figure 7. Furthermore, if the vertices of V3 aren’t adjacent

to any vertex of V4 other than u, then very the same as in Case 1 the graph G = (V,E) exhibits a

“bi-star”-like configuration, with respect to the partition, in that there is a vertex u ∈ V4 (v ∈ V3,
respectively) such that G[V4 \ {u}] (G[V3 \ {v}], respectively) is disconnected, and every connected

component of G[V \ {u, v}] has size less than 1
3 |V4|. The same succeeding argument states that the

tetrapartition {V1, V2, V3, V4} is a 3
2 -approximation.

In the remaining case of Case 2, there are vertices of V3 adjacent to some vertices of V4 \ {u},
and we design the following Bridge-2 operation almost identical to Bridge-1, but the roles of V3
and V4 are swapped.

16 Y. Chen et al.

v

V3

V1

V2

V4

u

Figure 7: An illustration of the “bi-star”-like configuration of the graph G = (V,E), with respect

to the tetrapartition {V1, V2, V3, V4} in Case 2.

Theorem 5 In Case 2, let V ′3 denote the union of the vertex sets of all the components of G[V3 \
{v}] that are adjacent to V4; if |V ′3 | ≤ |V2| + 11

24 |V4|, then the partition {V1, V2, V3, V4} is a 24
13 -

approximation.

Proof. See for an illustration of Case 2 in Figure 7. We note that the theorem statement is

almost the same as Theorem 3, but the quantity |V1| disappears since it is combined with |V3| to

replace |V4|. The proof thus is almost the same as the proof for Theorem 3.

If |V ′3 | ≤ |V2|+ 11
24 |V4| <

9
24 |V4| (using Eq. (1) we have |V3| > 20

24 |V4|), then denote the components

of G[V3 \ {v}] not adjacent to V4 as G[V v
3i], i = 1, 2, . . . `, with ` ≥ 3. Recall that |V1|+ |V3| ≥ |V4|

and |V v
3i| ≤ |V1|, for each i = 1, 2, . . . `. In an optimal 4-partition denoted as {V ∗1 , V ∗2 , V ∗3 , V ∗4 },

assume v ∈ V ∗j . If V ∗j contains all these ` + 2 subsets, V1, V2, V
v
3i, i = 1, 2, . . . `, then |V ∗j | =

|V1| + |V2| + |V3| − |V ′3 | ≥ 13
24 |V4|. In the other case, at least one of these ` + 2 subsets becomes a

separate part in {V ∗1 , V ∗2 , V ∗3 , V ∗4 }, of which the size is at most |V2|, and thus by item 3) of Lemma 7

we have |V ∗4 | ≥ 1
3(|V1|+ |V3|+ |V4|) ≥ 2

3 |V4|. Therefore, we always have |V ∗4 | ≥ 13
24 |V4|, and thus the

partition {V1, V2, V3, V4} is a 24
13 -approximation. 2

Definition 6 Operation Bridge-2(V3, V4):

• precondition: In Case 2, there are multiple components of G[V3 \ {v}] adjacent to V4 with

their total size greater than |V2| + 11
24 |V4|, and there is a vertex u ∈ V4 such that G[V4 \ {u}]

is disconnected and each component has size less than 1
3 |V4|.

• effect: Find a component G[V u
4x] of G[V4\{u}] (could be empty) that is adjacent to a component

G[V v
3y] of G[V3 \ {v}]; initialize V ′4 to be V u

4x and V ′3 to be V v
3y; iteratively,

– let C3 denote the collection of the components of G[V3 \ {v}] that are adjacent to V ′4,

excluding V ′3;

∗ if the total size of components in C3 exceeds |V1| − |V ′3 |, then the operation greed-

ily finds a minimal sub-collection of these components of C3 with their total size

exceeding |V1| − |V ′3 |, adds their vertex sets to V ′3, and proceeds to termination;

∗ if the total size of components in C3 is less than |V1| − |V ′3 |, then the operation adds

the vertex sets of all these components to V ′3;

Approximating balanced connected graph partition (v: October 8, 2019) 17

– let C4 denote the collection of the components of G[V4 \ {u}] that are adjacent to V ′3,

excluding V ′4;

∗ if the total size of components in C4 exceeds 2|V1| − |V ′4 |, then the operation greed-

ily finds a minimal sub-collection of these components of C4 with their total size

exceeding 2|V1| − |V ′4 |, adds their vertex sets to V ′4, and proceeds to termination;

∗ if the total size of components in C4 is less than 2|V1|− |V ′4 |, then the operation adds

the vertex sets of all these components to V ′4;

– if both C3 and C4 are empty, then the operation terminates without updating the partition.

At termination, exactly one of |V ′4 | > 2|V1| and |V ′3 | > |V1| holds.

– When |V ′4 | > 2|V1|, we have |V ′3 | ≤ |V1| and |V ′4 | < 2|V1|+ 1
3 |V4|;

∗ if the collection of the components of G[V3 \ {v}] that are adjacent to V ′4, excluding

V ′3, exceeds |V1| − |V ′3 |, then the operation greedily finds a minimal sub-collection

of these components with their total size exceeding |V1| − |V ′3 |, and denotes by V ′′3
the union of their vertex sets; subsequently, the operation creates three new parts

V3 ∪ V1 \ (V ′3 ∪ V ′′3), (V ′3 ∪ V ′′3) ∪ V ′4, and V4 \ V ′4;

∗ otherwise, the operation greedily finds a minimal sub-collection of the components

of G[V3 \ {v}] that aren’t adjacent to V ′4 with their total size exceeding |V1| − |V ′3 |,
and denotes by V ′′3 the union of their vertex sets; subsequently, the operation creates

three new parts V3 ∪ V1 \ (V ′3 ∪ V ′′3), V ′3 ∪ V ′4, and (V4 \ V ′4) ∪ V ′′3 .

– When |V ′3 | > |V1|, we have |V ′3 | ≤ 2|V1| and |V ′4 | ≤ 2|V1|; the operation creates three new

parts V3 ∪ V1 \ V ′3, V ′3 ∪ V ′4, and V4 \ V ′4.

– In all the above three cases of updating, the part V2 is kept unchanged.

Lemma 10 When there are multiple components of G[V3 \ {v}] adjacent to V4 with their total size

greater than |V2| + 11
24 |V4| in Case 2, and an operation Bridge-2(V3, V4) updates the tetrapartition,

then the updated partition is feasible and better.

Proof. The proof is almost identical to the proof of Lemma 8, by using 4|V1| < 2
3 |V4|. 2

The following lemma states the same property as in Lemma 9, and we conclude the same

Theorem 6.

Lemma 11 When there are multiple components of G[V3 \ {v}] adjacent to V4 with their total size

greater than |V2|+ 11
24 |V4| in Case 2, no Bridge-2 operation is applicable, every connected component

of G[V4 ∪ V3 \ {u, v}] has size at most max{3|V1|, |V2|}.

Theorem 6 In Case 2, if there are multiple components of G[V3 \ {v}] adjacent to a vertex u ∈ V4
with their total size greater than |V2| + 11

24 |V4| and no Bridge-2 operation is applicable, then the

tetrapartition {V1, V2, V3, V4} is a 12
7 -approximation.

Case 3 is different from the above two cases, as one of V1 and V2 is adjacent to V3 while the

other adjacent to V4. In fact, by Lemma 7, the graph G = (V,E) already exhibits a “bi-star”-like

configuration, with respect to the partition, in that there is a vertex u ∈ V4 (v ∈ V3, respectively)

such that G[V4 \ {u}] (G[V3 \ {v}], respectively) is disconnected, and every connected component

of G[V \ {u, v}] has size at most |V2|. The argument thus can be made slightly simpler.

18 Y. Chen et al.

Theorem 7 In Case 3, assume Vi ∈ {V1, V2} is adjacent to V3 at the vertex v ∈ V3 while Vj
(j = 3− i) is adjacent to the vertex u ∈ V4,

• let V ′3 denote the union of the vertex sets of all the components of G[(V3 ∪ Vi) \ {v}] that are

adjacent to V4; if |V ′3 | ≤ |Vi|+ 7
24 |V4|, then the partition {V1, V2, V3, V4} is a 24

13 -approximation;

• let V ′4 denote the union of the vertex sets of all the components of G[(V4 ∪ Vj) \ {u}] that are

adjacent to V3; if |V ′4 | ≤ |Vj |+ 11
24 |V4|, then the partition {V1, V2, V3, V4} is a 24

13 -approximation.

Proof. From Lemma 7 and Eq. (1) we know that |Vi| < 1
6 |V4| and thus |V3| > 5

6 |V4|. For ease

of presentation, using Lemma 7 we regard G[Vi] as a component of G[(V3 ∪ Vi) \ {v}], treated the

same as the components of G[V3 \ {v}].
If |V ′3 | ≤ |Vi| + 7

24 |V4| <
11
24 |V4|, then denote the components of G[(V3 ∪ Vi) \ {v}] that are not

adjacent to V4 as G[V v
3x], x = 1, 2, . . . `, with ` ≥ 3. Recall that |V v

3x| ≤ |Vi|, for each x = 1, 2, . . . `.

In an optimal 4-partition denoted as {V ∗1 , V ∗2 , V ∗3 , V ∗4 }, assume v ∈ V ∗y . If V ∗y contains all these `

subsets, then |V ∗y | = |Vi| + |V3| − |V ′3 | > 13
24 |V4|. In the other case, at least one of these ` subsets

becomes a separate part in {V ∗1 , V ∗2 , V ∗3 , V ∗4 }, of which the size is at most |Vi|, and thus we have

|V ∗4 | ≥ 1
3(|Vj |+|V3|+|V4|) ≥ 11

18 |V4|. Therefore, we always have |V ∗4 | ≥ 13
24 |V4|, and thus the partition

{V1, V2, V3, V4} is a 24
13 -approximation.

Also from Eq. (1) we have |Vj | < 1
6 |V4|. Similarly, for ease of presentation, using Lemma 7 we

regard G[Vj] as a component of G[(V4∪Vj)\{u}], treated the same as the components of G[V4\{u}].
If |V ′4 | ≤ |Vj |+ 11

24 |V4| <
15
24 |V4|, then there are components of G[(V4 ∪ Vj) \ {u}] not adjacent to

V3, denoted as G[V u
4x], x = 1, 2, . . . `, with ` ≥ 3. Recall that |V u

4x| ≤ |Vj |, for each x = 1, 2, . . . `.

In an optimal 4-partition denoted as {V ∗1 , V ∗2 , V ∗3 , V ∗4 }, assume u ∈ V ∗y . If V ∗y contains all these `

subsets, then |V ∗y | = |Vj | + |V4| − |V ′4 | ≥ 13
24 |V4|. In the other case, at least one of these ` subsets

becomes a separate part in {V ∗1 , V ∗2 , V ∗3 , V ∗4 }, of which the size is at most |Vj |, and thus by item 3)

of Lemma 7 we have |V ∗4 | ≥ 1
3(|Vi|+ |V3|+ |V4|) ≥ 2

3 |V4|. Therefore, we always have |V ∗4 | ≥ 13
24 |V4|,

and thus the partition {V1, V2, V3, V4} is a 24
13 -approximation. 2

Corollary 1 In Case 3, assume Vi ∈ {V1, V2} is adjacent to V3 at the vertex v ∈ V3 while Vj
(j = 3 − i) is adjacent to the vertex u ∈ V4, if the tetrapartition {V1, V2, V3, V4} is not yet a
24
13 -approximation, then |V3 ∪ V1| ≥ |V4| (which is slightly stronger than |V3 ∪ Vi| ≥ |V4| stated in

Lemma 7).

Proof. When i = 1, from Lemma 7 we have |V3 ∪ V1| ≥ |V4|. When i = 2, then j = 1 and thus

from Lemma 7 every component of G[V4 \ {u}] has size at most |V1|. Theorem 7 says that some

component of G[V4 \ {u}], say G[V u
4x], is adjacent to V3. Since Pull(V u

4x ⊂ V4, V3) is not applicable,

we conclude that |V3 ∪ V1| ≥ |V3 ∪ V u
4x| ≥ |V4|. Therefore, we always have |V3 ∪ V1| ≥ |V4|. This

proves the corollary. 2

We assume that Vi ∈ {V1, V2} is adjacent to V3 at the vertex v ∈ V3 while Vj (j = 3 − i) is

adjacent to the vertex u ∈ V4 in Case 3. Recall from item 6) of Lemma 7 that if Vi (Vj , respectively)

is also adjacent to V4 (V3, respectively), then it is adjacent to the vertex u (v, respectively). See

for an illustration of Case 3 in Figure 8. The following operation Bridge-3(V3, V4) is again almost

identical to Bridge-1 and Bridge-2 operations, but slightly simpler.

Approximating balanced connected graph partition (v: October 8, 2019) 19

v

V3

ViVj

V4

u

Figure 8: An illustration of the “bi-star”-like configuration of the graph G = (V,E), with respect

to the tetrapartition {V1, V2, V3, V4} in Case 3, where Vi ∈ {V1, V2} is adjacent to V3 at the vertex

v ∈ V3 and Vj (j = 3− i) is adjacent to the vertex u ∈ V4.

Definition 7 Operation Bridge-3(V3, V4):

• precondition: In Case 3, assume Vi ∈ {V1, V2} is adjacent to V3 at the vertex v ∈ V3 while Vj
(j = 3− i) is adjacent to the vertex u ∈ V4, there are multiple components of G[(V3∪Vi)\{v}]
adjacent to V4 with their total size greater than |Vi|+ 7

24 |V4|, and there are multiple components

of G[(V4 ∪ Vj) \ {u}] adjacent to V3 with their total size greater than |Vj |+ 11
24 |V4|;

• effect: Find a component G[V u
4x] of G[V4\{u}] (could be empty) that is adjacent to a component

G[V v
3y] of G[V3 \ {v}]; initialize V ′4 to be V u

4x and V ′3 to be V v
3y; iteratively,

– let C3 denote the collection of the components of G[V3 \ {v}] that are adjacent to V ′4,

excluding V ′3;

∗ if the total size of components in C3 exceeds |Vi| − |V ′3 |, then the operation greed-

ily finds a minimal sub-collection of these components of C3 with their total size

exceeding |Vi| − |V ′3 |, adds their vertex sets to V ′3, and proceeds to termination;

∗ if the total size of components in C3 is less than |Vi| − |V ′3 |, then the operation adds

the vertex sets of all these components to V ′3;

– let C4 denote the collection of the components of G[V4 \ {u}] that are adjacent to V ′3,

excluding V ′4;

∗ if the total size of components in C4 exceeds |Vj | − |V ′4 |, then the operation greed-

ily finds a minimal sub-collection of these components of C4 with their total size

exceeding |Vj | − |V ′4 |, adds their vertex sets to V ′4, and proceeds to termination;

∗ if the total size of components in C4 is less than |Vj | − |V ′4 |, then the operation adds

the vertex sets of all these components to V ′4;

– if both C3 and C4 are empty, then the operation proceeds to termination.

At termination, exactly one of |V ′3 | > |Vi| and |V ′4 | > |Vj | holds.

– When |V ′3 | > |Vi|, we have |V ′4 | ≤ |Vj | and |V ′3 | ≤ 2|Vi|; the operation creates three new

parts V ′4 ∪ V ′3, V4 \ V ′4, and (V3 \ V ′3) ∪ Vi, while keeping the part Vj unchanged.

– When |V ′4 | > |Vj |, we have |V ′3 | ≤ |Vi| and |V ′4 | ≤ 2|Vj |; the operation creates three new

parts V ′4 ∪ V ′3, (V4 \ V ′4) ∪ Vj, and V3 \ V ′3, while keeping the part Vi unchanged.

20 Y. Chen et al.

Lemma 12 In Case 3, assume Vi ∈ {V1, V2} is adjacent to V3 at the vertex v ∈ V3 while Vj
(j = 3 − i) is adjacent to the vertex u ∈ V4, there are multiple components of G[(V3 ∪ Vi) \ {v}]
adjacent to V4 with their total size greater than |Vi| + 7

24 |V4|, there are multiple components of

G[(V4 ∪ Vj) \ {u}] adjacent to V3 with their total size greater than |Vj | + 11
24 |V4|, and a Bridge-

3(V3, V4) operation updates the tetrapartition, then the updated partition is feasible and better.

Proof. Recall from Eq. (1) that |V1| ≤ |V2| < 1
6 |V4|. When the Bridge-3(V3, V4) operation

achieves a pair (V ′3 , V
′
4), by the minimality of the sub-collection we know that |V ′3 | ≤ 2|Vi| and

|V ′4 | ≤ 2|Vj |, suggesting |V ′3 ∪ V ′4 | < 3 × 1
6 |V4| = 1

2 |V4|. Also, if |V ′3 | > |Vi|, then for the other two

new parts, |V4 \ V ′4 | < |V4|, and |(V3 \ V ′3) ∪ Vi| < |V3|; if |V ′4 | > |Vj |, then for the other two new

parts, |(V4 \ V ′4) ∪ Vj | < |V4|, and |V3 \ V ′3 | < |V3|. That is, the size of its largest part reduces by at

least 1. This proves the lemma. 2

The following lemma states the same property as in Lemmas 9 and 11, and we conclude the

same Theorem 8.

Lemma 13 Assume Vi ∈ {V1, V2} is adjacent to V3 at the vertex v ∈ V3 while Vj (j = 3 − i) is

adjacent to the vertex u ∈ V4 in Case 3. When there are multiple components of G[(V3 ∪ Vi) \ {v}]
adjacent to V4 with their total size greater than |Vi| + 7

24 |V4|, there are multiple components of

G[(V4 ∪ Vj) \ {u}] adjacent to V3 with their total size greater than |Vj | + 11
24 |V4|, and no Bridge-3

operation is applicable, every connected component of G[V4∪V3 \{u, v}] has size at most |V1|+ |V2|.

Theorem 8 In Case 3, assume Vi ∈ {V1, V2} is adjacent to V3 at the vertex v ∈ V3 while Vj
(j = 3 − i) is adjacent to the vertex u ∈ V4, and no Bridge-3 operation is applicable, then the

partition {V1, V2, V3, V4} is a 4
3 -approximation.

Combining all the three cases, we can design the following algorithm Approx-4 as depicted

in Figure 9 for the 4-BGP problem, which is iterative in nature and in every iteration it applies

one of the Merge and the Pull and the three Bridge operations. And we have the following final

conclusion for the 4-BGP problem:

Theorem 9 The algorithm Approx-4 is an O(|V |2|E|)-time 24
13 -approximation for the 4-BGP

problem.

Proof. Note that every local improvement operation can be executed in O(|V |+ |E|) time, via

a graph traversal. Since each operation achieves a better partition, that is, either the size of the

largest part is reduced by at least 1, or the largest part is unchanged by the second largest part is

reduced by at least 1, the total number of executed operations is in O(|V |2). We conclude that the

running time of the algorithm Approx-4 is in O(|V |2|E|). The performance ratio is taken as the

maximum among {2413 ,
12
7 ,

3
2 ,

4
3}, which is 24

13 . 2

5 Conclusions

We studied the k-BGP problem to partition the vertex set of a given simple connected graph

G = (V,E) into k parts, such that the subgraph induced by each part is connected and the

Approximating balanced connected graph partition (v: October 8, 2019) 21

The algorithm Approx-4 for 4-BGP on graph G = (V,E):

Step 1. Construct the initial feasible tetrapartition {V1, V2, V3, V4} of V ;

Step 2. while |V4| > 2
5n, using Lemma 7,

iteratively, if a Merge/Pull operation is applicable, update the partition;

if |V2| ≥ 1
6 |V4|, terminate;

Step 3. In Case 1,

• using Theorem 3, if |V ′4 | ≤ |V1|+ |V2|+ 11
24 |V4|, terminate;

• bipartitioning V3 in G[V3] as evenly as possible, if update then loop

back to Step 2;

• if a Bridge-1 operation is applicable then loop back to Step 2;

• terminate;

Step 4. In Case 2,

• using Theorem 5, if |V ′3 | ≤ |V2|+ 11
24 |V4|, terminate;

• bipartitioning V4 in G[V4] as evenly as possible, if update then loop

back to Step 2;

• if a Bridge-2 operation is applicable then loop back to Step 2;

• terminate;

Step 5. In Case 3,

• using Theorem 7, if |V ′3 | ≤ |Vi|+ 7
24 |V4|, terminate;

• using Theorem 7, if |V ′4 | ≤ |Vj |+ 11
24 |V4|, terminate;

• if a Bridge-3 operation is applicable then loop back to Step 2;

• terminate;

Step 6. at termination, return the final partition {V1, V2, V3, V4}.

Figure 9: A high-level description of the algorithm Approx-4 for 4-BGP.

maximum cardinality of these k parts is minimized. The problem is NP-hard, and approximation

algorithms were proposed for only k = 2, 3. We focus on k ≥ 4, and present a k/2-approximation

algorithm for k-BGP, for any fixed k ≥ 3, and an improved 24/13-approximation for 4-BGP.

Along the way, we have designed several intuitive and interesting local improvement operations.

There is no any non-trivial lower bound on the approximation ratio for the k-BGP problem,

except 6/5 for the problem when k is part of the input. We feel that it could be challenging to

design better approximation algorithms for 2-BGP and 3-BGP; but for 4-BGP we believe the

parameters in the three Bridge operations can be adjusted better, though non-trivially, leading to

an 8/5-approximation. We leave it open on whether or not k-BGP admits an o(k)-approximation.

22 Y. Chen et al.

Acknowledgements.

CY and AZ are supported by the NSFC Grants 11971139, 11771114 and 11571252; they are also

supported by the CSC Grants 201508330054 and 201908330090, respectively. ZZC is supported by

in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports

and Culture of Japan, under Grant No. 18K11183. GL is supported by the NSERC Canada.

References

[1] Z. An, Q. Feng, I. Kanj, and G. Xia. The complexity of tree partitioning. In Proceedings of

WADS 2017, pages 37–48, 2017.

[2] M. Andersson, J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Balanced partition of

minimum spanning trees. International Journal of Computational Geometry and Applications,

13:303–316, 2003.

[3] R. I. Becker, S. R. Schach, and Y. Perl. A shifting algorithm for min-max tree partitioning.

Journal of the ACM, 29:58–67, 1982.

[4] L. E. Caraballo, J. M. Diaz-Banez, and N. Kroher. A polynomial algorithm for balanced

clustering via graph partitioning, 2018. http://arXiv:1801.03347.

[5] F. Chataigner, L. R. B. Salgado, and Y. Wakabayashi. Approximation and inapproximability

results on balanced connected partitions of graphs. Discrete Mathematics and Theoretical

Computer Science, 9:177–192, 2007.

[6] G. Chen, Y. Chen, Z.-Z. Chen, G. Lin, T. Liu, and A. Zhang. Approximation algorithms for

maximally balanced connected graph tripartition problem. 2019. Submission under review.

[7] J. Chleb́ıková. Approximating the maximally balanced connected partition problem in graphs.

Information Processing Letters, 60:225–230, 1996.

[8] R. Cordone and F. Maffioli. On the complexity of graph tree partition problems. Discrete

Applied Mathematics, 134:51–65, 2004.

[9] M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected sub-

graphs. Discrete Applied Mathematics, 10:139–153, 1985.

[10] G. N. Frederickson. Optimal algorithms for tree partitioning. In Proceedings of SODA 1991,

pages 168–177, 1991.

[11] G. N. Frederickson and S. Zhou. Optimal parametric search for path and tree partitioning,

2017. http://arXiv:1711.00599.

[12] N. Guttmann-Beck and R. Hassin. Approximation algorithms for min-max tree partition.

Journal of Algorithms, 24:266–286, 1997.

[13] N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum tree partition.

Discrete Applied Mathematics, 87:117–137, 1998.

http://arXiv:1801.03347
http://arXiv:1711.00599

Approximating balanced connected graph partition (v: October 8, 2019) 23

[14] I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen. Solving partition problems almost

always requires pushing many vertices around. In Proceedings of ESA 2018, LIPIcs 112, pages

51:1–51:14, 2018.

[15] M. Lesnick and M. Wright. Interactive visualization of 2-D persistence modules, 2015. http:

//arxiv:1512.00180.

[16] A. R. Madkour, P. Nadolny, and M. Wright. Finding minimal spanning forests in a graph,

2017. http://arXiv:1705.00774.

[17] Y. Perl and S. R. Schach. Max-min tree partitioning. Journal of the ACM, 28:5–15, 1981.

[18] S. Vaishali, M. S. Atulya, and N. Purohit. Efficient algorithms for a graph partitioning problem.

In Proceedings of FAW 2018, LNCS 10823, pages 29–42, 2018.

[19] L. Wang, Z. Zhang, D. Wu, W. Wu, and L. Fan. Max-min weight balanced connected partition.

Journal of Global Optimization, 57:1263–1275, 2013.

[20] B. Y. Wu. A 7/6-approximation algorithm for the max-min connected bipartition problem on

grid graphs. In Proceedings of CGGA 2011, LNCS 7033, pages 188–194, 2011.

[21] B. Y. Wu. Fully polynomial-time approximation schemes for the max-min connected partition

problem on interval graphs. Discrete Mathematics, Algorithms and Applications, 4:1250005,

2013.

http://arxiv:1512.00180
http://arxiv:1512.00180
http://arXiv:1705.00774

	1 Introduction
	2 Preliminaries
	3 A k/2-approximation for k-BGP, for a fixed k 3
	4 A 24/13-approximation for 4-BGP
	5 Conclusions

