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Abstract
We study an agglomerative clustering problemmotivated by interactive glyphs in geo-
visualization. Consider a set of disjoint square glyphs on an interactive map. When
the user zooms out, the glyphs grow in size relative to the map, possibly with different
speeds. When two glyphs intersect, we wish to replace them by a new glyph that
captures the information of the intersecting glyphs.We present a fully dynamic kinetic
data structure that maintains a set of n disjoint growing squares. Our data structure
uses O

(
n log n log log n

)
space, supports queries in worst case O

(
log2 n

)
time, and

updates in O
(
log5 n

)
amortized time. This leads to an O

(
n α(n) log5 n

)
time algorithm

to solve the agglomerative clustering problem. This is a significant improvement over
the current best O

(
n2

)
time algorithms.
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Fig. 1 Zooming out in GlamMap will merge overlapping squares. This figure shows a sequence of three
steps zooming out from the surroundings of Leipzig

1 Introduction

We study an agglomerative clustering problem motivated by interactive glyphs in
geo-visualization. Our specific use case stems from the eHumanities, but similar visu-
alizations are used in a variety of application areas.GlamMap [6]1 is a visual analytics
tool which allows the user to interactively explore datasets which contain (at least) the
following metadata of a book collection: author, title, publisher, year of publication,
and location (city) of publisher. Each book is depicted by a square, color-coded by
publication year, and placed on a map according to the location of its publisher. Over-
lapping squares (many books are published in Leipzig, for example) are recursively
aggregated into a larger glyph until all glyphs are disjoint (see Fig. 1). As the user
zooms out, the glyphs “grow” relative to the map to remain legible. As a result, glyphs
start to overlap and need to be merged into larger glyphs to keep the map clear and
uncluttered. It is straightforward to compute the resulting agglomerative clustering
whenever a data set is loaded and to serve it to the user as needed by the current zoom
level. However, GlamMap allows the user to filter by author, title, year of publication,
or other applicable meta data. It is impossible to pre-compute the clustering for any
conceivable combination of filter values. To allow the user to browse at interactive
speeds, we hence need an efficient agglomerative clustering algorithm for growing
squares (glyphs). Interesting bibliographic data sets (such as the catalogue of World-
Cat, which contains more than 321 million library records at hundreds of thousands of
distinct locations) are too large by a significant margin to be clustered fast enough with
the current state-of-the-art O

(
n2

)
time algorithms (here n is the number of squares or

glyphs).
In this paper we formally analyze the problem and present a fully dynamic data

structure that uses O
(
n log n log log n

)
space, supports updates inO

(
log5 n

)
amortized

time, and queries in O
(
log2 n

)
time, which allows us to compute the agglomerative

clustering for n glyphs in O
(
n α(n) log5 n

)
time. Here, α is the extremely slowly

growing inverse Ackermann function. To the best of our knowledge, this is the first
fully dynamic clustering algorithm which beats the classic O

(
n2

)
time bound.

Formal problem statement. Let P be a set of points inR2 (the locations of publishers
from our example). Each point p ∈ P has a positive weight pw (number of books
published in this city). Given a “time” parameter t , we interpret the points in P as

1 http://glammap.net/glamdev/maps/1, best viewed in Chrome.
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Fig. 2 The timeline of squares that grow and merge as they touch

squares. More specifically, let �p(t) be the square centered at p with width tpw. For
ease of exposition we assume all x and y coordinates to be unique. With some abuse
of notation we may refer to P as a set of squares rather than the set of center points of
squares. Observe that initially, i.e. at t = 0, all squares in P are disjoint. As t increases,
the squares in P grow, and hence they may start to intersect. When two squares �p(t)
and �q(t) intersect at time t , we remove both p and q and replace them by a new
point z, which is located at the weighted average of p and q and has the sum of their
weights as its weight. More formally, z = ωp + (1− ω)q, with ω = pw/(pw + qw),
and has weight zw = pw + qw (see Fig. 2).

Related Work. Funke, Krumpe, and Storandt [7] introduced so-called “ball tourna-
ments”, a related, but simpler, problem, which is motivated by map labeling. Their
input is a set of balls in Rd with an associated set of priorities. The balls grow linearly
and whenever two balls touch, the ball with the lower priority is eliminated. The goal
is to compute the elimination sequence efficiently. Bahrdt et al. [4] and Funke and
Storandt [8] improved upon the initial results and presented bounds which depend on
the ratio Δ of the largest to the smallest radius. Specifically, Funke and Storandt [8]
show how to compute an elimination sequence for n balls in O

(
n logΔ(log+Δd−1)

)

time in arbitrary dimensions and in O
(
Cn polylog n

)
time for d = 2, whereC denotes

the number of different radii. In our setting eliminations are not sufficient, sincemerged
glyphs need to be re-inserted. Furthermore, as opposed to typical map labeling prob-
lems where labels come in a fixed range of sizes, the sizes of our glyphs can vary by
a factor of 10.000 or more (Amsterdam with its many well-established publishers vs.
Kaldenkirchen with one obscure one).

Ahn et al. [2] recently and independently developed the first sub-quadratic algo-
rithms to compute elimination orders for ball tournaments. Their results apply to balls
and boxes in two or higher dimensions. Specifically, for squares in two dimensions
they can compute an elimination order in O

(
n log4 n

)
time. Their results critically

depend on the fact that they know the elimination priorities at the start of their algo-
rithm and that they only have to handle deletions. Hence they do not have to run an
explicit simulation of the growth process and can achieve their results by the clever
use of advanced data structures. In contrast, we are handling the fully dynamic setting
with both insertions and deletions, and without a specified set of priorities. In fact,
our algorithm can easily be adapted to solve the ball tournament problem for squares
without increasing the running time.
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Our clustering problem combines both dynamic and kinetic aspects: squares grow,
which is a restricted form of movement, and squares are both inserted and deleted.
There are comparatively few papers which tackle dynamic kinetic problems. Alexan-
dron et al. [3] present a dynamic and kinetic data structure for maintaining the convex
hull of points (or analogously, the lower envelope of lines) moving in R

2. Their data
structure processes (in expectation) O

(
n2βs+2(n) log n

)
events in O

(
log2 n

)
time

each. Here, βs(n) = λs(n)/n, and λs(n) is the maximum length of a Davenport-
Schinzel sequence on n symbols of order s. Agarwal et al. [1] present dynamic and
kinetic data structures for maintaining the closest pair and all nearest neighbors. The
expected number of events processed is again roughly O

(
n2βs+2(n) polylog n

)
, each

of which can be handled in O
(
polylog n

)
expected time. We are using some ideas and

constructions which are similar in flavor to the structures presented in their paper.

Results. Wepresent a fully dynamic data structure that canmaintain a set P of disjoint
growing squares. At any time, it supports inserting a new square that is disjoint from the
squares in P , or removing an existing square from P . Our data structure will produce
an intersection event at every time t when two squares �p and �q , with p, q ∈ P ,
start to intersect (i.e. at any time before t , all squares in P remain disjoint). At such
a time, we then have to delete some of the squares, to make sure that the squares in
P are again disjoint. Our data structure can handle a sequence of m ≥ n updates in
a total of O

(
m α(n) log5 n

)
time, each update is performed in O

(
log5 n

)
amortized

time.

Our Approach. In order to efficiently keep track of which squares in our set P are
about to intersect, we combine the following two ideas.

The first is that we can focus on specific kinds of intersections. In particular, if we
can, for a given square �q , track which square �p will intersect the right side of �q

first, then we can analogously track similar intersection events for the left, top and
bottom sides of �q . Moreover, we only need to explicitly consider two sides of �q ,
say the top and right sides: if, e.g., the left side of �q intersects some square �r , then
symmetrically the right side of �r intersects �q and thus we already track that event.
We describe our data structure, built on two-layered range trees, for intersections with
the right side of �q , and then combine two copies to make sure that all squares in P
remain disjoint. We formalize this in Sect. 2.

The second idea is that, instead of having each square�q independently trackwhich
�p will intersect it first, we can intelligently group squares that track (roughly) the
same subset of P . We do so efficiently using the layers of search trees. This saves on
space used by our data structure, in the form of certificates. It also reduces the running
time of handling a sequence of updates, simply because fewer certicates fail or need
to be updated. We concretize this in Sect. 3.

While our data structure is conceptually simple, the exact implementation is some-
what intricate, and the details are numerous. Our initial analysis shows that our data
structure maintains O

(
log2 n

)
certificates for every secondary node in our range trees,

so O
(
n log3 n

)
in total, and supports dynamic updates in O

(
log5 n

)
amortized time.

This allows us to simulate the process of growing the squares in P –and thus solve the
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agglomerative glyph clustering problem– in O
(
n α(n) log5 n

)
time using O

(
n log3 n

)

space. In Sect. 4 we analyze the relation between canonical subsets in dominance
queries. We show that for two range trees T R and T B in R

d , the number of pairs of
nodes r ∈ T R and b ∈ T B for which r occurs in the canonical subset of a domi-
nance query defined by b and vice versa is only O

(
n(log n log log n)d−1

)
, where n

is the total size of T R and T B . This implies that the number of linking certificates
that our data structure maintains, as well as the total space used, is actually only
O

(
n log n log log n

)
. Since the linking certificates provide an efficient representation

of all dominance relations between two point sets (or within a point set), we believe
that this result is of independent interest as well.

In the preliminary version of this paper, we partitioned space in a different way
[5]. This gave us an O

(
n α(n) log7 n

)
time algorithm that used O

(
n(log n log log n)2

)

space. The improvementswemade, whichwe describe in this paper, lead to a reduction
of two log factors in the running time, and a log n log log n factor of space usage.

2 Geometric Properties

Our approach, as described above, will be to focus on specific types of intersections.
In particular, for any given square �q we are interested in tracking intersections with
the right side of �q . We observe that the first square �p that is to intersect the right
side of �q will have (i) its left side touch �q first, and (i i) its center p in a cone east
of q. We refer to all squares having their center in this cone as E(q). See Fig. 3 for an
example. Let us introduce some notation and formally capture these two observations.

We are interested, for all points q ∈ P , in a cone east of them, which is the set of
points {(x, y) ∈ R

2 | x−x(q) ≥ |y−y(q)|}.North, south andwest cones canbedefined
analogously.Let �q denote themidpoint of the left edgeof a square�q , and let rq denote
the midpoint of the right edge of�q . Similarly, let the midpoints of the top and bottom
edges of �q be denoted by ↑q and ↓q , respectively. Furthermore, let E(q) denote the
subset of points of P lying in the cone east of q, and let L(q) = {�p | p ∈ E(q)}
denote the set of midpoints of left edges of the squares of those points.

We remark that points p ∈ P can simultaneously lie in, e.g., the east and south cones
induced by any q ∈ P . This means that the top left corner of �p will first intersect
with the bottom right corner of�q . In such cases it is not necessary to track the square

Fig. 3 Squares E(q) east of �q .
�p ∈ E(q) intersects �q when
x(rq ) ≥ x(�p)
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in both copies of our data structure. An arbitrary choice to break this degeneracy can
be made. The same holds for the other pairs of neighboring cones.

Observation 1 Let p ∈ E(q) be a point east of point q. The squares �q(t) and �p(t)
intersect at time t if and only if x(rq(t)) ≥ x(�p(t)) at time t.

Proof Clearly, when x(rq(t)) < x(�p(t)), then since the rightmost point of �q is left
of the leftmost point of�p, the squares do not intersect. For the other direction, observe
that because p is in the cone east of q, it holds that x(p)−x(q) ≥ |y(p)− y(q)|. Since
x(rq(t)) ≥ x(�p(t)), it holds that x(rq(t))−x(�p(t))+x(p)−x(q) ≥ x(p)−x(q) ≥
|y(p) − y(q)|. Because �q and �p are squares, either y(↓q (t)) ≤ y(↑p (t)) or
y(↑q (t)) ≥ y(↓p (t)). In either case, both the horizontal and vertical intervals of �q

and �p overlap, and hence they intersect. ��
Following the above observations, we observe another important detail:

Observation 2 Let t∗ be the first time at which a square �p of a point p ∈ E(q)

intersects �q . We then have that x(rq(t∗)) = x(�p(t∗)), and �p(t∗) is the point with
minimum x-coordinate among the points in L(q) at time t∗.

Proof It is easy to see that x(rq(t∗)) = x(�p(t∗)). To see that �p(t∗) has minimum
x-coordinate, we assume it is not for a contradiction. Let r be the point that does have
minimum x-coordinate, thus x(�r (t∗)) < x(�p(t∗)). Since x(rq(t∗)) = x(�p(t∗)), we
get x(�r (t∗)) < x(rq(t∗)). But r is east of q, so x(r) > x(q) and thus, following a
same type of argument as for Observation 1, �q and �r intersect. Because all squares
grow linearly, there must be some t ′ < t∗ when x(rq(t ′)) = x(�r (t ′)), and �q first
intersected�r . But then t∗ is not the first time at which a square east of q intersects�q .
Contradiction, thus �p(t∗) has minimum x-coordinate in L(q) at time t∗. ��

3 A Kinetic Data Structure for Growing Squares

In this section we present a data structure that can detect the first intersection among a
dynamic set of disjoint growing squares. In particular, we describe a data structure that
can detect intersections between all pairs of squares�p,�q in P such that p ∈ E(q).
We then use two copies of this data structure, one for east/west and one for north/south
intersections, to detect the first intersection among all pairs of squares.

We describe the data structure itself in Sect. 3.1, and we briefly describe how to
query it in Sect. 3.2. We deal with updates –inserting a new square into P or deleting
an existing square from P– in Sect. 3.3. In Sect. 3.4 we analyze the total number
of events that we have to process, and the time required to do so, when we simulate
growing the squares.

3.1 The Data Structure

Our data structure consists of two trees T L and T R , both with two layers, and a set of
certificates linking nodes in T L to nodes in T R . These trees essentially form two 2D
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range trees on the centers of the squares in P , using rotated axes (see Sect. 2), so that
we can easily query the tree for E(q), for any q ∈ P . The second layer of T L will
double as a kinetic tournament tracking the left midpoints of the squares. Similarly,
T R will track the right midpoints of the squares.

The Layered Trees. The tree T L is a 2D-range tree storing the center points in P:
in the rotated plane suggested in Sect. 2, the first layer indexes the first coordinate x ′,
while the second layer indexes the second coordinate y′. Each layer is implemented by
a weight-balanced binary search tree (bb[α] tree) [10], and each node μ corresponds
to a canonical subset Pμ of points stored in the leaves of the subtree rooted at μ. Let
Lμ denote the set of left midpoints of squares corresponding to the set Pμ.

Consider the associated structure XL
u of some primary node u ∈ T L . We consider

XL
u as a kinetic tournament on the x-coordinates of the points Lu [1].More specifically,

every node v ∈ XL
u stores the midpoint �p in Lv with minimum x-coordinate, and

will maintain certificates that guarantee this [1].
The tree T R has the same structure as T L , but the associated structure X R

u , for
some primary node u, –which again doubles as a kinetic tournament– maintains not
the minimum, but the maximum x-coordinate of the points in Ru . Analogous to Lu ,
Ru is the set of right midpoints of the squares (with center points) in Pu . Hence, every
secondary node v ∈ X R

u stores the midpoint rq in Rv with maximum x-coordinate.

Linking the Trees. Kinetic data structures maintain certicates that guarantee that
some property holds at least until some point in the (nearby) future. Maintaining a
kinetic data structure revolves for a large part around updating certificates as they
reach that point in time and break. We want to maintain the property that all squares
in P are disjoint, and thus we next describe how to add linking certificates between
the kinetic tournament nodes in the trees T L and T R that guarantee that the squares
are disjoint. More specifically, a secondary node v ∈ T L represents a set Pv ⊆ P
of squares (the canonical subset of node v). We describe how we add certificates that
guarantee that any �q , with q ∈ Pv , is disjoint from all �p, with p ∈ E(q). These
points q are represented by secondary nodes w ∈ T R , and so we can discuss linking
nodes instead of squares.

Consider a point q. There are O
(
log2 n

)
nodes in the secondary tree of T L whose

canonical subsets together represent exactly E(q). These nodes, in their secondary
function as kinetic tournament nodes, represent the points in L(q). So, in total q is
interested in a set QL(q) of O

(
log2 n

)
kinetic tournament nodes. It now follows from

Observation 2 that if we were to add certificates certifying that rq is left of the point
stored at the nodes in QL(q), we can detect when�q intersects with a square of a point
in E(q). However, as there may be many points q interested in a particular kinetic
tournament node v (an example is given in Fig. 4), we cannot afford to maintain all
of these certificates. The main idea is to represent all of these points q by a number of
canonical subsets of nodes in T R , and add certificates to only these nodes.

Consider a point p. Symmetric to the above construction, there are O
(
log2 n

)
nodes

in kinetic tournaments associated with T R that together exactly represent the (right
sides of) squares �q west of p, for which p ∈ E(q). Let QR(p) denote this set.
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Fig. 4 The red points, on two
convex chains, are all interested
in the same set QL (q). In
general a linear number of points
may be interested in a given
kinetic tournament node

Next, we extend the definitions of QL and QR to kinetic tournament nodes. To
this end, we first associate each kinetic tournament node with a (query) point in
R
2. Consider a kinetic tournament node v in a tournament XL

u , associated with
node u in the primary T L . We denote the coordinates of a point p in the rotated
coordinate system using x ′(p

)
and y′(p

)
. Let, in coordinates of the rotated system,

mv = (mina∈Pu x
′(a

)
,minb∈Pv y

′(b
)
) be the point associated with v (note that we

take the minimum over different sets Pu and Pv for the different coordinates), and
define QR(v) = QR(mv). Symmetrically, for a node w in a tournament X R

u , with
u ∈ T R , we define mw = (maxa∈Pu x

′(a
)
,maxb∈Pv y

′(b
)
) and QL(w) = QL(mw)

(see Fig. 5).
We now add a linking certificate between every pair of secondary nodes v ∈ T L

and w ∈ T R for which (i) v is a node in the canonical subset of w, that is v ∈ QL(w),
and (ii) w is a node in the canonical subset of v, w ∈ QR(v). Such a certificate will
guarantee that the midpoint rq currently stored atw lies left of the point �p stored at v.

Fig. 5 Thepointsmw andmv are definedby apair of secondary nodesw ∈ T R
u′ , andv ∈ T L

u . Ifv ∈ QL (mw)

and w ∈ Q(mv), then we add a linking certificate between the rightmost midpoint rq , q ∈ Pw , and the
leftmost midpoint �p , p ∈ Pv , certifying that the squares in Pw are disjoint from those in Pv
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Lemma 3 Every kinetic tournament node is involved in O
(
log2 n

)
linking certificates,

and thus every point p is associated with at most O
(
log4 n

)
certificates.

Proof Westartwith thefirst part of the lemma statement. Every secondary nodev ∈ T L

can be associated with at most O
(
log2 n

)
linking certificates: one with each node in

QR(v). Analogously, every secondary node w ∈ T R can be associated with at most
O

(
log2 n

)
linking certificates: one for each node in QL(w).

Everypoint p occurs in the canonical subset of atmostO
(
log2 n

)
kinetic tournament

nodes in the second layers of both T L and T R : p is stored in O
(
log n

)
leaves of the

kinetic tournaments, and in each such a tournament it can participate in O
(
log n

)

certificates (at most two tournament certificates in O
(
log n

)
nodes). As we argued

above, each such a node itself occurs in at most O
(
log2 n

)
certificates. ��

What remains to argue is that we can still detect the first upcoming intersection.

Lemma 4 Consider two sets of elements, say blue elements B and red elements R,
stored in the leaves of two binary search trees T B and T R, respectively, and let p ∈ B
and q ∈ R, with q < p, be leaves in trees T B and T R, respectively. There is a
pair of nodes b ∈ T B and r ∈ T R, such that (i) p ∈ Pb and b ∈ C(T B, [x ′,∞)),
and (i i) q ∈ Pr and r ∈ C(T R, (−∞, x]), where x ′ = max Pr , x = min Pb, and
C(T S, I ) denotes the minimal set of nodes in T S whose canonical subsets together
represent exactly the elements of S ∩ I .

Proof Let b be the first node on the path from the root of T B to p such that the
canonical subset Pb of b is contained in the interval [q,∞), but the canonical subset
of the parent of b is not. We define b to be the root of T B if no such node exists.
We define r to be the first node on the path from the root of T R to q for which Pr is
contained in (−∞, x] but the canonical subset of the parent is not. We again define r
as the root of T R if no such node exists. See Fig. 6. Clearly, we now directly have that
r is one of the nodes whose canonical subsets form R ∩ (−∞, x], and that q ∈ Pr
(as r lies on the search path to q). It is also easy to see that p ∈ Pb, as b lies on the

Fig. 6 The nodes b and r in the
trees T B and T R
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search path to p. All that remains is to show that b is one of the canonical subsets that
together form B ∩ [x ′,∞). This follows from the fact that q ≤ x ′ < x ≤ p –and
thus Pb is indeed a subset of [x ′,∞)– and the fact that the subset of the parent v of b
contains an element smaller than q, and can thus not be a subset of [x ′,∞). ��
Lemma 5 Let �p and �q , with p ∈ E(q), be the first pair of squares to intersect, at
some time t∗. There is a pair of nodes v,w with a linking certificate that fails at time t∗.

Proof Consider the leaves representing p and q in T L and T R , respectively. Applying
Lemma 4, we get that there is a pair of nodes u ∈ T L and u′ ∈ T R that, among other
properties, have p ∈ Pu and q ∈ Pu′ . Hence, we can apply Lemma 4 again on the
associated trees of u and u′, giving us nodes v ∈ XL

u and w ∈ X R
u′ with p ∈ Pv and

q ∈ Pw. In addition, these two applications of Lemma 4 give us two points (x, y)
and (x ′, y′) –with coordinates in the rotated system– such that:

– Pu occurs as a canonical subset representing P ∩ ([x ′,∞) × R), and
– Pv occurs as a canonical subset representing Pu ∩ (R × [y′,∞)),

and such that

– Pu′ occurs as a canonical subset representing P ∩ ((−∞, x] × R), and
– Pw occurs as a canonical subset representing Pu′ ∩ (R × (−∞, y]).

We combine these first two facts and observe that mw = (x ′, y′). This gives us that
Pv occurs as a canonical subset representing P ∩ ([x ′,∞) × [y′,∞)) = E((x ′, y′)),
and hence v ∈ QL(mw) = QL(w). Analogously, combining the latter two facts and
mv = (x, y) gives us w ∈ QR(v). Therefore, v and w have a linking certificate. This
linking certificate involves the leftmost left edge midpoint �a for some point a ∈ Pv

and the rightmost right edge midpoint rb for some point b ∈ Pw. Since p ∈ Pv and
q ∈ Pw, we have that rq ≤ rb and �a ≤ �p, and thus we detect their intersection at
time t∗. ��
From Lemma 5 it follows that we can now detect the first intersection between a pair
of squares �p and �q , with p ∈ E(q), so any east/west intersection. We define an
analogous data structure for detecting north/south intersections.

Space Usage. Our trees T L and T R are range trees in R
2, and thus use O

(
n log n

)

space. However, it is easy to see that this is dominated by the space required to
store the certificates. For all O

(
n log n

)
kinetic tournament nodes we store at most

O
(
log2 n

)
certificates (Lemma 3), and thus the total space used by our data structure

is O
(
n log3 n

)
. In Sect. 4 we will show that the number of certificates we maintain,

and thus the space our data structure uses, is actually only O
(
n log n log log n

)
.

3.2 Answering Queries

The basic query that our data structure supports is testing if a query square�q currently
intersects with a square �p in P , with p ∈ E(q). To this end, we simply select
the O

(
log2 n

)
kinetic tournament nodes from T L whose canonical subsets together
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represent E(q). For each such a node vwecheck if the x-coordinate of the leftmidpoint
�p stored at that node (which hasminimum x-coordinate among Lv) is smaller than the
x-coordinate of rq . If so, the squares intersect. The correctness of our query algorithm
directly follows from Observation 1. The total time required for a query is equivalent
to the query time of a 2D range tree, which is O

(
log2 n

)
. We can similarly test if a

given query point q is contained in a square �p, with p ∈ E(q).
To check for intersections with squares p west of q, we can use T R in a way

symmetrical to the procedure described above. Our full data structurewill contain trees
analogous to T L and T R that can be used to check if there is a square �p ∈ P , with p
either north or south of q, that intersects �q . Again, a similar query for containment
of a query point q in a square �p is also supported.

In summary, we can at any point in time test if a given query square �q currently
intersects any �p in P , in O

(
log2 n

)
time. We can in the same running time test if a

query point q is currently contained in any square �p in P .

3.3 Inserting or Deleting a Square

At an insertion or deletion of a square �p we proceed in three steps. First, we update
the individual trees T L and T R , making sure that they once again represent 2D range
trees of all center points in P , and that the secondary data structures are, by themselves,
correct kinetic tournaments. For each kinetic tournament node in T L affected by the
update, we then query T R to find a new set of linking certificates. We update the
affected kinetic tournament nodes in T R analogously. Finally, we update the global
event queue that stores all certificates.

Lemma 6 Inserting a square into T L or deleting a square from T L takes O
(
log2 n

)

amortized time.

Proof We use the following standard procedure for updating the two-level bb[α] trees
T L in O

(
log2 n

)
amortized time. An update (insertion or deletion) in a secondary data

structure can easily be handled in O
(
log n

)
time. When we insert into or delete an

element x in a bb[α] tree that has associated data structures, we add or remove the leaf
that contains x , rebalance the tree by rotations, and finally add or remove x from the
associated data structures. When we do a left rotation around an edge (μ, ν) we have
to build a new associated data structure for node μ from scratch. See Fig. 7. Right
rotations are handled analogously. It is well known that if building the associated data
structure at node μ takes O

(|Pμ| logc |Pμ|) time, for some c ≥ 0, then the costs of
all rebalancing operations in a sequence of m insertions and deletions takes a total of
O

(
m logc+1 n

)
time, where n is the maximum size of the tree at any time [9]. We can

build a new kinetic tournament XL
u for node u (using the associated data structures

at its children) in linear time. Note that this cost excludes updating the global event
queue.

It then follows that the cost of our rebalancing operations is at most O
(
m log n

)
.

This is dominated by the total number of nodes created and deleted, O
(
m log2 n

)
,

during these operations. Hence, we can insert or delete a point (square) in T L in
O

(
log2 n

)
amortized time. ��
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Fig. 7 After a left rotation
around an edge (μ, ν), the
associated data structure Tμ of
node μ (pink) has to be rebuilt
from scratch as its canonical
subset has changed. For node ν

we can simply use the old
associated data of node μ. No
other nodes are affected

Analogous to Lemma 6 we can update T R in O
(
log2 n

)
amortized time. Next,

we update the linking certificates. We say that a kinetic tournament node v in T L is
affected by an update if (i) the update added or removed a leaf node in the subtree
rooted at v, (ii) node v was involved in a tree rotation, or (iii) v occurs in a newly
built associated tree XL

u (for some node u). LetX L
i denote the set of nodes affected by

update i . Analogously, we define the set of nodesX R
i of T R affected by the update. For

each node v ∈ X L
i , we query T R to find the set of O

(
log2 n

)
nodes whose canonical

subsets represent QR(v). For each nodew in this set, we test if we have to add a linking
certificate between v and w. As we show next, this takes constant time for each node
w, and thus O

(∑
i |X L

i | log2 n)
time in total, for all nodes v. We update the linking

certificates for all nodes in X R
i analogously.

We have to add a link between a node w ∈ QR(v) and v if and only if we also
have v ∈ QL(w). We test this as follows. Let u be the node whose associated tree XL

u
contains v. We have that, using the notation introduced in Lemma 4 and coordinates
in the rotated system, v ∈ QL(w) if and only if u ∈ C(T L , [mw

x ,∞)), and v ∈
C(XL

u , [mw
y ,∞)). We can test each of these conditions in constant time:

Observation 7 Let q be a query point in R1, let v be a node in a binary search tree T ,
and let xp = min Pp of the parent p of v in T , or xp = −∞ if no such node exists.
We have that v ∈ C(T , [q,∞)) if and only if q ≤ min Pv and q > xp.

Proof We start with the if direction. Since q > xp, it holds that Pp �⊂ [q,∞) and
hence, p /∈ C(T , [q,∞)). However q ≤ min Pv and so Pv ⊂ [q,∞). Clearly v ∈
C(T , [q,∞)).

For the other direction, observe that v ∈ C(T , [q,∞)) implies that Pv ⊂ [q,∞)

and so, q ≤ min Pv . It also implies that p /∈ C(T , [q,∞)), hence, Pp \ Pv �⊂ [q,∞).
It therefore must hold that q > xp. ��
Finally, we delete all certificates involving no longer existing nodes from our global

event queue, and replace them by all newly created certificates. This takes O
(
log n

)

time per certificate. We charge the cost of deleting a certificate to when it gets created.
Since every node v affected creates at most O

(
log2 n

)
new certificates, all that remains

is to bound the total number of affected nodes. We can show this using basically the
same argument as we used to bound the update time. This leads to the following result.

Lemma 8 Inserting a disjoint square into P, or deleting a square from P takes
O

(
log5 n

)
amortized time.
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Proof An update visits at most O
(
log2 n

)
nodes itself (i.e. leaf nodes and nodes on

the search path). All other affected nodes occur as newly built trees due to rebalancing
operations. As in Lemma 6, the total number of nodes created due to rotations in a
sequence of m updates is O

(
m log2 n

)
. It follows that the total number of affected

nodes in such a sequence is O
(
m log2 n

)
. Therefore, we create O

(
m log4 n

)
linking

certificates in total, and we can compute them in O
(
m log4 n

)
time. Updating the event

global queue therefore takes O
(
m log5 n

)
time. ��

3.4 Running the Simulation

All that remains is to analyze the number of events processed. We show that in a
sequence of m operations, our data structure processes at most O

(
m α(n) log2 n

)

events. This leads to the following result.

Theorem 9 We can maintain a set P of n disjoint growing squares in a fully dynamic
data structure such that we can detect the first time that a square �q intersects with
a square �p, with p ∈ E(q). Our data structure uses O

(
n log n log log n

)
space,

supports updates in O
(
log5 n

)
amortized time, and queries in O

(
log2 n

)
time. For a

sequence of m operations, the structure processes a total of O
(
m α(n) log2 n

)
events

in a total of O
(
m α(n) log5 n

)
time.

Proof We argued the bounds on the query and the update times before. We argue the
space bounds in Sect. 4. All that remains is to bound the number of events processed,
and the time to do so.

We start by the observation that each failure of a linking certificate produces an
intersection, and thus a subsequent update. It follows that, since we processm updates
by definition, the number of such events is at most m.

To bound the number of events created by the tournament trees we extend the
argument of Agarwal et al. [1]. For any kinetic tournament node v in T L , the minimum
x-coordinate corresponds to a lower envelope of line-segments in the t, x-space. This
envelope has complexity O

(|P∗
v | α(|P∗

v |)) = O
(|P∗

v | α(n)
)
, where P∗

v is the multiset
of points that ever occur in Pv , i.e. that are stored in a leaf of the subtree rooted at
v at some time t . Hence, the number of tournament events involving node v is also
at most O

(|P∗
v | α(n)

)
. It then follows that the total number of events is proportional

to the size of these sets P∗
v , over all v in our tree. As in Lemma 6, every update

directly contributes one point to O
(
log2 n

)
nodes. The remaining contribution is due

to rebalancing operations, and this cost is again bounded by O
(
m log2 n

)
. Thus, the

total number of events processed is O
(
m α(n) log2 n

)
.

At every event, we have to update the O
(
log2 n

)
linking certificates of v. Because

all events incur not only an ExtractMin operation (which takes constant time in
some priority queue implementations), but also an insertion into or deletion from
the priority queue, every event incurs a O

(
log n

)
time cost. We can thus update the

linking certicates in O
(
log3 n

)
time (including the time to update the global event

queue). Thus, the total time for processing all kinetic tournament events in T L is
O

(
m α(n) log5 n

)
. The analysis for the tournament nodes in T R is analogous. ��
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To simulate the process of growing the squares in P , we nowmaintain two copies of the
data structure from Theorem 9: one for east/west intersections and one for north/south
intersections. We thus obtain the following result.

Theorem 10 We can maintain a set P of n disjoint growing squares in a fully dynamic
data structure such that we can detect the first time that two squares in P intersect.
Our data structure uses O

(
n log n log log n

)
space, supports updates in O

(
log5 n

)

amortized time, and queries in O
(
log2 n

)
time. For a sequence of m operations, the

structure processes O
(
m α(n) log2 n

)
events in a total of O

(
m α(n) log5 n

)
time.

And so we can solve the agglomerative glyph clustering problem as follows.

Theorem 11 Given a set of n initial square glyphs, we can compute an agglomerative
clustering of the squares in O

(
n α(n) log5 n

)
time using O

(
n log n log log n

)
space.

4 Efficient Representation of Dominance Relations

Our cones for each cardinal direction around a square �q (defined in Sect. 2) closely
resemble dominance relations: essentially they are a dominance relation in a rotated
plane. The linking certificates of our data structure, which are built on these cones,
actually comprise an efficient representation of all dominance relations between two
point sets. We therefore think that this representation, and in particular the tighter
analysis in this section, is of independent interest.

Let R and B be two point sets in R
d with |R| = n and |B| = m, and let T R

and T B be range trees built on R and B, respectively. We assume that each layer of
T R and T B consists of a bb[α]-tree, although similar analyses can be performed for
other types of balanced binary search trees. By definition, every node u on the lowest
layer of T R or T B has an associated d-dimensional range Qu (the hyper-box, not
the subset of points). For a node u ∈ T R , we consider the subset of points in B that
dominate all points in Qu , which can be comprised of O

(
logd m

)
canonical subsets

of B, represented by nodes in T B . Similarly, for a node v ∈ T B , we consider the
subset of points in R that are dominated by all points in Qv , which can be comprised
of O

(
logd n

)
canonical subsets of R, represented by nodes in T R . We now link a node

u ∈ T R and a node v ∈ T B if and only if v represents such a canonical subset for u
and vice versa. By repeatedly applying Lemma 4 for each dimension, it can easily be
shown that these links represent all dominance relations between R and B.

As a d-dimensional range tree consists of O
(
n logd−1 n

)
nodes, a trivial bound on

the number of links is O
(
m log2d−1 n

)
(assuming n ≥ m). Below we show that the

number of links can be bounded by O
(
n(log n log log n)d−1

)
. We first consider the

case for d = 1.

4.1 Analyzing the Number of Links in 1D

Let R and B be point sets in R with |R| = n, |B| = m, and n ≥ m. Now, every
associated range of a node u in T R or T B is an interval Iu . We can extend the interval
to infinity in one direction; to the left for u ∈ T R , and to the right for u ∈ T B . For
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analysis purposes we construct another range tree T on R∪ B, where T is not a bb[α]-
tree, but instead a perfectly balanced tree with height �log(n + m)�. For convenience
we assume that the associated intervals of T are slightly expanded so that all points in
R ∪ B are always interior to the associated intervals. We associate a node u in T R or
T B with a node v in T if the endpoint of Iu is contained in the associated interval Iv
of v.

Observation 12 Every node of T R or T B is associated with at most one node per level
of T .

For two intervals Iu = (−∞, a] and Iv = [b,∞), corresponding to a node u ∈ T R

and a node v ∈ T B , let [a, b] be the spanning interval of u and v. We now want
to charge spanning intervals of links to nodes of T . We charge a spanning interval
Iuv = [a, b] to a node w of T if and only if [a, b] is a subset of Iw, and [a, b] is cut
by the splitting coordinate of w. Clearly, every spanning interval can be charged to
exactly one node of T .

Now, for a node u of T , let hR(u) be the height of the highest node of T R associated
with u, and let hB(u) be the height of the highest node of T B associated with u.

Lemma 13 The number of spanning intervals charged to a node u of T is O
(
hR(u) ·

hB(u)
)
.

Proof Let x be the splitting coordinate of u and let r ∈ T R and b ∈ T B form a spanning
interval that is charged to u. We claim that, using the notation introduced in Lemma 4,
r ∈ C(T R, (−∞, x]) (and symmetrically, b ∈ C(T B, [x,∞))). Let Ib = [x ′,∞) be
the associated interval of b, where x ′ > x . By definition, r ∈ C(T R, (−∞, x ′]). If
r /∈ C(T R, (−∞, x]), then the right endpoint of Ir must lie between x and x ′. But
then the spanning interval of r and b would not be charged to u. As a result, we can
only charge spanning intervals between hR(u) nodes of T R and hB(u) nodes of T B ,
of which there are at most O

(
hR(u) · hB(u)

)
. ��

Using Lemma 13, we count the total number of charged spanning intervals and hence,
links between T R and T B . We refer to this number as numLinks (T R, T B). This is
simply

∑
u∈T O

(
hR(u) ·hB(u)

) ≤ ∑
u∈T O

(
hR(u)2+hB(u)2

)
. We can split the sum

and assume w.l.o.g. that numLinks (T R, T B) ≤ 2
∑

u∈T O
(
hR(u)2

)
. Rewriting the

sum based on heights in T R gives

numLinks (T R, T B) ≤
height(T R)∑

hR = 0

nT (hR) · O(
h2R

)
,

where nT (hR) is the number of nodes of T that have a node of height hR associated
with it.

To bound nT (h) we use Observation 12 and the fact that T R is a bb[α] tree. Let
c = 1

1−α
, then we get that height(T R) ≤ logc(n) from properties of bb[α] trees.

Therefore, the number of nodes in T R that have height h is at most O
( n
ch

)
.

Lemma 14 nT (h) = O
(

(n+m)h
ch

)
.
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Proof As argued, there are at most O
(
n/ch

)
nodes in T R of height h. Consider cutting

the tree T at level log(n/ch). This results in a top tree of size O
(
n/ch

)
, and O

(
n/ch

)

bottom trees. Clearly, the top tree contributes at most its size to nT (h). All bottom
trees have height at most �log(n+m)�− log(n/ch) = O

(
log(ch)+ log(1+m/n)

) =
O

(
h +m/n

)
. Every node in T R of height h can, in the worst case, be associated with

one distinct node per level in the bottom trees by Observation 12. Hence, the bottom
trees contribute at most O

(
n(h +m/n)/ch

) = O
(
(nh +m)/ch

) = O
(
(n +m)h/ch

)

to nT (h). ��
Using this bound on nT (h) in the sum we previously obtained gives:

numLinks (T R, T B) ≤
height(T R)∑

hR=0

O

(
(n + m) h3R

chR

)

≤ O
(
n + m

) ∞∑

h=0

h3

ch
= O

(
n + m

)
.

Where indeed,
∑∞

h=0
h3

ch
= O

(
1
)
because c > 1. Thus, we conclude:

Theorem 15 The number of links between two 1-dimensional range trees T R and T B

containing n and m points, respectively, is bounded by O
(
n + m

)
.

4.2 Extending to Higher Dimensions

We now extend the bound to d dimensions. The idea is very simple. We first determine
the links for the top-layer of the range trees. This results in links between associated
range trees of d − 1 dimensions (see Fig. 8). We then determine the links within the
linked associated trees, which number can be bounded by induction on d.

Theorem 16 The number of links between two d-dimensional range trees T R and T B

containing respectively n andm (n ≥ m)points is boundedby O
(
n(log n log log n)d−1

)
.

Proof We show by induction on d that the number of links is bounded by theminimum
of O

(
n(log n log log n)d−1

)
and O

(
m log2d−1 n

)
. The second bound is simply the

trivial bound given at the start of Sect. 4. The base case for d = 1 is provided by
Theorem 15. Now consider the case for d > 1. We first determine the links for the
top-layer of T R and T B . Now consider the links between an associated tree Tu in T R

containing k points and other associated trees T0, . . . , Tr that contain at most k points.

Fig. 8 Two layered trees with two layers, and the links between them (sketched in black). We are interested
in bounding the number of such links
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Since Tu can be linked with only one associated tree per level, and because both range
trees use bb[α] trees, the number of pointsm0, . . . ,mr in T0, . . . , Tr satisfymi ≤ k/ci

(0 ≤ i ≤ r ) where c = 1
1−α

. By induction, the number of links between Tu and Ti is

bounded by the minimum of O
(
k(log n log log n)d−2

)
and O

(
mi log2d−3 n

)
. Now let

i∗ = logc(log
d−1 n) = O

(
log log n

)
. Then, for i ≥ i∗, we get that O

(
mi log2d−3 n

) =
O

(
k logd−2 n

)
. Since the sizes of the associated trees decrease geometrically, the total

number of links between Tu and Ti for i ≥ i∗ is bounded by O
(
k logd−2 n

)
. The links

with the remaining trees can be bounded by O
(
k logd−2 n(log log n)d−1

)
. Finally

note that the top-layer of each range tree has O
(
log n

)
levels, and that each level

contains n points in total. Thus, we obtain O
(
n logd−1 n(log log n)d−1

)
links in total.

The remaining links for which the associated tree in T B is larger than in T R can be
bounded in the same way. ��

It follows from Theorem 16 that our data structure from Sect. 3 actually maintains
only O

(
n log n log log n

)
certificates. That number is significantly lower than our

initial analysis showed: at the end of Sect. 3.1 we analyzed the space usage to be
O

(
n log3 n

)
. The number of certicates, even under the tighter analysis, however still

slightly dominates the space usage of the 2D range trees and kinetic tournaments,
which is O

(
n log n

)
. Our data structure thus uses only O

(
n log n log log n

)
space.

5 Conclusion and FutureWork

We presented an efficient fully dynamic data structure for maintaining a set of disjoint
growing squares. This leads to an efficient algorithm for agglomerative glyph clus-
tering. The main future challenge is to improve the analysis of the running time. Our
analysis from Sect. 4 shows that at any time, we need only few linking certificates.
However, wewould like to bound the total number of linking certificates used through-
out the entire sequence of operations. An interesting question is if we can extend our
argument to this case. This may also lead to a more efficient algorithm for maintaining
the linking certificates during updates.
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