
ar
X

iv
:1

90
5.

09
75

0v
1

 [
cs

.D
S]

 2
3

M
ay

 2
01

9

Approximation schemes for the generalized extensible bin packing problem⋆

Asaf Levin1

Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel. levinas@ie.technion.ac.il.

Abstract. We present a new generalization of the extensible bin packing with unequal bin sizes problem. In our

generalization the cost of exceeding the bin size depends on the index of the bin and not only on the amount in

which the size of the bin is exceeded. This generalization does not satisfy the assumptions on the cost function that

were used to present the existing polynomial time approximation scheme (PTAS) for the extensible bin packing

with unequal bin sizes problem. In this work, we show the existence of an efficient PTAS (EPTAS) for this new

generalization and thus in particular we improve the earlier PTAS for the extensible bin packing with unequal bin

sizes problem into an EPTAS. Our new scheme is based on using the shifting technique followed by a solution of

polynomial number of n-fold programming instances. In addition, we present an asymptotic fully polynomial time

approximation scheme (AFPTAS) for the related bin packing type variant of the problem.

1 introduction

We define the following load balancing on parallel machines problem that we name the generalized exten-

sible bin packing problem (GEBP). The input consists of n jobs, where job j has size pj ≥ 0, there are m
machines where for all i, machine i is associated with three positive input numbers fi, ci, σi, such that the

following assumption holds:

fi = ci · σi, ∀i. (1)

Assigning the set of jobs Si to machine i, incurs a load on machine i that is the total size of jobs in Si. That

is, the load of machine i that is assigned the set of jobs Si is Li =
∑

j∈Si
pj , and the cost of machine i is

costi(Li) =

{

fi if Li ≤ ci
fi + σi · (Li − ci) otherwise

The goal of GEBP is to find a partition of the jobs to m machines such that the total cost of the machines (in

this solution) is minimized. In this definition of the cost function of machine i, the value of fi is seen as a

fixed cost of machine i, the value of ci is the standard capacity of machine i, and σi is the cost of extending

the capacity of machine i by one unit of overtime. The value of 1
σi

captures the speed in which increasing

the total size of jobs assigned to i causes the cost of i to increase by one unit. This speed is similar to the

roles of speeds in the environment of uniformly related machines that is widely studied in the scheduling

literature. In our study it will be easier to refer to the reciprocal of the speed (i.e., to the values of σi) and

not to the speeds.

The extensible bin packing problem (EBP) is the special case of GEBP where for every machine i we

have fi = ci = σi = 1 (note that these values satisfy (1)). Even this special case is strongly NP-hard via the

standard reduction from 3-Partition. This extensible bin packing problem was suggested by [22,7]. Another

special case of GEBP that was considered before is the case of extensible bin packing with unequal bin sizes

(EBP-UBS). This EBP-UBS is defined as the special case of GEBP where for every machine i, σi = 1 and

fi = ci (once again (1) holds for such values). Another interesting special case of GEBP that generalizes

⋆ This research was supported by a grant from the GIF, the German-Israeli Foundation for Scientific Research and Development

(grant number I-1366-407.6/2016) and by a grant from the ISF, the Israel Science Foundation (grant number 308/18).

http://arxiv.org/abs/1905.09750v1

EBP is the generalization from identical machines to uniformly related machines, that is, the special case of

GEBP where fi = 1 for all i. Observe that this last case does not generalizes EBP-UBS and it is not a special

case of EBP-UBS. Our new model is defined in order to generalizes all these special cases.

Before we state our main result and present the literature, we define the notion of approximation algo-

rithms and the different types of approximation schemes. An R-approximation algorithm for a minimization

problem is a polynomial time algorithm that always finds a feasible solution of cost at most R times the cost

of an optimal solution. The infimum value of R for which an algorithm is an R-approximation is called

the approximation ratio of the algorithm. A polynomial time approximation scheme (PTAS) is a family of

approximation algorithms such that the family has a (1 + ε)-approximation algorithm for any ε > 0. An

efficient polynomial time approximation scheme (EPTAS) is a PTAS whose time complexity is of the form

f(1ε) · poly(n) where f is some (not necessarily polynomial) computable function, and poly(n) is a poly-

nomial function of the length of the (binary) encoding of the input. A fully polynomial time approximation

scheme (FPTAS) is a stronger concept, defined like an EPTAS, but the function f must be a polynomial in
1
ε . When we consider an EPTAS we say that an algorithm (for some problem) has a polynomial running

time complexity if its time complexity is of the form f(1ε) · poly(n). Note that while a PTAS may have

time complexity of the form ng(
1
ε
), where g can be polynomial or even super-exponential, this cannot be

the case for an EPTAS. The notion of an EPTAS is modern and finds its roots in the FPT (fixed parameter

tractable) literature (see [4,10,14,19]). It was introduced in order to distinguish practical from impractical

running times of PTAS’s, for cases where a fully polynomial time approximation scheme (FPTAS) does not

exist (unless P=NP). In this work, we design an EPTAS for GEBP for which an FPTAS does not exist unless

P=NP as GEBP is strongly NP-hard.

In [22] Speranza and Tuza analyzed an online variant of EBP and considered the list scheduling heuristic

showing that it is a 5/4-approximation while a slightly improved algorithm is suggested whose approxi-

mation ratio is 1.228 and a lower bound of 7/6 is established for this online variant. In [7] Dell’Olmo et

al. showed that the longest processing time heuristic is a 13/12-approximation for EBP. The EPTAS of Alon

et al. [1,2] for load balancing on identical machines solves EBP and thus this special case admits an EP-

TAS prior to this work. The time complexity of this EPTAS for EBP (among other problems on identical

machines) was improved in the work of Jansen, Klein, and Verschae [18]. The online problem was studied

further in [24]. See also [9,3,20] for a study of this special case in the stochastic settings in the context of

scheduling operating rooms, and [21] for a use of the approximation algorithms for this problem in PCM

interface management arising in wireless switch design.

The study of EBP-UBS was initiated by Dell’Olmo and Speranza [8] who showed that the approximation

ratio of the longest processing time heuristic is 4 − 2
√
2 and that the approximation ratio of the online

algorithm list scheduling is exactly 5
4 . They also showed that any online algorithm has an approximation

ratio of at least 7
6 . The PTAS of Epstein and Tassa [13] for vector scheduling in asymmetric settings gives a

PTAS for EBP-UBS. Their assumption that the cost functions of the machines have a common constant upper

bound on the Lipschitz constants cannot be met for GEBP as this means that the maximum ratio between the

costs of extending a pair of machines by one unit of overtime is bounded by a constant (i.e., their scheme

assumes that σi

σi′
is bounded by a constant independent of the pair of machines (i, i′)). The online problem of

EBP-UBS was also studied in [23] who analyzed the performance guarantee of list scheduling as a function

of the standard capacities of the machines and present an improved online algorithm for the cases m = 2, 3.

Thus, with respect to the existence of approximation schemes, EBP was known to admit an EPTAS while

EBP-UBS was known to have a PTAS (that is not an EPTAS). The approximability of GEBP as well as its

special case of fi = 1 for all i were not studied before.

2

Our main result is an EPTAS for GEBP. In particular, we improve upon the scheme of [13] for EBP-UBS

and present the first EPTAS for this (previously studied) special case. Our scheme first apply preprocessing

steps and then breaks the asymmetry between the machines in a two steps approach. In the first step, we

use the machinery of the shifting technique in order to partition the instance into polynomially many sub-

instances each of which has the additional property that the standard capacities of the machines in the sub-

instance are similar. The resulting sub-instance still captures unbounded asymmetry between the machines,

and in order to tackle the sub-instances we use the recent algorithms for n-fold programming. We refer to

[17] for an earlier EPTAS for a different scheduling problem that is based on solving an n-fold programming

instance. The time complexity of our scheme is a single exponential function of 1
ε times a polynomial of

n,m.

We conclude this work in Section 5 by showing the existence of an asymptotic fully polynomial time

approximation scheme for a related bin packing type variant of the problem similarly to the variant of EBP

studied by [6,5]. In this variant of GEBP the number of machines of each type is not part of the input and is

determined as part of the solution. Namely, for every i = 1, 2, . . . ,m we first decide how many machines

of type i with a fixed cost fi, a standard capacity ci, and the cost σi for overtime, to have where for all i,
fi = ci · σi. In a second stage we find a feasible allocation of the jobs to the machines we have (according

to the decisions made in the first stage). We denote this variant GEBP-BPV. In Section 5 we establish the

existence of an asymptotic fully polynomial time approximation scheme (AFPTAS) for GEBP-BPV. We note

that the special case of one type of machines with f1 = c1 = σ1 = 1 was considered by Coffman and

Lueker [6,5] who presented an AFPTAS for this special case of GEBP-BPV.

Paper outline. We present our EPTAS for GEBP in the main part of the paper. This exposition is partitioned

into preprocessing steps and characterization of near optimal solutions in Section 2, followed by an analysis

of the shifting technique when applied to GEBP in Section 3, and finally the use of the n-fold programming

algorithm to solve the family of sub-instances resulting from the shifting step is described in Section 4. We

establish the existence of an AFPTAS for GEBP-BPV in Section 5.

2 Preprocessing steps and the structure of a near optimal solution

We assume that ε > 0 satisfies that 1
ε is integer. We use the fact that in order to establish the existence of

an EPTAS for GEBP, it suffices to establish for some integer constant z, a (1+ ε)z-approximation algorithm

whose time complexity is upper bounded by the product of a computable function of 1
ε and a polynomial of

the input length. When we state time complexity of steps in our algorithm we ignore polynomial factors of
1
ε .

Our preprocessing steps consists of scaling and rounding of the input parameters. Our goal is to assume

that job sizes are rounded and that the minimum value of σi is 1.

First, we consider the scaling of the parameters that allows us to assume that mini σi = 1. That is, we

prove the following lemma.

Lemma 1. Without loss of generality, mini σi = 1.

Proof. Assume that the input of GEBP does not satisfy the claim. Then we let σ = mini σi, and we do the

following. For every machine i we multiply ci by σ, and we divide σi by σ. In addition, for every job j, we

multiply the job size pj by σ. Observe that the new input satisfies fi = ci · σi for all i.

Next, we show that for every solution for the original input, the cost of the solution in the new input is

the same as it was in the original input. To see this fact, note that for every machine i, its load, i.e., the value

3

of Li is σ times its value in the solution for the original input, and thus it satisfies Li ≤ ci in the new input

if and only if it is satisfied in the original input. Furthermore, the value of Li − ci in the new input is exactly

σ times its value in the original input, and thus the cost of machine i is the same in the two inputs. ⊓⊔
Next, without loss of generality, we assume that machines are sorted according to their standard capaci-

ties, that is, we assume c1 ≥ c2 ≥ · · · ≥ cm.

Throughout this work we use the following observation.

Observation 1 Let x, y be two numbers such that x ≤ y ≤ (1+ε)x and let i be a machine, then costi(x) ≤
costi(y) ≤ (1 + ε) · costi(x).
Proof. The inequality costi(x) ≤ costi(y) holds by the fact that the cost function costi is monotone non-

decreasing (as σi is at least 1, and thus non-negative). The inequality costi(y) ≤ (1 + ε) · costi(x) holds

by the following argument. If y < ci, then x, y < ci and we have costi(x) = costi(y) and the inequality

holds. Otherwise, y ≥ ci and by the assumption fi = ci · σi, we conclude costi(x) ≥ σi · x and so

costi(x) ≥ σi · x ≥ σi · y
1+ε = 1

1+ε · costi(y) establishing the required inequality. ⊓⊔
Next, we consider the rounding of the jobs sizes and we use the following rounding method. This round-

ing method is motivated by the fact that the n-fold programming formulations which we use to solve sub-

instances of the rounded problem later on, assume that all coefficients of the constraint matrix are (relatively

small) integers. Thus, for every job j, we let τ(j) be the integer value such that pj ∈
[

1
ετ(j)

, 1
ετ(j)+1

)

. We let

the rounded value of pj be

p′j =

⌈

pj

(1/ε)τ(j)−1

⌉

·
(

(1/ε)τ(j)−1
)

.

The rounded instance I ′ is the instance of GEBP in which the values of the input parameters are ci, σi, fi for

all i (such that mini σi = 1), and p′j for all j. In the sequel, we use the fact that in I ′, for every integer value

of τ there are at most 1/ε2 distinct rounded job sizes in the interval
[

1
ετ ,

1
ετ+1

)

.

For a solution SOL and an instance Î of GEBP, we denote by cost(SOL, Î) its objective function value

where the input parameters are according to Î (in particular we use this notation for Î = I and for Î = I ′).
Next we analyze the impact of the rounding step on the performance guarantee of our algorithm.

Lemma 2. Let SOL be a feasible solution. Then, cost(SOL, I) ≤ cost(SOL, I ′) ≤ (1 + ε) · cost(SOL, I).

Proof. For every job j, we have p′j ≥ pj as we round up the size of j. For every j, we have p′j ≤ (1 + ε)pj

as εpj ≥ (1/ε)τ(j)−1 by definition of τ(j), and when we round up pj we increase its size by at most

(1/ε)τ(j)−1, that is, we have

p′j ≤
(

pj

(1/ε)τ(j)−1
+ 1

)

·
(

(1/ε)τ(j)−1
)

≤ pj +
(

(1/ε)τ(j)−1
)

≤ (1 + ε)pj

as we argued.

For every machine i, the total size of jobs assigned to i in SOL as a solution to I is at most the total size

of jobs assigned to i in SOL as a solution to I ′ and this is at most (1+ ε) times the total size of jobs assigned

to i as a solution to I . The claim follows by Observation 1 and summing the costs of all machines. ⊓⊔
In what follows, we assume that the original input of GEBP satisfies the assumption of Lemma 1 and the job

sizes are already rounded as they are in I ′. With a slight abuse of notation, we let fi, ci, σi be the parameters

of machine i and pj be the size of job j (for all i, j) in this input which we denote by I . It is sufficient to

provide an EPTAS for I , and this would imply an EPTAS for the original input.

Next, we characterize near optimal solutions. We let h be an index of a machine for which σh = 1.

4

Definition 1. A solution SOL for GEBP is called a nice solution if for every machine i 6= h, the total size of

jobs assigned to i (in SOL) is at most ci
ε .

The proof of the following lemma uses the observation that since σh = 1, adding a set of jobs of total size

x to machine h increases the cost of h by at most x.

Lemma 3. Let OPT be an optimal solution (for the rounded instance) whose cost is denoted as cost(OPT).
Then, there is a nice solution SOLnice whose cost cost(SOLnice) is at most (1 + ε) · cost(OPT).

Proof. Consider the solution OPT. Let S be the set of machines i such that i 6= h and OPT assigns to i a set

of jobs Oi of total size larger than ci
ε . We create the solution SOLnice by changing the assignment of jobs in

∪i∈SOi so that these jobs are assigned to h, while the assignment of other jobs is the same as in OPT. That

is, we reassign the jobs that were assigned to machine in S so that they are assigned to h. Observe that the

new solution SOLnice is indeed a nice solution.

Next, we upper bound the cost of the new solution. Let Li be the total size of jobs assigned by OPT to

machine i (for all i). We have the following.

cost(SOLnice) ≤
∑

i/∈S

costi(Li) + σh ·
∑

i∈S

Li +
∑

i∈S

fi

≤
∑

i/∈S

costi(Li) +
∑

i∈S

(Liσi + fi)

=
∑

i

costi(Li) +
∑

i∈S

fi

however,
∑

i costi(Li) = cost(OPT), and thus it suffices to show that for every i ∈ S, we have fi ≤
ε · costi(Li). This follows as fi = ci · σi ≤ ε · Li · σi = ε · costi(Li) where the inequality holds as i ∈ S
and the last equation holds by the definition of costi as Li ≥ ci. ⊓⊔

We let OPT-NICE be an optimal solution among all nice solutions for the rounded instance whose cost

is cost(OPT-NICE). In what follows we show an algorithm that returns a solution SOL whose cost is at most

(1 + ε)4(1 + 3ε) · cost(OPT-NICE) and its time complexity is T ′(n,m, 1ε). This solution SOL is a feasible

solution to the original instance of GEBP that is obtained in time T ′(n,m, 1ε)+n+m (as the rounding takes

O(n) and the scaling takes O(n + m)) whose approximation ratio as an approximation algorithm for the

original instance of GEBP is (1 + ε)6 · (1 + 3ε).

3 Using the shifting technique to obtain a family of instances with machines with similar

standard capacities

We use the shifting technique [16,15] to partition the rounded instance into a family of problems that can be

solved almost independently. For every value of t = 0, 1, . . . , 1ε − 1 we let

M(t) = {i ∈ {1, 2, . . . ,m} : ⌈log1/ε2 ci⌉ ≡ t mod
1

ε
},

and we let tmin be an index such that

tmin ∈ argmin
t

∑

i∈M(t)

fi.

5

Observe that the value tmin is easily computed in O(m) time.

Recall that OPT-NICE is the best solution for the rounded instance whose cost is cost(OPT-NICE). Let

OPT
′ be the best solution among the nice solutions which allocate no job to machines in M(tmin) \ {h}.

Then, we next show that the cost cost(OPT
′) of OPT

′ is close to cost(OPT-NICE).

Lemma 4. We have cost(OPT-NICE) ≤ cost(OPT
′) ≤ (1 + ε) · cost(OPT-NICE).

Proof. The first inequality holds by definition. We prove the second inequality by establishing a nice solution

SOL which allocates no job to machines inM(tmin)\{h} and we bound its cost by (1+ε)·cost(OPT-NICE).
Consider OPT-NICE and let J be the set of jobs which OPT-NICE assigns to machines in M(tmin) \ {h}. In

order to construct SOL we modify OPT-NICE by changing the allocation of J and we assign these jobs to

machine h (and recall that σh = 1). Clearly by moving jobs from machines to machine h the property of

nice solutions cannot be hurt as the load in SOL of every machine which is not h is not larger than it was

in OPT-NICE. Furthermore SOL does not allocate jobs to machines in M(tmin) \ {h}. Last, the cost of SOL

denoted as cost(SOL) satisfies

cost(SOL) ≤ cost(OPT-NICE) +
∑

i∈M(tmin)\{h}

fi (2)

≤ cost(OPT-NICE) + ε ·
m
∑

i=1

fi (3)

≤ (1 + ε) · cost(OPT-NICE), (4)

where (2) holds as for every machine i ∈M(tmin) \{h} that OPT-NICE assigns a total load of x (for x ≥ 0)

its cost in OPT-NICE was at least σi · x ≥ x and this extra load on machine h increases the cost of h by at

most x, and thus the increase of the cost of the solution due to the reallocation of jobs of size x to machine

h is at most fi (the cost of i in SOL); inequality (3) holds by definition of tmin; and (4) follows by the

definition of the objective function of GEBP. ⊓⊔

In what follows, we enforce the algorithm to allocate no job to machines in M(tmin) \ {h}. Since

OPT
′ is an optimal nice solution subject to this additional constraint, we conclude that it suffices to con-

struct a feasible solution SOL whose cost is approximately cost(OPT′). Next, we delete the set of machines

M(tmin) \ {h} from the instance. This deletion of machines does not hurt the feasibility of SOL and of

OPT
′ (as these solutions do not allocate jobs to the deleted machines), however, it decreases the cost of both

solutions by a common non-negative constant that is the total fixed cost of the deleted machines. Thus, it

suffices to show that we can design an EPTAS for the instance resulted from I by deleting the machines in

M(tmin) \ {h}. Once again, with a slight abuse of notation we assume that the instance I is the instance

resulted from this deletion of machines and denote by {1, 2, . . . ,m} the set of machines in I such that

c1 ≥ c2 · · · ≥ cm.

We partition the machine set of the instance I resulting from the deletion ofM(tmin)\{h}. This partition

is obtained by letting each partition S be a maximal (with respect to inclusion) set of consecutive indices

of machines such that there are no two consecutive indices i, i + 1 ∈ S satisfying ci
ci+1

≥
(

1
ε

)2
. We let

κ be the number of partitions in this partition (S1, . . . , Sκ) such that for every q, and for every i(q) ∈ Sq
and i(q + 1) ∈ Sq+1 we have ci(q) > ci(q+1) and in fact we have ε2 · ci(q) ≥ ci(q+1), by the sorting of the

machines. For q = 1, 2, . . . , κ, let ℓ(q) = min{i : i ∈ Sq} and r(q) = max{i : i ∈ Sq} so the indices in Sq
are those between ℓ(q) and r(q). A crucial property for our algorithm is the following one.

6

Lemma 5. For every q = 1, 2, . . . , κ, and every pair of machines i, i′ ∈ Sq, we have

ci
ci′

≤
(

1

ε

)4/ε

.

Proof. Assume by contradiction that the claim does not hold for i, i′ ∈ Sq. Then, ci
ci′

>
(

1
ε2

)2/ε
. Then,

log 1
ε2
ci − log 1

ε2
ci′ >

2
ε . By the integrality of 2

ε , we conclude that the following holds.

⌈

log 1
ε2
ci

⌉

−
⌈

log 1
ε2
ci′
⌉

≥ 2

ε
.

Thus, by the pigeonhole principle, there are at least two integers x < y which are equivalent to tmin modulo
1
ε such that

⌈

log 1
ε2
ci

⌉

≥ y > x >
⌈

log 1
ε2
ci′
⌉

. Next, we define z to be either x or y according to the

following rule. If
⌈

log 1
ε2
ch

⌉

6= x then we let z = x, and otherwise we let z = y. Then, observe that when

we deleted the set of machines M(tmin) \ {h}, we deleted all machines with standard capacities in the

interval
(

(

1
ε2

)z−1
,
(

1
ε2

)z
]

and in particular ci and ci′ do not belong to this interval. Let i′′ be the maximum

index of a machine with ci′′ >
(

1
ε2

)z
. Then, since x ≤ z ≤ y by definition of i′′ we have ci ≥ ci′′ > ci′ ,

however the ratio between ci′′ and ci′′+1 is strictly larger than 1
ε2

contradicting the assumption that i, i′ ∈ Sq
so i, i′, i′′, i′′ + 1 ∈ Sq, and thus the claim follows. ⊓⊔

We next partition the job set J = {1, 2, . . . , n} as follows. For q = 1, 2, . . . , κ the job subset Jq is

defined as

Jq = {j ∈ J :
cℓ(q)

ε
≥ pj > ε · cr(q)}

The set J0 is J0 = {j ∈ J : pj >
c1
ε } and for every q = 1, 2, . . . , κ the set

J ′
q = {j ∈ J :

cℓ(q+1)

ε
< pj ≤ ε · cr(q)}

where cℓ(κ+1) = 0. Observe that every nice solution allocates all jobs of J0 to machine h, and for every q it

allocates all jobs of Jq ∪ J ′
q to machines in {h} ∪⋃q

i=1 Si.

For q = 1, 2, . . . , κ, we define a relaxation of the problem GEBP where the set of machines is Sq, the

set of jobs is Jq and in addition we have sand consisting of jobs of total size φq , and where we need to

schedule all jobs and the sand on the machines Sq but we are allowed to leave jobs and sand of total size at

most ψq unscheduled (these jobs are assigned to machines with indices smaller than ℓ(q) or to machine h).

The notion of sand means that the jobs that are part of the sand can be assigned fractionally to machines.

We denote by AUXq(φq, ψq) the relaxation corresponding to the index q together with the two numerical

parameters φq, ψq.

We will show that if φq is an integer multiply of ε·cr(q) while ψq is an integer multiply of
cℓ(q)
ε , then AUXq

can be approximated within a multiplicative factor of (1+ ε) with time complexity that fits the assumptions

of an EPTAS. That is, we will prove the following theorem in the next section.

Theorem 2. There exists an algorithm ALG that given an instance of AUXq defined by q, φq, ψq such that φq
is an integer multiply of ε · cr(q) while ψq is an integer multiply of

cℓ(q)
ε , ALG returns a (1+ ε)-approximated

solution to AUXq and the time complexity of ALG is upper bounded by T (m,n, 1ε) where T (m,n, 1ε) =

O(
(

(1/ε)O(1/ε10)
)

·m2 log3m).

7

Before presenting the proof of Theorem 2, we show that the existence of the algorithm ALG is sufficient

to guarantee the existence of an EPTAS for GEBP.

Theorem 3. There is an algorithm with time complexity O(n2 · m · T (m,n, 1ε)) that given the rounded

instance returns a solution whose cost is at most (1 + ε)4(1 + 3ε) · cost(OPT-NICE).

Proof. It suffices to construct a (1 + ε)3(1 + 3ε)-approximation algorithm for the rounded instance after

deleting the machines in M(tmin) \ {h}.

The first step of the algorithm is to apply ALG on a family F of inputs consisting of the following ones.

For every q = 1, 2, . . . , κ, for every φq in the interval [0, n · ε · cr(q)] that is an integer multiply of ε · cr(q),
and for every ψq in [0, n · cℓ(q)ε] that is an integer multiply of

cℓ(q)
ε , we apply ALG to solve approximately the

instance AUXq(φq, ψq). We denote by A(q, φq, ψq) the cost of the solution SOL(q, φq, ψq) returned by ALG

when applied on the instance AUXq(φq, ψq). The time complexity of the first step is O(n2m · T (m,n, 1ε))
as the number of inputs solved by ALG is at most O(n2m) using κ ≤ m.

The second step is to use dynamic programming in order to concatenate a sequence of inputs in the

family F consisting of one input for each value of q. We define the dynamic programming formulation as

a shortest path computation in a directed layered graph G = (V,E). The graph consists of κ + 1 layers

denoted as L0, L1, L2, . . . , Lκ and one additional node t. The nodes of layer Lq are associated with the

possible value of φq . This defines the nodes of layers L1, L2, . . . , Lκ, however to use this definition for layer

L0 we define a value φ0 as the total size of jobs in J0 plus the value of ψ1, i.e., φ0 =
∑

j∈J0
pj + ψ1. Thus,

in every layer there are n+1 nodes, and in total there are O(nm) nodes in G. We next describe the edge set

of G together with the length associated with each edge. For q = κ, κ − 1, . . . , 1 and a node φq in layer Lq

and node φq−1 in layer Lq−1 we have an edge from the node φq in Lq towards node φq−1 in Lq−1 whose

length is defined as follows. We compute a value ψq that is the maximum integer multiply of
cℓ(q)
ε such that

together with the total size of jobs in J ′
q−1 the resulting size is at most φq−1. That is, for q ≥ 2, we compute

ψq =
cℓ(q)

ε
·min

{

n,

⌊

φq−1 −
∑

j∈J ′

q−1
pj

cℓ(q)
ε

⌋}

. (5)

The value of ψ1 is computed slightly different. We subtract from φ0 the total size of jobs in J0 and the

resulting value is ψ1 (note that this is already a rounded value). That is, ψ1 = φ0 −
∑

j∈J0
pj . The length

of the edge in the graph between these two nodes is defined as A(q, φq, ψq). For every node φ0 in layer

L0 we have an edge from this node directed to t whose length is φ0. This length of the edges directed to t
is motivated by the fact that assigning jobs of total size φ0 to machine h costs at most φ0. In the resulting

directed graph we find a shortest path P from the node φκ in layer Lκ to node t, where φκ is defined as

follows.

φκ = ε · cr(κ) ·
⌈
∑

j∈J ′

κ
pj

ε · cr(κ)

⌉

.

The time complexity of the second step is determined by the number of edges in the graph that is at most

O(n2m). We denote by φ∗q the node in layer Lq that belongs to the shortest path computed by the algorithm,

and we let ψ∗
q be the corresponding value of ψq that the algorithm computed using (5) for the sequence of

φ∗.

The third (and last) step of the algorithm is to compute a feasible solution for GEBP whose cost is at

most (1 + ε) times the total length of P. For q = κ, κ − 1, . . . , 1, we show that we can assign (integrally)

the jobs Jq and small jobs of total size φ∗q each of which of size at most ε · cr(q) such that a total size of at

8

most ψ∗
q is not assigned (such a solution is called feasible), and the cost of this feasible solution is at most

(1 + ε) ·A(q, φ∗q , ψ∗
q).

Consider one specific value of q. We say that the jobs in Jq are large and the other jobs are small. The

solution SOL(q, φ∗q , ψ
∗
q) returned by ALG specifies the assignment of large jobs to machines in Sq (some

of these jobs might be unassigned) and for each machine i ∈ Sq it defines a volume vol(i) of sand that

is assigned to i. We denote by J(q) ⊆ Jq the set of large jobs that the solution SOL(q, φ∗q , ψ
∗
q) does not

assign to machines in Sq. The feasibility of the solution SOL(q, φ∗q , ψ
∗
q) (for AUXq) ensures the following

inequalities.

φ∗q −
∑

i∈Sq

vol(i) +
∑

j∈J(q)

pj ≤ ψ∗
q , and φ∗q ≥

∑

i∈Sq

vol(i), (6)

where the first inequality holds by the guarantee on the total size of jobs and sand that the solution does

not assign, and the second inequality follows by the fact that the total size of sand in the instance is at most

φ∗q . In the solution that we create we assign the jobs in Jq \ J(q) exactly as in SOL(q, φ∗q , ψ
∗
q), while for

the assignment of small jobs we consider the list of small jobs Small and we process the machines in Sq
one by one in an arbitrary order as long as Small is not empty. When considering the current machine

i, we find a minimum prefix of Small whose total size is at least vol(i), this prefix of jobs is assigned

to i, we delete it from Small and move to the next machine in Sq. If this prefix is undefined, it means

that the total size of jobs in Small is smaller than vol(i) and we assign all jobs in Small to i (and stop

the assignment process of small jobs to machines in Sq). The time complexity of this step is O(n + m).
Furthermore, if there is a machine i such that when processing i all jobs in Small are assigned to i, then

all small jobs are assigned and the feasibility of the solution we create to machines in Sq follows by (6).

Otherwise, every machine i ∈ Sq receives a total size of small jobs of at least vol(i), and once again by (6)

the resulting solution we create is a feasible solution. We observe that for every machine i ∈ Sq, the total

size of jobs assigned to i is at most ε · cr(q) ≤ εci larger than the total size of jobs (and sand) assigned to i in

SOL(q, φ∗q , ψ
∗
q). By observation 1, this increase of the total size of jobs assigned to i may increase the cost

of i by a multiplicative factor of at most (1+ ε) as we show next. If x denotes the total size of jobs and sand

assigned to i in SOL(q, φ∗q , ψ
∗
q), then the cost of i in that solution is costi(max{x, ci}) and in our solution

it is at most costi(x + ε · ci) ≤ costi((1 + ε) ·max{x, ci}) ≤ (1 + ε) · costi(max{x, ci}) where the first

inequality follows by the monotonicity of the cost function and the second inequality by Observation 1. In

order to use the induction (and decrease the value of q by 1), note that the total size of jobs not assigned

to machines that are not h and with indices at least ℓ(q) which are of size at most
cℓ(q)
ε is at most ψ∗

q , and

the total size of jobs with sizes in the interval (
cℓ(q)
ε , ε · cr(q−1)] is the total size of jobs in J ′

q−1. Thus, by

the definition of ψ∗
q in terms of φ∗q−1, we conclude that the total size of jobs of size at most ε · cr(q−1) that

are still unscheduled is at most φ∗q−1 and indeed we guarantee the assumption on the recursive algorithm for

q − 1. The claim follows as any set of jobs of total size at most φ∗0 can be assigned to machine h increasing

the cost of that machine by at most φ∗0 that is the length of the edge of P adjacent to t.

The theorem follow by showing that the graph G has a path Popt whose total length is at most (1 + ε) ·
(1 + 3ε) · cost(OPT

′) where OPT
′ is a cheapest solution among all nice solutions which do not allocate jobs

to machines in M(tmin) \ {h}. Based on OPT’ we define a fractional value of φq for all q = 0, 1, 2, . . . , κ

as follows where we let J ′
0 = J0. For a given value of q, the fractional value φ̂q of φq is the total size of

jobs in J ′
q ∪

⋃κ
q′=q+1(Jq′ ∪ J ′

q′) that OPT’ assigns to machines in {h} ∪
⋃q

q′=1 Sq′ . Similarly, we define

ψ̂q = φ̂q−1 −
∑

j∈J ′

q−1
pj . By the definition of AUXq we conclude that the cost of an optimal solution to

AUXq(φ̂q, ψ̂q) is at most the cost OPT’ pays for machines in Sq.

9

Next, for every q = 1, 2, ..., κ, we round up ψ̂q to the next integer multiply of ε · cr(q−1) and we denote

by ψ′
q this rounded up value. This may force us to increase φq−1 and thus our next step is to round up φ̂q

(for all q = 1, 2, . . . , κ) to the next integer multiply of ε · cℓ(q) and to add another ε · cℓ(q) to the rounded

up value to get the value φ′q. The rounding of φ′0 is different and we round down φ̂0 to the next value of the

form of the total size of jobs in J0 plus an integer multiply of ε · cℓ(1).
When we compare the two instances (for q ≥ 1) of the auxiliary problem AUXq(φ̂q, ψ̂q)with AUXq(φ

′
q, ψ

′
q),

we can take a solution of the first one and add 3ε · cℓ(q) size of sand to machine cℓ(q) to get a feasible solu-

tion of the second problem. This is sufficient even for q = 1 to get a feasible solution for the instance we

solved for the edge between φ′1 in layer L1 to node φ′0 in layer L0. This additional sand increases the cost of

machine ℓ(q) by a multiplicative factor of at most (1+ 3ε) but this input satisfies the assumptions for which

ALG is a (1 + ε)-approximation for AUX. Thus, the length of the edge between φ′q in layer Lq to φ′q−1 in

layer Lq−1 is at most (1+ ε) · (1+ 3ε) times the total cost of the machines in Sq that OPT’ pays. Since φ′0 is

smaller than φ̂0, we conclude that the total size of jobs which OPT’ assigns to h is larger than the one in our

solution due to this edge directed to t. ⊓⊔

4 Approximating AUXq(φq, ψq) via the use of n-fold programming

We assume that φq is an integer multiply of ε · cr(q) while ψq is an integer multiply of
cℓ(q)
ε (and hence also

an integer multiply of ε · cr(q)). We first show that by restricting ourselves to solutions of AUXq for which

the total size of sand assigned to each machine is an integer multiply of εcr(q) the approximation ratio is

multiplied by at most 1+ ε. We denote by AUX
′
q(φq, ψq) the resulting auxiliary problem with this additional

constraint.

Lemma 6. Let SOL
′ be an optimal solution for AUX

′
q(φq, ψq), then SOL

′ is a (1 + ε)-approximation for

AUXq(φq, ψq).

Proof. SOL
′ is clearly a feasible solution to AUXq(φq, ψq). It thus suffices to upper bound its cost. Let SOL

be an optimal solution for AUXq(φq, ψq). We modify the (total) size of sand assigned to each machine i ∈ Sq
by rounding it up to the next integer multiply of ε · cr(q). If the total size of sand which we allocate is larger

than φq , then we decrease integer multiplies of ε · cr(q) from the size of sand assigned to some machines

so that the total size of sand which we assigned is exactly φq. Observe that by rounding up the size of sand

assigned to each machine we increase its load by at most ε · cr(q). Let x be the original load of i (in SOL)

and let y be its load in the new created solution, then we have x ≤ y ≤ x+ εcr(q). If y ≤ ci, then the cost of

machine i is fi in both solutions. Otherwise, costi(y) ≤ costi(x) + εfi ≤ (1 + ε)costi(x). Thus, the cost

of SOL
′ is at most 1 + ε times the cost of SOL. ⊓⊔

Based on Lemma 6, the proof of Theorem 2 and thus also the proof of Theorem 3 follow by establishing

an exact algorithm for solving AUX
′
q(φq, ψq) (i.e., an algorithm for finding an optimal solution of AUX

′)

whose time complexity is upper bounded byO
((

(1/ε)O(1/ε10)
)

·m2 log3m
)

like the algorithm we present

next.

The first step of the algorithm is to partition the sand of size φq into a set of
φq

ε·cr(q)
dummy jobs each of

which of size εcr(q). Observe that the total size of these dummy jobs is φq and an assignment of the jobs in

Jq and the dummy jobs to machines in Sq such that the total size of unassigned jobs and dummy jobs is at

most ψq is a feasible solution to AUX
′ and this is a characterization of the feasible solutions of AUX

′. Let Jq

be the set of jobs and dummy jobs of this instance. In what follows we say a job j and mean that j is either a

10

job or a dummy job, that is, we do not distinguish between jobs and dummy jobs of the same size. For every

p that is a size of a job in Jq, we denote by np the number of jobs of Jq of size p.

Note that all jobs in Jq have sizes that are integer multiply of εcr(q) and have sizes of at most
cℓ(q)
ε . Due

to our rounding of the job sizes there are O(1/ε2) distinct sizes in every interval of sizes where the upper

bound is at most 1/ε times the lower bound of the interval. Thus, the number of distinct sizes of jobs in Jq

is at most 1
ε2

·
(

log1/ε
cℓ(q)
cr(q)

+ 1
)

<
(

7
ε4

)

where the inequality follows by lemma 5. We let Bq be the set of

distinct sizes of jobs in Jq.

For machine i ∈ Sq we define a configuration of machine i as a vector consisting of |Bq| components

where the components are associated with the elements in Bq in increasing order (of the sizes in this set).

Each component corresponding to p ∈ Bq represents the number of jobs of size p which are assigned to

i. This number is a non-negative integer that is at most 1
ε2

· cℓ(q)
cr(q)

<
(

1
ε

)7/ε
(as the load of i is at most

cℓ(q)
ε). Thus, the number of distinct configurations of machine i is at most

(

1
ε

)(7/ε)·
(

7
ε4

)

=
(

1
ε

)(49/ε5)
. Each

such configuration of machine i has a cost that is the value of costi when assigned the set of jobs of this

configuration. We denote by Ci the set of configurations of machine i, and for each c ∈ Ci we let costi(c) be

the cost of this configuration.

We next formulate AUX
′ as an integer linear program. The decision variables are xi,c for every machine

i ∈ Sq and c ∈ Ci that is an indicator variable that equals 1 when machine i is assigned a configuration c
and 0 otherwise, and the set of additional variables yp for every p ∈ Bq encoding the number of jobs in Jq

of size p which are not assigned to machines in Sq.

The objective function is clearly to minimize the total cost of the used configurations. That is,

min
∑

i∈Sq

∑

c∈Ci

costi(c) · xi,c. (7)

We have the following families of constraints:

The global constraints. We have a constraint for each p ∈ Bq saying that every job of size p is either

assigned to one of the machines in Sq or not assigned to any machine in Sq. That is, for every p ∈ Bq we

introduce the constraint:
∑

i∈Sq

∑

c∈Ci

cp · xi,c + yp = np. (8)

In addition we have a bound of ψq on the total size of unassigned jobs. We divide this inequality by εcr(q)
and obtain the following inequality as an additional global constraint.

∑

p∈Bq

p

εcr(q)
· yp ≤

ψq

εcr(q)
. (9)

We use the division by this common factor to conclude that all coefficients of the global constraints are

non-negative integers which are at most
(

1
ε

)7/ε
. Furthermore, observe that the number of global constraints

which we denote by r is a small constant r = |Bq|+ 1 ≤
(

7
ε4

)

.

Next, we group the decision variables xi,c in bricks where a brick is the collection of variables corre-

sponding to one specific machine i. The columns corresponding to variables of each brick are consecutive

columns of the resulting constraint matrix.

11

The local constraints. For every brick, namely for every machine i, we have one local constraint involving

(only) variables of that brick, namely the constraint that each machine is assigned exactly one configuration.

That is, for every i, the local constraint of brick i is

∑

c∈Ci

xi,c = 1. (10)

In addition, we have lower and upper bounds on the variables. In our settings the xi,c is an indicator

variable (so it should be between 0 and 1) while the yp are non-negative and we can add the additional

(meaningless) upper bound of n. Thus we introduce the following bounds.

0 ≤ xi,c ≤ 1 ∀i ∈ Sq, ∀c ∈ Ci and 0 ≤ yp ≤ n ∀p ∈ Bq. (11)

Using these constraints and variables, the integer linear program formulating AUX
′ is to minimize the

objective (7) subject to the constraints (8) for every p ∈ Bq, the constraint (9), the constraints (10) for every

i ∈ Sq, and the constraints (11) (in addition to the requirement that all variables are integers).

For using the results for n-fold programming we note the following bounds.

– The number of global constraints is r ≤ 7
ε4

.

– The number of local constraints of a brick is s = 1.

– The maximum absolute value of a component of the constraint matrix (i.e., the infinity-norm of the

matrix) is a ≤
(

1
ε

)7/ε
.

– The number of variables in every brick is t ≤
(

1
ε

)(49/ε5)
.

– The number of bricks is |Sq| ≤ m while the right hand side is bounded by n.

The problem we formulated is a special case of generalized n-fold programming where the number of

variables N = |Sq| · t + |Bq| ≤ mt + 7
ε4

≤ mt + t. The running time of the algorithm of Eisenbrand et

al. [11] for solving such problem (see the scaling,ρ column of the linear objective case of Corollary 91 in

[11]) is upper bounded by O((ars)O(r2s+s2r) · N2 log3(nN)). Using our bounds and s = 1, this is upper

bounded by O((ar)O(r2) · (t2 log3 t) · (m2 log3m)). The coefficient (ar)O(r2) · t2 log3 t is a function of ε

that is upper bounded by O
(

(1/ε)O(1/ε10)
)

and m2 log3m is a strongly polynomial bound independent of

ε.

5 An asymptotic fully polynomial time approximation scheme for GEBP-BPV

When considering asymptotic schemes that return a solution of cost at most (1+ε)cost(OPT(I))+g(1/ε) for

some function g where cost(OPT(I)) is the optimal cost of the same instance, the additive term g(1/ε) is not

scalable. In order to use this definition of asymptotic approximation scheme we assume that maxi=1,2,...,m fi =
1.

Lemma 7. Without loss of generality maxi fi = 1, and mini σi = 1.

Proof. Assume that the claim does not hold. We first scale all the fi, σi by dividing these numbers by a

common factor of maxi fi. Observe that the cost of every feasible solution is scaled by this factor, and the

first part of the claim holds. Furthermore, assumption (1) still holds. We apply Lemma 1 and observe that

the transformation in the proof of that lemma does not change the fixed costs of machines. ⊓⊔

12

Let I be the resulting instance after (perhaps) changing the input according to the proof of the last

lemma. Let OPT(I) denotes an optimal solution for this instance, and cost(OPT(I)) denotes its cost. We

show the existence of an algorithm that returns a feasible solution for I with cost at most (1 + ε) · (1+ 2ε) ·
cost(OPT(I)) + g(1/ε) and time complexity that is upper bounded by a polynomial in n,m, 1ε .

Lemma 8. Consider an optimal solution SOL for I under the additional constraint that for every i and

every machine µ of type i, either SOL assigns a unique job to µ, or the load of µ is at most ci
ε . Then, the cost

of SOL is at most (1 + 2ε) · cost(OPT(I)).

Proof. Assume that the assumption is not satisfied with respect to the set of jobs J ′ that OPT(I) assigns to

µ. We replace µ by a collection of machines of type i and assign J ′ to these machines such that the total cost

of these machines is at most (1 + 2ε) times the cost of µ in OPT(I). Applying this transformation for each

machine establish the claim of the lemma.

Consider J ′, for every job of size at least ci
ε we add a dedicated machine of type i for this job and assign

it to its dedicated machine. Performing this step on all such jobs may increase the cost of the solution by

at most an additive term of fi but this additive term is at most an ε fraction of the cost of µ in OPT(I).
Moreover, if an increase of the cost occurred it means that the resulting set of machines (the new dedicated

machines as well as machine µ) satisfy the conditions of the lemma.

If the conditions of the claim do not hold yet, then in particular it means that the remaining set of jobs

J ′′ ⊆ J ′ that were not assigned to dedicated machines (by the previous modification) have total size larger

than ci
ε . Then, we pack these jobs into bins, each of which of capacity ci

ε using the next-fit heuristic. That

is, we have an open machine of type i, and we process the jobs one by one. When we process job j, we try

to assign it to the current open machine. If the resulting set of jobs assigned to the open machine has total

size at most ci
ε we do so, and continue to the next job, otherwise we close the open machine and open a new

open machine of type i and assign j there. If L was the total size of jobs in J ′′ we use at most 2εL
ci

machines

to pack all the jobs in J ′′, and this may increase the cost of the resulting solution by the total fixed cost of

these machines, that is, by at most 2εL
ci

· fi = 2εLσi using (1). This is at most 2ε times the cost of assigning

J ′′ to µ and the claim follows. ⊓⊔

Let ζ be such that cζ = maxi ci. Then, by Lemma 8, we conclude that every job of size larger than
cζ
ε

is allocated a dedicated machine. For each such job, we find the type i for which the resulting cost of the

dedicated machine is minimized and we use such machine to process the job. In this way, we eliminate all

jobs of size larger than
cζ
ε . In the remaining instance that we denote as I ′, the load of every machine (in

SOL) is at most
cζ
ε and for every collection of such jobs there is a type of machines such that if we assign it

to such machine, then the resulting cost would be at most
cζ
ε · σζ = fζ

ε ≤ 1
ε where the inequality follows by

Lemma 7.

It suffices to construct an asymptotic approximation scheme for I ′ where we modify the definition of the

problem so that the load of every machine is at most
cζ
ε . We next show that such a scheme was established

by Epstein and Levin in [12]. To use the results of [12], we transform the instance I ′ into an instance of

bin packing with bin utilization cost (BPUC) for which [12] designed an AFPTAS. In BPUC we are given

a monotonically non-decreasing non-negative cost function π, where its domain contains the interval [0, 1],
and a set of items {1, 2, . . . , n}, where item j has a non-negative size sj (such that sj ∈ [0, 1] for all j).
The goal is to partition the items into subsets S1, . . . , Sm such that the total size of items in each subset is at

most 1 and the cost, which is defined as
∑m

i=1 π(
∑

j∈Si
sj), is minimized.

In order to transform I ′ into an instance of BPUC, we do the following. The set of items is the set of

jobs. The size of item j in the BPUC instance is
pj
cζ/ε

(that is, the fraction of a largest load of a machine in a

13

solution that satisfies the additional constraint), and to define the bin utilization cost π we do the following.

For x ∈ [0, 1], we set π(x) to be

π(x) = min
i=1,2,...,m

costi(x · cζ
ε
). (12)

Observe the following simple properties. First, π is a monotone non-decreasing function as for every i
the cost function costi is monotone non-decreasing. Second for every x ∈ [0, 1] we can evaluate π(x) in

polynomial time as we can evaluate costi in constant time for every i. Last for every y > 0 we can find a

maximum value x such that π(x) ≤ y, since for every i in constant time we can compute a maximum value

of x such that costi(x) = y (if y ≥ fi while if y < fi then there is no x for which costi(x) ≤ y). These

properties guarantee the assumptions used by [12] to design their AFPTAS for BPUC.

The following theorem follows by the observation that partitioning the jobs of I ′ to subsets according

to the solution obtained for BPUC and then choosing for each subset the type of machine that minimizes

the cost of assigning the jobs to that machine type, results in a solution for I ′ of the same cost as the cost

of the solution for BPUC. This holds also in the other direction if we are given an optimal solution for I ′

we obtain an optimal solution for the input of BPUC. Thus, I ′ is equivalent to the instance we created for

BPUC which proves the following theorem.

Theorem 4. There is an AFPTAS for GEBP-BPV.

References

1. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. In Proc. 8th Symposium on Discrete

Algorithms (SODA 1997), pages 493–500, 1997.

2. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling on parallel machines. Journal of

Scheduling, 1(1):55–66, 1998.

3. B. P. Berg and B. T. Denton. Fast approximation methods for online scheduling of outpatient procedure centers. INFORMS

Journal on Computing, 29(4):631–644, 2017.

4. M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation schemes. Information Processing Letters,

64(4):165–171, 1997.

5. E. Coffman and G. S. Lueker. Approximation algorithms for extensible bin packing. Journal of Scheduling, 9(1):63–69, 2006.

6. E. G. Coffman Jr and G. S. Lueker. Approximation algorithms for extensible bin packing. In Proc. 12th Symposium on Discrete

Algorithms (SODA 2001), pages 586–588, 2001.

7. P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Z. Tuza. A 13/12 approximation algorithm for bin packing with extendable

bins. Information Processing Letters, 65(5):229–233, 1998.

8. P. Dell’Olmo and M. G. Speranza. Approximation algorithms for partitioning small items in unequal bins to minimize the total

size. Discrete Applied Mathematics, 94(1-3):181–191, 1999.

9. B. T. Denton, A. J. Miller, H. J. Balasubramanian, and T. R. Huschka. Optimal allocation of surgery blocks to operating rooms

under uncertainty. Operations research, 58(4-part-1):802–816, 2010.

10. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, Berlin, 1999.

11. F. Eisenbrand, C. Hunkenschröder, K.-M. Klein, M. Kouteckỳ, A. Levin, and S. Onn. An algorithmic theory of integer

programming. arXiv preprint arXiv:1904.01361, 2019.

12. L. Epstein and A. Levin. An AFPTAS for variable sized bin packing with general activation costs. Journal of Computer and

System Sciences, 84:79–96, 2017.

13. L. Epstein and T. Tassa. Vector assignment schemes for asymmetric settings. Acta Informatica, 42(6-7):501–514, 2006.

14. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, Berlin, 2006.

15. D. S. Hochbaum. Various notions of approximations: Good, better, best, and more. In D. S. Hochbaum, editor, Approximation

algorithms. PWS Publishing Company, 1997.

16. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image processing and VLSI.

Journal of the ACM, 32(1):130–136, 1985.

17. K. Jansen, K.-M. Klein, M. Maack, and M. Rau. Empowering the configuration-ip-new ptas results for scheduling with setups

times. In Proc. 10th Innovations in Theoretical Computer Science Conference (ITCS 2019), 2019.

14

http://arxiv.org/abs/1904.01361

18. K. Jansen, K.-M. Klein, and J. Verschae. Closing the gap for makespan scheduling via sparsification techniques. In Proc. 43rd

International Colloquium on Automata, Languages, and Programming (ICALP 2016), 2016.

19. D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal, 51(1):60–78, 2008.

20. G. Sagnol, D. S. genannt Waldschmidt, and A. Tesch. The price of fixed assignments in stochastic extensible bin packing. In

Proc. 16th International Workshop on Approximation and Online Algorithms (WAOA 2018), pages 327–347, 2018.

21. R. Sirdey. Combinatorial optimization problems in wireless switch design. 4OR, 5(4):319–333, 2007.

22. M. G. Speranza and Z. Tuza. On-line approximation algorithms for scheduling tasks on identical machines with extendable

working time. Annals of Operations Research, 86:491–506, 1999.

23. D. Ye and G. Zhang. On-line extensible bin packing with unequal bin sizes. In Proc. 1st International Workshop on Approxi-

mation and Online Algorithms (WAOA 2003), pages 235–247, 2003.

24. D. Ye and G. Zhang. On-line scheduling with extendable working time on a small number of machines. Information Processing

Letters, 85(4):171–177, 2003.

15

	Approximation schemes for the generalized extensible bin packing problem

