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Abstract For some β ≥ 1/2, a ∆β-metric graph G = (V,E,w) is a complete edge-weighted graph such
that w(v, v) = 0, w(u, v) = w(v, u), and w(u, v) ≤ β · (w(u, x) + w(x, v)) for all vertices u, v, x ∈ V . A
graph H = (V ′, E′) is called a spanning subgraph of G = (V,E) if V ′ = V and E′ ⊆ E. Given a positive
integer p, let H be a spanning subgraph of G satisfying the three conditions: (i) there exists a vertex
subset C ⊆ V such that C forms a clique of size p in H ; (ii) the set V \C forms an independent set in H ;
and (iii) each vertex v ∈ V \ C is adjacent to exactly one vertex in C. The vertices in C are called hubs
and the vertices in V \C are called non-hubs. The ∆β-p-Hub Center Problem (∆β-pHCP) is to find
a spanning subgraph H of G satisfying all the three conditions such that the diameter of H is minimized.
In this paper, we study ∆β-pHCP for all β ≥ 1

2 . We show that for any ǫ > 0, to approximate∆β-pHCP to
a ratio g(β)− ǫ is NP-hard and we give r(β)-approximation algorithms for the same problem where g(β)

and r(β) are functions of β. For 3−
√
3

2 < β ≤ 5+
√
5

10 , we give an approximation algorithm that reaches

the lower bound of approximation ratio g(β) where g(β) = 3β−2β2

3(1−β) if 3−
√
3

2 < β ≤ 2
3 and g(β) = β + β2

if 2
3 ≤ β ≤ 5+

√
5

10 . For 5+
√
5

10 ≤ β ≤ 1, we show that g(β) = 4β2+3β−1
5β−1 and r(β) = min{β + β2, 4β2+5β+1

5β+1 }.

Additionally, for β ≥ 1, we show that g(β) = β · 4β−1
3β−1 and r(β) = min{β2+4β

3 , 2β}. For β ≥ 2, the

approximation ratio (i.e., upper bound r(β) = 2β is linear in β. For 3−
√
3

2 < β ≤ 5+
√
5

10 , we give an

approximation algorithm that reaches the lower bound of approximation ratio g(β) where g(β) = 3β−2β2

3(1−β)

if 3−
√
3

2 < β ≤ 2
3 and g(β) = β+ β2 if 2

3 ≤ β ≤ 5+
√
5

10 . For β ≤ 3−
√
3

2 , we show that g(β) = r(β) = 1, i.e.,
∆β-pHCP is polynomial-time solvable.
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Fig. 1: An example of ∆β-pHCP with p = 4

1 Introduction

The hub location problems have various applications in transportation and telecommunication systems.
Variants of hub location problems have been defined and well-studied in the literature (see the two survey
papers [1,15]). Suppose that we have a set of demand nodes that want to communicate with each other
through some hubs in a network. A single allocation hub location problem requests that each demand
node can only be served by exactly one hub. Conversely, if a demand node can be served by several hubs,
then this kind of hub location problem is called multi-allocation. Classical hub location problems ask
to minimize the total cost of all origin-destination pairs (see e.g., [31]). However, minimizing the total
routing cost would lead to the result that the poorest service quality might be extremely bad. In this
paper, we consider a single allocation hub location problem with min-max criterion, called ∆β-p-Hub

Center Problem which is different from the classic hub location problems. The min-max criterion is
able to avoid the drawback of minimizing the total cost.

A complete edge-weighted graph G = (V,E,w) is called ∆β-metric, for some β ≥ 1/2, if the distance
function w(·, ·) satisfies w(v, v) = 0, w(u, v) = w(v, u), and the β-triangle inequality, i.e., w(u, v) ≤
β ·(w(u, x)+w(x, v)) for all vertices u, v, x ∈ V . (If β > 1 then we speak about relaxed triangle inequality,
and if β < 1 we speak about sharpened triangle inequality.)

Lemma 1 ([8]) Let G = (V,E) be a ∆β-metric graph for 1
2 ≤ β < 1. For any two edges (u, x), (v, x)

with a common endvertex x in G, w(u, x) ≤ β
1−β

· w(v, x).

Definition 1 Let G = (V,E,w) be a ∆β-metric graph. A graph H is called a p-center spanning subgraph
of G if there exists a set CH such that the following conditions are satisfied.

1. Vertices (hubs) in CH ⊂ V form a clique of size p in H .
2. Vertices (non-hubs) in V \ CH form an independent set in H .
3. Each non-hub v ∈ V \ CH is adjacent to exactly one hub f(v) ∈ CH .

Let u, v be two vertices in a p-center spanning subgraph H of G. We use dH(u, v) = w(u, f(u)) +
w(f(u), f(v)) + w(f(v), v) to denote the distance between u, v in H where w(v, f(v)) = 0 if v is a hub
in H . Define D(H) = maxu,v∈V dH(u, v). The notation CH is the set of hubs in the p-center spanning
subgraph H . Notice that |CH | = p. We give the definition of the ∆β-p-Hub Center Problem as
follows. An example is given in Fig. 1.

∆β-p-Hub Center Problem (∆β-pHCP)
Input: A ∆β-metric graph G = (V,E,w) and a positive integer p.
Output: A p-center spanning subgraph H∗ of G such that D(H∗) is minimized among all p-center

spanning subgraphs of G.

The ∆β-pHCP problem is a general version of the original p-Hub Center Problem (pHCP) since
the original problem assumes the input graph to be a metric graph, i.e., β = 1. We use pHCP to denote
the ∆β-pHCP for β = 1.

The pHCP is NP-hard in metric graphs [24]. Several approaches for pHCP with linear and quadratic
integer programming were proposed in the literature [14,20,24,27]. Many research efforts for solving
pHCP are focused on the development of heuristic algorithms, e.g., [13,29,30,33–35]. Chen et al. [16]
proved that for any ǫ > 0, it is NP-hard to approximate pHCP to within a ratio 4/3 − ǫ. In the same
paper, a 5

3 -approximation algorithm was given for pHCP.
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Table 1: The lower and upper bounds on the approximation of SpHCP in ∆β-metric graphs [17].

β lower bound g′(β) upper bound r′(β)

[ 1
2
, 3−

√
3

2
] 1 1

( 3−
√

3
2

, 2
3
]

1+2β−2β2

4(1−β)
1+2β−2β2

4(1−β)

[ 2
3
, 0.7737...] 5β+1

4
1+2β−2β2

4(1−β)

[0.7737...,1] 5β+1
4

1 + 4β2

5β+1

[1, 2] β + 1
2

β + 4β2−2β
2+β

[2,∞) β + 1
2

2β + 1

The Star p-Hub Center Problem (SpHCP) introduced in [32] is closely related to pHCP and well-
studied in [17,18,26]. The difference between the two problems is that in SpHCP, the hubs are connected
to a center rather than fully connected. Chen et al. [17] showed that for any ǫ > 0, to approximate SpHCP
in ∆β-metric graphs to a ratio g′(β)− ǫ is NP-hard and gave a series of r′(β) approximation algorithms
to solve the same problem for some functions g′ and r′. The values of the functions g′ and r′ are listed in
Table 1. Moreover, in [17], a subclass of metric graphs is identified such that SpHCP is polynomial-time
solvable, and some r′(β)-approximation algorithms given in [17] meet the approximation lower bounds.

If β = 1, ∆β-pHCP is NP-hard and even NP-hard to have a (43 − ǫ)-approximation algorithm for
any ǫ > 0 [16]. In this paper, we investigate the complexity of ∆β-pHCP parameterized by the β-
triangle inequality. The motivation of this research for β < 1 is to investigate whether there exists a large
subclass of input instances of ∆β-pHCP that can be solved in polynomial time or admits polynomial-time
approximation algorithms with a reasonable approximation ratio. For β ≥ 1, it is an interesting issue to
see whether there exists a polynomial-time approximation algorithm with an approximation ratio linear
in β.

Our study uses the well-known concept of stability of approximation for hard optimization problems [9,
11,22,23,25]. The idea of this concept is similar to that of the stability of numerical algorithms. But
instead of observing the size of the change in the output value according to a small change of the input
value, one is interested in the size of the change of the approximation ratio according to a small change
in the specification (some parameters, characteristics) of the set of problem instances considered. If the
change of the approximation ratio is small for every small change in the set of problem instances, then
the algorithm is called stable. The concept of stability of approximation has been successfully applied
to several fundamental hard optimization problems. E.g. in [2–4,8–10,12,28] it was shown that one
can partition the set of all input instances of the Traveling Salesman Problem into infinitely many
subclasses according to the degree of violation of the triangle inequality, and for each subclass one can
guarantee upper and lower bounds on the approximation ratio. Similar studies demonstrated that the
β-triangle inequality can serve as a measure of hardness of the input instances for other problems as well,
in particular for the problem of constructing 2-connected spanning subgraphs of a given complete edge-
weighted graph [5], and for the problem of finding, for a given positive integer k ≥ 2 and an edge-weighted
graph G, a minimum k-edge- or k-vertex-connected spanning subgraph [6,7].

In Table 2, we list the main results of this paper. The curves of the functions listed in Table 2 are

depicted in. Fig. 2 and 3. The rest of this paper is organized as follows. In Section 2, for β > 3−
√
3

2 , we
show that for any ǫ > 0, it is NP-hard to approximate ∆β-pHCP to a ratio g(β)− ǫ. In Section 3, we give

r(β)-approximation algorithms for the same problem where r(β) are functions of β. If β ≤ 3−
√
3

2 , we show

that g(β) = r(β) = 1, i.e., ∆β-pHCP is polynomial-time solvable. For 3−
√
3

2 < β ≤ 5+
√
5

10 , we give an

approximation algorithm that reaches the lower bound of approximation ratio g(β) where g(β) = 3β−2β2

3(1−β)

if 3−
√
3

2 < β ≤ 2
3 and g(β) = β + β2 if 2

3 ≤ β ≤ 5+
√
5

10 . For 5+
√
5

10 ≤ β ≤ 1, we show that g(β) = 4β2+3β−1
5β−1

and r(β) = min{β + β2, 4β2+5β+1
5β+1 }. For β ≥ 1, g(β) = β · 4β−1

3β−1 and r(β) = min{β2+4β
3 , 2β}. For β ≥ 2,

the approximation ratio (i.e., upper bound r(β) = 2β is linear in β).
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Table 2: The main results where for any ǫ > 0, ∆β-pHCP cannot be approximated within g(β) − ǫ and
has an r(β)-approximation algorithm.

β lower bound g(β) upper bound r(β)

[ 1
2
, 3−

√
3

2
] 1 1

( 3−
√

3
2

, 2
3
]

3β−2β2

3(1−β)
3β−2β2

3(1−β)

[ 2
3
, 5+

√
5

10
] β + β2 β + β2

[ 5+
√

5
10

, 3+
√

29
10

]
4β2+3β−1

5β−1
β + β2

[ 3+
√

29
10

, 1]
4β2+3β−1

5β−1
4β2+5β+1

5β+1

[1, 2] β · 4β−1
3β−1

β2+4β
3

[2,∞) β · 4β−1
3β−1

2β

0.5 0.6 0.7 0.8 0.9 1.0
β

1.0

1.1

1.2
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1.6

1.7
upper bound r(β)
lower bound g(β)

Fig. 2: The curves depict the functions in Table 2 for β ≤ 1.

We close this section with some notation and definitions. We use CH to denote the set of hub vertices
in solution H . Let H∗ be an optimal solution of ∆β-pHCP in a given β-metric graph G = (V,E,w). For

a non-hub x in H∗, we use f∗(x) to denote the hub adjacent to x in H∗. We use H̃ to denote the best
solution among all solutions in H where H is the collection of all solutions satisfying that all non-hubs
are adjacent to the same hub for ∆β-pHCP in a given β-metric graph G = (V,E,w).

2 Inapproximability results

In this section, we show that for β > 3−
√
3

2 , it is NP-hard to approximate ∆β-pHCP to within a factor
of g(β)− ǫ where g(β) is listed in Table 2 and the curves of g(β) are depicted in Fig. 2 and 3.

We start with the results for the smaller range of β.

Lemma 2 Let 3−
√
3

2 < β ≤ 2
3 . For any ǫ > 0, it is NP-hard to approximate ∆β-pHCP to a factor of

3β−2β2

3(1−β) − ǫ.

Proof We will prove that, if ∆β-pHCP can be approximated to within a factor 3β−2β2

3(1−β) − ǫ in polynomial

time, for some ǫ > 0, then Set Cover can be solved in polynomial time. This will complete the proof,
since Set Cover is well-known to be NP-hard [21].
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Fig. 3: The curves depict the functions in Table 2 for β > 1.

si sj
y

H

S ′CH

v uV S \ S ′
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β
1−β1

Fig. 4: A feasible solution of ∆β-pHCP obtained from an optimal solution of Set Cover where the
rectangle part denotes the collection of pairwise adjacent hubs.

Let (S, U) be an instance of Set Cover where U is the universal set, |U | = n, and S = {S1,S2, . . . ,Sm}
is a collection of subsets of U , |S| = m. The goal is to decide whether S has a subset S ′ of size k such
that

⋃

Si∈S′ Si = U . In the following, we construct a β-metric graph G = (V ∪S∪{y}, E, w) according to
(S, U). For each element v ∈ U , construct a vertex v ∈ V , i.e., |V | = |U |. For each set Si ∈ S, construct
a vertex si ∈ S, |S| = |S|. We add a vertex y in G. The edge cost of G is defined in Table 3.

Table 3: The costs of edges (a, b) in G

w(a, b) b ∈ S b ∈ V b = y

a ∈ S 1
1 if b ∈ a β

1−β2β otherwise

a ∈ V
1 if a ∈ b

2β β

1−β2β otherwise

Clearly, G can be constructed in polynomial time. It is easy to verify that G is a β-metric graph. Let
G be the input of ∆β-pHCP constructed according to (S, U) where p = k + 1.

Let S ′ ⊂ S be a set cover of (S, U) of size k > 1. We then construct a solution H of ∆β-pHCP
according to S ′ as follows. For each set Si ∈ S ′, collect its corresponding vertex si ∈ S′ in G. Let
CH = S′ ∪ {y} be the set of hubs in H where |S′| = |S ′| and connect all vertices in S \ S′ to exactly
one hub sj ∈ S′. For each v ∈ V , connect v to exactly one vertex si ∈ S′ satisfying v ∈ Si where Si is
the corresponding set of the vertex si (see Fig. 4). Since each v ∈ V is connected to a vertex si ∈ S′

satisfying that v ∈ Si, we see that w(v, si) = 1. Hence D(H) = 3. Let H∗ denote an optimal solution of
∆β-pHCP in G. We have D(H∗) ≤ 3.

Assume that there exists a polynomial time algorithm that finds a solution H of ∆β-pHCP in G with

D(H) < 3β−2β2

1−β
. W.l.o.g., assume that CH = S′ ∪ V ′ ∪ Y ′ where S′ ⊆ S, V ′ ⊆ V , and Y ′ ⊆ {y}. For
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any non-hub v in H , use f(v) to denote the hub in H adjacent to v. Recall that f(v) = v if v is a hub in
H . For u, v in H , let dH(u, v) = w(u, f(u)) + w(f(u), f(v)) + w(v, f(v)) be the distance between u and
v in H .

Claim 1 The vertex y must be a hub.

Proof Suppose that y is not a hub in H . There are two cases.

– If f(y) ∈ S′, then all vertices v ∈ V must be adjacent to f(y) and satisfy w(v, f(y)) = 1; otherwise
there exists an x ∈ V with

dH(x, y) = dH(x, f(y)) + w(f(y), y)

≥ 2β + β
1−β

(since 2β ≥ 1)

= 3β−2β2

1−β
.

This contradicts the assumption that D(H) < 3β−2β2

1−β
. Since all vertices v ∈ V must be adjacent to

f(y) and satisfy w(v, f(y)) = 1, we see that the set in S with respect to the vertex f(y) ∈ S′ forms
a set cover of (S, U). This contradicts the assumption that the optimal solution of Set Cover is of
size k > 1.

– If f(y) ∈ V ′, then there exists an x ∈ V \ CH , otherwise p = k + 1 ≥ n which leads to a trivial
instance. We see that

dH(x, y) = dH(x, f(y)) + w(f(y), y)

≥ 2β + β
1−β

(since β < 1)

≥ 3β−2β2

1−β
,

a contradiction to the assumption that D(H) < 3β−2β2

1−β
.

Thus, y must be a hub, i.e., Y ′ = {y}. �

Claim 2 The hub y is not adjacent to any non-hub in H.

Proof Suppose that the hub y is adjacent to a non-hub z ∈ (S ∪ V ) \ CH , then there exists an x ∈ CH

with

dH(x, z) = w(x, y) + w(y, z) ≥
β

1− β
+

β

1− β
≥

3β − 2β2

1− β
,

a contradiction to the assumption that D(H) < 3β−2β2

1−β
.

Thus, y is not adjacent to any non-hub in H . �

Claim 3 No v ∈ V \ V ′ is adjacent to any u ∈ V ′.

Proof Suppose that there exists a v ∈ V \ V ′ that is adjacent to u ∈ V ′ in H . We see that

dH(v, y) = w(v, u) + w(u, y) = 2β +
β

1− β
≥

3β − 2β2

1− β
,

a contradiction to the assumption that D(H) < 3β−2β2

1−β
. Thus, no v ∈ V \ V ′ is adjacent to any u ∈ V ′.

�

According to Claims 1, 2, and 3, in H all vertices V \ V ′ must be adjacent to vertices in S′. If there
exists a v ∈ V \ V ′ satisfying that w(v, f(v)) = 2β, then

dH(v, y) = w(v, f(v)) + w(f(v), y) = 2β +
β

1− β
=

3β − 2β2

1− β
,

a contradiction to the assumption that D(H) < 3β−2β2

1−β
. Thus, each v ∈ V \ V ′ satisfies w(v, f(v)) = 1.

We see that the corresponding collection of sets representing vertices in S′, call S ′, forms a set cover of
V \V ′. For each u ∈ V ′, pick a set Si ∈ S satisfying u ∈ Si, call the collection of sets S ′′. It is easy to see
that |S ′′| ≤ |V ′|. Recall that |CH | = p = k+1 and CH = S′∪V ′∪{y}. We obtain that S ′∪S ′′ forms a set

cover of U of size at most k. This shows that if ∆β-pHCP has a solution H with D(H) < 3β−2β2

1−β
that can

be found in polynomial time, then Set Cover can be solved in polynomial time. However, Set Cover

is a well-known NP-hard problem [21]. By the fact that Set Cover is NP-hard and D(H∗) ≤ 3, this

implies that for any ǫ > 0, to approximate ∆β-pHCP to a factor 3β−2β2

3(1−β) − ǫ is NP-hard. This completes

the proof. ⊓⊔
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Fig. 5: A feasible solution H obtained from an optimal solution of Set Cover

Lemma 3 Let 2
3 < β ≤ 5+

√
5

10 . For any ǫ > 0, it is NP-hard to approximate ∆β-pHCP to a factor of
β + β2 − ǫ.

Proof We will prove that, if ∆β-pHCP can be approximated to within a factor β + β2 − ǫ in polynomial
time, for some ǫ > 0, then Set Cover can be approximated to within a factor (1− ǫ) lnn in polynomial
time. But such Set Cover approximation is known to be NP-hard [19]. This will complete the proof.

Let (S, U) be an instance of Set Cover where U is the universal set, |U | = n, and S is a collection of
subsets of U , |S| = m. The goal is to decide whether S has a subset S ′ of size k such that

⋃

Si∈S′ Si = U .
In the following, we construct a β-metric graph G = (V1∪V2∪S1∪S2∪{y}, E, w) of ∆β-pHCP as follows.
For each element v ∈ U , construct a copy of v in V1 and another copy of v in V2, i.e., |V1| = |V2| = |U |.
For each set in S, construct a vertex in S1 and a vertex in S2, |S1| = |S2| = |S|. Let p = 2k + 1. The
edge cost of G is defined in Table 4.

Table 4: The costs of edges (a, b) in G

w(a, b) b ∈ S1 b ∈ S2 b ∈ V1 b ∈ V2 b = y

a ∈ S1 1 β

1−β
− 1

1 if b ∈ a β2

1−β

β

1−β2β otherwise

a ∈ S2
β

1−β
− 1 1 β2

1−β

1 if b ∈ a β

1−β2β otherwise

a ∈ V1
1 if a ∈ b β2

1−β
2β β−β2+β3

1−β

β

1−β2β otherwise

a ∈ V2
β2

1−β

1 if a ∈ b β−β2+β3

1−β
2β β

1−β2β otherwise

Clearly, G can be constructed in polynomial time. It is easy to verify that G is a β-metric graph. Let
G be the input of ∆β-pHCP constructed according to (S, U) where p = 2k + 1.

Let S ′ ⊂ S be a set cover of (S, U) of size k. We then construct a solution H of ∆β-pHCP according
to S ′. For each set Si ∈ S ′, collect its corresponding vertex in S1 (resp. S2) to be a vertex in S′

1

(resp. S′
2). Let CH = S′

1 ∪ S′
2 ∪ {y} be the set of hubs in H . Note that S ′ is a set cover. For each

v ∈ V1, connect v to exactly one vertex in S′
1 representing a set Si ∈ S ′ satisfying the element v ∈ Si.

Similarly, for each u ∈ V2, connect u to exactly one vertex in S′
2 representing a set Sj ∈ S ′ satisfying

the element u ∈ Sj . We obtain that w(v, f(v)) = 1 and w(u, f(u)) = 1 where v ∈ V1, u ∈ V2, f(v) ∈ S′
1,

and f(u) ∈ S′
2. For each vertex t1 ∈ S1 \ S′

1, connect t1 to exactly one vertex in S′
1. For each vertex

t2 ∈ S2 \ S′
2, connect t2 to exactly one vertex in S′

2. We see that w(t1, f(t1)) = 1, w(t2, f(t2)) = 1,
w(f(t1), f(t2)) =

β
1−β

− 1, and w(y, f(t1)) = w(y, f(t2)) =
β

1−β
where f(t1) ∈ S′

1 and f(t2) ∈ S′
2. Hence

D(H) = max{ β
1−β

+ 1, 3} = 1
1−β

(see Fig. 5). Let H∗ denote an optimal solution of ∆β-pHCP in G. We

have D(H∗) ≤ 1
1−β

.

Assume that there exists a polynomial time algorithm that finds a solution H of ∆β-pHCP in G with

D(H) < β+β2

1−β
. W.l.o.g., assume that CH = S′

1 ∪ S′
2 ∪ V ′

1 ∪ V ′
2 ∪ Y ′ where S′

1 ⊆ S1, S
′
2 ⊆ S2, V

′
1 ⊆ V1,

V ′
2 ⊆ V2, and Y ′ ⊆ {y}.

Claim 4 The vertex y must be a hub.
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Proof Suppose that y is not a hub in H . We see that either f(y) ∈ S1 ∪ V1 or f(y) ∈ S2 ∪ V2. W.l.o.g.,
assume that f(y) ∈ S1 ∪ V1. Then there exists an x ∈ S2 ∪ V2 with

dH(x, y) = dH(x, f(y)) + w(f(y), y)

≥ β2

1−β
+ β

1−β

= β+β2

1−β
.

This contradicts the assumption that D(H) < β+β2

1−β
. Thus, y must be a hub, i.e., Y ′ = {y}. �

Claim 5 The hub y is not connected to any non-hub in H.

Proof Assume that the hub y is connected to a non-hub v ∈ V1 ∪ V2 \ CH , then there exists an x ∈ CH

with
dH(x, v) = w(x, y) + w(y, v)

≥ β
1−β

+ β
1−β

≥ β+β2

1−β
,

a contradiction to the assumption that D(H) < β+β2

1−β
.

Thus, y is not connected to any non-hub in H . �

Claim 6 For all non-hubs v, if v ∈ V1, f(v) /∈ V2 ∪ S2 and if v ∈ V2, f(v) /∈ V1 ∪ S1.

Proof Suppose that there exists a v ∈ V1 \ V ′
1 that is adjacent to u ∈ V2 ∪ S2 in H . We see that

dH(v, y) = w(v, u) + w(u, y) ≥
β2

1− β
+

β

1− β
≥

β + β2

1− β
,

a contradiction to the assumption that D(H) < β+β2

1−β
. Thus, no v ∈ V1\V ′

1 is adjacent to any u ∈ V2∪S2.

Analogously, no v ∈ V2 \ V ′
2 is adjacent to any u ∈ V1 ∪ S1 either. �

Claim 7 Either w(v, f(v)) = 1 for all v ∈ V1 \ V
′
1 or w(v, f(v)) = 1 for all v ∈ V2 \ V

′
2 .

Proof W.l.o.g., suppose that there exist a v ∈ V1 \ V ′
1 and a u ∈ V2 \ V ′

2 with w(v, f(v)) > 1 and
w(u, f(u)) > 1. By Claim 6, for all v ∈ V1 \ V ′

1 , f(v) 6∈ V2 ∪ S2 and for all u ∈ V2 \ V ′
2 , f(u) 6∈ V1 ∪ S1.

By Claim 5, the hub y is not adjacent to any non-hub. We see that f(v) ∈ V1 ∪ S1 and f(u) ∈ V2 ∪ S2

and w(f(v), f(u)) ≥ min{ β
1−β

− 1, β2

1−β
, β−β2+β3

1−β
}. Thus,

dH(u, v) = w(v, f(v)) + w(f(v), f(u)) + w(u, f(u))

≥ 2β +min{
β

1− β
− 1,

β2

1− β
,
β − β2 + β3

1− β
}+ 2β

= 2β +
β

1− β
− 1 + 2β

≥
β + β2

1− β
(since β ≤ 5+

√
5

10 ),

a contradiction to the assumption that D(H) < β+β2

1−β
. Thus, w(v, f(v)) = 1 for all v ∈ V1 \ V ′

1 or

w(v, f(v)) = 1 for all v ∈ V2 \ V ′
2 . �

We see that either S ′
1 forms a set cover of V1 \ V ′

1 or S ′
2 forms a set cover of V2 \ V ′

2 where S ′
1 is the

corresponding collection of sets represented by vertices in S′
1 and S ′

2 is the corresponding collection of sets
represented by vertices in S′

2. W.l.o.g., assume that S ′
1 forms a set cover of V1 \V

′
1 . For each u ∈ V ′

1 , pick
a set Su ∈ S satisfying u ∈ Su, call the collection of sets S ′′. It is easy to see that |S ′′| ≤ |V ′

1 | and S ′
1∪S ′′

forms a set cover of U . Notice that |S′
1 ∪V ′

1 | < |CH | = p = 2k+1. Thus S ′
1 ∪S ′′ forms a set cover of U of

size at most 2k. This shows that if ∆β-pHCP has a solution H with D(H) < β+β2

1−β
then Set Cover has

a 2-approximation algorithm running in polynomial time. However, to find a 2-approximation solution
of Set Cover is a well-known NP-hard problem [19]. By the fact that D(H∗) ≤ 1 + β

1−β
, we obtain

that for any ǫ > 0, to approximate ∆β-pHCP to a factor β + β2 − ǫ is NP-hard. ⊓⊔
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S ′
1 S ′

2

H

CH

V1 S2 \ S ′
2

1 11

V2S1 \ S ′
1

1

3β−1
β

4β−1
β

y

Fig. 6: A feasible solution obtained from an optimal solution of Set Cover

Lemma 4 Let 5+
√
5

10 ≤ β ≤ 1. For any ǫ > 0, it is NP-hard to approximate ∆β-pHCP to a factor of
4β2+3β−1

5β−1 − ǫ.

Proof We will prove that, if ∆β-pHCP can be approximated within a factor 4β2+3β−1
5β−1 − ǫ in polynomial

time for some ǫ > 0, then a 2-approximate solution of set cover problem can be found in polynomial
time. This will complete the proof, since for any ǫ > 0, to approximate Set Cover to within a factor
(1− ǫ) lnn is NP-hard [19].

Let (S, U) be an instance of the set cover problem, where U is the universal set, |U | = n, and S is a
collection of subsets of U , |S| = m. The goal of the problem is to decide whether there exists a subset
S ′ ⊆ S of size k such that

⋃

Si∈S′ Si = U .

Construct a β-metric graph G = (V1 ∪ V2 ∪ S1 ∪ S2 ∪ {y}, E, w) of ∆β-pHCP as follows. For each
element v ∈ U , construct a copy of v in V1 and another copy of v in V2, i.e., |V1| = |V2| = |U |. For each
set in S, construct a vertex in S1 and a vertex in S2, |S1| = |S2| = |S|. Let p = 2k + 1. The edge cost of
G is defined in Table 5. It is not hard to see that any three vertices in G satisfy the β-triangle inequality.

Table 5: The cost of edges (a, b) in G

w(a, b) b ∈ S1 b ∈ S2 b ∈ V1 b ∈ V2 b = y

a ∈ S1 1 3β−1
β

1 if b ∈ a
4β − 1 4β−1

β2β otherwise

a ∈ S2
3β−1

β
1 4β − 1

1 if b ∈ a 4β−1
β2β otherwise

a ∈ V1
1 if a ∈ b

4β − 1 2β 4β2 4β−1
β2β otherwise

a ∈ V2 4β − 1
1 if a ∈ b

4β2 2β 4β−1
β2β otherwise

Let S ′ ⊂ S be a set cover of (S, U) of size k. We then construct a solution H of ∆β-pHCP according
to S ′. For each set Si ∈ S ′, collect its corresponding vertex in S1 (resp. S2) to be a vertex in S′

1 (resp.
S′
2). Let CH = S′

1∪S′
2∪{y} be the set of hubs in H . Note that S ′ is a set cover. For each v ∈ V1, connect

v to exactly one vertex in S′
1 representing a set Si ∈ S ′ satisfying the element v ∈ Si. Similarly, for each

u ∈ V2, connect u to exactly one vertex in S′
2 representing a set Sj ∈ S ′ satisfying the element u ∈ Sj .

We obtain that w(v, f(v)) = 1 and w(u, f(u)) = 1 where v ∈ V1, u ∈ V2, f(v) ∈ S′
1, and f(u) ∈ S′

2. For
each vertex t1 ∈ S1 \ S′

1, connect t1 to exactly one vertex in S′
1. For each vertex t2 ∈ S2 \ S′

2, connect t2
to exactly one vertex in S′

2. We see that w(t1, f(t1)) = 1, w(t2, f(t2)) = 1, w(f(t1), f(t2)) =
3β−1

β
− 1,

and w(y, f(t1)) = w(y, f(t2)) =
4β−1

β
where f(t1) ∈ S′

1 and f(t2) ∈ S′
2. Hence D(H) = 5β−1

β
(see Fig. 6).

Let H∗ denote an optimal solution of ∆β-pHCP. Then D(H∗) ≤ 5β−1
β

.

Suppose that there exists a polynomial time algorithm for ∆β-pHCP that computes a solution H

such that D(H) < 4β2+3β−1
β

. W.l.o.g., assume that CH = S′
1 ∪ S′

2 ∪ V ′
1 ∪ V ′

2 ∪ Y ′ be the set of hubs in H

where S′
1 ⊆ S1, S

′
2 ⊆ S2, V

′
1 ⊆ V1, V

′
2 ⊆ V2, and Y ′ ⊆ {y}.

Claim 8 The vertex y must be a hub, i.e., Y ′ = {y}.
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Proof Suppose that y is not a hub and y is connected to a hub v ∈ CH . According to the edge cost in
Table 5, there is a vertex u with w(u, v) = 4β − 1. We see that

dH(y, u) ≥ w(y, v) + w(v, u)

= 4β−1
β

+ 4β − 1

= 4β2+3β−1
β

.

This contradicts the assumption that D(H) < 4β2+3β−1
β

.
Thus, the vertex y must be a hub in H . �

Claim 9 The hub y is not connected to any non-hub in H.

Proof Suppose that the hub y is connected to a non-hub v ∈ V \ CH , then there exists an x ∈ CH with

dH(x, v) = w(x, y) + w(y, v)

≥ 4β−1
β

+ 4β−1
β

> 4β2+3β−1
β

.

This contradicts the assumption that D(H) < 4β2+3β−1
β

.
Thus, y is not connected to any non-hub in H . �

Claim 10 For all non-hubs v, if v ∈ V1, f(v) /∈ V2 ∪ S2 and if v ∈ V2, f(v) /∈ V1 ∪ S1.

Proof Suppose that there exists a v ∈ V1 \ V ′
1 that is adjacent to u ∈ V2 ∪ S2 in H . We see that

dH(v, y) = w(v, u) + w(u, y) ≥ 4β − 1 +
4β − 1

β
≥

4β2 + 3β − 1

β
.

This contradicts the assumption that D(H) < 4β2+3β−1
β

. Thus, no v ∈ V1 \ V ′
1 is adjacent to any

u ∈ V2 ∪ S2.
Suppose that there exists a v ∈ V2 \ V ′

2 that is adjacent to u ∈ V1 ∪ S1 in H . We see that

dH(v, y) = w(v, u) + w(u, y) ≥ 4β − 1 +
4β − 1

β
≥

4β2 + 3β − 1

β
.

This contradicts the assumption that D(H) < 4β2+3β−1
β

. Thus, no v ∈ V2 \ V ′
2 is adjacent to any

u ∈ V1 ∪ S1. �

Claim 11 Either w(v, f(v)) = 1 for all v ∈ V1 \ V ′
1 or w(v, f(v)) = 1 for all v ∈ V2 \ V ′

2 .

Proof Suppose that there exist a v ∈ V1 \ V
′
1 and a u ∈ V2 \ V

′
2 with w(v, f(v)) > 1 and w(u, f(u)) > 1.

We see that

dH(u, v) = w(v, f(v)) + w(f(v), f(u)) + w(u, f(u))

≥ 2β +min{
3β − 1

β
, 4β − 1, 4β2}+ 2β

= 2β +
3β − 1

β
+ 2β

=
4β2 + 3β − 1

β
,

a contradiction to the assumption that D(H) < 4β2+3β−1
β

. Thus, w(v, f(v)) = 1 for all v ∈ V1 \ V ′
1 or

w(v, f(v)) = 1 for all v ∈ V2 \ V
′
2 . �

We see that either S ′
1 forms a set cover of V1 \ V ′

1 or S ′
2 forms a set cover of V2 \ V ′

2 where S ′
1 is the

corresponding collection of sets represented by vertices in S′
1 and S ′

2 is the corresponding collection of
sets represented by vertices in S′

2. W.l.o.g., assume that S ′
1 forms a set cover of V1 \V

′
1 . For each u ∈ V ′

1 ,
pick a set Su ∈ S satisfying u ∈ Su, call the collection of sets S ′′. It is easy to see that |S ′′| ≤ |V ′

1 | and
S ′
1∪S ′′ forms a set cover of U . Notice that |S′

1∪V ′
1 | < |CH | = p = 2k+1. Thus S ′

1∪S ′′ forms a set cover

of U of size at most 2k. This shows that if ∆β-pHCP has a solution H with D(H) < 4β2+3β−1
β

then Set
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S ′
1 S ′

2

H

CH

V1 S2 \ S ′
2

1 11

V2S1 \ S ′
1

1

2β
2β−1

Fig. 7: A feasible solution obtained from an optimal solution of Set Cover

Cover has a 2-approximation algorithm running in polynomial time. However, to find a 2-approximation
solution of Set Cover is a well-known NP-hard problem [19]. By the fact that D(H∗) ≤ 5β−1

β
, we obtain

that for any ǫ > 0, to approximate ∆β-pHCP to a factor 4β2+3β−1
5β−1 − ǫ is NP-hard. This completes the

proof. ⊓⊔

Lemma 5 Let β ≥ 1. For any ǫ > 0, it is NP-hard to approximate ∆β-pHCP to a factor of β · 4β−1
3β−1 − ǫ.

Proof We will prove that, if ∆β-pHCP can be approximated within a factor β · 4β−1
3β−1 − ǫ in polynomial

time for some ǫ > 0, then a 2-approximate solution of set cover problem can be found in polynomial
time. This will complete the proof of the lemma, since for any ǫ > 0, to approximate Set Cover to
within a factor (1− ǫ) lnn is NP-hard [19].

Let (S, U) be an instance of the set cover problem, where U is the universal set, |U | = n, and S is a
collection of subsets of U , |S| = m. The goal is to decide whether there exists a subset S ′ ⊆ S of size k
such that

⋃

Si∈S′ Si = U .
Construct a β-metric graph G = (V1 ∪ V2 ∪ S1 ∪ S2, E, w) of ∆β-pHCP as follows. For each element

v ∈ U , construct a copy of v in V1 and another copy of v in V2, i.e., |V1| = |V2| = |U |. For each set
Si ∈ S, construct a vertex in S1 and a vertex in S2, |S1| = |S2| = |S|. Let p = 2k. The edge cost of G is
defined in Table 6. It is not hard to see that any three vertices in G satisfy the β-triangle inequality.

Table 6: The cost of edges (a, b) in G

w(a, b) b ∈ S1 b ∈ S2 b ∈ V1 b ∈ V2

a ∈ S1 1 2β
2β−1

1 if b ∈ a β·(4β−1)
2β−12β otherwise

a ∈ S2
2β

2β−1
1 β·(4β−1)

2β−1

1 if b ∈ a

2β otherwise

a ∈ V1
1 if a ∈ b β·(4β−1)

2β−1
2β β·(6β−2)

2β−12β otherwise

a ∈ V2
β·(4β−1)

2β−1

1 if a ∈ b β·(6β−2)
2β−1

2β
2β otherwise

Let S ′ ⊂ S be a set cover of (S, U) of size k. We then construct a solution H of ∆β-pHCP according
to S ′. For each set Si ∈ S ′, collect its corresponding vertex in S1 (resp. S2) to be a vertex in S′

1 (resp.
S′
2). Let CH = S′

1 ∪ S′
2 be the set of hubs in H . Note that S ′ is a set cover. For each v ∈ V1, connect v

to exactly one vertex in S′
1 representing a set Si ∈ S ′ satisfying the element v ∈ Si. Similarly, for each

u ∈ V2, connect u to exactly one vertex in S′
2 representing a set Sj ∈ S ′ satisfying the element u ∈ Sj .

We obtain that w(v, f(v)) = 1 and w(u, f(u)) = 1 where v ∈ V1, u ∈ V2, f(v) ∈ S′
1, and f(u) ∈ S′

2. For
each vertex t1 ∈ S1 \ S′

1, connect t1 to exactly one vertex in S′
1. For each vertex t2 ∈ S2 \ S′

2, connect t2
to exactly one vertex in S′

2. We see that w(t1, f(t1)) = 1, w(t2, f(t2)) = 1, and w(f(t1), f(t2)) =
2β

2β−1

where f(t1) ∈ S′
1 and f(t2) ∈ S′

2. We see that D(H) = 6β−2
2β−1 (see Fig. 7). Let H∗ denote an optimal

solution of ∆β-pHCP. Then D(H∗) ≤ 6β−2
2β−1 .

Suppose that there exists a polynomial time algorithm for ∆β-pHCP that computes a solution H

such that D(H) < β·(8β−2)
2β−1 . W.l.o.g., assume that CH = S′

1 ∪ S′
2 ∪ V ′

1 ∪ V ′
2 is the set of hubs in H where

S′
1 ⊆ S1, S

′
2 ⊆ S2, V

′
1 ⊆ V1, and V ′

2 ⊆ V2.
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Claim 12 Either all non-hubs v ∈ V1 \ V ′
1 satisfy f(v) ∈ S1 ∪ V1 or all non-hubs u ∈ V2 \ V ′

2 satisfy
f(u) ∈ S2 ∪ V2.

Proof If all non-hubs v ∈ V1 \ V ′
1 satisfy f(v) ∈ S1 ∪ V1 and all non-hubs u ∈ V2 \ V ′

2 satisfying f(u) ∈
S2 ∪ V2, then the claim holds. If there are two non-hubs v, v′ ∈ V1 \ V

′
1 satisfying f(v), f(v′) 6∈ S1 ∪ V1,

then

dH(v, v′) = w(v, f(v)) + w(f(v), f(v′)) + w(f(v′), v′) ≥
β · (4β − 1)

2β − 1
+

β · (4β − 1)

2β − 1
=

β · (8β − 2)

2β − 1
,

a contradiction to the assumption that D(H) < β·(8β−2)
2β−1 . This shows that there is at most one non-hub

v ∈ V1 \V
′
1 satisfying f(v) 6∈ S1∪V1. Similarly, we can show that there is at most one non-hub u ∈ V2 \V

′
2

satisfying f(u) 6∈ S2 ∪ V2.

Suppose that there is exactly one non-hub v ∈ V1 \ V ′
1 satisfying f(v) 6∈ S1 ∪ V1. If there exists a

non-hub u ∈ V2 \ V ′
2 satisfying f(u) 6∈ S2 ∪ V2, then

dH(v, u) = w(v, f(v)) + w(f(v), f(u)) + w(f(u), u) ≥
β · (4β − 1)

2β − 1
+

β · (4β − 1)

2β − 1
=

β · (8β − 2)

2β − 1
.

This contradicts the assumption that D(H) < β·(8β−2)
2β−1 . Thus, if there is a unique non-hub v ∈ V1 \ V ′

1

satisfying f(v) 6∈ S1 ∪ V1, then all non-hubs u ∈ V2 \ V ′
2 satisfy f(u) ∈ S2 ∪ V2. Similarly, we can show

that, if there is a unique non-hub u ∈ V2 \ V ′
2 satisfying f(u) 6∈ S2 ∪ V2, then all non-hubs v ∈ V1 \ V ′

1

satisfy f(v) ∈ S1 ∪ V1. This completes the proof. �

Claim 13 Either all v ∈ V1 \ V ′
1 satisfy w(v, f(v)) = 1 or all u ∈ V2 \ V ′

2 satisfy w(u, f(u)) = 1.

Proof Suppose that there exist a v ∈ V1 \ V ′
1 and a u ∈ V2 \ V ′

2 with w(v, f(v)) > 1 and w(u, f(u)) > 1.
We see that

dH(u, v) = w(v, f(v)) + w(f(v), f(u)) + w(u, f(u)) ≥ 2β +
2β

2β − 1
+ 2β =

β · (8β − 2)

2β − 1
.

This contradicts the assumption that D(H) < β·(8β−2)
2β−1 . Thus, w(v, f(v)) = 1 for all v ∈ V1 \ V ′ or

w(v, f(v)) = 1 for all v ∈ V2 \ V ′. �

According to Claims 12 and 13, We see that either S ′
1 forms a set cover of V1 \ V ′

1 or S ′
2 forms a set

cover of V2 \ V ′
2 where S ′

1 is the corresponding collection of sets represented by vertices in S′
1 and S ′

2 is
the corresponding collection of sets represented by vertices in S′

2. W.l.o.g., assume that S ′
1 forms a set

cover of V1 \ V ′
1 . For each u ∈ V ′

1 , pick a set Su ∈ S satisfying u ∈ Su, call the collection of sets S ′′. It is
easy to see that |S ′′| ≤ |V ′

1 | and S ′
1 ∪ S ′′ forms a set cover of U . Notice that |S′

1 ∪ V ′
1 | < |CH | = p = 2k.

Thus S ′
1 ∪ S ′′ forms a set cover of U of size at most 2k. This shows that if ∆β-pHCP has a solution H

with D(H) < β·(8β−2)
2β−1 that can be found in polynomial time, then Set Cover can be 2-approximated

in polynomial time. However, the 2-approximation of Set Cover is a well-known NP-hard problem [19].
By the fact that D(H∗) ≤ 6β−2

2β−1 , this implies that for any ǫ > 0, to approximate ∆β-pHCP to a factor
β·(4β−1)
3β−1 − ǫ is NP-hard. This completes the proof. ⊓⊔

The following theorem concludes the results of Lemmas 2–5. It gives the lower bounds on the ap-

proximation ratio for ∆β-pHCP in different ranges of β where β > 3−
√
3

2 (see Fig. 2 and 3).

Theorem 1 Let β > 3−
√
3

2 . For any ǫ > 0, it is NP-hard to approximate ∆β-pHCP to a factor of g(β)−ǫ
where

(i) g(β) = 3β−2β2

3(1−β) if 3−
√
3

2 < β ≤ 2
3 ;

(ii) g(β) = β + β2 if 2
3 ≤ β ≤ 5+

√
5

10 ;

(iii) g(β) = 4β2+3β−1
5β−1 if 5+

√
5

10 ≤ β ≤ 1;

(iv) g(β) = β · 4β−1
3β−1 if β ≥ 1.
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3 Polynomial-time algorithms

In this section, we show that for 1
2 ≤ β ≤ 3−

√
3

2 , ∆β-pHCP can be solved in polynomial time. Besides,

we give polynomial-time r(β)-approximation algorithms for ∆β-pHCP for β > 3−
√
3

2 . The functions r(β)

are listed in Table 2 and the curves of r(β) are depicted in Fig. 2 and 3. For 3−
√
3

2 < β ≤ 5+
√
5

10 , our
approximation algorithm achieves the factor that closes the gap between the upper and lower bounds of
approximability for ∆β-pHCP (see Fig. 2).

Lemma 6 Given an instance for ∆β-pHCP with 1
2 ≤ β < 1, optimal solution H∗, and the cost D(H∗),

the following statements hold.

(i) There exists a solution H̃ satisfying that all non-hubs are adjacent to the same hub and D(H̃) ≤

max{1,min{ 3β−2β2

3(1−β) , β + β2}} ·D(H∗).

(ii) There exists a polynomial-time algorithm to compute a solution H such that D(H) = D(H̃).

Proof Let H∗ be an optimal solution of the ∆β-pHCP. If all non-hubs in H∗ are adjacent to the same
hub, then the statement (i) holds directly.

Suppose that H∗ is an optimal solution such that at least two hubs are adjacent to non-hubs. Let
edge (y1, z1) be a longest edge in H∗ with one end vertex y1 as a hub and the other end vertex z1 as
a non-hub, i.e., f∗(z1) = y1 and w(z1, y1) = ℓ1 ≥ w(v, f∗(v)) for all non-hubs v in H∗. Let z2 be an
non-hub in H∗ satisfying that f∗(z2) = y2 6= y1. Let ℓ2 = w(z2, y2). By applying the following steps, we
obtain a solution H̃ of ∆β-pHCP from H∗ satisfying that all non-hubs are adjacent to the same hub.

– Let all hubs in H∗ be hubs in H̃ .
– Let all non-hubs in H∗ be adjacent to y2 in H̃ .

Since H∗ is an optimal solution, we see that D(H∗) ≤ D(H̃).

Claim 14 If v is a non-hub and f∗(v) 6= y2 in H∗, then w(v, y2) ≤ β · (D(H∗)− ℓ2).

Proof Since v is a non-hub and f∗(v) 6= y2 in H∗, we obtain that

w(v, y2) ≤ β · (w(v, f∗(v)) + w(f∗(v), y2)) (using β-triangle inequality)

= β · (w(v, f∗(v)) + w(f∗(v), y2) + w(y2, z2)− w(y2, z2))

= β · (dH∗(v, z2)− ℓ2) (since w(y2, z2) = ℓ2)

≤ β · (D(H∗)− ℓ2). (since dH∗(v, z2) ≤ D(H∗))

This completes the proof. �

Now we prove that D(H̃) ≤ max{1,min{ 3β−2β2

3(1−β) , β + β2}} ·D(H∗).

For u, v ∈ V , there are the following cases.

– If (u, v) ∈ E(H̃), then dH̃(u, v) = w(u, v) ≤ D(H∗) since β < 1.

– If (u, v) 6∈ E(H̃) and both (u, y2), (v, y2) ∈ E(H̃). There are two subcases.

– If (u, y2), (v, y2) ∈ E(H∗), then dH̃(u, v) = dH∗(u, v) ≤ D(H∗).
– If (u, y2) ∈ E(H∗) and (v, y2) 6∈ E(H∗) or both (u, y2), (v, y2) 6∈ E(H∗), then we have the following

observations.
Suppose that u = z2, we see that

dH̃(u, v) = w(u, y2) + w(y2, v)

≤ ℓ2 + β · (D(H∗)− ℓ2) (using u = z2 and Claim 14)

≤ ℓ2 + (D(H∗)− ℓ2) (since β < 1)

= D(H∗).

In the following, we assume that that u 6= z2.
If D(H∗)− ℓ2 ≤ β

1−β
· ℓ2, then

ℓ2 ≥ (1 − β) ·D(H∗). (1)
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We have

dH̃(u, v) = w(u, y2) + w(y2, v)

≤ w(u, f∗(u)) + w(f∗(u), y2) + w(y2, v) (since β < 1)

= w(u, f∗(u)) + w(f∗(u), y2) + w(y2, z2)− w(y2, z2) + w(y2, v)

= dH∗(u, z2)− ℓ2 + w(y2, v) (using w(y2, z2) = ℓ2)

≤ (D(H∗)− ℓ2) + w(y2, v) (using dH∗(u, z2) ≤ D(H∗))

≤ (D(H∗)− ℓ2) + β · (D(H∗)− ℓ2) (using Claim 14)

= (1 + β) · (D(H∗)− ℓ2)

≤ (1 + β) · (D(H∗)− (1− β) ·D(H∗)) (using inequality (1))

= (β + β2) ·D(H∗).

If D(H∗)− ℓ2 > β
1−β

· ℓ2, then

D(H∗) >
1

1− β
· ℓ2. (2)

We have

dH̃(u, v) = w(u, y2) + w(y2, v)

≤
β

1− β
· ℓ2 + w(y2, v) (by Lemma 1 and w(y2, z2) = ℓ2)

≤
β

1− β
· ℓ2 + β · (D(H∗)− ℓ2) (according to Claim 14)

= β ·D(H∗) + β · ℓ2 · (
1

1− β
− 1)

= β ·D(H∗) + β · ℓ2 · (
β

1− β
)

≤ β ·D(H∗) + β2 ·D(H∗) (according to inequality (2))

= (β + β2) ·D(H∗).

Using Lemma 1, we prove the other upper bound on dH̃(u, v) as follows.

dH̃(u, v) = w(u, y2) + w(y2, v) ≤
β

1− β
·min{w(y2, y1), w(z2, y2)}+ w(y2, v) (by Lemma 1)

≤
β

1− β
·min{w(y2, y1), w(z2, y2)}+ β · (D(H∗)− ℓ2) (using Claim 14)

≤ β ·D(H∗) + (
β

1− β
− β) ·min{w(y1, y2), ℓ2}

≤ β ·D(H∗) + (
β

1− β
− β) ·

D(H∗)

3

(since dH∗(z1, z2) = w(z1, y1) + w(y1, y2) + ℓ2 ≤ D(H∗) and ℓ2 ≤ ℓ1 = w(z1, y1))

= D(H∗) ·

(

2β + β
1−β

3

)

=
3β − 2β2

3(1− β)
·D(H∗).

This shows that D(H̃) ≤ max{1,min{ 3β−2β2

3(1−β) , β + β2}} ·D(H∗).

Now we give the following algorithm Concentrated Hub to find a solution H satisfying that all
non-hubs are adjacent to the same hub.

Notice that the algorithm tries all n · (n− 1) possibilities to find the only hub y2 and the longest edge
cost between non-hubs and y2 in H̃ . Since the algorithm computes a solution such that all of the non-hubs
are adjacent to the same hub, it is not hard to see that the running time of Algorithm Concentrated

Hub is O(n3).
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Algorithm: Concentrated Hub

1: Let H be the graph found by the following steps. Initialize D(H) = ∞.
2: for u, z ∈ V do

3: let H′ be the solution found by the following steps. Initialize CH′ = ∅.
4: let u be the unique hub y2 adjacent to non-hubs in H̃ and w(u, z) = ℓ be the longest edge cost between non-hubs

and y2 in H̃. Let U := V \ {u} and CH′ := {u}.
5: for v ∈ U do

6: if w(v, u) ≤ ℓ then

7: let v be a non-hub adjacent to u in H and U := U \ {v},
8: else

9: CH′ := CH′ ∪ {v}, i.e., v is a hub in H′.
10: end if

11: end for

12: j := |CH′ |
13: if U 6= ∅ then

14: go to step 2.
15: else if j < p then

16: select (p − j) non-hubs that are farthest from u as hubs and update CH′ accordingly.
17: end if

18: if D(H′) < D(H) then

19: H := H′

20: end if

21: end for

22: return H

We now prove that the algorithm Concentrated Hub finds a solution H satisfying that D(H) ≤
D(H̃). Since the algorithm Concentrated Hub tries all possibilities to find the only hub y2 in H̃ that
is adjacent to all non-hubs, we may assume that in H we have y2 as the unique hub that is adjacent
to all non-hubs. We see that for two hubs x, x′ ∈ CH , dH(x, x′) = w(x, x′) ≤ D(H∗) ≤ D(H̃). Since
y2 is adjacent to all the other vertices v ∈ V \ {y2} in H , dH(y2, v) = w(y2, v) ≤ D(H∗) ≤ D(H̃).
For each hub v ∈ V \ CH and each vertex (hub or non-hub) v′ ∈ V \ {y2, v}, since w(v, y2) ≤ ℓ and
w(v′, y2) ≤ D(H̃)− ℓ, we obtain that

dH(v, v′) = w(v, y2) + w(v′, y2) ≤ ℓ+ (D(H̃)− ℓ) = D(H̃).

This shows that D(H) ≤ D(H̃) and the proof is completed. ⊓⊔

Using Lemma 6, we obtain the following results.

Lemma 7 Let 1
2 ≤ β ≤ 3+

√
29

10 . Then the following statements hold.

1. If β ≤ 3−
√
3

2 , then ∆β-pHCP can be solved in polynomial time.

2. If 3−
√
3

2 < β ≤ 3+
√
29

10 , there is a min{ 3β−2β2

3(1−β) , β + β2}-approximation algorithm for ∆β-pHCP.

Proof LetH∗ denote an optimal solution of the∆β-pHCP problem. Using Lemma 6, there is a polynomial-

time algorithm for ∆β-pHCP to compute a solution H such that D(H) ≤ max{1,min{ 3β−2β2

3(1−β) , β+β2}} ·

D(H∗). It is easy to determine the range of β. This completes the proof. ⊓⊔

Algorithm APXpHCP: Approximation algorithm for ∆β-pHCP (G, c)

1: Run Algorithm APX1.
2: Run Algorithm APX2.
3: Return the best solution found by Algorithms APX1 and APX2.

Next, we give another algorithm called Algorithm APXpHCP for ∆β-pHCP. Let ℓ be the largest
edge cost in H∗ with one end vertex as a hub and the other end vertex as a non-hub, i.e., ℓ =
maxv∈V \CH∗

w(v, f∗(v)) (see Fig. 8). Note that both Algorithm APX1 and Algorithm APX2 guess all
possible edges (y, z) to be the longest edge in H∗ with y as a hub and z as a non-hub.

Lemma 8 Let H1 be the solution returned by Algorithm APX1 and H∗ be an optimal solution. Then

1. for β ≤ 1, D(H1) ≤ D(H∗) + 4βℓ; and
2. for β ≥ 1, D(H1) ≤ β2 ·D(H∗) + 4βℓ
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Algorithm APX1

1: Let H1 be the graph found by the following steps. Initialize D(H1) = ∞.
2: for y, z ∈ V and y 6= z do

3: let H′ be the graph found by the following steps and CH′ be the hub set in H′. Initialize CH′ := ∅.
4: let ℓ = w(y, z) be the largest edge cost in an optimal solution H∗ with y as a hub and z as a non-hub. Let U := V \{y}

and c1 := y.
5: CH′ := CH′ ∪ {c1}.
6: for x ∈ U do

7: if w(c1, x) ≤ ℓ then

8: add an edge (x, c1) in H′.
9: U := U \ {x}
10: end if

11: end for

12: while |CH′ | < p and U 6= ∅ do

13: i := |CH′ |+ 1
14: choose v ∈ U , let ci = v, connect ci to all other vertices in CH′ , let U := U \ {v}, and let CH′ := CH′ ∪ {ci}.
15: for x ∈ U do

16: if w(x, ci) ≤ 2βℓ then

17: add edge (x, ci) in H′ and U := U \ {x}.
18: end if

19: end for

20: end while

21: if |CH′ | < p and U = ∅ then

22: arbitrarily select p − |CH′ | non-hubs to be hubs and connect all edges between hubs.
23: end if

24: if D(H′) < D(H1) then

25: H1 := H′

26: end if

27: end for

28: return H1

Algorithm APX2

1: Let H2 be the graph found by the following steps. Initialize D(H2) = ∞.
2: for y, z ∈ V and y 6= z do

3: let H′′ be the graph found by the following steps and CH′′ be the hub set of H′′. Initialize CH′′ := ∅.
4: let (y, z) be a longest edge in H∗ with one end vertex y as a hub and the other end vertex z as a non-hub i.e.,

f∗(z) = y and w(z, y) ≥ w(v, f∗(v)) for all non-hubs v.
5: connect y to all vertices in V .
6: if β ≤ 1 then

7: pick (p − 1) vertices {v1, v2, . . . , vp−1} farthest to y from V \ {y, z}. Let CH′′ = {y, v1, v2, . . . , vp−1}.
8: else

9: pick (p − 1) vertices {v1, v2, . . . , vp−1} closest to y from V \ {y, z}. Let CH′′ = {y, v1, v2, . . . , vp−1}.
10: end if

11: connect all pairs of vertices in CH′′ .
12: if D(H′′) < D(H2) then

13: H2 := H′′

14: end if

15: end for

16: return H2

where ℓ is the largest edge cost in H∗ with one end vertex as a hub and the other end vertex as a non-hub,
i.e., ℓ = maxv∈V \CH∗

w(v, f∗(v)).

Proof Let H∗ be an optimal solution of ∆β-pHCP and let f(u) be the hub adjacent to vertex u in H1

and f(u) = u if u is a hub.
Removing edges with both end vertices in CH∗ = {s1, s2, . . . , sp} from H∗ obtains p components and

each component is a star. Let S1, S2, . . . , Sp be the p stars and si be the center of star Si for i = 1, 2, . . . , p
(see Fig. 8). W.l.o.g., assume that s1 = y and (y, z) is the longest edge in H∗ with y as a hub and z as
a non-hub, i.e., w(y, z) = ℓ. Notice that for each pair of vertices in V , Algorithm APX1 finds a solution
H ′ based the assumption that they are the pair of y and z. Since H1 is the best solution among all
the possible solutions found by Algorithm APX1, w.l.o.g, we may assume that c1 = y. Because for each
v ∈ V \ CH∗ , w(v, f∗(v)) ≤ ℓ, by using β-triangle inequality we obtain that for u, v ∈ Si,

w(u, v) ≤ β · (w(u, si) + w(v, si)) ≤ 2βℓ.

Since the algorithm adds edges (v, c1) in H1 if w(v, c1) ≤ ℓ (see Fig. 9), we see that S1 ⊂ NH1
[c1] \CH1

.
Notice that for each Sj , j ≥ 2, if there exists a v ∈ Sj specified as ci ∈ CH1

, then all the other vertices
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b b b
s1 = y s2 sps3

H∗

ℓ

CH∗

z

Fig. 8: An optimal solution H∗ with (y, z) being the longest edge with one end vertex as a hub and the
other end vertex as a non-hub and w(y, z) = ℓ.

b b b
c1 = y c2 cjc3

H1

≤ ℓ
> ℓ > 2βℓ

≤ 2βℓ

cp
b b b

cj+1

Fig. 9: An approximate solution found with Algorithm APX1

in Sj are connected to one of c1, c2, . . . , ci in H1. Moreover, for each ci, 1 < i ≤ |CH1
|, there exists

an Sj , 1 < j ≤ p, such that ci ∈ Sj and Sj ∩ CH1
= {ci}. Notice that if there exists an Sj, 1 < j ≤ p,

Sj ∩ CH1
= ∅, then all vertices of Sj must be connected to one of vertices in CH1

in H1 and |CH1
| ≤ p.

This shows that for all non-hub u ∈ V \CH1
, w(u, f(u)) ≤ 2βℓ. Suppose that |CH1

| < p and the algorithm
selects p−|CH1

| vertices non-hubs to be hubs in Step 22 of Algorithm APX1. Thus, the algorithm always
returns a feasible solution with |CH1

| = p.
We then show that D(H1) ≤ D(H∗) + 4βℓ if β ≤ 1 and D(H1) ≤ β2 ·D(H∗) + 4βℓ if β ≥ 1.
Suppose that β ≤ 1. For any u, v ∈ CH1

, dH1
(u, v) = w(u, v) ≤ D(H∗).

We next prove that if β ≥ 1, for u, v ∈ CH1
in H1, dH1

(u, v) = w(u, v) ≤ β2D(H∗). Let f∗(u) (resp.
f∗(v)) be the hub adjacent to u (resp. v) in H∗ where H∗ is an optimal solution. We see that

w(u, v) ≤ β · (w(u, f∗(u)) + w(v, f∗(u))) (using β-triangle inequality)

≤ β · (w(u, f∗(u)) + β · (w(v, f∗(v)) + w(f∗(v), f∗(u)))) (using β-triangle inequality)

≤ β · (w(u, f∗(u)) + β · (w(v, f∗(v)) + w(f∗(v), f∗(u)) + w(u, f∗(u))− w(u, f∗(u))))

= β · (w(u, f∗(u)) + β · (dH∗(v, u)− w(u, f∗(u)))

≤ β · (w(u, f∗(u)) + β · (D(H∗)− w(u, f∗(u)))) (using dH∗(v, u) ≤ D(H∗))

≤ β2 ·D(H∗). (since β ≥ 1)

Notice that for all non-hubs u ∈ V \ CH1
, w(u, f(u)) ≤ 2βℓ. Thus, if β ≤ 1, for any u, v ∈ V

dH(u, v) = w(u, f(u)) + w(f(u), f(v)) + w(v, f(v))

≤ D(H∗) + 4βℓ. (since w(f(u), f(v)) ≤ D(H∗))

If β ≥ 1, for for any u, v ∈ V ,

dH(u, v) = w(u, f(u)) + w(f(u), f(v)) + w(v, f(v))

≤ β2 ·D(H∗) + 4βℓ. (since w(f(u), f(v)) ≤ β2 ·D(H∗))

This completes the proof. ⊓⊔

Lemma 9 Let H2 be the solution returned by Algorithm APX2 and H∗ be an optimal solution. Then,

1. D(H2) ≤ max{D(H∗), (1 + β) · (D(H∗)− ℓ)} if β ≤ 1; and
2. D(H2) ≤ max{ℓ+ β(D(H∗)− ℓ), 2β(D(H∗)− ℓ)} if β ≥ 1
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b b b

y v1 vp−1v2

H2

z

Fig. 10: An approximate solution found with Algorithm APX2

where ℓ is the largest edge cost in H∗ with one end vertex as a hub and the other end vertex as a non-hub,
i.e., ℓ = maxv∈V \CH∗

w(v, f∗(v)).

Proof Let H∗ be an optimal solution. For a non-hub v, use f∗(v) to denote the hub adjacent to v in H∗.
For a hub v in H∗, let f∗(v) = v. Notice that Algorithm APX2 guesses all possible edges (y, z) to be a
longest edge in H∗ with one end vertex as a hub and the other end vertex as a non-hub. In the following
we assume that w(y, z) = ℓ is the largest edge cost in H∗ with y as a hub and z as a non-hub.

Claim 15 For any hub v ∈ CH2
\ {y} in H2, dH2

(v, y) ≤ D(H∗)− ℓ.

Proof For β ≤ 1,

dH2
(v, y) = w(v, y)

≤ w(v, f∗(v)) + w(f∗(v), y) + w(y, z)− w(y, z)

= dH∗(v, z)− ℓ (w(y, z) = ℓ)

≤ D(H∗)− ℓ

For β ≥ 1, the algorithm (p− 1) vertices closest to y from V \ {y, z} as hubs. If v is a hub in H∗, then

dH2
(v, y) = dH∗(v, y) + w(y, z)− w(y, z) = dH∗(v, z)− ℓ ≤ D(H∗)− ℓ.

If v is a non-hub in H∗, then there exists a hub v′ in H∗ satisfying that w(v′, y) ≥ w(v, y). We obtain
that

dH2
(v, y) = w(v, y) ≤ w(v′, y) + w(y, z)− w(y, z) = dH∗(v′, z)− ℓ ≤ D(H∗)− ℓ.

This completes the proof. �

Claim 16 For any non-hub v ∈ V \ (CH2
∪ {z}) in H2, if v is a hub in H∗ or v is a non-hub adjacent

to y, then dH2
(v, y) ≤ D(H∗)− ℓ.

Proof Notice that v is a non-hub in H2 adjacent to y and either v is a hub in H∗ or v is a non-hub
adjacent to y, v 6= z. We obtain that

dH2
(v, y) = w(v, y)

= w(v, y) + w(y, z)− w(y, z)

= dH∗(v, z)− w(y, z)

= dH∗(v, z)− ℓ (since w(y, z) = ℓ)

≤ D(H∗)− ℓ

This completes the proof. �

Claim 17 For any non-hub v ∈ V \ (CH2
∪ {z}) in H2, if v is a non-hub in H∗ satisfying that v is not

adjacent to y, then dH2
(v, y) ≤ β · (D(H∗)− ℓ).
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Proof Notice that v is a non-hub in H2 and v is a non-hub in H∗ satisfying that v is not adjacent to y,
i.e., f∗(v) 6= y. We obtain that

dH2
(v, y) = w(v, y)

≤ β · (w(v, f∗(v)) + w(f∗(v), y)) (using β-triangle inequality)

= β · (w(v, f∗(v)) + w(f∗(v), y) + w(y, z)− w(y, z))

= β · (dH∗(v, z)− ℓ) (since w(y, z) = ℓ)

≤ β · (D(H∗)− ℓ).

This completes the proof. �

Claim 18 Let u and v be two non-hubs in H2. Then dH2
(u, v) ≤ max{D(H∗), (1 + β) · (D(H∗)− ℓ)} if

β ≤ 1; and dH2
(u, v) ≤ max{ℓ+ β · (D(H∗)− ℓ), 2β · (D(H∗)− ℓ)} if β ≥ 1.

Proof For two non-hubs u, v in H2, we have the following six cases.

(i) Both u and v are non-hubs in H∗ and f∗(u) = f∗(v) = y. We see that dH2
(u, v) = dH∗(u, v) ≤

D(H∗).
(ii) Both u and v are non-hubs in H∗ and f∗(u) = y and f∗(v) 6= y. If u 6= z, we see that

dH2
(u, v) = w(u, y) + w(v, y)

= dH2
(u, y) + dH2

(v, y)

≤ D(H∗)− ℓ+ β · (D(H∗)− ℓ) (using Claims 16 and 17)

= (1 + β) · (D(H∗)− ℓ).

If u = z, we see that

dH2
(u, v) = w(y, z) + w(v, y)

= ℓ+ dH2
(v, y) (since w(y, z) = ℓ)

≤ ℓ+ β · (D(H∗)− ℓ). (using Claim 17)

(iii) Both u and v are non-hubs in H∗ and f∗(u) 6= y and f∗(v) 6= y. We see that

dH2
(u, v) = w(u, y) + w(v, y)

≤ dH2
(u, y) + dH2

(v, y)

≤ 2β · (D(H∗)− ℓ). (using Claim 17)

(iv) The vertex u is a hub in H∗ and v is a non-hub in H∗ satisfying that f∗(v) = y. We see that
dH2

(u, v) = w(u, y) + w(v, y) = dH∗(u, v) ≤ D(H∗).
(v) The vertex u is a hub in H∗ and v is a non-hub in H∗ satisfying that f∗(v) 6= y. We see that

dH2
(u, v) = w(u, y) + w(v, y)

≤ dH2
(u, y) + dH2

(v, y)

≤ (D(H∗)− ℓ) + β · (D(H∗)− ℓ) (using Claims 16 and 17)

= (1 + β) · (D(H∗)− ℓ).

(vi) Both u and v are hubs in H∗.
For β ≥ 1, we obtain that

dH2
(u, v) ≤ β · (w(u, y) + w(v, y)) (using β-triangle inequality)

= β · (dH2
(u, y) + dH2

(v, y))

≤ 2β · (D(H∗)− ℓ). (using Claim 16)
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For β ≤ 1, since Algorithm APX2 picks (p − 1) vertices farthest to y from V \ {y, z} as hubs
in H2, there exist two vertices u′, v′ ∈ CH2

satisfying that u′ and v′ are non-hubs in H∗ and
w(u′, y) ≥ w(u, y) and w(v′, y) ≥ w(v, y). We obtain that

dH2
(u, v) = w(u, y) + w(v, y) ≤ w(u′, y) + w(v′, y).

Next we show that w(u′, y)+w(v′, y) ≤ max{D(H∗), (1 + β) · (D(H∗)− ℓ)}. There are three cases.
a. If f∗(u′) = y and f∗(v′) = y, we see that w(u′, y) + w(v′, y) = dH∗(u′, v′) ≤ D(H∗).
b. f∗(u′) = y and f∗(v′) 6= y. We obtain that

w(u′, y) + w(v′, y) = dH2
(u′, y) + w(v′, y)

≤ (D(H∗)− ℓ) + β · (w(v′, f∗(v′)) + w(f∗(v′), y) + w(y, z)− w(y, z))

(using Claims 15 and β-triangle inequality)

= (D(H∗)− ℓ) + β · (dH∗(v′, z)− ℓ) (since w(y, z) = ℓ)

≤ (D(H∗)− ℓ) + β · (D(H∗)− ℓ)) (since dH∗(v′, z) ≤ D(H∗))

= (1 + β) · (D(H∗)− ℓ).

c. f∗(u′) 6= y and f∗(v′) 6= y. We obtain that

w(u′, y) + w(v′, y) = β · (w(u′, f∗(u′)) + w(f∗(u′), y) + w(y, z)− w(y, z)) +

β · (w(v′, f∗(v′)) + w(f∗(v′), y) + w(y, z)− w(y, z))

(using β-triangle inequality)

= β · (dH∗(u′, z)− ℓ) + β · (dH∗(v′, z)− ℓ)

≤ 2β · (D(H∗)− ℓ). (since dH∗(u′, z) ≤ D(H∗) and dH∗(v′, z) ≤ D(H∗))

≤ (1 + β) · (D(H∗)− ℓ). (since β ≤ 1)

This shows that w(u′, y)+w(v′, y) ≤ max{D(H∗), (1+β) ·(D(H∗)−ℓ)}. Notice that dH2
(u, v) ≤

w(u′, y) +w(v′, y). Thus, for any two non-hubs u, v in H2 satisfying that both u and v are hubs
in H∗,

dH2
(u, v) ≤ max{D(H∗), (1 + β) · (D(H∗)− ℓ) if β ≤ 1;

and
dH2

(u, v) ≤ 2β · (D(H∗)− ℓ) if β ≥ 1.

Notice that if β ≤ 1,
ℓ+ β(D(H∗)− ℓ) ≤ D(H∗)

and
2β · (D(H∗)− ℓ) ≤ (1 + β) ·D(H∗).

Conversely if β ≥ 1,
ℓ+ β(D(H∗)− ℓ) ≥ D(H∗)

and
2β · (D(H∗)− ℓ) ≥ (1 + β) ·D(H∗).

Thus, for any two non-hubs u, v in H2, if β ≤ 1,

dH2
(u, v) ≤ max{D(H∗), (1 + β) ·D(H∗)};

if β ≥ 1,
dH2

(u, v) ≤ max{ℓ+ β(D(H∗)− ℓ), 2β · (D(H∗)− ℓ)}.

This completes the proof. �

Claim 19 For a non-hub u and a hub v in H2, dH2
(u, v) ≤ max{D(H∗), (1 + β) · (D(H∗)− ℓ)}.

Proof For a non-hub u and a hub v in H2, there are three cases.

(i) The vertex u is a non-hub adjacent to the hub y in H∗, w(u, y) ≤ ℓ. By Claim 15, dH2
(v, y) ≤

D(H∗)− ℓ. We obtain that

dH2
(u, v) = w(u, y) + dH2

(v, y) ≤ ℓ+D(H∗)− ℓ = D(H∗).
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(ii) The vertex u is a non-hub not adjacent to y in H∗. We obtain that

dH2
(u, v) = w(u, y) + w(v, y)

= dH2
(u, y) + dH2

(v, y)

≤ β · (D(H∗)− ℓ) + (D(H∗)− ℓ) (using Claims 17 and 15)

= (1 + β) · (D(H∗)− ℓ)

(iii) The vertex u is a hub in H∗.
For β ≥ 1, we obtain that

dH2
(u, v) = w(u, y) + dH2

(v, y)

= w(u, y) + w(y, z)− w(y, z) + dH2
(v, y)

= dH∗(u, z)− ℓ+ dH2
(v, y) (since w(y, z) = ℓ)

≤ D(H∗)− ℓ+ dH2
(v, y) (since dH∗(u, z) ≤ D(H∗))

≤ 2 · (D(H∗)− ℓ) (using Claim 15)

≤ (1 + β) · (D(H∗)− ℓ) (since β ≥ 1)

For β ≤ 1, since Algorithm APX2 picks (p− 1) vertices farthest to y from V \ {y, z} as hubs in H2,
there exists a u′ ∈ CH2

satisfying that u′ is a non-hubs in H∗ and w(u′, y) ≥ w(u, y).
Suppose that f∗(u′) = y. We see that

dH2
(u, v) = w(u, y) + w(v, y)

≤ w(u′, y) + dH2
(v, y)

≤ ℓ+ dH2
(v, y) (since u′ is a non-hub adjacent to y)

≤ ℓ+ (D(H∗)− ℓ) (using Claim 15)

= D(H∗)

Suppose that f∗(u′) 6= y. We see that

dH2
(u, v) = w(u, y) + w(v, y)

≤ w(u′, y) + dH2
(v, y)

= dH2
(u′, y) + dH2

(v, y)

≤ β · (D(H∗)− ℓ) +D(H∗)− ℓ (using Claims 17 and 15)

≤ (1 + β) · (D(H∗)− ℓ).

Thus, for a non-hub u and a hub v in H2,

dH2
(u, v) ≤ max{D(H∗), (1 + β) ·D(H∗ − ℓ)}.

This completes the proof. �

Claim 20 Let u, v be two hubs in H2, u 6= y and v 6= y. Then, dH2
(u, v) ≤ D(H∗) if β ≤ 1 and

dH2
(u, v) ≤ 2β ·D(H∗ − ℓ) if β ≥ 1.

Proof For two hubs u, v in H2, u 6= y and v 6= y, we see that dH2
(u, v) = w(u, v) ≤ D(H∗) if β ≤ 1. We

now prove that for β ≥ 1, for two hubs u, v in H2, u, v 6= y, dH2
(u, v) = w(u, v) ≤ 2β(D(H∗) − ℓ). By

Claim 15, we see that

dH2
(u, v) = w(u, v)

≤ β · (w(u, y) + w(v, y)) (using β-triangle inequality)

= β · (dH2
(u, y) + dH2

(v, y))

≤ 2β(D(H∗)− ℓ) (using Claim 15)

This completes the proof. �
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By Claims 15, 16, and 17, for any vertex v in H2, v 6= y, dH2
(v, y) ≤ max{D(H∗)−ℓ, β ·(D(H∗−ℓ))}.

Since for any v in H2, v 6= y and v 6= z, dH2
(v, z) = dH2

(v, y) + w(y, z) and w(y, z) = ℓ, we see that
dH2

(v, z) ≤ max{D(H∗), ℓ+ β · (D(H∗)− ℓ))}.
Using Claims 18, 19, and 20, we obtain that if β ≤ 1,

D(H2) ≤ max{D(H∗), (1 + β) · (D(H∗)− ℓ)};

if β ≥ 1,
D(H2) ≤ max{ℓ+ β(D(H∗)− ℓ), 2β(D(H∗)− ℓ)}.

This completes the proof. ⊓⊔

Lemma 10 Let 3+
√
29

10 ≤ β ≤ 1. Then, there is a (4β
2+5β+1
5β+1 )-approximation algorithm for ∆β-pHCP.

Proof Let H∗ be an optimal solution of ∆β-pHCP. In this lemma, we show that for 3+
√
29

10 ≤ β ≤ 1,

Algorithm APXpHCP returns a solution H such that D(H) ≤ (4β
2+5β+1
5β+1 ) ·D(H∗).

By Lemma 8 and Lemma 9, we see that the approximation ratio of Algorithm APXpHCP is r(β) =

min{D(H1)
D(H∗) ,

D(H2)
D(H∗)}.

Note that if ℓ
D(H∗) ≥ β

1+β
, then D(H2) = D(H∗). Assume that ℓ

D(H∗) < β
1+β

, we see that D(H2) ≤

(1 + β) · (D(H∗)− ℓ).
The worst case approximation ratio of Algorithm APXpHCP happens when D(H1) = D(H2), i.e.,

D(H∗) + 4βℓ = (1 + β) · (D(H∗)− ℓ).

This implies ℓ
D(H∗) =

β
5β+1 . Thus,

r(β) = min{D(H1)
D(H∗) ,

D(H2)
D(H∗)} ≤ 1 + 4β2

5β+1 .

This completes the proof. ⊓⊔

We now prove that if 1 ≤ β ≤ 2, Algorithm APXpHCP is a (β
2+4β
3 )-approximation algorithm for

∆β-pHCP.

Lemma 11 Let 1 ≤ β ≤ 2. Then, there is a (β
2+4β
3 )-approximation algorithm for ∆β-pHCP.

Proof We show that for 1 ≤ β ≤ 2, Algorithm APXpHCP returns a solution H such that D(H) ≤

(β
2+4β
3 ) ·D(H∗) where H∗ is an optimal solution of ∆β-pHCP.
By Lemma 8 and Lemma 9, we see that the approximation ratio of Algorithm APXpHCP is r(β) =

min{D(H1)
D(H∗) ,

D(H2)
D(H∗)}.

If ℓ
D(H∗) ≥

β
1+β

, then

max{ℓ+ β(D(H∗)− ℓ), 2β · (D(H∗)− ℓ)} = ℓ+ β(D(H∗)− ℓ) ≤ β ·D(H∗).

Since β ·D(H∗) < β2 ·D(H∗) + 4βℓ, we see that Algorithm APX2 always returns a better solution than

Algorithm APX1 with the approximation ratio β < β2+4β
3 if ℓ

D(H∗) ≥
β

1+β
.

Suppose that ℓ
D(H∗) <

β
1+β

. We have

max{ℓ+ β · (D(H∗)− ℓ), 2β · (D(H∗)− ℓ)} = 2β · (D(H∗)− ℓ).

The worst case approximation ratio of Algorithm APXpHCP happens when D(H1) = D(H2), i.e.,

β2D(H∗) + 4βℓ = 2β · (D(H∗)− ℓ).

Since 1 ≤ β ≤ 2, we obtain that ℓ
D(H∗) =

2−β
6 . Thus,

r(β) = min{D(H1)
D(H∗) ,

D(H2)
D(H∗)} ≤ β2 + 4β · (2−β

6 ) = β2+4β
3 .

This completes the proof. ⊓⊔

We prove that if β ≥ 2, Algorithm APXpHCP is a 2β-approximation algorithm for ∆β-pHCP.

Lemma 12 For β ≥ 2, there is a 2β-approximation algorithm for ∆β-pHCP.
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Proof Since β ≥ 2, by Lemmas 8 and 9 we see that Algorithm APX2 always returns a solution better than
the solution returned by Algorithm APX1. Using Lemma 9, we obtain that D(H2) ≤ max{ℓ+β(D(H∗)−
ℓ), 2β(D(H∗)−ℓ)}. Since β ≥ 2, we see thatD(H2) ≤ max{ℓ+β(D(H∗)−ℓ), 2β(D(H∗)−ℓ)} ≤ 2βD(H∗).
This completes the proof. ⊓⊔

It is not hard to see that all algorithms given in this sections run in polynomial time. The following
theorem concludes the results of Lemmas 6–12. It gives the upper bounds of approximation ratio for
∆β-pHCP in different ranges of β. The curves of the upper bounds r(β) are depicted in Fig. 2 and Fig. 3.

Theorem 2 Let β ≥ 1
2 . There exists a polynomial-time r(β)-approximation algorithm for ∆β-pHCP

where

(i) r(β) = 1 if β ≤ 3−
√
3

2 ;

(ii) r(β) = 3β−2β2

3(1−β) if 3−
√
3

2 < β ≤ 5+
√
5

10 ;

(iii) r(β) = β + β2 if 5+
√
5

10 ≤ β ≤ 3+
√
29

10 ;

(iv) r(β) = 4β2+5β+1
5β+1 if 3+

√
29

10 ≤ β ≤ 1;

(v) r(β) = β2+4β
3 if 1 ≤ β ≤ 2;

(vi) r(β) = 2β if β ≥ 2.

4 Conclusion

In this paper, we have studied ∆β-pHCP for all β ≥ 1
2 . A polynomial time algorithm is given to solve

∆β-pHCP optimally for β ≤ 3−
√
3

2 . It is shown that for any ǫ > 0, to approximate ∆β-pHCP to a ratio

g(β)− ǫ is NP-hard for β > 3−
√
3

2 . We give r(β)-approximation algorithms for the same problem for any

β > 3−
√
3

2 . For β = 1, we see that the lower bound g(β) = 3
2 and upper bound r(β) = 5

3 of approximation
ratios are small. However, for β > 1, the gap between the upper and lower bounds of approximability
can be arbitrarily large. In future work, it is of interest to extend the range of β for ∆β-pHCP such that
the gap between the upper and lower bounds of approximability can be reduced for any β > 1.
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13. J. Brimberg, N. Mladenović, R. Todosijević and D. Urošević, General variable neighborhood search for the uncapaci-
tated single allocation p-hub center problem, Optimization Letters, 11(2) (2017), 377–388.

14. J. F. Campbell: Integer programming formulations of discrete hub location problems. European Journal of Operational
Research 72 (1994), 387–405.

15. J. F. Campbell and A. T. Ernst: Hub location problems. in: Z. Drezner and H. W. Hamacher (Eds.), Facility Location:
Applications and Theory, Springer, Berlin, 2002, pp. 373–407.

16. L.-H. Chen, D.-W. Cheng, S.-Y. Hsieh, L.-J. Hung, C.-W. Lee, B. Y. Wu: Approximation algorithms for single allocation
k-hub center problem. Proceedings of the 33rd Workshop on Combinatorial Mathematics and Computation Theory
(CMCT 2016), pp. 13–18, 2016.

17. L.-H. Chen, S.-Y. Hsieh, L.-J. Hung, R. Klasing, C.-W. Lee, B. Y. Wu: On the complexity of the star p-hub center
problem with parameterized triangle inequality. Proceedings of the 10th International Conference on Algorithms and
Complexity (CIAC 2017), LNCS 10236, pp. 152–163, 2017. Full version in Journal of Computer System Sciences 92
(2018), pp. 92–112.

18. L.-H. Chen, D.-W.Cheng, S.-Y. Hsieh, L.-J. Hung, C.-W. Lee, B. Y. Wu: Approximation algorithms for the star
k-hub center problem in metric graphs. Proceedings of the 22nd International Computing and Combinatorics Confer-
ence (COCOON 2016), LNCS 9797, pp. 222–234, 2016.

19. I. Dinur and D. Steurer: Analytical approach to parallel repetition. Proceedings of STOC 2014, pp. 624–633, 2014.
20. A. T. Ernst, H. Hamacher, H. Jiang, M. Krishnamoorthy, G. Woeginger: Uncapacitated single and multiple allocation

p-hub center problem. Computers & Operations Research 36 (2009), 2230–2241.
21. M.R. Garey, D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman

and Company, San Francisco, 1979.
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