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—— Abstract

Graph search, the process of visiting vertices in a graph in a specific order, has demonstrated magical
powers in many important algorithms. But a systematic study was only initiated by Corneil et al. a
decade ago, and only by then we started to realize how little we understand it. Even the apparently
naive question “which vertex can be the last visited by a graph search algorithm,” known as the end
vertex problem, turns out to be quite elusive. We give a full picture of all maximum cardinality
searches on chordal graphs, which implies a polynomial-time algorithm for the end vertex problem
of maximum cardinality search. It is complemented by a proof of NP-completeness of the same
problem on weakly chordal graphs. We also show linear-time algorithms for deciding end vertices
of breadth-first searches on interval graphs, and end vertices of lexicographic depth-first searches
on chordal graphs. Finally, we present 2" - n®®)_time algorithms for deciding the end vertices of
breadth-first searches, depth-first searches, and maximum cardinality searches on general graphs.
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1 Introduction

Breadth-first search (BFs) and depth-first search (DFS) are the most fundamental graph
algorithms, and the standard opening of a course on this subject. Their use can be found,
sometimes implicitly, in most graph algorithms. In general, a graph search is a systematic
exploration of a graph, and its core lies on the strategy of how to choose the next vertex
to visit. Mostly greedy, graph searches are very simple but sometimes have magical powers.
DFs has played a significant role in Tarjan’s award-winning work, in testing planarity [19]
and in finding strongly connected components [25].

Two other search algorithms, lexicographic breadth-first search (LBFS) [21] and maximum
cardinality search (McCs) [26], were invented for the purpose of recognizing chordal graphs,
i.e., graphs not containing any induced cycle on four or more vertices. On a chordal graph,
both LBFS and MCs produce perfect elimination orderings (see definition in the next section)
of the graph, which exist if and only if the graph is chordal. Albeit relatively less well known
compared to BFS and DFS, LBFS and MCS did find important applications. LBFS is used in
scheduling [22], and is the base of the recent linear-time algorithm for computing modular
decomposition of a graph [27]. Mcs is used in testing acyclic hypergraphs and in computing
minimum cuts of a graph and find forest decompositions.
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Simon [24] proposed an interesting way of using LBFS. It conducts LBFS more than once,
and each new run uses previous runs in breaking ties; in particular, except the first, each run
starts from the last vertex of the previous run. This generic approach turns out to be very
useful, e.g., the extremely simple recognition algorithm for unit interval graphs [7]. See the
survey of Corneil [8] for more algorithms using multiple runs of LBFS. Some of these results
have a flavor of “ad-hoc”: We do not fully understand the execution process of LBFS.

The outputs of BFS and DFS are usually rooted spanning forests of the graph, while LBFS
and Mcs produce orderings of its vertices. To have a unified view of them, Corneil et al. [11]
focused on the ordering of the vertices being first visited and conducted a systematic study of
them. This study motivates them to propose the lexicographic version of DFS, lexicographic
depth-first search (LDFS), another very powerful graph search [9], and a very general search
paradigm, maximum neighborhood search (MNS). They showed that all the aforementioned
graph searches can be characterized by variants of the so-called four-vertex condition. These
nice characterizations are however not sufficient to allow us to answer the ostentatiously
naive question: Which vertex can be the last of such an ordering? Corneil et al. [10] defined
the end vertex problem and studied it from both combinatorial and algorithmic perspectives.
Apart from a natural starting point of understanding the graph searches in general, end
vertices of graph searches are of their own interest. Behind the original use of LBFS and MCS,
in the recognition of chordal graphs, is nothing but the properties of their end vertices, which
are always simplicial on a chordal graph [21, 26, 23, 4]. Moreover, the success of multiple-run
LBFS crucially hinges on the end vertices; e.g., an end vertex of a (unit) interval graph
can always be assigned an extreme (i.e., leftmost or rightmost) interval [7, 13]. Important
properties and use of end vertices of other graph searches can be found in [9, 17, 12].

One may find it surprising, but the end vertex problem is NP-hard for all the six mentioned
graph search algorithms [11, 6, 1]. The study has thus been focused on chordal graphs and
its closely related superclasses and subclasses. After all, LBFS and MCS were invented for
recognition of chordal graphs, and their properties on chordal graphs have been intensively
studied. (This renders the stagnation on chordal graphs a little more embarrassing.) Moreover,
most applications of LBFS and LDFS are on related graph classes. The most natural superclass
of chordal graphs is arguably the weakly chordal graphs, and two important subclasses are
interval graphs and split graphs. It has been known that on weakly chordal graphs, the end
vertex problems for all but MCs are NP-complete, while only DFS end vertex is NP-complete
on chordal graphs [11, 6, 1]. There are other polynomial-time algorithms for interval graphs
and split graphs, most of which actually run in linear time. We complete the pictures for,
in terms of graph searches, MCS and LDFS, and, in terms of graph classes, weakly chordal
graphs and interval graphs. A summary of known results is given in Fig. 1.

Blair and Peyton [5] and Galinier et al. [16] have shown that MCs of a chordal graph are
closely related to its maximal cliques. Let G be a chordal graph. An MCS visits all vertices in
a maximal clique of G before proceeding to another, and the next maximal clique is always
chosen to have the largest intersection with a visited one. Therefore, for a minimum separator
S of G, there is an MCS visiting the components of G — S one by one, with .S visited together
with the first component. If we turn to any component C' of G — S, and consider its closed
neighborhood, (which contains C' and S,) then we have a similar statement. In other words,
this property on minimum separators holds in a recursive way. For an MCS end vertex z,
which is necessarily simplicial, we can find a sequence of increasing separators such that the
first is a minimum separator of G and the last comprises all the non-simplicial vertices in
N(z). An MCs ended with z has to “cross” these separators in order, and for each of them,
visit the component containing z in the last. We have thus a full understanding of all MmCs
orderings of a chordal graph. As it turns out, this result is easier to be presented in the
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P l (WEAKLY CHORDAL] all [10, 6, 1]

MNS [1], MCs, LDFS |CHORDAL| DFs
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Figure 1 A summary of the known complexity of the end vertex problem for the six graph search
algorithms. For each graph class, the end vertex problem of graph searches listed to the left of it can

all others [6, 1]

be solved in polynomial time on this class, while those to the right are NP-hard. The complexity of
the BFS end vertex and LBFS end vertex problems on chordal graphs are still open.

so-called weighted clique graph of G [5, 16]. It enables us to show that if we run MCS twice,
first starting from z, and the second starting from the end vertex of the first run and using
the first ordering to break ties, then the second run ends with z if and only if z is an MCS
end vertex. As usual, n denotes the number of vertices in the input graph.

» Theorem 1. The MCS end vertex problem can be solved in O(n?) time on chordal graphs.

We complement this result by showing that the McCs end vertex problem becomes NP-
complete on weakly chordal graphs; the proof is inspired by and adapted from [1].

» Theorem 2. The MCS end vertex problem is NP-complete on weakly chordal graphs.

We then turn to LDFS on chordal graphs. Surprisingly, the characterization of Berry et
al. [3] for end vertices of MNS on chordal graphs is also true for LDFS: A simplicial vertex z
of a chordal graph G is an LDFS end vertex if and only if the minimal separators of G in
N(z) are totally ordered by inclusion. We also show a simple algorithm for solving the BFS
end vertex problem on interval graphs.

» Theorem 3. There are linear-time algorithms for solving the LDFS end vertex problem on
chordal graphs and for solving the BFS end vertex problem on interval graphs.

We have to, nevertheless, leave open the BFS and LBFS end vertex problems on chordal
graphs. Since both can be solved in linear time on split graphs, we conjecture that they can
be solved in polynomial time on chordal graphs. It is extremely rare that a problem is hard
on chordal graphs but easy on split graphs.

We also consider algorithms for solving the end vertex problems on general graphs. By
enumerating all possible orderings, a trivial algorithm can find all end vertices of any graph
search in n! - n®® time. On the other hand, with the only exception of BFs, the reductions
used in proving NP-hardness of the end vertex problems are linear reductions from (3-)SAT.
As a result, these problems cannot be solved in subexponential time, unless the exponential
time hypothesis fails [20]. A natural question is thus which of them can be solved in 20(%)
time. If we put them under closer scrutiny, we will see that these graph searches are somewhat
different: When selecting the next vertex, MCS only needs to know which vertices have been
visited, while the order of visiting them is immaterial. In contrast, the other graph searches
are not oblivious and need to keep track of the whole visiting history. It is straightforward to
use dynamic programming to solve the McS end vertex problem in 27 - n? time. Interestingly,
a similar approach actually works for the BFS and DFS end vertex problems.

» Theorem 4. There are 2" - n°®W -time algorithms that solve the end vertex problems of
the following graph searches: MCS, BFS, and DFS.
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2 Preliminaries

All graphs discussed in this paper are undirected and simple. The vertex set and edge set
of a graph G are denoted by, respectively, V(G) and E(G), and we use n = |[V(G)| and
m = |E(G)| to denote their cardinalities. For a subset X C V(G), denote by G[X] the
subgraph of G induced by X, and by G — X the subgraph G[V(G) \ X]. The degree of a
vertex v is the number of neighbors it has, i.e., d(v) = |N(v)|. A vertex v is simplicial if
N[v] induces a complete graph. Two distinct vertices u and v are true twins if N[u] = N[v],
and false twins if N(u) = N(v); note that true twins are adjacent while false twins are not.

A vertex set S is a u-v separator if u and v are not in S and they are not connected in
G — S, and a u-v separator is minimal if no proper subset of S is a u-v separator. We call S
a (minimal) separator if it is a (minimal) u-v separator for some pair of v and v, and it is a
minimum separator of G if it has the smallest cardinality among all separators of G.

An ordering o of the vertices of G is a bijection from V(G) — {1,...,n}. For two vertices
u and v, we use u <, v to denote o(u) < o(v). The end vertex of o is the vertex z with
o(z) = n. Given a graph G and a vertex z € V(Q), the end vertex problem for graph search
S is to determine whether there is an S-ordering of G of which z is the end vertex.

A graph is chordal if it contains no induced cycle on four or more vertices. A graph
is chordal if and only if it can be made empty by removing simplicial vertices from the
remaining graph one by one; the order of the vertices removed is called a perfect elimination
ordering [15]. The greedy strategy of MCS is to choose an unvisited vertex with the maximum
number of visited neighbors. On a chordal graph G, the last vertex of any MCs is simplicial,
and thus the reversal of an MCs ordering is always a perfect elimination ordering [26].

To avoid unnecessary digressions, we consider only connected graphs.

3 Maximum cardinality search on chordal graphs

Another important characterization of chordal graphs is through its maximal cliques. A
graph G is chordal if and only if we can arrange its maximal cliques as a tree such that for
each vertex v € V(G), maximal cliques containing v induce a subtree; such a tree is called a
clique tree of G [14]. A chordal graph G has at most n maximal cliques [14], and for any pair
of adjacent K; and K; on the clique tree, intersection K; N K; is a minimal separator of G.

Out of a chordal graph G, we can define a weighted clique graph C(G) as follows. It has
£ vertices, where /¢ is the number of maximal cliques of G, and each vertex is labeled by a
distinct maximal clique of G. To simplify the presentation, we will refer to vertices of C(G)
as cliques; note that we are not going to use cliques of the graph C(G) in this paper. There
is an edge between maximal cliques K; and K;, 1 < 4,5 </, if and only if K; N K is a
minimal z-y separator for all z € K; \ K; and y € K; \ K;. We label this edge with K; N K},
and set its weight to be |K; N Kj|. It is known that a tree on the maximal cliques of G is
a clique tree of G if and only if it is a maximum spanning tree of C(G) [2, 5, 16], i.e., a
spanning tree of C(G) with the maximum total edge weights.

» Proposition 5. Let G be a chordal graph and C(G) the weighted clique graph of G. A set
S CV(G) is a minimal separator of G if and only if it is the label for some edge of C(G).

One can use Prim’s algorithm to find a maximum spanning tree of G. (Although proposed
for finding a minimum spanning tree, Prim’s algorithm can be easily modified to find a
maximum one.) Starting from an arbitrary clique, it grows the tree by including one edge
and one clique at a time, while the edge is chosen to have the largest weight among those
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crossing the partial tree that has been built, i.e., with one end in the current tree and the
other not. In the same spirit of graph search orderings, we can define a Prim ordering to be
the order maximal cliques of G being included by Prim’s algorithm, applied to C(G).

Let 7 be an ordering of the maximal cliques of G. We say that an ordering o of V(G) is
generated by 7 if K, <, K, implies u <, v, where K,, and K, are the first maximal cliques
in 7 containing u, and respectively, v. If 7 = (K1, Ko, ..., Ky) and ¢; = |K; \ U;;11 K| for
1 <i </, then o can be represented as

o), ...,07 er), o er +1),..., 07 er ), oo i n—cp+1),..., 07 (n).

K Ko\ Ktz\UZ»ii K;
i

The following has been essentially observed by Blair and Peyton [5], who however only stated
explicitly one direction. For the sake of completeness, we give a proof here.

» Lemma 6. Let G be a chordal graph. An ordering o of V(G) is an McCs ordering of G if
and only if it is generated by some Prim ordering = of C(G).

Proof. The only if direction has been proved by Blair and Peyton [5, Lemma 4.8 and Theorem
4.10]. Here we show the if direction. Suppose that o is generated by 7. We may renumber
the vertices in G such that o = (vq, va, ..., v,), and renumber the maximal cliques such that
m= (K1, Ky, ..., Ky). Let K] = K; \J;Z} K for 1 <i < {; note that {K{, K}, ..., K} is
a partition of V(G). We show by induction that for each 1 < ¢ < n, there is an MCS ordering
of G of which the first 7 vertices are vy, ..., v;; in other words, among vertices v;, ..., vp,
vertex v; has the maximum number of neighbors in the first i — 1 vertices. It is vacuously
true for ¢ = 1. Now suppose that it is true for v,, we show that it is also true for vp;.
When v,41 € K{ = K3, it is adjacent to all previous vertices and we are done. In the
rest vp41 € K, for some ¢t > 1. Let A = U;: Kj; note that vp41 ¢ A. For any ¢ > p, let
G, denote the subgraph of G induced by vq,v2,...,vp, and v,. By the induction hypothesis,

(v1,V2,...,Up,0,4) is an MCS ordering of G,. Since G, is chordal, v, is simplicial in it.

Therefore, N(v,) N A is a clique for all ¢ > p; denote it by X,. We argue by contradiction
that there must be 1 < s < t such that X, C K,. We find an ¢ with 1 < ¢ < t such that
K; N X, is maximal. If X, Z K;, then there is a vertex z € X, \ Kj;; let K, where 1 < j <,
contain z. By the maximality of K; N X, there exists y € (X, N K;) \ K. Of the first t — 1
maximal cliques, those containing K; N X, and those containing X, \ K; are disjoint. Prim’s
algorithm always maintains a tree of visited cliques, and this tree is a subtree of a clique tree
of G. Therefore, there is an z-y separator. But this is impossible because z and y are both
in X4, hence adjacent.

For each ¢ > p, there is some maximal clique K of G that contains (N (vg) NA)U{vg}. It
cannot be one of K, ..., K;_1 because vy ¢ A. Since K1, ..., K, is a Prim ordering of C(G),
we have |N(vp41) N Al > |N(vq) N A for all ¢ > p. On the other hand, v,41 is adjacent to
all vertices in K;. We can thus conclude that v,41 has the maximum number of neighbors in
{v1,...,vp}, and this completes the proof. <

By Lemma 6, MCs orderings of a chordal graph G can be fully characterized by Prim
orderings of its weighted clique graph C(G). In particular, the MCS end vertices are the
private vertices of the cliques last visited by Prim’s algorithm. Note that a vertex v is
simplicial if and only if it belongs to precisely one maximal clique, namely, N|[v], and a set of
true twins can be visited in any order.

» Corollary 7. Let z be a simplicial vertex in a chordal graph G. There is an MCS ordering
of G ended with z if and only if there exists a Prim ordering of C(G) ended with N|z].
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Let S be a separator of G. We abuse notation to use C(G) — S to denote the subgraph
of C(G) obtained by deleting all edges whose labels are subsets of S. The component of
C(G) — S containing N|[z] is called the z-component of C(G) — S. It is worth noting that
C(G) — S cannot be mapped back to G. In Fig. 2, for example, C(G) — {vs,vs} does not
have edges among Ko, ..., K5, while edges K7Kg, K7 Kg, KgKg, K9 K79 will be removed in
C(G) — {’Ulg, ’1}13}.

V16 V17 V18

v11

3 en\ 1
(o) — ()i
Figure 2 On the top is a chordal graph G on 18 vertices, and below the weighted clique graph of G,
where all the omitted edge weights are 2. There are 10 maximal cliques K1 = {v1,v2,vs,v4}, Ko =
{1)2, . ,'U6}, K3 = {’U5, Ve, ’U7}7 K4 = {1}5, Ve, 118}7 K5 = {Us, Ve, V9, ?}10}7 Ke = {’Ug7 V10, 1}11}, K7 =
{vi1,v12,v13}, K5 = {v12,...,v15}, K9 = {v13, v16, v17}, K10 = {v13,v15,v18}. There are 7 simplicial
vertices v1, vr, Us, V14, V16, V17, V18, of which v14 and vis are not MCS end vertices.

» Proposition 8. Let S be a separator of a chordal graph G. For any vertex v & S, maximal
cliques containing v remain connected in C(G) — S. For any two distinct vertices u,v & S,
maximal cliques containing u and v are not connected in C(G) — S iff S is a u-v separator.

Proof. By definition, the maximal cliques containing v are connected in any clique tree of
G. Since a clique tree of G is a subgraph of C(G), these cliques also induce a connected
subgraph in C(G). For any edge in this subgraph, its label contains v, hence not a subset of
S. Therefore, these cliques induce the same connected subgraph in C(G) — S as in C(G).

For the second assertion, we may assume uwv ¢ F(G): Both sides are trivially false when
uv € E(G). Suppose to the contradiction of the if direction that there is a path Ky,..., K,
in C(G) — S such that v € Ky and v € K, while u,v ¢ K, for 0 < i < p. For each 1 <17 < p,
we can find a vertex z; € (K;—1 N K;)\ S. (These p vertices may or may not be distinct.)
Then uz1, zpv € E(G), while ; and z;11 are either the same or adjacent for all 1 <¢ < p.
We have thus a u-v path in G avoiding S, contradiction that S is a u-v separator.

We now consider the only if direction. Let v = x¢,x1,...,2, = v be any u-v path in G.
Note that for each 0 < ¢ < p, maximal cliques containing x; induce a connected subgraph,
while for each 1 < j < p, there is a maximal clique containing both z;_; and x;. We can
find a path in C(G) of which one end contains v and the other contains v. For each edge on
this path, its label contains one of x;, 0 < ¢ < p. Since maximal cliques containing v and
v are not connected in C(G) — S, the label of at least one edge on this path is a subset of
S. By the first assertion, at least one of x;,...x,_; is in S. In other words, every u-v path
intersects S. Therefore, S is a u-v separator. This concludes the proof. <
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We say that a minimum-weight edge e of C(G) — by Proposition 5, its label is a minimum
separator of G, — is a critical edge for maximal clique K if one end of e is in the same
component as K after all minimum-weight edges, including e, are removed from C(G). In
other words, there is a path connecting K and e on which every edge has weight larger than
e. In Fig. 2, e.g., KgK7 is a critical edge for all cliques but Ky, while KgKg and K19Kg are
critical edges for Kg and K7 respectively. The following fact explains “critical” in the name.

» Proposition 9. Let z be a simplicial vertex of a connected chordal graph G, and let Sy,
..., Sk be the labels of all critical edges for N[z]. In any Prim ordering of C(QG), cliques in
the z-component of C(G) — Sy — -+ — Sk appear consecutively. Moreover, if S; = --- = Sy,
then the z-component of C(G) — Sy can be visited in the end.

Proof. Note that C(G) is connected since G is connected. Let T' denote the z-component of
C(G)— Sy — -+ — Sk. Being minimum separators of G, all of Sy, ..., Sk have the same size;
let it be t. Note that the weight of every edge in T is strictly larger than ¢; otherwise, we
can find a path from N|[z] to such an edge in T, and identify another critical edge for N|z]
on this path.

Let 7 be any Prim ordering of C(G). We consider the first maximal clique K in T visited
by m. If w(K) # 1, the edge leading to K has weight ¢. By Prim’s algorithm, when K
is visited, for each clique K’ with K’/ <, K, all the edges between K’ and its unvisited
neighbors have weight ¢. All edges between T' and other components have weight ¢ as well,
while all edges inside T have weight > t. Therefore, the maximal cliques in T" must be
finished before a clique out of T is visited. This concludes the first assertion.

For the second assertion, suppose that S =57 = --- = Si. We give a Prim ordering that
visits cliques in T" in the end. It starts from a clique not in 7', and it suffices to show that all
cliques out of T have been visited before the first in T'. By the definition of C(G), in each
component of C(G) — S, there is a maximal clique containing S. Therefore, by Proposition 8,
there is an edge with label S between any two components of C'(G) — S. In other words, the
cliques not in 7" are connected in C(G). Since the edges connecting T' and other components
of C(G) — S have weight ¢, the minimum in C(G), Prim’s algorithm can always choose
another edge. Therefore, we can finish them before entering T'. |

Whether a simplicial vertex z can be an MCS end vertex turns out to be closely related to
the critical edges for N[z]. We first present a necessary condition, which is not satisfied by

v14 and vig in Fig. 2; we leave it to the reader to verify that they cannot be MCS end vertices.

» Lemma 10. Let z be a simplicial vertex of a connected chordal graph G. If N|z] is the
end clique of a Prim ordering of C(G), then all critical edges for N|[z] have the same label.

Proof. Suppose for contradiction that there are two critical edges e; and ey for N[z] with
different labels. For i = 1,2, let .S; be the label of e;, and let C; denote the set of components
of C(G) — S; not containing N[z]. We argue that for any U; € C; and Uy € Ca, they are
different and there is no edge between them.

For i = 1,2, by the definition of critical edges, there is a path from N|[z] to e;; let K;
denote the end of e; that is closer to N[z] on this path. There must be some clique K in U;
containing S7. Note that K; N K, = S; because K and K; are in different components of
C(G) — S;. Hence, K;K] is also a critical edge with label S; for N[z]. There is a N[z]-K}
path in C(G) — S, and hence K and N|[z] are connected in C(G) — S;. Likewise, K| and
N|z] are connected in C(G) — Ss.

Since S # S and they have the same cardinality, we can find ve € S5\ S; C K5. By
Proposition 8, S; is not a z-vy separator. Thus, no maximal clique in U; contains vs. It
follows that U; remains connected in C(G) — Sy (note that So is a minimum separator). For
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the same reason, Us remains connected in C'(G) — Sy. If there exists an edge between U; and
Us, then this edge remains in at least one of C(G) — S; and C(G) — Sa: It cannot have both
labels S; and S5. But then U; and U; are connected in C(G) — S; or C(G) — Sa, neither of
which is possible. We can thus conclude that components in C; U Cy are disjoint and there is
no edge among them.

Let m be a Prim ordering of C(G) ended with N[z]. Assume without loss of generality
that the first visited clique in these components is from U; € Cy, then we show that N|z]
is visited before all components Us € Cy. Since there is no edge between U; and Us, before
visiting Us, it must visit a clique from the z-component of C(G) — S;. After that, however,
it will not visit any edge of label Sy before finishing this component. Therefore N[z] cannot
be the end clique, a contradiction. This concludes the proof. |

In other words, if z is an MCS end vertex, then there is a unique minimum separator of G
that is “closest to z” in a sense. This, although not sufficient, can be extended to a sufficient
condition for MCS end vertices as follows. To decide whether a simplicial vertex z is an MCS
end vertex, we can find the minimum separator S in Proposition 9 and focus on how the
z-component of C(G) — S is explored. We have to start from a maximal clique not in it, and
after that visit all maximal cliques in other components of C(G) — S before the z-component.
In this juncture we may view the z-component as a separate graph and find all critical edges
for N[z] with respect to this component. They also need to have the same label; suppose it
is S, which is strictly larger than S. But this is not sufficient because we need to make sure
that when S is crossed, it can reach a maximal clique not in the z-component of C(G) — 5.
In Fig. 2, if we delete vertices vig and v17, (hence Ky,) then KgK7 is the only critical edge
for Kg. The condition of Lemma 10 is satisfied, but vy14 is still not an MCS end vertex.

Repeating this step recursively, we should obtain a sequence of separators with increasing
cardinalities. Note that we only need to keep track of how these separators are crossed,
while the ordering in each layer is irrelevant. This observation leads us to the following
characterization, which subsumes Theorem 13 of Beisegel et al. [1]. For example, the sequence
of critical edges for N[v1] in Fig. 2 are K¢K7, K2 K5, and K1 K, which correspond to minimal
separators {v11}, {vs,v6}, and {vq, v3, v4}, respectively.

» Theorem 11. Let z be a simplicial vertex of a connected chordal graph G. The clique N|z]
is a Prim end clique if and only if there is a sequence of edges ey, ea, ..., ex in C(G), where
the label of e; is S;, on a path ended with N|z] such that
(i) Sy is the label of critical edges for N[z] and Sk is the set of non-simplicial vertices in
N[z]; and
(ii) for 1 <i <k, in the z-component of C(G) — S;, all the critical edges for N|[z] have the
same lable, which is S;41.
Moreover, every clique not in the z-component of C(G) — S1 can be the start clique.

Proof. We first show the if direction. We may denote the two ends of e; by K; and K, where
K] is in the z-component of C'(G) — S;. (It is possible that K] = K;11 for some 1 <4 < k.)
For each 1 < i < k, we visit all the other components of C(G) — S; before using the edge
K; K| to enter the z-component, visiting K. This is possible because of Proposition 9, and
as such we produce a Prim ordering of C'(G) that ends with N[z].

Now consider the only if direction, for which we construct the stated path by induction:
We find the edges e, es, ..., ex in order, and show that for each 1 <14 < k, the first ¢ edges
can be extended to a path that ends with N[z] and satisfies both conditions. The first edge
e1 can be any critical edge for N|[z], and it is on a path ended with N[z] because C(G) is
connected. Now suppose that the first ¢ edges, namely, ey, ..., e;, have been selected, and we
find e;41 as follows. For each 1 < j <, let T; denote the z-component of T;_; — S, where
To = C(Q). If T; comprises the only maximal clique N[z], we are done.
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Containing N|[z], cliques in T; are last visited by Proposition 9. It is also a Prim ordering
of the component itself. Therefore, Lemma 10 applies, and all the critical edges for N[z] in
T; have the same label. Let S;;1 be this label, and let T;,1 be the z-component of T; — S;41.
We argue that there must be a maximal clique K in T; — T;4; containing S;; otherwise, the
first component visited in T; — S;4+1 would be the z-component, and then N[z] cannot be
the last visited clique. We can use edge K;K to replace e;, — note that they have the same
label, — and choose any edge between K and N|[z] with label S;;1 as e; 1. This concludes
the inductive step and the proof. <

The proof of the only if direction of Theorem 11 can be directly translated into an
algorithm to decide Prim end cliques, implying a polynomial-time algorithm for the Mmcs end
vertex problem on chordal graphs. This algorithm however has to take (n?) time because
the size of C(G). We show a very simple algorithm below, which itself best reveals the spirit
of graph searches. As long as we cross the separators in the order specified in Theorem 11,
and make sure we finish other components before visiting the z-component, then it is the
Prim ordering we need. On the other hand, a run of Prim’s algorithm started from N|[z] will
cross the separators in the reversed order, and before crossing the ith separator .S;, it has to
exhaust the whole z-component C(G) — S;.

Algorithm 1 Algorithm for deciding whether a vertex z is an MCS end vertex of a chordal graph.

INPUT: A graph G and an MCS ordering o of G started with z.
OuTtpUT: Whether 2z can be an MCs end vertex of G.

1. for i< 1tondo
1.1. D <+ the set of unvisited vertices with the maximum number of visited neighbors;
2. visit the vertex arg max, ., o(v);
2. if the last visited vertex is z then return “yes”;
else return “no.”

Proof of Theorem 1. Let G be a connected chordal graph. We find an Mcs ordering o of G
started with z, and then use Algorithm 1. We first show its correctness: Vertex z is an MCS
end-vertex of G if and only if z is the last visited vertex. The if direction is correct because
the algorithm conducts Mcs, and Hence we focus on the only if direction. Let Sy, ..., Sk
be the set of separators specified in Theorem 11, and let o' denote the ordering returned
by Algorithm 1. We show by induction that for each 1 < i < k, vertices in all the other
components of G — 5; are visited before those in the same component with z.

Let T} be the component of G — S; containing z. By Proposition 9 and Corollary 7,
vertices in T are at the beginning of ¢. In each component of G — S7, there is a vertex
adjacent to all vertices in S;. When the first vertex in 77 is being visited, it has precisely
|S1] visited neighbors, i.e., S7. By the selection of vertices in step 1, all other components
have been finished. Thus, T} is the last visited component of G — Sj.

For the inductive step, suppose that the induction hypothesis is true for all p with
1 <14 <p<k, we show it is also true for p+ 1. For 1 < i < k, let T/ be the component of
T;,_1 — S; containing z, and let T; be the subgraph induced by V(T}) U S;. Let v € Tp41 be
the vertex satisfying v <,+ u for all w € T,41 \ {v}. Then S,4+1 C N(v) and = <,+ v for all
x € Sp41. Since Sp4q is a minimum separator of 1},, any other component of T}, — 5,11 has a
vertex adjacent to all of S,,41. Such a vertex x would satisfy v <, x because of Proposition 9
and Corollary 7, and then be chosen by step 1 before v. Now that all the vertices in G — N|z]
and the non-simplicial vertices in N[z] have been visited, the only remaining vertices are

true twins of z. Since o(z) = 1, it has to be the last visited. We have proved the correctness.

1:9
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We now analyze the running time. The only difference between the algorithm and the
original MCS algorithm is step 1.2. We need to compare the o-numbers of vertices in D. It
needs to be done n times, and each time takes O(n) time, and hence the extra time is O(n?).
Together with the time for McCs itself, the total running time is O(n? +m) = O(n?). <

4 Maximum cardinality search on weakly chordal graphs

A graph G is weakly chordal if neither G nor its complement contains an induced cycle
on five or more vertices. It is well known that all chordal graphs are weakly chordal. To
prove NP-completeness of the MCs end vertex problem on weakly chordal graphs, we use a
reduction from the 3-satisfiability problem (3-SAT), in which each clause comprises precisely
three literals.

Given an instance Z of 3-SAT with p variables and ¢ literals, we construct a graph G as
follows (see Fig. 3 for an example). Let the variables and clauses of Z be denoted by 1,
T2, ..., Tp and c1, ¢, ..., ¢4, respectively. For each literal, (including those that do not
occur in any clause,) we introduce a vertex; let L denote this set of 2p literal vertices. For
each literal vertex, we add edges between it and other vertices in L, with the only exception
of its negation. We also introduce a set C' of g clause vertices, each for a different clause;
they forms an independent set. For each £ € L and ¢ € C, we add an edge fc if the literal
¢ does not occur in the clause c. Therefore, each clause vertex has 2p — 3 neighbors in L.
Finally, we add seven extra vertices aj,as, u1, us,b,y, z and edges ajag, ujus, yz, {b,z} x L
and {ag, uy,us,y} x (LUC).

) .W\QQ UMQ

1 29 ? L3 ? T4 b
|\\ 1 1 /1
(AN 1 1 L0
1 \ 1 1 , 1
1 \ 1 1 ’ 1 P
— N . ’ .
T1 ¢ \ 28 93 ’ L
1 \ 2 %\ g P \ /’ 1
T T
1 \y’ ‘\ NG > 1
-z ~ ’ N
I VAR [Whe ~ , \ I
1 VAN “ N \ 1
1 4 ‘el Yo \ 1
’ N \
! ’ PR \ ,/ RS \ !
1 / 4 [ , S N 1
1 // PR \\ \ , S \\ 1
4
! /- \\ N~ N !
Ve N ~a! Y
k:: —————————————————————— ::-S
T1 VT2 VT3 x1 VT2V Ty T2 VT3V Ty

- J

Figure 3 Construction for NP-completeness proof of the MCS end vertex problem on weakly
chordal graphs. The 3-SAT instance has four variables and three clauses, (Z1V @2 VZT3), (x1 VZ2 V x4),
(T2 VT3 VT1), i.e., p=4 and g = 3. The 2p literal vertices are shown in the small gray box, and the
q clause vertices are in the big box. In the boxes, two vertices are nonadjacent if there is a dashed
line between them, and adjacent otherwise. Vertices b and z are adjacent to all literal vertices,
while vertices az, u1,u2, and y are adjacent to all literal vertices and all clause vertices. The MCS
ordering (a1, a2, 1, T2, T3, T4, b, T1, T2, T3, Ta, U1, U2, Y, C1, C2, C3, z) of G corresponds to the satisfying
assignment in which all variables but x2 are set to be true.
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» Proposition 12. The graph G constructed above is a weakly chordal graph.

Proof. We need to show that neither G nor G contains an induced cycle on five or more
vertices. We proceed as follows: We identify a vertex v € V(G) such that G contains an
induced cycle on five or more vertices if and only if G — v contains an induced cycle on five
or more vertices, and then consider G — v. The following properties are straightforward:

(i) A vertex on any induced cycle on five or more vertices has degree at least two.
(ii) A simplicial vertex is not on any induced cycle on five or more vertices.
(iii) An induced cycle on five or more vertices cannot contain a pair of true twins or false
twins, and when it contains one of them, this vertex can be replaced by the other.
(iv) If a vertex is on an induced cycle on five or more vertices, then it has at least two
non-neighbors, and there is at least one edge among these non-neighbors.

We can reduce G to G — {a;} because d(a1) = 1 and (i); then to G — {a1, uz} because
uy and ug are true twins and (iii); to G — {a1, u1,u2} because u; and ag are false twins in
G —{a1,us} and (iii); to G — {a1, u1, us,y} because the only two remaining non-neighbors of
y, namely, as and b, are not adjacent to each other and (iv); to G — {a1, u1,us,y,as} for the
same reason; to G—{a, u1, us,y, as, b} because z and b are false twins in G—{a, u1, us,y, as}
and (iii); and finally to G —{ay, u1,uz,y, as, b, 2} because the only non-neighbors of z, namely,
C, are independent and (iv). The remaining graph is G[L U C]. Suppose that there is an
induced cycle H on five or more vertices. It must intersect both L and C, since each vertex
in L has only one non-neighbor in it, and since C' is independent. Let v € C be a vertex on
this cycle. Its two neighbors on H have to be from L; and since they are nonadjacent to each
other, they have to be z and z for some variable x. Since both z and Z are adjacent to all
other vertices in L, the other > 2 vertices on H have to be from C. But this is impossible
because C' is independent.

Now we consider G. It can be reduced to G — {a;} because a; has only one non-neighbor
and (iv); then to G — {a1,ua} because u; and uy are false twins and (iii); to G — {ay, u1,uz2}
because u; and as are true twins in G — {ay,us} and (iii); to G — {ay, uy,u2,y} because y is
simplicial in G — {a1,u1,us} and (ii); to G — {ay, uy,uz,y, b} because z and b are true twins
in G — {ay,u1,us,y} and (iii); to G — {a1,u1, us,y, b, as} because the degree of ay is one in
G — {ay,u1,us,y,b} and (i); and finally to G — {ay,u1,us,¥, az,b, 2} because z is simplicial
in G — {ay,u1,uz,y,b,as} and (ii). The remaining graph is G[L U C]. Suppose that there is
an induced cycle H on five or more vertices. Since C' is a clique, H contains at most two
vertices from C. In other words, at least 3 vertices on H are from L, but this is impossible
because each vertex in L has only one neighbor in L. Thus, G is weakly chordal. |

Proof of Theorem 2. It is clear that the MCS end vertex problem is in NP, and we now show
that it is NP-hard. Let Z be an instance of 3-SAT, and let G be the graph constructed from
Z. We show that z is an MCS end-vertex of G if and only if 7 has a satisfying assignment.

For the if direction, suppose that Z is satisfiable, and we give an MCS ordering o as
follows. Let us fix a satisfying assignment of Z, and let T" be the set of variables that are
set to be true. The starting vertex is a;, which is followed by ao; visited after them are
{z |z eT}U{z |z ¢T}, (ie., the literal vertices corresponding to true literals,) in any
order. After these p + 2 vertices, each of y, z,u1,us, b, and each of the unvisited literal
vertices has p visited neighbors. On the other hand, each clause vertex has at most p visited
neighbors: Each clause contains a true literal, and hence each clause vertex has at least one
non-neighbor in the visited literal vertices.

1:11
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Then o(b) = (p + 3). Since b is adjacent to only literal vertices, the next vertex is one of
them. On the other hand, since vertices L \ T form a clique, they have to be visited between
p+ 4 and 2p + 3, i.e., before others.

The remaining vertices are uj, us, ¥, z, and clause vertices. Each of uy, us, y, and z
has 2p visited neighbors, while each clause vertex has only 2p — 2, because each clause is
nonadjacent to three literal vertices. Let uy, us, and y be visited next. After that, all the
remaining vertices (z and all clause vertices) have the same number of visited neighbors,
2p + 1. There is no edge among these vertices, so they an be visited in any order. We have
thus obtained an McCS ordering of G ended with z.

We now prove the only if direction. Suppose that o is an MCs ordering of G with o(z) = n.
Since N(z) = N(b) U {y}, visiting y before b would force z to be visited before b; therefore,
b <,y <y z. Likewise, N(b) =L C LUC C N(y) and b <, y demand

b<,cforall ceC. (%)

Since d(a1) = 1, it is easy to verify that {o(a1),0(az)} = {1,2}; otherwise, 0 must end with
a1. The third vertex of o has to be from N(az), i.e., LUC. Tt cannot be from C because
of (x). Therefore, X = {¢|3 < o(¢) <p+2} C L: (1) For each variable, one literal vertex
has more visited neighbors than b, z, y, u1, us; (2) clause vertices cannot be visited before
b. There cannot be any variable x such that both x,z € X, because zz ¢ E(G). We claim
that assigning a variable = to be true if and only if € X is a satisfying assignment for
Z. Suppose for contradiction that some clause c is not satisfied by this assignment. By
the construction of G, the clause vertex c is adjacent to all vertices of X. After visiting
the first p + 2 vertices, ¢ has p + 1 visited neighbors, ({az} U X,) while any other unvisited
vertex in V(G) \ C has at most p visited neighbors. But then o(c) = k + 3, contradicting (*).
Therefore, all clauses are satisfied, and this completes the proof. |

5 Lexicographic depth-first search on chordal graphs

Berry et al. [3, Characterization 8.1] have given a full characterization of MNs end vertices
on chordal graphs: A vertex z is an MNS end vertex if and only if it is simplicial and the
minimal separators of G in N(z) are totally ordered by inclusion. Since LDFS is a special
case of MNS, its end vertices also have this property. We show that this condition is also
sufficient for a vertex to be an LDFS end vertex.

Similar as DFS, LDFS visits a neighbor of the most recent vertex, or backtracks if all its
neighbors have been visited. The difference lies on the choice when the vertex has more than
one unvisited neighbors. Fach unvisited vertex has a label, which is all its visited neighbors.
When there are ties, it chooses a vertex with the lexicographically largest label. The following
is actually a simple property of DFS.

» Proposition 13. Let X C V(G) such that G[X] is connected. If an LDFS visits all vertices
in N(X) before the first vertex in X, then it visits vertices in X consecutively.

» Lemma 14. A vertex z of a chordal graph G is an LDFS end vertex if and only if it is
simplicial and the minimal separators of G in N(z) are totally ordered by inclusion.

Proof. The only if direction follows from that all LDFS orderings are MNS orderings [11] and
the result of Berry et al. [3]. For the if direction, suppose that Sy, ..., Si are the minimal
separators in N(z) and S; C --- C Sk. It is easy to see that for all 1 < i < k, each component
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of G — S; not containing z is a component of G — Si; let C denote these components. We
show an LDFS ordering o of G as follows. It starts from visiting all vertices in S, followed by
components C' € C with N(C) = Sy, visited one by one. In the same manner, it deals with
So.... Sk in order. After that the only unvisited vertex are z and its true twins, of which it

chooses z the last. We now verify that this is indeed a valid LDFS ordering. It is clear for Sj.

Since vertices in each component C € C are visited after N(C'), By Proposition 13, it suffices
to show the correctness when it visits a vertex in N(z) and when it visits the first vertex of
a new component C' € C. When such a decision is made, the label of an unvisited vertex
is either @ or all visited vertices in N(z), i.e., the most recently visited separator. So it is
always correct to select a vertex from N(z). When a vertex v in a component C' is selected,
the visited vertices in N(z) are precisely N(C), hence v does have the largest label. <

6 Breadth-first search on interval graphs

Interval graphs are intersection graphs of intervals on the real line. An interval graph is
always chordal, and in particular, it has a clique tree that is a path [15]. Corneil et al. [10]
gave a very simple linear-time algorithm for deciding whether a vertex z is an LBFS end
vertex of an interval graph, which is very similar to Algorithm 1. They conducted an LBFS
started from z, and then another LBFS that uses the first run to break ties. They proved that
z is an LBFS end vertex if and only if it is the last of the second run. As shown in Fig. 4,
however, this algorithm cannot be directly adapted to the BFS end vertex problem.

Figure 4 A BFS started from z may end with s or w, but a BFS started from w has to end with u.

(Note that a BFs started from s may end with z.)

If a graph has one and only one universal vertex, then each of the other vertices is a BFS
end-vertex, but not itself. If it has two or more universal vertices, then every vertex can be
a BFS end-vertex. Therefore, we may focus on graphs with no universal vertex. Such an
interval graph has at least three maximal cliques.

» Proposition 15 ([13]). Let G be a connected interval graph, and let K1, ..., K, be a clique
path of G. Let uw € K and w € K,, be two simplicial vertices.

(i) Both u and w are LBFS end vertices.

(ii) For any vertex v € V(G), one of u and w has the largest distance to v.

It is known that a vertex z of an interval graph G can be an LBFS end vertex if and only
if it is simplicial and N[z] can be one of the two ends of a clique path of G [13]. However,
a BFS may satisfy neither of the two conditions. In Fig. 4, for example, vertex z is not
simplicial but can be a BFS end vertex. When z is not in an end clique, it should be close
to one. Actually, it should be at distance at most two to one of the u and w as specified in
Proposition 15. However, a BFS end vertex might be at distance two to both u and w.

For a fixed clique path K7, ..., K, of an interval graph G, we let 1p(v) and rp(v) denote,
respectively, the smallest and the largest number ¢ such that v € K;. We use dist(u,v) to
denote the distance between u and v.

» Lemma 16. The BFS end vertex problem can be solved in O(n + m) time on interval
graphs.
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Algorithm 2 Main procedure for BFS end vertex on interval graphs.

INPUT: A connected interval graph G, a clique path Ki,..., K, of G,
simplicial vertices u € K7 and w € Kp, and z € V(G).
OuTpPUT: Whether there exists a BFS ordering o of G with o(z) = n and u <, w.

if z = w then return “yes”;
if there exists a universal vertex in V(G) \ {z} then return “yes”;
X + {z € V(G) : dist(z, z) = dist(z, w) > dist(x,u)};
if X = () then return “no”;
s <— any vertex in argmin, ¢ x 1p(v);
if rp(z) < 1p(s) then return “no”;
if s = u then return “yes”;
for each vertex v € N(s) at distance dist(s,u) — 1 to u do
if dist(v, z) > dist(v, u) then return “yes”;
9. return “no”

I I

Proof. Let G be an interval graph; we may assume without loss of generality that G is
connected. We use the algorithm of Corneil et al. [13] to build a clique path for G, and
take simplicial vertices vy, v from the first and last cliques of the clique path. We call the
procedure described in Algorithm 2 twice, first with u = vy, w = vg; in the second call, we
reverse the clique path, and use u = vy, w = v1. Suppose that the procedure is correct, then
vertex z is a BFS end vertex if and only if at least one of the two calls returns yes. In the
rest we prove the correctness of the procedure and analyze its running time.

We start from characterizing the first vertex s of a BFs ordering o with o(z) = n and
u <, w, if one exists. Since u <, w <, z, we must have dist(s,u) < dist(s, w) < dist(s, 2).
On the other hand, Proposition 15 implies dist(s, z) < max{dist(s, u), dist(s,w)} = dist(s, w).
Therefore, a desired BFS ordering o, if it exists, must start from a vertex s satisfying

dist(s, z) = dist(s,w) > dist(s,u). (1)

We argue that at least one of the following is true for z:

on any shortest s-u path, z is adjacent to the 2nd to last vertex but no vertex before it.

on any shortest s-w path, z is adjacent to the 2nd to last vertex but no vertex before it.
Let P, be any s-u path and P, any s-w path. Since they together form a u-w path that
visits all the maximal cliques of G, vertex z is adjacent to at least one of these two paths. If z
is adjacent to a vertex on P,, then it has to be the last two; otherwise dist(s, z) < dist(s, ).
Since u is simplicial, z is adjacent to its neighbor on the path if zu € E(G). Therefore, z is
always adjacent to the second to last vertex on this path. The same argument applies if z is
adjacent to P,.

The correctness of step 1 follows from Proposition 15. For step 2, note that if v # z is a
universal vertex, then (v, u,w,...,z) is such a BFS ordering. Steps 3 and 4 are justified by
(f). When the algorithm reaches step 5, X is not empty, and hence s is well defined. Let
q = dist(s, z) = dist(s, w). Note that ¢ > 2 because s is not universal. Hence, z,w & N(s).

We show the correctness of step 6 by contradiction. Suppose that rp(z) < 1p(s) but there
exists a BFs ordering o with o(z) = n and u <, w. Let s’ be the first vertex of . Since
s' € X, the selection of s implies 1p(s) < 1p(s’). Then rp(u) = 1 < rp(z) < 1p(s) < 1p(s’),
therefore, dist(s’,u) > 2. In this case, on any shortest s’-u path, z is adjacent to the second
to last vertex but no vertex before it. Hence, dist(s’,z) = dist(s’,u) = dist(s’,w); let it
be ¢’. Since u <, w, there must be some neighbor u” of u at distance ¢’ — 1 to s’ visited
before neighbors of w. The vertex u” cannot be universal, hence nonadjacent to w. But u”
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is adjacent to z, which implies z <, w, a contradiction. Therefore, step 6 is correct, which
means rp(s) < 1p(z) because s and z are not adjacent. Let s = wo, w1, ..., we—1,w; = w be
a shortest s-w path. Note that w,_1 € N(2).

For step 7, it suffices to give the following BFS ordering, which starts with s = u. Of all
vertices at distance i to s, 1 < i < ¢, the first visited vertex is w;. Note that every vertex is
adjacent to ws, ..., wy—1. From rp(wy_1) = p it can be inferred that all vertices at distance
q to s are adjacent to wy—1. Since wy— is the first visited vertex at level ¢ — 1, vertices at
distance ¢ to s can be visited in any order. Therefore, we can have a BFS ordering ¢ of G
with v <, w and o(z) =n .

We now consider step 8, for which we show that there exists a BFS ordering o with
o(s) =1, 0(w) =2, 0(2) = n, and u <, w. Note that dist(wy, z) = dist(wy,w) = ¢ — 1.
Therefore v # w; otherwise step 5 should have chosen v because 1p(v) < 1p(s). For
1 <i < g—1, vertex w; is always visited in the earliest possible time; in particular, o(w;) = 3.
Since v is on a shortest s-u path, u is a descendant of v in the BFS tree generated by ¢. On
the other hand, since both dist(v, z) and dist(v, w) are larger than dist(v,u), either vertices
z and w are not descendants of v, or they are at a lower level than u. In either case, we have
u <, w. When wy, is visited, all the unvisited vertices are at distance g to s and adjacent to
wq—1. Thus, we can have o(z) = n.

We are now at the last step. Note that the algorithm can reach here only when dist(s, z) =
dist(s, w) = dist(s,u): The condition of step 8 must be true if dist(s,u) < ¢g. Suppose for
contradiction that there exists a BFS ordering o with o(z) = n and u <, w but no vertex
satisfies the condition in step 8. Let s’ be the starting vertex of o. Since s’ € X and by the
selection of s, we have 1p(s’) > 1p(s), which implies dist(s’,u) > dist(s,u). Note that s’ is
adjacent to any s-w path, and hence its distance to w is at most ¢ + 1. In summary,

q = dist(s,u) < dist(s’,u) < dist(s’,w) < g+ 1.

Let Y denote all vertices at distance ¢ — 1 to u, and let Z denote all vertices at distance
q — 1 to w. Note that Y is disjoint from Z: A vertex in v € Y N Z would be adjacent to s,
and have the same distance to u,w, and z, but then it contradicts the selection of s because
1p(v) < 1p(s). Since no vertex in Y satisfies the condition of step 8, dist(v, z) = dist(v, u)
for all v € Y N N(s).

If dist(s', u) = dist(s, z) = dist(s’,w) = ¢, then to have u <, w, one vertex in Y N N(s)
must be visited before Z. But this would force z to be visited before w, because z is at
distance ¢ — 1 to all vertices in Y N N(s). Now that dist(s’,w) = ¢ + 1, if dist(s’,u) = ¢,
then at least one vertex v € Y is adjacent to s; it is in N(s) because 1p(s) < 1p(s’). But
then dist(s’, 2) < 14dist(v,2) =1+¢—1= ¢ < dist(s’,w). Therefore, dist(s’,u) =g+ 1 as
well. Each vertex in Y U Z has distance at least two to s’. Of vertices at distance two to &',
one vertex in Y N N(s) must be visited before Z, but then we have the same contradiction
as in the first case of this paragraph. Therefore, step 9 is also correct and this concludes the
proof of correctness.

We now analyze the running of the algorithm. Steps 1 and 2 can be easily checked in
O(n +m) time. For step 3, it suffices to calculate the distances between z, w,u and all other
vertices; this can be done by visiting the maximal cliques one by one. Steps 4-7 can be done
in O(n) time. Step 8 can be checked in O(n) time: We have already calculated the distance
between z and v. Therefore, the total running time is O(n + m). <
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7 Graph searches on general graphs

We now describe an algorithm for deciding whether a vertex z of a general graph is an MCS
end vertex. For each subset X C V(G)\ {z}, we define f(X) to be true if there exists an MCS
visiting X before others, and false otherwise. The question whether z can be an end vertex is
then simply the value of f(V(G)\ {z}). For a set X with f(X) is true and v € X, let g(X,v)
indicate whether there exists a search ordering that visits v after X and before others. We
have f(X) =V, ex (F(X\{v}) Ag(X\{v},v)). For Mcs, g(X,v) can be calculated in linear
time, and thus we have a simple O(2"n°™))-time algorithm similar to the classic Held-Karp
algorithm [18].

Let us consider then BFS. We may fix the starting vertex s, which can be found by
enumerating all the other n — 1 vertices. Let £ = max,cy (q)dist(s,v), and for 1 <7 </,
let L; denote the set of vertices at distance i to s. Suppose that there is a BFS ordering
o started with s and ended with z, then z € Ly. Clearly, vertices in Ly_; are visited after
those in Ly_5 and before Ly. Let u be the first visited vertex in L, 1 that is adjacent to z,
and let X be those vertices in L,_ visited before u. Since z is the last vertex, all vertices in
Ly \ N(X) must be adjacent to u. We do not need any constraint on the order of vertices in
Li—1\ (X U{u}) being visited. Therefore, the information we need at level £ — 1 are the
set X and the vertex u. We can generalize this observation to give a recursive formula for
the BFs end vertex problem. For lack of space, the proofs in this section are left for the full
version of the paper.

» Lemma 17. There is a 2" - n°W -time algorithm for solving the BFS end vertex problem.

In the last we consider DFS. Recall that a DFS sets two timestamps for a vertex v, first
when it is visited, and second when it is finished, i.e., when all its neighbors have been
examined and the search backtracks to the vertex that discovered v (or terminates when v is
the source vertex). Note that when a vertex is finished, all its neighbors have been visited,
and all but one of them have been finished. In particular, when the last vertex is visited, no
vertex in its neighborhood has been finished. At any moment, the set of vertices that have
been visited but not finished form a path in the depth-first tree. Suppose that z is the end
vertex of a DFS ordering o of G. If v is the earliest visited neighbor of z, then all the vertices
after v are descendants of v in the depth-first tree.

The following simple property of DFS is stronger than Proposition 13. In a DFS ordering
o, if the set of vertices after v, i.e., {u : v <, u}, and v induce a connected subgraph, then
their visiting order is irrelevant to vertices visited before v.

» Proposition 18. Let o be a DFS ordering of a graph G, and let X be the set of last visited
| X| vertices in 0. The sub-ordering o|x is a DFS ordering of G[X|. Moreover, if G[X] is
connected, then o remains a DFS ordering of G after replacing o|x with any DFS ordering of
G[X] that starts with argmin, ¢ x o(v).

» Lemma 19. There is a 2" - n®M -time algorithm for solving the DFS end vertex problem.
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