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Abstract

Let P be a set of n points in the plane where each point p of P is associated with a radius
rp > 0. The transmission graph G = (P,E) of P is defined as the directed graph such that E
contains an edge from p to q if and only if |pq| ≤ rp for any two points p and q in P , where |pq|
denotes the Euclidean distance between p and q. In this paper, we present a data structure of
size O(n5/3) such that for any two points in P , we can check in O(n2/3) time if there is a path
in G between the two points. This is the first data structure for answering reachability queries
whose performance depends only on n but not on the number of edges.

1 Introduction

Consider a set S of unit disks in the plane. The intersection graph for S is defined as the undirected
graph whose vertices correspond to the disks in S such that two vertices are connected by an edge if
and only if the two disks corresponding to them intersect. It can be used as a model for broadcast
networks: The disks of S represent transmitter-receiver stations with the same transmission power.
One can view the broadcast range of a transmitter as a unit disk.

One straightforward way to deal with the intersection graph for S is to construct the intersection
graph explicitly, and then run algorithms designed for general graphs. However, the intersection
graph for S has complexity Θ(n2) in the worst case even though it can be (implicitly) represented
as n disks. Therefore, it is natural to seek faster algorithms for an intersection graph implicitly
represented as its underlying set of disks. For instance, the shortest path between two vertices in a
unit-disk intersection graph can be computed in near linear time [21]. For more examples, refer
to [3, 5, 12].

A transmission graph is a directed intersection graph, which is introduced to model broadcast
networks in the case that transmitter-receiver stations have different transmission power [18, 20].
Let P be a set of n points in the plane where each point p of P is associated with a radius rp > 0.
The transmission graph G = (V,E) of P is an weighted directed graph whose vertex set corresponds
to P . There is an edge (p, q) in E for two points p and q in P if and only if the Euclidean distance
|pq| between p and q is at most rp. The weight of an edge (p, q) is defined as |pq|. It is sometimes
convenient to consider a point p of P as the disk of radius rp centered at p. We call it the associated
disk of p, and denote it by Dp. We say p is reachable to q if there is a p-q path in G.

In this paper, we consider the reachability problem for transmission graphs: Given a set P
of points associated with radii, check if a point of P is reachable to another point of P in the

∗Pohang University of Science and Technology, Korea. Email: {shinwooan, eunjin.oh}@postech.ac.kr

1

ar
X

iv
:2

10
6.

04
97

3v
1 

 [
cs

.C
G

] 
 9

 J
un

 2
02

1



transmission graph. In the context of broadcast networks, this problem asks if a transmission station
can transmit information to a receiver. We consider three versions of the reachability problem:
the single-source reachability problem, (discrete) reachability oracles, and continuous reachability
oracles. The single-source reachability problem asks to compute all vertices reachable from a given
source node p ∈ P in the transmission graph of P . Indeed, we consider the more general problem
that asks to compute a t-spanner of size O(n). Once we have a t-spanner of size O(n), we can
compute all vertices reachable from a given source node in linear time. A (discrete) reachability
oracle is a data structure for P so that, given any two query points p and q in P , we can check if
p is reachable to q in G efficiently. A continuous reachability oracle is a data structure for P for
answering reachability queries that takes two points in the plane, one in P and one not necessarily
in P , as a query.

1.1 Previous Work.

The reachability problems and shortest-path problems have been extensively studied not only
for general graphs but also for special classes of graphs; directed planar graphs [9], Euclidean
spanners [8, 17], and disk-intersection graphs [3, 5]. In the following, we introduce several results for
transmission graphs of disks in the plane. Let Ψ be the ratio between the largest and the smallest
radii associated with the points in P .

• t-Spanners (Single-source reachability problem). One can solve the single-source reach-
ability problem for transmission graphs in O(n log4 n) time by constructing a dynamic data
structures for weighted nearest neighbor queries [4, 14]. Kaplan et al. [13] presented two
algorithms for the more general problem that asks to compute a t-spanner of size O(n) for any
constant t > 1, one with O(n log4 n) time and one with O(n log n+ n log Ψ) time. Recently,
Ashur and Carmi [2] also considered this problem, and presented an O(n2 log n)-time algorithm
for computing a t-spanner of which every node has a constant in-degree, and the total weight
is bounded by a function of n and Ψ. Also, spanners for transmission graphs in an arbitrary
metric space also have been considered [18, 19].

• Discrete reachability oracles. Kaplan et al. [11] presented three reachability oracles: one
for Ψ <

√
3, two for an arbitrary Ψ > 1. For an arbitrary Ψ, their first reachability oracle

has performance which polynomially depends on Ψ, and the second one has performance
which polylogarmically depends on Ψ. More specifically, the first data structure uses space
O(Ψ3n1/2), and has query time O(Ψ5n3/2). The second one uses space Õn,Ψ(n5/3), and has
query time Õn,Ψ(n2/3), where Õn,Ψ hides polylogarithmic factors in Ψ and n. This data
structure is randomized in the sense that it allows to answer all queries correctly with high
probability.

• Continuous reachability oracles. Kaplan et al. [13] shows that a discrete reachability
oracle for the transmission graph G of P can be extended to a continuous reachability oracle.
More specifically, given a discrete reachability oracle for G with space S(n) and query time
Q(n), one can obtain in O(n log n log Ψ) time a continuous reachability oracle for G with space
S(n) +O(n log Ψ) and query time O(Q(n) + log n log Ψ).
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1.2 Our Results.

As mentioned above, we improve the previously best-known results of the three versions of the
reachability problem for transmission graphs.

• t-Spanners (Single-source reachability problem). We first present an O(n log3 n)-time
algorithm for computing a t-spanner for a constant t > 0 in Section 2, which improves the
running time of the algorithm by [13] by a factor of O(log n). Our construction is based on the
Θ-graph and grid-like range tree introduced by [16]. This algorithm is also used for computing
reachability oracles in Sections 3 and 5, and Section 4.

• Discrete reachability oracles. We present two discrete reachability oracles for the trans-
mission graph of P . The first one described in Section 3 uses space O(n5/3) and has query
time O(n2/3), and can be computed in O(n5/3) time. This is the first reachability oracle for a
transmission graph whose performance is independent of Ψ.

The second one is described in Section 4. Its performance parameters depend polylogarith-
mically on the radius ratio Ψ. More specifically, it uses space ÕΨ(n5/2), and has query time
ÕΨ(n3/2). It can be constructed in ÕΨ(n5/2), where ÕΨ(·) hides polylogarithmic factors in
Ψ. To obtain this, we combine two reachability oracles given by [11] whose performance
parameters using a balanced separator of smaller size introduced by [7].

• Continuous reachability oracles. We also present a continuous reachability oracle with
space O(n5/3), query time O(n2/3), and preprocessing time O(n5/3 log2 n) in Section 5, which
is the first continuous reachability oracle whose performance is independent of Ψ. Instead of
using the approach in [13], we use auxiliary data structures whose performance is independent
of Ψ together with the reachability oracle described in Section 3.

2 Improved Algorithm for Computing a t-Spanner

Let P be a set of n points associated with radii, and G = (P,E) be the transmission graph of P .
A subgraph H of G is called a t-spanner of G if for every pair of vertices of G, the distance in H
between them is at most t times the distance in G between them. A sparse t-spanner is useful for
constructing a reachability oracle efficiently; a t-spanner preserves the reachability information of G,
and it allows us to investigate a small number of edges. Therefore, we first consider the problem of
constructing a t-spanner of G in this section, and we use it for constructing a reachability oracle in
Section 3.

In this section, we present an O(n log3 n)-time algorithm for computing a t-spanner of G of size
O(n) for any constant t > 1. This improves the running time of the algorithm proposed by Kaplan
et al. [11], which runs in O(n log4 n) time.1 The spanner constructed by Kaplan et al. is a variant
of the Yao graph. They first show that a variant of the Yao graph is a t-spanner for G, and then
show how to construct it efficiently.

1Kaplan et al. mentioned that this algorithm takes an O(n log5 n) time. However, this can be improved automatically
into O(n log4 n) using a data structure of [4].
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Figure 1: Theta graph construction for k = 8. (a) The k cones of F subdivides the plane. (b)
nF (p) = y, and nS(p) = y. (c) The edge (y, p) is picked.

2.1 Theta Graphs and t-Spanners of Transmission Graphs

Our spanner construction is based on the Θ-graph, which is a geometric spanner similar to the Yao
graph. Let k > 0 be a constant, which will be specified later, depending on t. Imagine that we
subdivide the plane into k interior-disjoint cones with opening angle 2π/k which have the origin as
their apexes. Let F be the set of such cones. See Figure 1(a). For a cone F ∈ F and a point p ∈ P ,
let Fp denote the translated cone of F so that the apex of Fp lies on p. For each point p ∈ P , we
pick k incoming edges for p, one for each cone of F , as follows.

For a point q contained in Fp, let q` denote the the orthogonal projection of q on the angle-bisector
of Fp. Also, we let dF (p, q) be the Euclidean distance between p and q`, and let nF (p) denote the
point q in Fp with (q, p) ∈ E that minimizes dF (p, q). See Figure 1(b). Note that nF (p) might not
exist. For each cone F ∈ F and each point p ∈ P , we choose (nF (p), p). See Figure 1(c). Let Hk be
the graph consisting of the points in P and the chosen edges. If it is clear from the context, we
simply use H to denote Hk.

To show that the Hk forms a t-spanner, we need the following technical lemma.

Lemma 1. For a point p in P and a cone F in F , consider two points u and v contained in Fp
such that (u, p) ∈ E and (v, p) ∈ E. Suppose the opening angle of F is smaller than π/3, that is,
k > 6. If dF (p, v) < dF (p, u), then (u, v) ∈ E and |uv| < |up|.

Proof. Consider the triangle bounded by the boundary of Fp and a line through u orthogonal to
the angle-bisector of Fp. Notice that this triangle is an isosceles triangle containing v. Since the top
angle of the triangle is smaller than π/3, the apex p is the farthest point from u within the triangle.
This implies |uv| < |up|. Since ru is at least |up|, the edge (u, v) is contained in E.

Lemma 2. For an integer k > 8, Hk is a tan(π4 + 2π
k )-spanner of G.

Proof. We want to show that for every edge e = (u, p) in G, there is a path in Hk from u to p
whose length is at most tan(π4 + 2π

k ) · |up|. Let t = tan(π4 + 2π
k ).

To show this, we use the induction on the length of the edges. For the base case, assume that
(u, p) is the shortest edge of the transmission graph. Let F be the cone of F such that Fp contains
u. By construction, the directed edge from nF (p) to p is an edge of H. Let v = nF (p). If u = v,
then (u, p) is an edge of H, and thus we are done. Otherwise, (u, v) is an edge of the transmission
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Figure 2: Two cases of the location of s

graph G by Lemma 1, and moreover, it is shorter than (u, p), which contradicts that (u, p) is the
shortest edge of G.

Now consider an edge (u, p), and suppose that for every edge in the transmission graph shorter
than (u, p), there is a path connecting them whose length is at most t times their Euclidean distance.
Let F be the cone of F such that Fp contains u. By construction, the directed edge from nF (p) to
p is an edge of H. Let v = nF (p). If u = v, then (u, p) is an edge of H, and thus we are done. Thus
in the following, we assume that u 6= v. In this case, (u, v) is an edge of the transmission graph G
by Lemma 1, and moreover, it is shorter than (u, p).

Therefore, there is a path π from v to p whose length is at most t|vp| by the induction hypothesis.
Since (u, v) is an edge of G, the concatenation of π and (u, v) is a path of G whose length is at most
|uv|+ t|vp|. Let s be the projection point of v to (u, p). See Figure 2. We consider two cases with
respect to the position of s.

Since t = tan(π4 + 2π
k ) =

1+tan( 2π
k

)

1−tan( 2π
k

)
, we have t−1

t+1 = tan(2π
k ) > tan(πk ).

Case 1. Suppose s lies on (u, p). See Figure 2(a). Since u, v and s are contained in Fp, we have
∠upv ≤ 2π/k. Then,

|vp|+ t|uv| < |ps|+ |sv|+ t(|us|+ |sv|)
= t(|us|+ |ps|) + (t+ 1)|sv|+ (1− t)|ps|.

Note that |sv| = |ps| tan(∠upv) and tan(∠upv) ≤ tan(2π/k) = t−1
t+1 . We obtain (t+1)|sv| ≤ (t−1)|ps|.

Then,

t(|us|+ |ps|) + (t+ 1)|sv|+ (1− t)|ps| ≤ t(|us|+ |ps|)
= t|up|

Case 2. Now suppose s does not lie on up. See Figure 2(b) for illustration. Let x be an intersection
point of the line through pv and the line l that passes u which is orthogonal to the angle bisecting
line of the cone. Also, let y be a projection point of p into l. Similarly, by Lemma 1, there is a path
π from u to v such that the length of π is less than t|uv| by the induction hypothesis. Also, we
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consider the concatenation of π and edge vp. Then, the length of this path is

|vp|+ t|uv| ≤ |px|+ t|ux|
< |py|+ (t+ 1)|yx|
< (1 + (t+ 1) tan(π/k))|py| (∵ tan(∠yps) ≤ tan(π/k))

< (1 + (t+ 1) tan(π/k))|up|
≤ t|up| (∵ tan(π/k) < (t− 1)/(t+ 1)).

Therefore, for any case, there is a path from u to p with its length at most t|up|. This completes
the proof.

Note that t = tan(π4 + 2π
k ) > 1 converges to tan(π4 ) = 1 as k →∞. Therefore, for any constant

t > 1, we can find a constant k such that Hk is a t-spanner of the transmission graph.

2.2 Efficient Algorithm for Computing the t-Spanner

In this section, we give an O(n log3 n)-time algorithm to construct Hk for a constant k > 6. To
compute all edges of Hk, for each point p ∈ P and each cone F ∈ F , consider the translated cone
Fp of F so that the apex lies on p, and compute nF (p). We show how to do this for a cone F ∈ F
only. The others can be handled analogously. Without loss of generality, we assume that the
counterclockwise angle from the positive x-axis to two rays of F are 0 and 2π/k, respectively. Let
`1 and `2 be two lines orthogonal to the two rays, respectively.

Approach of Kaplan et al. The spanner constructed by Kaplan et al. [11] is a variation of the
Yao graph. For each cone F ∈ F and a point p ∈ P , they pick the closest point in Fp to p among all
points q with p ∈ Dq. Since they choose the closest point in a cone with respect to the Euclidean
distance, they need to fit grid cells into a cone. To resolve this, they use various data structures
including a compressed quadtree, a power diagram, a well-separated pair decomposition, and a
dynamic nearest neighbor search data structure.

Our Approach. Instead, our construction is based on the Θ-graph. Recall that we pick the
closest point in a cone with respect to dF (·, ·) instead of the Euclidean distance. The order of the
points of Fp ∩ P sorted with respect to dF (p, ·) is indeed the order of them sorted with respect to
their projection points onto the angle-bisector of F .

In the following, we present an O(n log3 n)-time algorithms for computing all edges of Hk

constructed for F . To do this, we use grid-like range trees proposed by Moidu. et al. [16] together
with a power diagram. With a slight abuse of notation, for a region S contained in Fp, let nS(p) be
the point q of S ∩ P with (q, p) ∈ E that minimizes dF (p, q). See Figure 1(b).

2.2.1 Data structures.

We construct the two-level grid-like range tree introduced by Moidu et al. [16] with respect to `1
and `2. It is a two-level balanced binary search tree. The first-level tree T1 is a balanced binary
search tree on the `1-projections of the points of P . Each node α in the first-level tree corresponds
to a slab I(α) orthogonal to `1. It is also associated with the second-level tree Tα which is a binary
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search tree, not necessarily balanced, on the points of P ∩ I(α). Unlike the standard range tree [6],
Tα is obtained from a balanced binary search tree T2 on the `2-projections of the points of P . More
specifically, we remove the subtrees rooted at all nodes of T2 whose corresponding parallelograms
contain no point in P ∩ I(α) in their union, and contract all nodes which have only one child. Then
Tα is not necessarily balanced but a full binary tree of depth O(log n).

Given a point p of P , there are O(log2 n) interior-disjoint parallelograms whose union contains
all points of P ∩ Fp. We denote the set of these parallelograms by Bp. By construction, the cells of
Bp are aligned for any point p ∈ P so that we can consider them as a grid of size O(log n)×O(log n).
See Figure 3.

Lemma 3 ([16]). The two-level grid-like range tree on a set of n points in the plane can be computed
in O(n log n) time. Moreover, its size is O(n log n).

Then for each node v of the second-level trees, we construct a balanced binary search tree of
the `-projections of P ∩B(v) as the third-level tree, where ` denotes the angle bisector of F . For a
node β of the third-level trees, let P (β) denote the set of the points stored in the subtree rooted
at β. we construct the power diagram of P (β). The power diagram is a weighted version of the
Voronoi diagram. More specifically, the power distance between a point p and a disk Dq is defined
as |pq|2 − r2

q . The power diagram partitions the plane into n regions such that all points in a
same region have the same closest disk in power distance. The power diagram of n disks can be
constructed in O(n log n) time with O(n) space. Also, we can locate the disk D that minimizes
the power distance from a query point p in O(log n) time. As a consequence, we can determine in
O(log n) time if the query point p is in the union of disks by checking if p ∈ D [10, 14].

The construction time of the first, second, and third-level trees is O(n log3 n) in total. Then we
construct the power diagram for each node of a third-level tree in a bottom-up fashion. In particular,
we start from constructing the power diagrams of the leaf nodes. For each internal node, we compute
its power diagram by merging the power diagram of its two children. Therefore, we can construct
the power diagrams for all nodes of a third-level tree in O(m logm) time, where m denotes the
number of points corresponding to the root of the third-level tree. Since the sum of m’s over all
third-level trees is O(n log2 n), the whole data structure can be constructed in O(n log3 n) time.

2.2.2 Query algorithm.

For each cell B ∈ Bp, we compute nB(p) in O(log2 n) as follows. We start from the root of the
third-level tree associated with B. We check if there is a point q ∈ P (β) with (q, p) ∈ E using
the power diagram stored in the root node. If it does not exist, nB(p) does not exist. Otherwise,
we traverse the third-level tree until we reach a leaf node. For each node β we encounter during
the traversal, we consider the left child of β, say βL. We check if there is a point q ∈ P (βL) with
(q, p) ∈ E using the power diagram stored in βL. If it exists, we move to βL. Otherwise, we move to
the right child of β. We do this until we reach a leaf node, which stores nB(p).

In the following, we show how to choose O(log n) cells of Bp, one of which contains nB(p). The
cells of Bp are aligned along `1 and `2. They can be considered as a grid of O(log n) × O(log n)
cells. We represent each row (parallel to `1) by integers 1, . . . , O(log n), and each column (parallel
to `2) by integers 1, . . . , O(log n). We represent each cell of Bp by a pair B(i, j) of indices such that
i is the row-index and j is the column-index of the cell. For illustration, see Figure 3(a). A cell
B = B(i, j) is said to be useful if nB(p) exists. Also, a useful cell B = B(i, j) is called an extreme
cell of Bp if no cell B(i′, j′) is useful for indices i′ and j′ such that i− j = i′ − j′ and i′ < i.

7



(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(a) (b)

Figure 3: (a) Index of the grid-like range tree (b) Useful cells are colored with gray or red, and
extreme cells are colored red.

Lemma 4. The cell of Bp containing nF (p) is an extreme cell. Moreover, the number of extreme
cells of Bp is O(log n).

Proof. Suppose nB(p) exists for B = B(i, j). For each integer w > 0, B(i + w, j + w) lies in
the upper right part of B(i, j). This means that dF (p, q) is at least dF (p, q′) for any two points
q ∈ B(i+ w, j + w) and q′ ∈ B(i, j). Thus, the cell containing nF (p) is an extreme cell.

The number of extreme cells is equal to the number of distinct i − j values among the cells
B(i, j) ∈ Bp. This number is O(log n) since each index of rows and columns is a positive integer at
most O(log n).

To compute nF (p), we first compute Bp in O(log2 n) time. For each cell B ∈ Bp, we check if
it is useful using the power diagram of P ∩B, which is stored in the root node of the third-level
tree in O(log3 n) time in total. Then we choose O(log n) extreme cells among the useful cells of
Bp. For each cell B of them, we compute nB(p) in O(log2 n) time, and thus the total query time is
O(log3 n).

Theorem 5. Given a point set P and a constant t > 1, we can construct a t-spanner of the
transmission graph of P within O(n log3 n) time.

2.3 Computing a BFS Tree Using a t-Spanner

In this section, we construct a BFS tree for the transmission graph G. For a root s, a BFS tree is a
shortest-path tree of G rooted at s where the length of a path is measured by the number of edges
in the path.

Kaplan et al. proposed an algorithm of constructing a BFS tree via their t-spanner that is
a variant of the Yao Graph. They utilize the technique proposed by Cabello et al. [3] for their
algorithm and correctness. Our algorithm is exactly the same as the algorithm by Kaplan et al.
However, since our t-spanner is based on the Θ-graph instead of the Yao Graph, we have to prove
the correctness.

For a given root s of a BFS tree, let Wi be the set of points in P with depth i. The correctness
of the algorithm follows from the following lemma.

Lemma 6. Let H be a t-spanner as in Theorem 5, and let v ∈ Wi+1. Then, there is a path
π = upk . . . p1v in H with u ∈Wi and pj ∈Wi+1 for all indices j ∈ [1, k].

8



Proof. For a point v ∈Wi+1, let s(v) denote the smallest Euclidean distance between v and a point
u ∈Wi such that (u, v) ∈ E. We prove the lemma using induction on s(·) for the points in Wi+1.

For the base case, let v ∈Wi+1 have the smallest value of s(v). Let u ∈Wi be the point with
s(v) = |uv|. If u = nF (v) for a cone F of F , we are done. Otherwise, we consider the cone F ∈ F
such that Fv contains u, and we consider w = nF (v). By Lemma 1, (u,w) and (w, v) are edges of
the transmission graph. Also, |uw| is less than |uv| = s(v). Let k be the index with w ∈Wk. We
have k ≤ i+ 1 since u ∈Wi and (u,w) ∈ E. Moreover, k 6= i+ 1. (Otherwise, s(w) < s(v), which
makes contradiction.) Also, k ≥ i since (w, v) ∈ E and v ∈Wi+1. Therefore, π = wv is desired path
because w ∈Wi.

Now, we consider a node v ∈ Wi+1, and suppose that all v′ ∈ Wi+1 with s(v′) < s(v) satisfy
the condition. Similarly, if u = nF (v), we are done. Otherwise, we consider w = nF (v) where
Fv contains u. The same properties hold by Lemma 1. In particular, w ∈ Wk with k = i or
k = (i + 1). If k = i, we are done. Otherwise, s(v) = |uv| > |uw| ≥ s(w). Now, there is a path
π = upk...p1w with u ∈ Wi and pj ∈ Wi+1 for all j due to the induction hypothesis on w. Then,
the path π′ = upk...p1wv satisfies the condition. This completes the induction.

Cabello et al. proposed a BFS tree algorithm for unit-disk graphs by considering the edges of
the Delaunay triangulation of the point set. Later, Kaplan et al. proposed a t-spanner based on a
variation of the Yao graph. Their t-spanner provides similar properties for transmission graphs as
the Delaunay triangulation does for unit-disk graphs. Our t-spanner also satisfies this property by
Lemma 6. Indeed, Lemma 6 is the same as [3, Lemma 1] except that H is our spanner in Lemma 6
and it is the Delaunay triangulation in [3, Lemma 1]. Then, we are able to reuse the algorithm of
Cabello et al. We remark that this algorithm takes O(n log n) time.

Theorem 7. Let P be a set of n points, each associated with a radius. Given a t-spanner H of the
transmission graph G of P as in Theorem 5, we can construct a BFS tree of G within O(n log n)
time.

3 Reachability Oracle for Unbounded Radius Ratio

In this section, we present a data structure of size O(n5/3) so that given any two points p and q
in P , we can check if p is reachable from q in O(n2/3) time. Moreover, this data structure can be
constructed in O(n5/3) time. Note that this result is independent to the radius ratio Ψ.

We say a set of disks is k-thick if for any point p in the plane, there are at most k disks that
contains p. Similarly, we say a transmission graph is k-thick if its underlying disk set is k-thick.

Lemma 8 ([15, Theorem 5.1]). For any set D of disks that is k-thick, there is a circle S intersecting
O(
√
kn) disks of D such that the number of disks of D with |Sin|, |Sout| ≤ 2n

3 , where Sin and Sout

denote the set of disks of D contained in the interior of S and the exterior of S, respectively. In this
case, We call S a separating circle. Moreover, we can compute S, Sin and Sout in linear time.

Consider a separating circle S of the disk set induced by P . By Lemma 8, P is partitioned into
three sets Sin, Sout, and Scross = {p ∈ P | Dp ∩ S 6= ∅} such that every path in G connecting a point
of Sin and a point of Sout visits a point in Scross. We call Scross a separator of G (or P ). Using
separators, we build a separation tree by repeatedly applying the algorithm in Lemma 8. As we
will see in Section 3.2, the separation tree enables us to construct a reachability oracle efficiently.

9



(a) (b)

Figure 4: (a) A set P of points associated with radii. (b) The disks in the same chain are colored
with the same color, and the points in R are colored black.

However, the transmission graph of a set of n points is n-thick in the worst case, and in this case,
Lemma 8 does not give a non-trivial bound.

To resolve this, we partition P into O(n2/3) chains, each consisting of O(n1/3) points of P , and
the remaining set R of points of P not belonging to any of the chains. Then we show that R is
O(n1/3)-thick, and thus Lemma 8 gives an efficient reachability oracle for the subgraph of G induced
by R. Additionally, we construct an auxiliary data structure for each chain.

3.1 Chain

We call a sequence 〈p1, . . . , pk〉 of points of P sorted in the ascending order of their associated radii
a chain if (pj , pi) ∈ E for all indices i and j with 1 ≤ i < j. In other words, |pipj | ≤ rpj . In this

section, we construct O(n1/3)-length chains as many as possible so that the remaining set R is
k-thick for a small k.

To compute chains, we need a dynamic data structure for a set D of disks, dynamically changing
by insertions and deletions, such that for a query point, we can check if there is a disk of D that
contains the query point. This can be obtained using dynamic 3-D halfspace lower envelope data
structure, which is given by [4], together with the standard lifting transformation. In particular,
this data structure can be built in O(n log n) time and its insertion time, deletion time and query
time are O(log2 n), O(log4 n) and O(log2 n), respectively. For the convenience, we denote this data
structure by DNN(D).

Lemma 9. Let D be a set of disks, and p be a point in the plane. Given DNN(D), we can check if
there are n1/3 disks of D containing p in O(n1/3 log4 n) time. Moreover, if they exist, we can return
them, and delete them from D and DNN(D) within the same time bound.

Proof. We find a disk containing p in D using DNN(D), and remove the returned disk from D
and DNN(D). Note that DNN(D) returns a disk if and only if there is a disk in D that contains
the query point. We repeat this n1/3 times. If n1/3 distinct disks are returned, then we are done.
Otherwise, there are less than n1/3 disks that contain p. In this case, we are required to insert all
removed points to D and DNN(D). This procedure applies O(n1/3) queries, insertions and deletions,
so it takes O(n1/3 log4 n) time in total.
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Let D be the set of disks induced by P , and we construct DNN(D). We choose the smallest disk
Dp of D and remove Dp from D. Then we update DNN(D) accordingly. We check if there are n1/3

disks of D containing the center p of Dp by applying the algorithm in Lemma 9. If it returns n1/3

disks, let Lp be the set consisting of p and the centers of those disks. Since D is updated, we can
apply this procedure again. We do this until D is empty. As a result of this repetition, we obtain
sets Lp’s of points of P . Note that the disks induced by Lp contain p, and the number of Lp’s is
O(n2/3).

Next, for each set Lp, we consider six interior-disjoint cones with opening angle π/3 with apex p.
For each cone F , we sort the points of Lp ∩ F in the ascending order of their associated radii. Then
we claim that the sorted list is a chain, and thus we obtain six chains for each set Lp. Therefore, we
have O(n2/3) chains in total.

Lemma 10. The sequence of the points of Lp ∩ F sorted in the ascending order of their associated
radii is a chain.

Proof. Consider two points x and y in the given sequence such that x lies before y in the sequence.
Note that rx ≤ ry by construction. We show that (y, x) ∈ E. Let 4y be the regular triangle
surrounded by the two rays of F and a line passing through y. Then, p, one corner of 4y, is one of
the farthest points from y within 4y. Thus, if x is contained in 4y, we have ry ≥ |yp| and ry ≥ |yx|,
and thus (y, x) ∈ E. Otherwise, 4y ⊂ 4x, and thus 4x contains y. In this case, since p is one of
the farthest points from x in 4x, |yx| ≤ |xp| ≤ rx ≤ ry, and thus (y, x) ∈ E.

Therefore, we have a set C of O(n2/3) chains of length O(n1/3). We call the set of points of P
not contained in any of the chains of C the remaining set. Also, we use R to denote the subgraph of
G induced by R, and call it the remaining graph.

Lemma 11. The graph R is 6n1/3-thick.

Proof. We first claim that the remaining set R does not have a n1/3-length chain. Assume to the
contrary that there is a n1/3-length chain C, and let p be the first point in C. At some moment in
the course of the algorithm, Dp becomes the smallest disk of D. At this moment, all disks associated
with the points in C are contained in D. That is, at least n1/3 disks of D contain p, and thus p
must be contained in a chain of C, which contradicts that p is a point of R.

Then we show that R is 6n1/3-thick. For any point x in the plane, we consider six interior-
disjoint cones with opening angle π/3 with apex x. For a cone F , consider the list L of the
points p of R ∩ F with rp ≥ |px| sorted in the ascending order of their associated radii. The
proof of Lemma 10 implies that L is a chain. By the claim mentioned above, the size of L is
less than n1/3. Now consider the union of the lists for all of the six cones, which has size less
than 6n1/3. Notice that it is the set of all points p ∈ P with rp ≥ |px|, and thus the lemma holds.

By Lemma 9, we can compute all Lp’s in O(n4/3 log4 n) time, and for each Lp, we can compute
six chains in O(n1/3 log n) time. Since the number of Lp’s is O(n2/3), the total time for computing
all chains of C is O(n4/3 log4 n) time.

3.2 Separation tree of R

In this section, we build a reachability oracle for R, which is similar to the reachability oracle
proposed by Kaplan et al. [11, Section 4.2]. In this case, since R is O(n1/3)-thick, we can derive a
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R T

Figure 5: The remaining set and its separation tree

better result. Then Lemma 8 shows that there is a separator of size O(n2/3). Recall that R is the
vertex set of R.

Data structure. We construct the separation tree T of R recursively as follows. We compute a
separator Scross of R and two subsets Sin and Sout separated by Scross. We recursively construct the
separation trees of Sin and Sout. Then we make a new node v, and connect v with the roots of the
separation trees of Sin and Sout. We let Gv denote the subgraph of G induced by R. See Figure 5.

For each node v, we store the reachability information as follows: For every point p ∈ Gv, we
store two lists of points of Scross which is reachable to p and which is reachable from p within Gv.
In particular, we construct a 2-spanner of Gv. Then, for each point s ∈ Scross, we apply the BFS
algorithm in Section 2 from s. Also, we reverse the spanner and again apply the BFS algorithm
from s.

Query Algorithm. Given two query points p, q ∈ R, we want to check if q is reachable from p in
R. To do this, we observe the following. Let v and u be the two nodes of the separation tree T
such that the separators of Gv and Gu contain p and q, respectively. They are uniquely defined
because each point of R is contained in exactly one separator stored in T . Let L be the path of T
from the lowest common ancestor of v and u to the root. Consider a path π from p to q in R, if it
exists. By construction, there is a node w in L such that the separator of Gw intersects π. Among
them, consider the node closest to the root node. Then Gw contains π. Therefore, it suffices to
check if q is reachable from p in Gx for every node x in L.

To use this observation, we first compute v, u and L in O(log n) time. Then for each node w of
L, we check if there is a point x in separator such that p is reachable to x and q is reachable from x
in O(m) time, where m denotes the size of the separator of Gw. We return YES if and only if there
is such a point x. Since the size of the separators stored in each node is geometrically increasing
along L, the total size is dominated by the size of the separator of R, which is O(n2/3). Therefore,
our query algorithm takes O(n2/3) time.

Lemma 12. We can construct a separation tree T of R with associated reachability information in
O(n5/3) time and O(n5/3) space. Then, we can query whether there is path from p to q in R within
O(n2/3) time.

Proof. Since the analysis of the query time is presented in the above text, we focus on the size
of the data structure and its preprocessing time only. For each node v of the separation tree, we
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Figure 6: (a) There is a p-q path via C if j(q) ≤ i(p). (b) There is no p-q path that intersects C if
j(q) > i(p)

spend O(m) time to compute a separator and two separated subsets, O(m log3m) time to compute
a 2-spanner, and O(m2/3) · O(m) = O(m5/3) time for the BFS algorithm, where m denotes the
complexity of Gv.

Let P (m) be the time for constructing the separation tree for a point set of size m. Then we have
P (m) ≤ P (m1) + P (m2) +O(m5/3), where m1 and m2 denote the size of Sin and Sout, respectively.
Notice that m1 +m2 ≤ m and m1,m2 < 2m/3, and thus P (n) = O(n5/3). Similarly, we can show
that the space complexity is O(n5/3).

3.3 Chain Indices

In this section, we construct a reachability oracle for each chain C ∈ C: Given any two points p
and q in P , we can check if there is a path from p to q intersects C. For each chain C = 〈p1, ..., pt〉,
we can construct the oracle in O(n) time once we have a 2-spanner of G. To do this, we need the
following lemma. See Figure 6.

Lemma 13. For two points p and q in P , let i be the largest index such that p is reachable to pi,
and j be the smallest index such that pj is reachable to q. Then, there is a p-q path that intersects
C if and only if j ≤ i.

Proof. If there is p-q path that intersects C, there exists pk ∈ C such that p is reachable to pk and
pk is reachable to q. Then, j ≤ k ≤ i. Conversely, if j ≤ i, there exist a p-pi path, a pi-pj path, and
a pj-q path by the choice of i and j. Then, the concatenation of those three paths is a p-q path that
intersects C.

For every point q ∈ P , we store the largest index i(q) such that q is reachable to pi(q), and store
the smallest index j(q) such that pj(q) is reachable to q.

Lemma 14. We can compute the indices i(·) and j(·) for every q ∈ P and every C ∈ C in O(n5/3)
time. Also, the total number of indices we store is O(n5/3).

Proof. In the following, we show how to compute j(q) for every point q ∈ P . The other index i(q)
can be computed similarly. Let Ij be the set of points q ∈ P such that j(q) = j. That is, a point q
is contained in Ij if and only if pi is the first point of C which is reachable to q.

We compute I1, . . . , It one by one in order. For an index `, assume that we maintain a graph H`,
which is the subgraph of the 2-spanner of G induced by ∪tj=`Ij . We can compute I` by applying
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the BFS algorithm on H` starting from p`. The set of all points we encountered is exactly I`. To
maintain the invariant, we remove all points in I` and their adjacent edges from H`, and denote it
by H`+1. For each index `, the BFS algorithm runs in O(|I`|) time. Since I`’s are pairwise disjoint,
the BFS algorithm runs in O(n) time in total. Since we have O(n2/3) chains, the total time for
computing all chain indices is O(n5/3).

3.4 Reachability Oracles

Given two points p, q ∈ P , we can check if p is reachable from q as follows. Suppose there is a p-q
path π. If there is a chain C that intersects π at a point of C, say pk. Then j(q) ≤ k ≤ i(p) for the
indices j(q) and i(p) stored in C by Lemma 13. In this case, we can find such a chain C in O(n2/3)
time by computing indices j(q) and i(p) for all chains of C. Otherwise, no chain of C intersects π.
Then π is contained in R, and thus we can use the reachability oracle for R described in Section 3.2.
This takes O(n2/3) by Lemma 12.

Theorem 15. Given a set P of points associated with radii, we can compute a reachability oracle
for the transmission graph of P in O(n5/3) time. The reachability oracle has size O(n5/3) and
supports the query time O(n2/3).

4 Reachability Oracle for Small Radius Ratio

We improve the reachability of oracle described in Section 3 if Ψ is polynomial in n. In particular,
we construct a reachability oracle with size O(n3/2 log1/2 Ψ), query time O(n1/2 log1/2 Ψ), and
preprocessing time O(n3/2 log1/2 Ψ) time.

4.1 Hierarchical Grid

For an index i ∈ {0, 1, ...}, consider the partition of the plane into axis-parallel squares (cells) with
diameter 2i such that the origin lies in the corner of a cell. We call this the grid at level i, and
denote it by Qi. We consider the L grids Q0, ...,QL where L = dlog Ψe. For each cell σ ∈ Qi, let
Pσ be the set of points p in P ∩ σ such that rp ∈ [2i, 2i+1). Note that every point is contained in Pσ
for exactly one cell σ for all grids Q1, . . . ,QL.

We construct a new graph H = (V ′, E′) where V ′ is the set of cells σ with Pσ 6= ∅, and E′ is the
set of pairs (σ1, σ2) such that there are two points p ∈ Pσ1 and q ∈ Pσ2 with (p, q) ∈ E. Note that
the points in Pσ form a clique, and thus it suffices to construct a reachability oracle for H.

Lemma 16. We can construct H = (V ′, E′) from the transmission graph G within O(n log n log Ψ)
time. Moreover, the number of edges of H is O(|V ′| log Ψ).

Proof. For every cell σ with Pσ 6= ∅, we construct the power diagram of Pσ. This takes O(n log n)
time for all cells in total. We define a grid cluster as a block of 9× 9 contiguous grid cells. For every
point p ∈ Pσ and for every grid level i = 0, ..., L, let C(p, i) denote the grid cluster of grid level i
whose center grid cell contains p.

For each index i ∈ [1, L] and each cell σ, we want to find all edges (σ, σ′) such that σ′ is a cell
of Qi. For a cell σ′ of Qi, (σ, σ′) ∈ E′ if and only if (p, q) ∈ E for two points p ∈ σ and q ∈ σ′.
Then, the Euclidean distance between p and the center of σ′ is at most 2i + 2i+1 = 3 · 2i. Therefore,
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σ′ ∈ C(p, i). Thus, we can compute all edges (σ, σ′) such that σ′ is a cell of Qi by considering the
cells in C(p, i) for every p ∈ Pσ. In particular, for every cell σ′ in C(p, i), we check if there is a point
q ∈ Pσ′ with (q, p) ∈ E using the power diagram within O(|Pσ| log n) time. Since C(p, i) has O(1)
cells, we can do this for all cells in C(p, i) in O(|Pσ| log n) time. In total, we can compute every
edge in E′ in O(n log n log Ψ) time since L = log Ψ and the total size of Pσ for all levels i and all
cells in Qi is n.

We want to compute the number of edges in E′. To do this, we first consider (σ, σ′) ∈ E′ such
that σ ∈ Qi and σ ∈ Qj with j < i. Then, there are two points p ∈ Pσ and q ∈ Pσ′ such that
(p, q) ∈ E. Since rq > rp by construction, (q, p) ∈ E, and thus (σ′, σ) ∈ E. Therefore, it suffices to
compute the number of edges in E′ from σ′ ∈ Qj to σ ∈ Qi where i ≤ j.

For a cell σ ∈ Qi, we show that the number of incoming edges from cells in Qj to σ is O(1) for
every j ≥ i. Let σj be a cell in Qj such that σ ⊆ σj . Then, for every p ∈ Pσ, C(p, i) is equal to
the grid cluster with center cell σj . Therefore, all incoming edges for σ from the cells in Qj are
contained in the grid cluster with center cell σj . Then, the total number of incoming edges from the
cells in ∪Lk=iQk to σ is O(log Ψ). This shows that the number of edges of H is O(|V ′| log Ψ).

4.2 Separation tree revisited

Now we want construct a reachability oracle for H. We construct the separation tree described in
Section 3.2. We slightly make the additional step because now the graph H consists of cells instead
of points with associated radii. For each cell σ ∈ V ′ ∩Qi with its center c(σ), we associate radius
3 · 2i with c(σ) and let D(σ) be the associated disk. We denote the set of all centers of cells of V ′

by X.
We first show that X is O(log Ψ)-thick. That is, any point p in the plane is contained in O(log Ψ)

associated disks of the points of X. For a grid level i and a cell σ ∈ Qi, consider the associated disk
of c(σ) containing p. Then, σ is contained in the block of 9× 9 contiguous grid cells of level i whose
center grid cell contains p. Therefore, p is contained in O(1) associated disks of c(σ) for cells of grid
level i. Since the number of grids is L = O(log Ψ), X is O(log Ψ)-thick.

Data structure. We construct the separation tree T for X as follows. We compute a separator
Scross of X and two subsets Sin and Sout separated by Scross. We recursively construct the separation
trees of Sin and Sout. Then we make a new node v, and connect v with the roots of the separation
trees of Sin and Sout. Let Hv be the subgraph of H induced by X.

For each node v of T , we store the reachability information as follows. For every point
c(σ) ∈ Scross, we store two lists of cells of Hv which are reachable to σ and which are reachable from
σ within Hv. In particular, for each cell σ where c(σ) ∈ Scross, we apply a breadth-first search from
σ in Hv. Also, we reverse Hv and again apply a breadth-first search from σ.

Construction time. For each node v of T , we spend O(m) time to compute a separator and two
separated subsets, where m denotes the vertices of Hv. The size of the separator is O(m1/2 log1/2 Ψ)
because X is O(log Ψ)-thick. Moreover, the number of edges of Hv is O(m log Ψ) by Lemma 16.
Thus we can apply a breath-first search in O(m3/2 log3/2 Ψ) time.

Let P (m) be the time for constructing the separation tree for a point set of size m. Then we
have P (m) ≤ P (m1) +P (m2) +O(m3/2 log3/2 Ψ), where m1 and m2 denote the size of Sin and Sout,
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respectively. Notice that m1 + m2 ≤ m and m1,m2 < 2m/3, and thus P (n) = O(m3/2 log3/2 Ψ).
Similarly, we can show that the space complexity is O(m3/2 log1/2 Ψ). But in this case, the space
used by each node of T is O(n3/2 log1/2 Ψ) instead of O(n3/2 log3/2 Ψ).

Query Algorithm. Given two query cells σ1, σ2 ∈ H, we want to check if σ2 is reachable from
σ1 in H. To do this, we observe the following. Let v and u be the two nodes of the separation tree
T such that the separators of Gv and Gu contain c(σ1) and c(σ2), respectively. Let L be the path
of T from the lowest common ancestor of v and u to the root.

Note that D(τ) intersects D(τ ′) for any two cells τ and τ ′ of V ′ with (τ, τ ′) ∈ E′. Consider a
node w ∈ T and the separator Scross of Gw. Let Sin and Sout be the two sets separated by Scross.
Also, for any two cells σ and σ′ of V ′ with c(σ) ∈ Sin and c(σ′) ∈ Sout, a D(σ)-D(σ′) path in the
(undirected) disk intersection graph of X intersects the associated disk of a point of Scross. Therefore,
a σ-σ′ path in H intersects a cell σ′′ where c(σ′′) ∈ Scross.

This implies that for any path π from σ1 to σ2 in H, there is a node x in L such that π intersects
a cell σ such that c(σ) ∈ S, where S ⊆ X denotes the separator of Gx. Among them, consider the
node closest to the root node. Then Gw contains π. Therefore, it suffices to check if σ2 is reachable
from σ1 in Gw for all nodes w ∈ L.

To use this observation, we first compute v, u and L in O(log n) time since T has O(log n) levels.
Then for each node u of L, we check if the separator of Gu contains c(σ) such that σ1 is reachable
to σ and σ2 is reachable from σ in O(k) time, where k denotes the size of the separator of Gu. We
return YES if there is such a node u. Otherwise, we return NO. Since the size of the separators
stored in each node is geometrically increasing along L, the total size is dominated by the size of the
separator of X, which is O(n1/2 log1/2 Ψ). Therefore, our query algorithm takes O(n1/2 log1/2 Ψ)
time.

Theorem 17. Given a set P of points associated with radii and P has radius ratio Ψ, we can compute
a reachability oracle for the transmission graph of P in O(n3/2 log3/2 Ψ) time. The reachability
oracle has size O(n3/2 log1/2 Ψ) and supports the query time O(n1/2 log1/2 Ψ).

5 Continuous Reachability Oracle

In this section, we present a continuous reachability oracle which its complexity is independent of
the radius ratio Ψ. In particular, our data structure has size O(n5/3) so that for any two point
s ∈ P and t ∈ R2, we can check if s is reachable to t in O(n2/3 log2 n) time. Also, this data structure
can be constructed in O(n5/3) time. If t is reachable from s, there is a point p ∈ P reachable from s
with t ∈ Dp. In this case, we define a s-t path in G as the concatenation of a s-p path in G and the
segment connecting p and t.

Consider two query points s ∈ P and t ∈ R2. If there is a s-t path π, we denote the vertex
incident to t in π by p(π). We construct auxiliary data structures for R and C to handle the following
two cases. We first consider the case that there is a s-t path π with p(π) ∈ R. In this case, we
choose a set R0 of O(1) points in R so that there is a s-t path π′ with p(π′) ∈ R0 if and only if there
is a s-t path π with p(π) ∈ R. If it is not the case, for any s-t path π, p(π) is contained in a chain
of C. We can handle this by investigating every chain of C, and finding the first point in the chain
whose associated disk contains t. In addition to this, we construct the discrete reachability oracle
for G described in Section 3.
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5.1 The remaining set R, revisited

We construct the data structure so that we can check if there is a s-t path π with p(π) ∈ R. To
do this, wee construct the O(n)-sized data structure proposed by Afshani and Chan [1] such that
for P and a query point t, we can find all points in P whose associated disks contain t ∈ R2 in
O(log n+ k) time, where k is the number of disks that contain t. Moreover, it can be constructed in
O(n log n) time. Since R is O(n1/3)-thick, this query time is bounded by O(n1/3).

Given two points p ∈ P and t ∈ R2, we compute a set Rt of O(n1/3) points of P whose associated
disks contain t within O(n1/3) time. Then we choose a subset R0 of Rt of size O(1) such that there
is a s-t path π′ with p(π′) ∈ R0 if and only if there is a s-t path π with p(π) ∈ R.

Lemma 18. Assume that we are given a point t ∈ R2 and a set Rt of points of R whose associated
disks contain t. We can compute a O(1)-sized set R0 ⊂ Rt such that R0 ∩Dp 6= ∅ for every point
p ∈ Rt in O(|Rt|) time.

Proof. We consider six interior-disjoint cones with opening angle π/3 with apex t. For a cone F , we
consider the list L of the points p ∈ Rt ∩ F . We pick the point q ∈ L that minimizes the distance
value dF (t, ·). (For the definition of dF (t, ·), see the beginning of Section 2.1.) We claim that for every
point x ∈ L, the associated disk of x contains q. Let 4 be the regular triangle surrounded by the two
rays of F and a line passing through x. Then, t is one of the farthest points from x within 4. Also,
q is contained in 4 by the definition of q. Therefore, |qx| ≤ |tx| ≤ rx, and thus Dx contains q. Then,
the set of points q from all cone F satisfy the condition of R0. This procedure takes O(n1/3) time.

Then we can answer the continuous reachability query using the discrete reachability oracle for
all points q ∈ R0 in O(n2/3) time by Theorem 15.

5.2 The set C of chains, revisited.

We construct a data structure for each chain C ∈ C so that we can compute the first point in C
which contains t. To do this, we construct a balanced binary search tree of the indices in [1, t] for
C = 〈p1, . . . , pt〉. For each node u of the binary search tree, we construct the power diagram of the
points stored in the subtree rooted at u. Note that this data structure is a variation of the third-level
tree proposed in Section 2.2. We sort the points along their indices here, while we sort the points
along `-projections in Section 2.2. Therefore, as we showed in Section 2.2, the construction takes
O(m logm) time, and we can compute the first point in C which contains t within O(log2m) time
for each chain C, where m = |C|. In this way, we can construct the auxiliary data structures for all
chains of C in O(n log n) time.

Given two points s ∈ P and t ∈ R2, we can check if s is reachable to t as follows. Suppose there
is a s-t path π. If p(π) is contained in a chain C ∈ C, let k be the index of p(π) in C = 〈p1, . . . , pt〉,
that is, pk = p(π). We let j(t) denote the index of the first point in C which contains t, and let i(s)
denote the index of the last point in C which is reachable from s. Recall that i(s) is stored in the
discrete reachability oracle, and j(t) can be computed using the auxiliary data structure for C as
mentioned above. Then there is a s-t path π with p(π) ∈ C if and only if j(t) ≤ k ≤ i(s). We do
this for all chains in C. Since we can compute the first point that contains t for every chain of C in
O(n2/3 log2 n) time, the total query time is O(n2/3 log2 n) time. Therefore, we have the following
theorem.
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Theorem 19. Given a set P of points associated with radii, we can compute a continuous reachability
oracle for the transmission graph of P in O(n5/3) time. The reachability oracle has size O(n5/3)
and supports the query time O(n2/3 log2 n).
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