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Abstract

We study algorithms for the sliding-window model, an important variant of the data-
stream model, in which the goal is to compute some function of a fixed-length suffix of the
stream. We extend the smooth-histogram framework of Braverman and Ostrovsky (FOCS
2007) to almost-smooth functions, which includes all subadditive functions. Specifically,
we show that if a subadditive function can be (1 + ε)-approximated in the insertion-only
streaming model, then it can be (2 + ε)-approximated also in the sliding-window model
with space complexity larger by factor O

(
ε−1 log w

)
, where w is the window size.

We demonstrate how our framework yields new approximation algorithms with rela-
tively little effort for a variety of problems that do not admit the smooth-histogram tech-
nique. For example, in the frequency-vector model, a symmetric norm is subadditive and
thus we obtain a sliding-window (2 + ε)-approximation algorithm for it. Another example
is for streaming matrices, where we derive a new sliding-window

(√
2 + ε

)
-approximation

algorithm for Schatten 4-norm. We then consider graph streams and show that many
graph problems are subadditive, including maximum submodular matching, minimum
vertex-cover, and maximum k-cover, thereby deriving sliding-window O(1)-approximation
algorithms for them almost for free (using known insertion-only algorithms). Finally, we
design for every d ∈ (1, 2] an artificial function, based on the maximum-matching size,
whose almost-smoothness parameter is exactly d.
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1 Introduction

Nowadays, there is a growing need for algorithms to process huge data sets. The Internet,
including social networks and electronic commerce, as well as astronomical and biological
data, provide new challenges for computer scientists and mathematicians, since traditional
algorithms are not able to handle such massive data sets in a reasonable time. First, the data is
too big to be stored on a single machine. Second, even algorithms with time complexity O

(
n2
)

could be too slow in practice. Third, and most important, the data could change over time, and
algorithms should cope with these dynamic changes. Therefore, several models of computation
over Big Data are studied, such as parallel, distributed, and streaming algorithms.

We concentrate on the streaming model (see e.g. [Mut05, BBD+02, Agg07]), where the
data is given as a sequence of items (or updates) in some order (usually adversarial), and
the algorithm can read the data only in that order. Often, the algorithm can only read the
data once, although there are also algorithms for multiple passes. More concretely, a stream
is a (possibly infinite) sequence S = 〈σ1, σ2, . . . , σi, . . .〉, where each item σi belongs to some
universe U . The length of the stream, as well as the size of U , is assumed to be huge, such that
storing the entire stream, or even a constant-size information for each item in S, is impractical.
A streaming algorithm A takes S as input and computes some function f of the stream S.
This means that the algorithm has access to the input in a streaming fashion, i.e., A can read
the input once and only in the order it is given and at every time t the algorithm may be
asked to evaluate f on the prefix St = 〈σ1, . . . , σt〉, called a query at time t for f (St). We only
consider here the insertion-only model, where all updates are positive, i.e., only adding items
to the underlying structure (in some other models, the deletion of previously added items is
also allowed).

In many streaming scenarios, computing the exact value of f is computationally pro-
hibitive or even impossible. Hence, the goal is to design a streaming algorithm whose output
approximates f (often with high probability). As usual, it should have low space complexity,
update time, and query time, see Remark 1.1.

The sliding-window model, introduced by Datar, Gionis, Indyk and Motwani [DGIM02],
has become a popular model for processing (infinite) data streams, where older data items
should be ignored, as they are considered obsolete. In this model, the goal is to compute a
function f on a suffix of the stream, referred to as the active window W . Throughout, the
size w of the active window W is assumed to be known (to the algorithm) in advance. At
a point in time t, we denote the active window by Wt = 〈σt−w+1, . . . , σt〉, or W for short
when t is clear from the context. The goal is to approximate f (Wt), and possibly provide a
corresponding object, e.g., a feasible matching in a graph when the stream is a sequence of
edges and f is the maximum-matching size. For a randomized algorithm, we require that a
single query at any time t succeeds with probability at least 1− δ.

Datar et al. [DGIM02] noted that in the sliding-window model there is a lower bound
of Ω (w) if deletions are allowed, even for relatively simple tasks like approximating (within
factor 2) the number of distinct items in a stream. Therefore, we assume throughout that the
stream S has only insertions, and no deletions.

A widely studied streaming model is the graph-streaming model (see e.g. [FKM+05,
McG14]), where the stream S consists of a sequence of edges (possibly with some auxil-
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iary information, like weights) of an underlying graph G = (V, E).1 We assume that V = [n]
for a known value n ∈ N and G is a simple graph without parallel edges. This graph-streaming
model is sometimes studied in the semi-streaming model, where algorithms are allowed to use
O(n · polylog (n)) space. Observe that for dense graphs, an algorithm in this model cannot
store the whole graph, but it can store polylog (n) information for each vertex. We slightly
abuse the notation of a graph function f (G) and extend it to a stream of edges S using the
convention f (S) := f (G) where G is the graph defined by the edges in the stream S.

Remark 1.1. Throughout, space complexity refers to the storage requirement of an algorithm
during the entire input stream, measured in bits. Update time refers to the time complexity
of processing a single update from the stream in the RAM model. Query time refers to the
time complexity of reporting an output at a single point in time.

Crouch, McGregor and Stubbs [CMS13] initiated the study of graph problems in the
sliding-window model, and designed algorithms for several basic graph problems, such as k-
connectivity, bipartiteness, sparsification, minimum spanning tree and spanners. They also
showed approximation algorithms for maximum-matching and for maximum-weight matching.
We shall focus on two well-known and closely related optimization problems, maximum-
matching and minimum vertex-cover, defined below.

1.1 Basic Terminology

Definition 1.2. A matching in a graph G = (V, E) is a set of edges M ⊆ E that are disjoint,
i.e., no two edges have a common vertex. Denote by m (G) the maximum size of a matching in
G. A matching of maximal size (number of edges) is called a maximum-cardinality matching,
and is usually referred to as a maximum-matching. In an edge-weighted graph G, a maximum-
weight matching is a matching with maximal sum of weights.

Definition 1.3. A subset C ⊆ V of the vertices of a graph G = (V, E) is called a vertex-cover
of G if each edge e ∈ E is incident to at least one vertex in C. Denote by V C (G) the smallest
size of a vertex-cover of G.

We will use the terminology of Feige and Jozeph [FJ15] to distinguish between estimation
and approximation of optimization problems (where the goal is to find a feasible solution of
optimal value). An approximation algorithm is required to output a feasible solution whose
value is close to the value of an optimal solution, e.g., output a feasible matching of near-
optimal size. An estimation algorithm is required to only output a value close to that of
an optimal solution, without necessarily outputting a corresponding feasible solution, e.g.,
estimate the size of a maximum-matching, without providing a corresponding matching.

Definition 1.4. The notation Õ(s) hides polylogarithmic dependence on s, i.e., Õ(s) =
O(s · polylog (s)). To suppress dependence on ε we write Oε(s) = O(s · f (ε)), where f :
R+ → R+ is some positive function.2 We also combine both notations and define Õε(s) =
Oε(s · polylog (s)).

1All our definitions, e.g., Definitions 1.2 and 1.3, as well as Corollary 2.5, extend naturally to hypergraphs.
2Throughout, every dependence on ε is polynomial, i.e., in our case Oε(s) = O

(
s · poly

(
ε−1
))

.
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Definition 1.5. For δ ∈ [0, 1) and C ≥ 1, a randomized algorithm Λ is said to (C, δ)-
approximate a function f if on every input stream S, its output Λ (S), upon a query (at a
single point of time), satisfies

Pr [f (S) ≤ Λ (S) ≤ C · f (S)] ≥ 1− δ.

If Λ is a deterministic algorithm then δ = 0, and we say in short that it C-approximates
f . We sometime use this shorter terminology and omit δ also for randomized approximation
algorithms, when δ is a fixed constant, say 0.1. It is well-known that every algorithm (that
reports a real value) with success probability 0.9 can be amplified to success probability
1− 1

poly(n) using O(log (n)) independent repetitions and reporting the median.

Remark 1.6. Usually we use Definition 1.5 with an extra approximation factor 1 ± ε, for

ε ∈
(
0, 1

2

)
, in the following manner. If algorithm Λ satisfies

Pr [(1− ε) f (S) ≤ Λ (S) ≤ (1 + ε) C · f (S)] ≥ 1− δ,

then algorithm Λ′ := 1
1−εΛ satisfies Definition 1.5 with C ′ := (1+ε)

(1−ε)C < (1 + 4ε) C.

1.2 Our Contribution

We introduce an adaptation of the smooth-histogram technique of Braverman and Ostrovsky
[BO07] to a more general family of functions, that we call almost-smooth, and demonstrate
that it is applicable in a variety of settings, including frequency-vector streams, graph streams,
and matrix streams. In fact, many of our examples follow a single reasoning — these func-
tions are subadditive (defined below) and thus 2-almost-smooth — and some of them (e.g.,
symmetric norms and maximum-matching) are not smooth and thus do not admit the more
restricted smooth-histogram technique. Furthermore, we show artificial examples where the
almost-smoothness parameter can take any value in the range (1, 2].

Similarly to [BO07], the main idea in our framework is to maintain several instances
of an insertion-only algorithm on different suffixes of the stream, such that at every point
in time, the active window W and the largest suffix of it that is maintained have similar
value of f . We show that for an almost-smooth f our overall algorithm achieves a good
approximation of f (W ). Using this technique we obtain new sliding-window algorithms for
several problems that admit an insertion-only streaming algorithm like estimating a symmetric
norm of a frequency-vector or submodular matching in a graph stream. For more details on
the smooth-histogram framework of [BO07] see Appendix A.

Almost-Smooth Functions We start with an overview of our notion of almost-smooth
functions; for a more formal treatment see Definition 2.1 and Remark 2.2. A function f defined
on streams is said to be left-monotone (non-decreasing) if for every two disjoint segments A, B
of a stream f (B) ≤ f (AB), where AB denotes their concatenation. Informally, we say that

a left-monotone function f is d-almost-smooth if f(B)
f(AB) ≤ d · f(BC)

f(ABC) for all disjoint segments

A, B, C; this means that whenever f (B) approximates f (AB) within some factor, appending
any segment C will maintain this approximation up to an extra factor d. For example, the
maximum-matching size is 2-almost-smooth (see Corollary 2.5), which means that if A, B, C
are disjoint sets of edges and m (B) is a (1 + ε)-approximation of m (AB), then for every
sequence C of additional edges, m (BC) would ((1 + ε) 2)-approximate m (ABC).
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Algorithms for Almost-Smooth Functions For almost-smooth functions we show a
general transformation of an approximation algorithm in the insertion-only model to the
sliding-window model.

Theorem 1.7 (Informal version of Theorem 2.7). Suppose function f is d-almost-smooth and
can be C-approximated by an insertion-only algorithm Λ. Then there exists a sliding-window
algorithm Λsw that

(
(1 + ε) dC2

)
-approximates f , with only a factor O

(
ε−1 log w

)
larger space

and update time than Λ.

We show in Lemma 2.4 that every subadditive function (defined below) f is 2-almost-
smooth; it follows (using Theorem 1.7) that every insertion-only algorithm for approximating
such f can be adapted to the sliding-window model with a small overhead in the approximation
ratio, space complexity, and update time.

Definition 1.8. A function f is said to be subadditive if for every disjoint segments A, B of
a stream it holds that f (AB) ≤ f (A) + f (B).

Frequency-Vector Streams In the frequency-vector model, where the stream consists of
additive updates to an underlying vector x ∈ Rn, we show that every symmetric norm is
subadditive and thus admits our framework of almost-smoothness. We can then use a result
of Błasiok et al. [BBC+17] that provides a (1 + ε)-approximation randomized streaming
algorithm for every symmetric norm, to deduce the following theorem.

Theorem 1.9 (Informal version of Theorem 3.2). Every symmetric norm on Rn admits
a (2 + ε)-approximation sliding-window randomized algorithm with space complexity Õε(L),
where L is a certain quantity associated with the norm.

Previously, sliding-window algorithms were known only for ℓp norms [BO07, WZ21]. We
also exemplify a norm that does not admit the more restricted smooth-histogram technique of
Braverman and Ostrovsky. We prove that the top-k norm for k = n

2 is not d-almost-smooth
for any d < 2, although it is subadditive and thus 2-almost-smooth. Moreover, this norm has
L = O(polylog (n)), where L is the associated quantity from Theorem 1.9, and therefore our
algorithm has space complexity Oε(polylog (nw)) (see Section 3.1). Note that we also use this
algorithm to obtain an O(1)-approximation sliding-window algorithm for Max k-Cover (see
Section 3.4).

Matrix Streams For matrix streams, where the stream consists of n row vectors (in Rm)
that form an n × m matrix, we show that the Schatten p-norm, for p ≥ 2, is

√
2-almost-

smooth. For p = 4 we use an insertion-only algorithm of Braverman et al. [BKKS20] to
obtain a sliding-window algorithm.

Theorem 1.10 (Informal version of Corollary 3.10). There exists a sliding-window algorithm

that
(√

2 + ε
)
-approximates the Schatten 4-norm of a matrix using Oε(polylog (nw)) bits of

space.
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Graph Streams In the graph-streams domain, where the stream consists of edges that
form an underlying graph, we consider several problems, starting in Section 3 with two ex-
amples of graph problems suitable for our framework. The first one is maximum submodular
matching, which is a generalization of the maximum-weight matching problem to submodu-
lar objective functions. The second one is Max k-Cover, which is dual to Vertex-Cover and
whose goal is to cover as many edges as possible using only k vertices. We prove that both
problems are subadditive and hence 2-almost-smooth. For both problems we present an O(1)-
approximation sliding-window algorithms, with space complexity Õ(n), see Corollaries 3.14
and 3.18, respectively.

Recent research on graph streams [ETHL+18, MV16, BS15, CCE+16] addressed maximum-
matching size in a restricted family of graphs. Specifically, McGregor and Vorotnikova [MV18],
improving over Cormode et al. [CJMM17], designed a polylog (n)-space algorithm for esti-
mating the maximum-matching size in arboricity-α graphs within factor O(α). Recall that
the arboricity of a graph G = (V, E) is the minimal α ≥ 1 such that the set of edges E can
be partitioned into at most α forests. For example, it is well known that every planar graph
has arboricity α ≤ 3, see e.g. [GL98].

Using our generalization of the smooth-histogram technique we provide several algorithms
for estimating maximum matching and minimum vertex-cover in bounded-arboricity graphs.
In particular, we show the following theorem for maximum matching in Section 4. We com-
pare it in Table 1 with the known insertion-only algorithms [CJMM17, MV18]. Note that a
straightforward application of Theorem 1.7 leads to a weaker result, where the dependency
on the arboricity α is quadratic.

Theorem 1.11. For every ε, δ ∈
(
0, 1

2

)
, there is a sliding-window ((2 + ε) (α + 2) , δ)-estimation

algorithm for maximum-matching in graphs of arboricity α, with space complexity O
(
ε−3 log4 n log 1

εδ

)

bits and update time O
(
ε−3 log3 n log 1

εδ

)
.

Stream Approx. Space Reference

insertion-only 22.5α + 6 O
(
α log2 n

)
[CJMM17]

insertion-only (α + 2) + ε Oε

(
log2 n

)
[MV18]

sliding-window (2 + ε) (α + 2) Oε

(
log4 n

)
Theorem 1.11

Table 1: Randomized estimation algorithms for maximum-matching in graphs of arboricity α.

We design several algorithms also for (estimation and approximation of) vertex-cover
based on its relation to maximum matching as summarized in Table 2. First, for general
graphs, our sliding-window algorithm (Theorem 5.6) improves the previous approximation
ratio, essentially from 8 to 4, using the same space complexity. The improvement comes from
utilizing the almost-smoothness of the greedy matching (instead of the optimal vertex-cover).
Next, for VDP (vertex-disjoint paths3) and forest graphs (arboricity α = 1) we compare our
two sliding-window estimation algorithms to one another, as well as to the known turnstile

3A graph G = (V, E) is said to be VDP if G is a union of vertex-disjoint paths. This family was used to
prove lower bounds in [ETHL+18].

6



estimation algorithm [vH16]. Notice that Theorem 5.3 applies also to VDP graphs (as a
special case of forests) and thus offers a much better space complexity than Theorem 5.2,

Oε

(
log4 n

)
compared to Õε(

√
n), although the approximation ratio is slightly worse.

Problem Graphs Stream Approx. Space Reference

insertion-only 2 O(n log n) Folklore
vertex-cover

(approximation)
general sliding-window 8 + ε Oε

(
n log2 n

)
[vH16]

sliding-window 4 + ε Oε

(
n log2 n

)
Theorem 5.6

vertex-cover size
(estimation)

VDP insertion-only 1.5− ε Ω (
√

n) [ETHL+18]

VDP turnstile 1.25 + ε Oε

(√
n log2 n

)
[vH16]

VDP sliding-window 3.125 + ε Oε

(√
n log4 n

)
Theorem 5.2

forests insertion-only 2 + ε Oε

(
log2 n

)
[MV18]

forests sliding-window 4 + ε Oε

(
log4 n

)
Theorem 5.3

Table 2: Randomized streaming algorithms for vertex-cover in different settings. The results
for vertex-cover size in forests (including VDP graphs) apply also to maximum-matching size,
since the two quantities are equivalent by Kőnig’s Theorem, see Remarks 4.5 and 5.4.

2 Sliding-Window Algorithm for Almost-Smooth Functions

In this section we generalize the smooth-histogram framework of Braverman and Ostrovsky
[BO07] to functions that are almost smooth, as per our new definition, and show that the
family of subadditive functions are almost smooth. We show that several graph problems
satisfy the subadditivity property, e.g., the maximum-matching size and the minimum vertex-
cover size. In the next two sections we use these results to design sliding-window algorithms
for those graph problems.

2.1 Almost-Smooth Functions

Recall that for disjoint segments A, B of a stream, we denote by AB their concatenation.
We use the parameter n to denote some measure of a stream which will be clear from the
context. For example, for graph streams n is the number of vertices in the underlying graph.
We extend the definition of smoothness due to [BO07] as follows.

Definition 2.1. (Almost-Smooth Function) A real-valued function f defined on streams
is (c, d)-almost-smooth, for c, d ≥ 1, if it has the following properties:

1. Non-negative: for every stream A it holds that f (A) ≥ 0.

2. c-left-monotone: for every disjoint segments A, B of a stream it holds that f (B) ≤
c · f (AB).

3. Bounded: for every stream A it holds that f (A) ≤ poly (n).
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4. Almost smooth: for every disjoint segments A, B, C of the stream,

f (B)

f (AB)
≤ d · f (BC)

f (ABC)

whenever f (AB) 6= 0 and f (ABC) 6= 0.

Remark 2.2. Almost-smoothness means that appending any segment C at the end of the
stream preserves the approximation of f (B) by f (AB), up to a multiplicative factor d.
Observe that property 4 is equivalent to the condition that for every ε > 0 and every disjoint
segments of the stream A, B and C,

ε · f (AB) ≤ f (B) =⇒ ε · f (ABC) ≤ d · f (BC) .

Obviously, ε > c is vacuous by property 2, hence it suffices to consider 0 < ε ≤ c. Throughout,
it is more convenient to use this equivalent condition.

For generality we defined (c, d)-almost-smooth for any c ≥ 1, but in our applications c = 1,
in which case we simply omit c and refer to such functions as d-almost-smooth.

Remark 2.3. In the original definition of smoothness from [BO07], c = d = 1, and property 4
is stated as follows (after some simplification). A function f is (ε, β (ε))-smooth if for every
ε ∈ (0, 1) there exists β = β (ε) such that β ≤ ε and

(1− β (ε)) · f (AB) ≤ f (B) =⇒ (1− ε) · f (ABC) ≤ f (BC) .

Observe that this definition implies d-almost-smoothness if d := sup
0<ε<1

1−β(ε)
1−ε is bounded. In

most applications, it suffices to consider 0 < ε ≤ 1
2 , and then 1−β(ε)

1−ε ≤ 2 is bounded.

We say that a function f is monotone (non-decreasing) if it is left-monotone and right-
monotone, i.e., for every disjoint segments A, B of a stream f (AB) ≥ f (B) and f (AB) ≥
f (A).

Lemma 2.4. Every subadditive, non-negative, bounded and monotone function f is 2-almost-
smooth.

Proof. The first three requirements are clear, as f is assumed to be non-negative, bounded
and monotone. Hence, we are only left to show the almost-smoothness property. Let ε ∈ (0, 1]
and let A, B and C be disjoint segments of the stream satisfying εf (AB) ≤ f (B). Observe
that f (AB) + f (BC) ≥ f (AB) + f (C) ≥ f (ABC), because f is subadditive and monotone,
and therefore,

2f (BC) ≥f (B) + f (BC) ≥ ε · f (AB) + f (BC)

≥ε · (f (AB) + f (BC)) ≥ ε · f (ABC) .

Recall that m (S) and V C (S) are the maximum-matching size and the vertex-cover size,
respectively, in the graph defined by the stream S. Although they are both not smooth
functions (as shown in Corollary 2.5), they are almost smooth (as proved by Crouch et al.
[CMS13] for m (·), and reproduced here for completeness).
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Corollary 2.5. The maximum-matching size m (·) and the minimum vertex-cover size V C (·)
are both 2-almost-smooth. Moreover, they are both not d-almost-smooth for any d < 2.

Proof. Obviously both m (·) and V C (·) are non-negative, bounded and monotone, since on
a longer segment of the stream both the maximum-matching and the minimum vertex-cover
cannot be smaller. Hence, we are only left to show that they are both subadditive.

Let M be a maximum-matching of the graph defined by the stream AB, and denote by MA

and MB the edges from M that appear in A and B, respectively. Note that MA is a matching
in the graph defined by the stream A, and similarly for MB . Thus, clearly |MA| ≤ m (A) and
|MB | ≤ m (B), and therefore

m (AB) = |M | = |MA|+ |MB | ≤ m (A) + m (B) ,

and so m (·) is subadditive.
Observe that for a disjoint segments of the stream A and B, the union of a minimum vertex-

cover on A and a minimum vertex-cover on B is clearly a feasible (not necessarily minimum)
vertex-cover on AB, and since it is a minimization problem we obtain V C (A) + V C (B) ≥
V C (AB). Hence V C (·) is also subadditive.

For the tightness argument we use the following tight example. Let G = (V, E) be a graph
composed of n vertex-disjoint paths of length 3, i.e., n paths of the form ea = {x, y} , eb =
{y, z} , ec = {z, w}. The segment A of the stream contains all the ea edges, B contains all the
eb edges, and C contains all the ec edges. Obviously m (AB) = m (B) = m (BC) = n while
m (ABC) = 2n, and similarly for V C (·). In particular, both maximum-matching size and
minimum vertex-cover are not smooth as per the original definition of [BO07].

Remark 2.6. It is easy to see that Corollary 2.5 holds even for hypergraphs by the same
arguments.

We analyze the smooth-histogram algorithm of [BO07] for functions that are almost-
smooth with constant approximation ratio.

Theorem 2.7. [Formal version of Theorem 1.7] Let f be a (c, d)-almost-smooth function

defined on streams. Assume that for every ε, δ ∈
(
0, 1

2

)
, there exists an algorithm Λ for

insertion-only streams that ((1 + ε) C, δ)-approximates f using space s (ε, δ) and update time

t (ε, δ). Then for every ε, δ ∈
(
0, 1

2

)
there exists a sliding-window algorithm Λsw that

(
dc2C2 (1 + O(ε)) , δ

)
-approximates f using space O

(
ε−1 log w ·

(
s
(
ε, εδ

2w log w

)
+ log w

))
and

update time O
(
ε−1 log w · t

(
ε, εδ

2w log w

))
.

We prove Theorem 2.7 in appendix B. At a high level, we adapt the approach and notations
of Crouch et al. [CMS13], which in turns is based on the smooth-histogram method of
Braverman and Ostrovsky [BO07].

For certain approximation algorithms we can reduce the dependence on the approximation
factor C from quadratic

(
C2
)

to linear (C). Suppose that the approximation algorithm Λ of
the function f has the following form: It (1 + ε, δ)-approximates a function g, and this g is a
C-approximation of f . Now, if g itself is (c, d)-almost-smooth then we can save a factor of C
by arguing directly about approximating g.
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Theorem 2.8. Let f be some function, let g be a (c, d)-almost-smooth function, and assume

that g is a C-approximation of f . Assume that for every ε, δ ∈
(
0, 1

2

)
, there exists an algorithm

Λ for insertion-only streams that (1 + ε, δ)-approximates g using space s (ε, δ) and update

time t (ε, δ). Then for every ε, δ ∈
(
0, 1

2

)
there exists a sliding-window algorithm Λsw that

(
dc2C (1 + O(ε)) , δ

)
-approximates f using space O

(
ε−1 log w ·

(
s
(
ε, εδ

2w log w

)
+ log w

))
and

update time O
(
ε−1 log w · t

(
ε, εδ

2w log w

))
.

Proof. By applying Theorem 2.7 to the function g and the algorithm Λ, that approximates it,
we obtain a sliding-window algorithm Λsw that computes a

(
dc2 (1 + O(ε)) , δ

)
-approximation

of g, uses space O
(
ε−1 log w ·

(
s
(
ε, εδ

2w log w

)
+ log w

))
and update time O

(
ε−1 log w · t

(
ε, εδ

2w log w

))
.

Since g is a C-approximation of f , this algorithm Λsw is in fact a
(
dc2C (1 + O(ε)) , δ

)
-

approximation of f , using the same space and update time.

3 Example Applications of Almost-Smoothness

We present a variety of examples where our framework yields new approximation algorithms
with relatively little effort. More specifically, we provide examples of functions f (over a
stream) that are O(1)-almost-smooth, and then employ our framework to convert known
algorithms for insertion-only streams into new algorithms for sliding-window streams, with a
slightly larger approximation ratio. For all these problems, the smooth-histogram technique
of Braverman and Ostrovsky [BO07] is not applicable, because these functions are not known
to be smooth. In fact, many of them are provably not smooth, which justifies the necessity
of our generalized framework.

Our first example (Section 3.1) is for the common model of a frequency vector (additive
updates to a vector), where the function f to be computed is an arbitrary symmetric norm of
that vector. We show that such a norm is subadditive and thus 2-almost-smooth, and then
use a known algorithm [BBC+17] to obtain a sliding-window algorithm. Our second example
(Section 3.2) is for streaming matrices where each item in the stream is the (next) row of the
matrix; this is a natural model for reading a matrix in row order. We show that the Schatten
p-norm of the matrix is

√
2-almost-smooth, for all p ≥ 2, and we use a known algorithm for

p = 4 [BKKS20] to derive a new sliding-window algorithm.
We then consider some discrete problems (Sections 3.3 and 3.4). One of them is maximum

submodular matching in a graph defined by a stream of edges on fixed vertex set [n]. Using
that every submodular function is subadditive, we obtain 2-almost-smoothness and use an
algorithm of [CK14] to conclude a sliding-window algorithm. Another discrete problem is
max k-cover in a graph, for which we show both approximation and estimation sliding-window
algorithms. We use our result for symmetric norms to show a 4-estimation sliding-window
algorithm for max k-cover using Õε

(n
k

)
bits of space. Lastly, we design for every d ∈ (1, 2] an

artificial function, based on the maximum-matching size, that is d-almost smooth, and show
it is tight.

3.1 Symmetric Norms

Consider the frequency-vector streaming model, where the stream is composed of additive
updates to an underlying n-dimensional vector x ∈ Rn. We assume that all updates are
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positive and all entries are polynomially bounded, i.e., |xi| ≤ poly (n) for all i ∈ [n]. The
assumption of positive updates is necessary because otherwise even 2-approximation of the
number of distinct items in a stream requires Ω (w) bits of space, see Datar et al. [DGIM02].

We show that every symmetric norm ℓ : Rn → R (symmetric means invariant under sign-
flips and coordinate-permutations, see [Bha97]) can be (2 + ε)-approximated in the sliding-

window model with O
(
mmc (ℓ)2 poly

(
log nw

ε

))
bits of space, where mmc (·) is the norm’s

maximum modulus of concentration (see [BBC+17]). It is known that mmc (ℓ) depends only
on the norm ℓ itself and that 1 ≤ mmc (ℓ) ≤ √n. For a concrete example of a norm that is
2-almost-smooth and this parameter d = 2 is tight, we consider the top-k norm (see Definition
3.3) for k = Θ (n), and deduce for it a sliding-window (2 + ε)-approximation algorithm with

poly
(

log n
ε

)
bits of space.

Lemma 3.1. Every monotone norm is subadditive, and hence 2-almost-smooth.

Proof. Subadditivity follows immediately from the triangle inequality, and obviously every
norm is non-negative and bounded. We assume monotonicity, and therefore Lemma 2.4
implies that the norm is 2-almost-smooth.

Błasiok et al. [BBC+17] showed a (1 + ε)-approximation randomized streaming algorithm
for an arbitrary symmetric norm. We use their algorithm to achieve (2 + ε)-approximation
sliding-window algorithm with almost the same space complexity.

Theorem 3.2 (Formal version of Theorem 1.9). Let ℓ be a symmetric norm on Rn. There
exists a (2 + ε)-approximation sliding-window randomized algorithm computing the norm ℓ

using O
(
mmc (ℓ)2 poly

(
log nw

ε

))
bits of space with constant success probability.

Proof. Algorithm 1 of [BBC+17] is a (1 + ε)-approximation of a symmetric norm ℓ of a vec-

tor defined by a stream using O
(
mmc (ℓ)2 poly

(
log n

ε

))
bits of space. This algorithm has

constant success probability, which can be amplified to 1 − ε
10w log w using the median of

O
(
log w

ε

)
independent repetitions. Every symmetric norm is monotone (Proposition IV.1.1 in

[Bha97]), therefore ℓ is 2-almost-smooth (Lemma 3.1). This implies, by Theorem 2.7, a (2 + ε)-

approximation sliding-window algorithm using O
(

mmc (ℓ)2 poly
(

log nw
ε

))
bits of space.

We now show a norm for which our almost-smooth framework is applicable, but the
smooth-histogram technique of Braverman and Ostrovsky [BO07] does not.

Definition 3.3. For 1 ≤ k ≤ n the top-k norm of a vector x ∈ Rn, denoted by ‖x‖(k), is the

ℓ1 norm of the k entries of x with the largest absolute value, i.e. ‖x‖(k) =
k∑

i=1

∣∣∣x↓
i

∣∣∣, where x↓

is the vector x reordered in decreasing magnitude.

Remark 3.4. Since the top-k norm is monotone, Lemma 3.1 shows that it is 2-almost-smooth.
Furthermore, for k ≤ n

2 , the almost-smoothness parameter d = 2 of the top-k norm is tight.
Let A be the stream (e1, · · · , ek), where each ei ∈ Rn is the i-th standard basis vector,

thus its total additive update is xA =
k∑

i=1
ei. Similarly, B is the stream (ek+1, · · · , en) with

corresponding vector xB =
n∑

i=k+1
ei, and C has the same updates as stream A, thus xC = xA.

11



Observe that
∥∥∥xA + xB

∥∥∥
(k)

=
∥∥∥xB

∥∥∥
(k)

= k but
∥∥∥xA + xB + xC

∥∥∥
(k)

= 2k while
∥∥∥xB + xC

∥∥∥
(k)

=

k, hence d = 2 is indeed tight in the almost-smoothness of the top-k norm.

The maximum modulus of concentration of the top-k norm is mmc
(
‖·‖(k)

)
= Õ

(√
n
k

)
,

see Section 6.1 of [BBC+17]. Therefore, as a corollary of Theorem 3.2 for the top-k norm, we
obtain the following sliding-window algorithm.

Corollary 3.5. There exists a (2 + ε)-approximation sliding-window randomized algorithm

for the top-k norm with O
(

n
k poly

(
log n

ε

))
bits of space. Specifically, for k = Θ (n), the space

complexity is poly
(

log n
ε

)
.

Remark 3.6. We are not aware of a lower bound on the approximation ratio for sliding-window
algorithms, and the approximation ratio in Corollary 3.5 can possibly be improved, say to
1 + ε, using the same space complexity.

3.2 Matrix Streams

A matrix stream is a sequence of updates to an underlying matrix X ∈ Rn×m, for n ≥ m,
initialized to the all-zeros matrix. We consider only row-order streams, where each update
adds a new row to the matrix (from row 1 to row n), hence the i-th update in the stream
is a row vector Xi ∈ Rm representing the i-th row of X. We assume that all entries are
polynomially bounded, i.e., |Xi,j| ≤ poly (n) for all i, j.

We are interested in the Schatten p-norm of a matrix X, i.e., the ℓp-norm of the spectrum
of X.

Definition 3.7. The Schatten p-norm, for p ≥ 1, of a matrix X ∈ Rn×m with singular values
σ1 ≥ · · · ≥ σm ≥ 0, is defined as

‖X‖Sp
=

(
m∑

i=1

σp
i

)1/p

.

Remark 3.8. Note that ‖X‖2
S2p

=
∥∥∥XT X

∥∥∥
Sp

since XT X is a PSD matrix with eigenvalues
{
σ2

i | i ∈ [m]
}
.

Corollary 3.9. For p ≥ 2, the Schatten p-norm is
√

2-almost-smooth.

Proof. Let X be a matrix defined by a stream of n rows X1, . . . , Xn. The first n′ rows

define a matrix Y and the other n − n
′

rows define Z. Observe that XT X =
n∑

i=1
XT

i Xi =

n
′∑

i=1
XT

i Xi +
n−n

′∑
i=1

XT
i Xi = Y T Y + ZT Z, and using the triangle inequality for the Schatten

p/2-norm (recall p ≥ 2), we obtain

‖X‖2
Sp

=
∥∥∥Y T Y + ZT Z

∥∥∥
Sp/2

≤
∥∥∥Y T Y

∥∥∥
Sp/2

+
∥∥∥ZT Z

∥∥∥
Sp/2

= ‖Y ‖2Sp
+ ‖Z‖2Sp

,

hence the squared Schatten p-norm is subadditive. It is clearly also non-negative, thus, in
order to prove almost-smoothness we only need to show it is bounded and monotone. Every
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rank-1 matrix vT v, for a row vector v ∈ Rm, has (at most) one eigenvalue λ = ‖v‖2
2 different

from 0, hence
∥∥∥vT v

∥∥∥
Sp/2

= ‖v‖2
2, and therefore

‖X‖2Sp
=
∥∥∥XT X

∥∥∥
Sp/2

≤
n∑

i=1

∥∥∥XT
i Xi

∥∥∥
Sp/2

=
n∑

i=1

‖Xi‖22 ≤ poly (n) .

Thus, the squared Schatten p-norm is bounded. To prove it is monotone, we use Weyl’s

inequality, that for every real matrices Y, Z it holds that σi

(
Y T Y + ZT Z

)
≥ σi

(
Y T Y

)
for

all i and thus ‖Y + Z‖2Sp
≥ ‖Y ‖2Sp

.
It then follows from Lemma 2.4 that the squared Schatten p-norm is 2-almost-smooth. It

is then straightforward that the Schatten p-norm itself is
√

2-almost-smooth.

By plugging a known streaming algorithm for the Schatten 4-norm into our almost-smooth
framework, we obtain a sliding-window algorithm with constant approximation ratio and
constant space.

Corollary 3.10 (Formal version of Theorem 1.10). There exists a sliding-window algorithm

that
(√

2 + ε
)
-approximates the Schatten 4-norm using O

(
ε−3 log n log w

ε log w
)

bits of space

with constant success probability.

Proof. Algorithm 5 of [BKKS20] is a (1 + ε)-approximation of the Schatten 4-norm in the row-
order model, using O

(
ε−2 log n

)
bits of space. This algorithm has constant success probability,

which can be amplified to 1− ε
10w log w using the median of O

(
log w

ε

)
independent repetitions.

Now Theorem 2.7 and the above
√

2-almost-smoothness of the Schatten 4-norm imply a(√
2 + ε

)
-approximation sliding-window algorithm using O

(
ε−3 log n log w

ε log w
)

bits of space.

3.3 Submodular Functions

The maximum submodular matching (MSM) problem is a generalization of the maximum
weight matching (MWM) problem to submodular objective functions.

Definition 3.11. A submodular function on a ground set X is a set function f : 2X → R

that satisfies f (A ∪B) + f (A ∩B) ≤ f (A) + f (B) for all A, B ⊆ X .

Definition 3.12. For a graph G = (V, E) and a monotone non-negative submodular function
f : 2E → R+, the MSM problem asks to find a matching M ⊆ E such that f (M) is maximized.
If M∗ ⊆ E is a matching maximizing f (·) we denote f̂ (G) = f (M∗), and say that M∗ is
an f -maximum matching. For a stream S of edges whose underlying graph is G, we define
f̂ (S) = f̂ (G).

Remark 3.13. If f : 2E → R+ is submodular then the derived function f̂ of streams of edges is
subadditive (see Definition 1.8). To see this, let AB be a stream with f -maximum matching
M∗. Denote by M∗

A and M∗
B the edges from the matching M∗ that appear in the sub-streams

A and B, respectively. Since A clearly contains M∗
A, the f -maximum matching in A has value

f̂ (A) ≥ f (M∗
A), and similarly for B. Therefore,

f̂ (AB) = f (M∗) ≤ f (M∗
A) + f (M∗

B)− f (∅) ≤ f̂ (A) + f̂ (B) .
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Chakrabarti and Kale [CK14] showed a constant-factor approximation algorithm for the
MSM problem in the semi-streaming model. They modeled access to f using a value oracle,

which upon receiving a query subset E
′ ⊆ E outputs f

(
E

′
)
. We use the same model of

a value oracle. By apply our almost-smooth framework to their algorithm, we achieve a
constant-factor approximation algorithm for the MSM problem in the sliding-window model.

Corollary 3.14. There exists a deterministic O(1)-approximation sliding-window algorithm
for the MSM problem with O(n log n log w) bits of space.

Proof. Theorem 1 of [CK14] provides a deterministic 7.75-approximation insertion-only al-
gorithm Λ for the MSM problem with O(n log n) bits of space. Since the MSM problem is
subadditive (see Remark 3.13), and thus 2-almost-smooth, we derive from Theorem 2.7 a
sliding-window algorithm Λsw that

(
2 · 7.752 (1 + ε)

)
-approximates the MSM problem using

O
(
ε−1n log n log w

)
bits of space.

Remark 3.15. One interesting submodular function follows from the Facility Location problem.
Let m ∈ N and G = (V, E) be a graph, and for every edge e ∈ E let Ve ∈ Rm

+ be a vector of

values associated with the edge e. The function f : 2E → R+ defined by f
(
E

′
)

=
m∑

i=1
max
e∈E

′
Ve,i

for E
′ ⊆ E is submodular, monotone, and non-negative (See [Fri74, KG14]).

3.4 Max k-Cover

The Max k-Cover problem is dual to Vertex-Cover, and its goal is to cover as many edges as
possible (in a graph G) using only k vertices. Recently, McGregor and Vu [MV19] studied
the Max k-Cover problem in the dynamic graph stream model, where the stream consists
of edge insertions and deletions. Specifically, they showed a (1 + ε)-approximation streaming
algorithm for arbitrary k with space bound Õ

(
ε−2n

)
and success probability 1− 1

poly(n) , where

n = |V |, see Theorem 20 of [MV19]. Note that we can assume the entire stream is of length at
most 2w (see claim B.1) and since we are only concerned with insertion-only graph streams we
assume w = O

(
n2
)
. The aforementioned algorithm already has high probability of success and

thus requires no amplification. Using this and our almost-smoothness technique, we achieve
(2 + ε)-approximation algorithm in the sliding-window model, with space bound Õ

(
ε−3n

)
. In

addition, we present a (2 + ε)-estimation algorithm in the same dynamic graph stream model,
and consequently a (4 + ε)-estimation algorithm in the sliding-window model, both with space
bound Õε

(n
k

)
.

Definition 3.16. For a graph G = (V, E), a subset of vertices U ⊆ V is said to cover the set

of incident edges Ẽ (U) = {e ∈ E : e ∩ U 6= ∅}. Denote by ck (G) = max
{∣∣∣Ẽ (U)

∣∣∣ : |U | = k
}

the largest number of edges that can be covered by k vertices in G. For a stream S of edges,
whose underlying graph is G, we define ck (S) = ck (G).

Corollary 3.17. For every k, the Max k-Cover function ck (·) is subadditive, and hence
2-almost-smooth.

Proof. Let AB be a stream of edges that defines a graph G = (V, E) and suppose ck (G) =∣∣∣Ẽ (U)
∣∣∣ for some U ⊆ V with |U | = k. Let EA = Ẽ (U)∩A and EB = Ẽ (U)∩B and observe
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that
∣∣∣Ẽ (U)

∣∣∣ = |EA|+ |EB |. Therefore

ck (AB) =
∣∣∣Ẽ (U)

∣∣∣ = |EA|+ |EB| ≤ ck (A) + ck (B) ,

and so ck (·) is subadditive. Obviously ck (·) is also non-negative, bounded and monotone,
hence Lemma 2.4 applies.

We start with a sliding-window approximation algorithm for Max k-Cover. We obtain a
sliding-window algorithm by plugging a known algorithm into Theorem 2.7. Specifically, we
use the aforementioned algorithm of McGregor and Vu [MV19, Theorem 20] and the fact that
Max k-Cover is 2-almost-smooth to obtain the following corollary.

Corollary 3.18. For every k there exists a sliding-window (2 + ε)-approximation algorithm
for Max k-Cover using Õ

(
ε−3n

)
bits of space.

We now design a sliding-window estimation streaming algorithms for Max k-Cover. Ob-
serve that if σk (G) denotes the sum of degrees of the k vertices of largest degree in G, then a
greedy algorithm that reports σk (G), achieves a 2-estimation of Max k-Cover. We can imple-
ment it in a graph stream using a known algorithm for the top-k norm (similarly to Corollary
3.5), which will (2 + ε)-estimate σk (G). Hence, we deduce a (2 + ε)-estimation algorithm
for Max k-Cover in the dynamic graph stream model with space bound Õε

(n
k

)
. Moreover,

we can similarly obtain a (4 + ε)-estimation algorithm in the sliding-window model using a
sliding-window algorithm for the top-k norm. The details follow.

Theorem 3.19. For every k there exists a sliding-window (4 + ε)-estimation algorithm for
Max k-Cover using Õε

(
n
k

)
bits of space.

Proof. Let x ∈ Rn represent the degrees of the n vertices, and notice that ‖x‖(k) = σk (G)
using the notation from Section 3.1. By incrementing coordinates xi, xj whenever an edge (i, j)
arrives, we create a virtual stream (twice as long) simulating updates to x in the frequency-
vector model. Using Corollary 3.5 (with twice as large window size) we can (2 + ε)-estimate
σk (G) in the sliding-window model using Õε

(
n
k

)
bits of space. Since 1

2ck (G) ≤ 1
2σk (G) ≤

ck (G), reporting the (2 + ε)-estimate of σk (G) gives a sliding-window (4 + ε)-estimate of Max
k-Cover and uses Õε

(
n
k

)
bits of space.

3.5 Example of d-Almost-Smooth Functions for d ∈ (1, 2]

We design a special family of functions whose almost-smoothness parameter d can be any
number between 1 and 2. For every d ∈ (1, 2] define the following function for an n-vertex
graph G with maximum matching size m (G)

fd (G) =
1

4

(
2− d

d− 1

)
n + m (G) .

For a stream S of edges, with an underlying graph G, we define fd (S) = fd (G).

Lemma 3.20. For every d ∈ (1, 2] the function fd defined above is d-almost-smooth and not
d′-almost-smooth for any d′ < d.
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Proof. Let d ∈ (1, 2], and observe that the function fd (·) is non-negative, bounded and
monotone, since m (·) satisfies all those requirements. Hence, we are only left to show the
almost-smoothness property. We shall use the equivalent definition explained in Remark 2.2.

Define αd = 1
4

(
2−d
d−1

)
, let ε ∈ (0, 1] and let A, B and C be disjoint segments of the stream

satisfying εfd (AB) ≤ fd (B), i.e., εαdn + εm (AB) ≤ αdn + m (B). We divide the proof into
two cases. If m (BC) ≤ n

4 = d−1
2−dαdn then using the same logic as in Lemma 2.4 we obtain

2m (BC) ≥ m (BC) + m (B)

≥ m (BC) + εαdn + εm (AB)− αdn since εfd (AB) ≤ fd (B)

≥ ε (m (AB) + m (BC)) + εαdn− αdn since ε ≤ 1

≥ εm (ABC) + εαdn− αdn. since m (·) is subadditive

Hence, 2m (BC) + αdn ≥ εm (ABC) + εαdn = εfd (ABC), and therefore

εfd (ABC) ≤ (d + 2− d) m (BC) + αdn ≤ dm (BC) + (d− 1) αdn + αdn = d · fd (BC) .

In the other case, when m (BC) > n
4 , since the graph has n vertices we have m (ABC) ≤ n

2 ,
and therefore

εfd (ABC) ≤ fd (ABC) = αdn + m (ABC) ≤ αdn +
n

2
.

From the assumption m (BC) > n
4 we obtain

d ·fd (BC) = d ·αdn+d ·m (BC) ≥ d ·αdn+d · n
4

= αdn+
n

2
+(d− 1) ·αdn+

dn

4
− n

2
= αdn+

n

2
,

hence εfd (ABC) ≤ d · fd (BC), as required.
For the tightness argument we use the same example as in Corollary 2.5 of disjoint union

of n paths of length 3. Recall that |V | = 4n and thus m (AB) = m (B) = m (BC) = n but
m (ABC) = 2n, therefore we deduce that

fd (ABC)

fd (BC)
=

1
4

(
2−d
d−1

)
4n + 2n

1
4

(
2−d
d−1

)
4n + n

=
2−d
d−1 + 2
2−d
d−1 + 1

=
2− d + 2d− 2

2− d + d− 1
= d,

showing that indeed fd is not d′-almost-smooth for any d′ < d.

4 Applications to Maximum-Matching

We show here a concrete example of the usefulness of the almost-smooth histogram frame-
work for the graph streaming model. Specifically, for graphs of bounded arboricity α, we
use a known insertion-only O(α)-estimation algorithm for maximum-matching, and deduce a
sliding-window algorithm with approximation factor O

(
α2
)

and space polylog (n). We then
improve the approximation ratio to O(α) by observing that the number of α-good edges (the
quantity used to approximate the maximum-matching size) is itself a subadditive function,
and thus we can argue directly about it. See Table 1.

Recall that in the usual graph streaming model, the input is a stream of edge insertions to
an underlying graph on the set of vertices V = [n], where n is known in advance. We assume

16



that the underlying graph does not contain parallel edges, i.e., the stream of edges does not
contain the same edge twice. Hence, the length of the entire stream is bounded by n2.

In the sliding-window model the graph is defined using only the last w edge insertions from
the stream, referred to as the active window W . Note that w is known (to the algorithm) in
advance, and that w ≤ n2, as the length of the entire stream is bounded by n2.

McGregor and Vorotnikova [MV18], based on the result of Cormode et al. [CJMM17],
presented an algorithm that approximates the size of the maximum-matching in a graph with

arboricity α within factor (1 + ε) (α + 2), with constant probability, using space O
(
ε−2 log2 n

)

and update time O
(
ε−2 log n

)
. To achieve low failure probability δ it is standard to compute

a median of log δ−1 parallel repetitions. Therefore, direct application of the Almost-Smooth-
Histogram method yields the following theorem (but see Theorem 4.4 for the improved ap-
proximation).

Theorem 4.1. For every ε, δ ∈
(
0, 1

2

)
, there is a sliding-window

(
(2 + ε) (α + 2)2 , δ

)
-estimation

algorithm for maximum-matching size in a graph with arboricity α, with space complexity

O
(
ε−3 log4 n log 1

εδ

)
and update time O

(
ε−3 log3 n log 1

εδ

)
.

Proof. For ε, δ ∈
(
0, 1

2

)
let ΛMV be the algorithm of McGregor and Vorotnikova [MV18],

amplified to have success probability 1 − δ, providing ((1 + ε) (α + 2) , δ)-approximation for
maximum-matching size in graphs with arboricity at most α. As shown in Corollary 2.5, m (·)
is 2-almost-smooth. Therefore, using Theorem 2.7 with c = 1, d = 2, C = α +2 and algorithm

ΛMV , we obtain a sliding window algorithm Λ which
(
(2 + ε) (α + 2)2 , δ

)
-approximate the

maximum-matching size in graphs with arboricity α.

The space complexity of ΛMV is sMV (ε, δ) = O
(
ε−2 log2 n log δ−1

)
and it the update time

is tMV (ε, δ) = O
(
ε−2 log n log δ−1

)
. Hence the space complexity of Λ is

O

(
ε−1 log w · sMV

(
ε,

εδ

2w log w

))
= O

(
ε−3 log4 n log 1

εδ

)
,

and similarly for the update time, where we used the fact that w ≤ n2.

For the purpose of approximating the maximum-matching size in graphs with arboricity
bounded by α Cormode et al. [CJMM17] introduced the notion of α-good edges. The al-
gorithm of [MV18] used in the above proof actually approximates the maximum number of
α-good edges in prefixes of the stream. Thus, using the same algorithm of [MV18], we can
directly approximate the maximum size of the set of α-good edges in the active window W .
For completeness we present here the definition of Cormode et al. [CJMM17] for α-good edges
in a stream, and the notion of E∗

α due to McGregor and Vorotnikova [MV18].

Definition 4.2. Let S = (e1, e2, . . . , ek) be a sequence of k edges on the set of vertices V = [n].
We say that an edge ei = {u, v} is α-good (with respect to the stream S) if di (u) ≤ α and
di (v) ≤ α, where di (x) is the number of edges incident on the vertex x that appear after
edge ei in the stream, i.e., di (x) = |{ej | j > i ∧ x ∈ ej}|. Denote by Eα (S) the set of α-good
edges in the stream S, and let E∗

α (S) = max
t∈[k]
|Eα (St)|, where St = (e1, e2, . . . , et) is the prefix

of S of length t.
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Although the size of the set of α-good edges in a stream is not smooth or even almost-
smooth, the function E∗

α (·) is almost-smooth, since it is subadditive.

Lemma 4.3. The function E∗
α (·) is 2-almost-smooth.

Proof. Obviously E∗
α (·) is non-negative and bounded. It is also monotone, since it is defined

by taking a maximum of prefixes and earlier edges do not interfere with later edges being
α-good. Hence, we are only left to show that it is indeed subadditive. Let A and B be
disjoint segments of the stream S = (e1, e2, . . . , ek). If E∗

α (AB) = E∗
α (A) then obviously

E∗
α (A) + E∗

α (B) ≥ E∗
α (AB), as E∗

α is non-negative. Otherwise, let 1 ≤ t ≤ k be such that
et ∈ B and E∗

α (AB) = |Eα ((AB)t)|, then

Eα ((AB)t) = (Eα ((AB)t) ∩A) ∪ Eα (Bt) ,

where it is a disjoint union. Note that Eα ((AB)t) ∩ A ⊆ Eα (A), as every α-good edge from
A with respect to the stream (AB)t is also α-good edge in the stream A. Hence E∗

α (·) is
subadditive,

E∗
α (AB) ≤ |Eα (A)|+ |Eα (Bt)| ≤ E∗

α (A) + E∗
α (B) .

Therefore, using Lemma 2.4 we deduce that it is indeed 2-almost-smooth, as required.

McGregor and Vorotnikova [MV18] proved that m (S) ≤ |Eα (S)| ≤ (α + 2) · m (S) for
every stream S, and thus also m (S) ≤ E∗

α (S) ≤ (α + 2) · m (S). They also designed for
E∗

α (·) a (1 + ε, δ)-approximation algorithm with space complexity sMV (ε, δ), as explained in
Theorem 4.1. Since E∗

α (·) is 2-almost-smooth by Lemma 4.3 we can apply Theorem 2.8, with
g = E∗

α (·) and f = m (·), to obtain the following improvement over Theorem 4.1.

Theorem 4.4 (Restatement of Theorem 1.11). For every ε, δ ∈
(
0, 1

2

)
, there is a sliding-

window ((2 + ε) (α + 2) , δ)-estimation algorithm for the maximum-matching size in a graph

with arboricity α, with space bound O
(
ε−3 log4 n log 1

εδ

)
and update time O

(
ε−3 log3 n log 1

εδ

)
.

Remark 4.5. For arboricity α = 1 we can achieve better approximation ratio. Cormode et al.
[CJMM17] showed that in this case m (S) ≤ |E1 (S)| ≤ 2 ·m (S) and thus m (S) ≤ E∗

1 (S) ≤
2 · m (S). Therefore, by Theorem 2.8 there is a (4 + ε, δ)-approximation algorithm for the
maximum-matching size in forest graphs in the sliding-window model with the same space
and update time bounds.

5 Applications to Minimum Vertex-Cover

We show here few results for minimum vertex-cover (again in the sliding-window model),
based on its relationship to maximum and maximal matching, and the fact that it is also
almost smooth, see Corollary 2.5. We start by showing an algorithm with approximation
factor 3.125 + ε for the size of a minimum vertex-cover in VDP graphs using Õ(

√
n) space.

We continue and present another algorithm for a larger family of graphs, namely, forest
graphs, where the approximation factor grows to 4 + ε but the space complexity reduces to
polylog (n). We then proceed to show how to report a feasible vertex cover. We reproduce a
known algorithm for general graphs with approximation factor 8 + ε that computes a vertex
cover using Õ(n) space. Then we show how to improve the approximation factor to 4 + ε by
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a tighter analysis of that same algorithm, using that the size of a greedy maximal matching
is also almost smooth.

There are two different but related problems to consider. The first one is estimating the
size of the minimum vertex-cover (without providing a corresponding vertex cover of that
size), and the second one is computing a feasible vertex-cover of approximately minimum
size.

Recall that the minimum vertex-cover size is almost-smooth, since it is subadditive, as
shown in Corollary 2.5. Hence, we can use the Almost-Smooth-Histogram approach to es-
timate the size of the minimum vertex-cover in the sliding-window model, as explain in the
next section.

5.1 Vertex-Cover Estimation

First we consider estimating the size of the minimum vertex cover in the sliding-window model.
We provide the first sub-linear space algorithm in the sliding-window model for estimating
V C (·), for some families of graphs, as explained below.

A graph G = (V, E) is said to be VDP (stands for vertex-disjoint paths) if G is a union
of vertex disjoint paths. We show two sliding-window algorithms for different families of
graphs. One with Õ(

√
n) space obtaining almost 3.125-approximation for the family of VDP

graphs and the other one with polylog (n) space obtaining almost 4-approximation for graphs
of arboricity α = 1. Observe that the results are incomparable, since the first algorithm
has better approximation ratio but its space complexity is much bigger. Also, the second
algorithm is applicable for a larger family of graphs.

For the family of VDP graphs there is a randomized algorithm in the turnstile streaming
model to approximate V C (·), presented in [vH16]. Using the standard argument of computing
a median of log δ−1 parallel repetitions, to achieve low failure probability δ, we can state this
result as follows.

Theorem 5.1. [vH16, Theorem 1.1] For every ε ∈
(
0, 1

2

)
, δ ∈ (0, 1), there exists a turnstile(

5
4 + ε, δ

)
-approximation streaming algorithm for V C (·) in VDP graphs with space bound

O
(
ε−1√n log2 n log δ−1

)
.

Using Theorem 2.7, with c = 1, d = 2 and C = 5
4 (thus dc2C2 = 3.125), we obtain as a

corollary the following result for the sliding-window model.

Theorem 5.2. For every ε ∈
(
0, 1

2

)
, δ ∈ (0, 1), there exists a sliding-window (3.125 + ε, δ)-

approximation algorithm for V C (·) in VDP graphs with space bound O
(
ε−2√n log4 n log 1

εδ

)
.

Observe that a VDP graph has arboricity α = 1, because it is a forest, and in particular
it is a bipartite graph. Recall that according to Kőnig’s theorem, in a bipartite graph the size
of a minimum vertex cover equals the size of a maximum-matching. Therefore, we conclude
from Remark 4.5 that there is a (4 + ε, δ)-approximation algorithm for the minimum vertex
cover in VDP graphs using polylog space. Obviously it extends to all forests, i.e., graphs
with arboricity α = 1. Comparing to Theorem 5.2, the following theorem has slightly worse
approximation factor but its space complexity is much better, moreover, its applicable for a
wider family of graphs.
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Theorem 5.3. For every ε, δ ∈
(
0, 1

2

)
, there is a sliding-window (4 + ε, δ)-approximation

algorithm for the size of the minimum vertex-cover size in a forest graph, with space bound

O
(
ε−3 log4 n log 1

εδ

)
and update time O

(
ε−3 log3 n log 1

εδ

)
.

Remark 5.4. According to the previous paragraph and Remark 4.5, the algorithm of Cor-
mode et al. [CJMM17] (2 + ε)-approximates the minimum vertex-cover size in forest graphs

(arboricity α = 1) in the insertion-only model with space O
(

ε−2 log2 n
)

and update time

O
(
ε−2 log n

)
.

5.2 Vertex-Cover Approximation

Here we consider computing a feasible vertex cover of approximately minimum size. We
improve the approximation ratio of the algorithm of [vH16] from 8+ε to 4+ε, using a tighter
analysis of his algorithm.

A maximal matching is a matching that cannot be extended by adding an edge to it, i.e.,
a matching M in a graph G = (V, E) is maximal if every edge e ∈ E\M is adjacent to at
least one edge from the matching M . For a stream A of edge insertions, denote by M̂ (A)
the greedy matching on A, and denote by m̂ (A) its size. Notice that for every stream A the
greedy matching M̂ (A) is maximal. Recall that for a matching M we denote by V (M) the
set of all endpoints of edges from M , i.e., V (M) = {v ∈ V | ∃u ∈ V, {v, u} ∈M}.

We first show that the greedy-matching size of a stream of edge insertions is almost-
smooth. The proof is similar in nature to that of Corollary 2.5, but different because m̂ (·) is
not left-monotone, but rather 2-left-monotone. Furthermore, we can use the actual matching,
since it is well structured.

Lemma 5.5. The greedy-matching size is (2, 2)-almost-smooth.

Proof. The first and third requirements are clear, as m̂ (·) is non-negative and bounded. For
the 2-monotonicity, let A, B be disjoint segments of the stream. Note that for every e ∈ M̂ (B)

at least one of its endpoints is in V
(
M̂ (AB)

)
, hence m̂ (B) ≤

∣∣∣V
(
M̂ (AB)

)∣∣∣ = 2 · m̂ (AB).

To prove the almost-smoothness property, let A, B and C be disjoint segments of the
stream, and suppose εm̂ (AB) ≤ m̂ (B) for some ε ∈ (0, 1). We first claim that

m̂ (ABC) ≤ m̂ (AB) + m̂ (BC) .

The lefthand-side counts the edges in M̂ (ABC), which can be partitioned into edges from
AB and from C. The former set is, by construction, M̂ (ABC) ∩ AB = M̂ (AB), hence we
actually need to show that ∣∣∣M̂ (ABC) ∩C

∣∣∣ ≤
∣∣∣M̂ (BC)

∣∣∣ .

To prove this, we map each edge e ∈ M̂ (ABC)∩C to an edge f (e) ∈ M̂ (BC), defined as the
first (earliest) edge in the stream BC that intersects e (i.e., shares at least one endpoint with
e, possibly e itself). Observe that f (e) is well-defined because the greedy matching M̂ (BC)
considers at some point the edge e ∈ C itself; moreover, if e ∈ M̂ (BC) then f (e) = e, and
otherwise f (e) 6= e. Assume for contradiction that f (e1) = f (e2) for two distinct edges
e1 6= e2 ∈ M̂ (ABC)∩C, and without loss of generality, let e1 appear before e2 in the stream
C. Observe that f (e1) /∈ M̂ (ABC) because it intersects two distinct edges e1, e2 in that

20



same matching M̂ (ABC) (having two distinct edges handles the possibility that f (e1) is one
of e1, e2). This means that there is some e0 ∈ M̂ (ABC) that intersects f (e1) and appears
before it in the stream ABC. Notice that this e0 6= e1, e2 because e0 appears before f (e1) (in
ABC) which in turn appears no later than e1 and e2 (in BC). We thus have three distinct
edges e0, e1, e2 ∈ M̂ (ABC), all intersecting f (e1), which has only two endpoints, therefore at
least two of those three edges must intersect each other, in contradiction to M̂ (ABC) being
a matching. This implies that f is injective, and consequently the claimed inequality.

Let us now complete the proof of the lemma. By construction, m̂ (B) ≤ m̂ (BC), and we
conclude that

2m̂ (BC) ≥m̂ (B) + m̂ (BC) ≥ εm̂ (AB) + m̂ (BC)

≥ε (m̂ (AB) + m̂ (BC)) ≥ εm̂ (ABC) .

We proceed to show an approximation algorithm for minimum vertex-cover using our
almost-smoothness framework, as stated in the next theorem. Its proof basically transforms
an approximation algorithm for maximum-matching to one for minimum vertex-cover. The
proof starts with a general technique, and then refines the analysis by exploiting the specifics
of our setting.

Theorem 5.6. For every ε ∈
(
0, 1

2

)
, there is a sliding-window (4 + ε)-approximation algo-

rithm for the minimum vertex cover with space bound O
(
ε−1n log2 n

)
.

Remark 5.7. Below, we wish to use the algorithm presented in Theorem 2.7, however that
algorithm returns a number, while we need an algorithm that returns a feasible solution. This
disparity is easy to resolve for greedy-matching, by simply outputting the underlying vertices
of the greedy-matching associated with bucket B1, instead of outputting only its size.

Proof of Theorem 5.6. If M∗ ⊆ E is a maximal matching in the graph G = (V, E) then the
set of vertices V (M∗) is a vertex cover of the graph G, because every edge from E has at
least one of its endpoints in V (M∗) (otherwise the matching M∗ would not be maximal). For

every stream A the greedy matching M̂ (A) is a maximal matching and thus V
(
M̂ (A)

)
is

a vertex cover of the edges from A. Hence, we refer to the greedy-matching algorithm also
as the greedy vertex cover algorithm, with the only difference that it outputs the vertices

V
(
M̂ (A)

)
of the matching, instead of the edges M̂ (A) of the matching.

The greedy vertex cover algorithm achieves 2-approximation in the standard insertion-only
streaming model for the minimum vertex cover using O(n log n) space, because at least one
vertex from each matched edge must be in the minimum vertex cover. By using this greedy
algorithm and the 2-almost-smoothness of the minimum vertex cover size, we can deduce from
the variant of Theorem 2.7 discussed in Remark 5.7, an (8 + ε)-approximation algorithm for

reporting a minimum vertex cover in the sliding-window model with O
(

ε−1n log2 n
)

space,

matching the result of [vH16].
We can improve the approximation ratio by using the algorithm of Crouch et al. [CMS13],

which achieves (3 + ε)-approximation to maximum-matching, using the same space complex-
ity. Their algorithm maintains a greedy matching in various buckets, such that the difference
between adjacent buckets is not too large. Specifically, for any adjacent buckets Bi and Bi+1

it holds that 2m̂ (Bi+1) ≥ (1− ε) m̂ (Bi). By an easy modification to their algorithm, just
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outputting the greedy matching on the bucket B1 instead of the bucket B2, it holds that

V
(
M̂ (B1)

)
is a vertex cover (of B1 ⊇ W ) at most (6 + ε)-factor larger than the minimum

vertex cover on the active window W . Note that the algorithm of [CMS13] and the algorithm
of [vH16] are essentially the same, the only difference is that [vH16] stores the vertices instead
of the edges.

We can improve even further, to (4 + ε)-approximation, by leveraging the fact that the
greedy-matching size is (2, 2)-almost-smooth. Indeed, let us use the algorithm of Crouch

et al. [CMS13], but output V
(
M̂ (B1)

)
instead of B2. At the end of the stream we are

guaranteed that 2m̂ (B2) ≥ (1− ε) m̂ (B1), because the greedy matching size is (2, 2)-almost-
smooth. Since the minimum vertex cover is monotone and W ⊆ B1 V C (W ) ≤ V C (B1) ≤∣∣∣V
(
M̂ (B1)

)∣∣∣ = 2 · m̂ (B1). Note that V
(
M̂ (B1)

)
is indeed a vertex cover on the active

window W , since it is a vertex cover on B1. Additionally, V C (W ) ≥ V C (B2) ≥ m̂ (B2),
since V C (·) is monotone, B2 ⊆ W and the minimum vertex cover size is at least the size of
any matching. For ε < 1

2 it holds that 1
1−ε ≤ 1 + 2ε, and we obtain

∣∣∣V
(
M̂ (B1)

)∣∣∣ = 2 · m̂ (B1) ≤ 4 (1 + 2ε) · m̂ (B2) ≤ 4 (1 + 2ε) · V C (W ) .

We conclude that the output V
(
M̂ (B1)

)
is a vertex cover on the active window W and it is

at most a factor 4 (1 + 2ε) larger then V C (W ).

Acknowledgments We thank Oded Goldreich and Shahar Dobzinski for suggesting to
generalize Corollary 2.5 to subadditive functions as presented in Lemma 2.4. We also thank
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A Smooth-Histogram Framework

The smooth-histogram technique presented by Braverman and Ostrovsky [BO07] is one of
only two general techniques for adapting insertion-only algorithms to the sliding-window
model. The other one is an earlier technique called exponential histogram, due to Datar
et al. [DGIM02]. The approach of [BO07] is to maintain several instances of an insertion-only
algorithm on different suffixes of the stream, such that at every point in time, the algorithm
can output an approximation of f on W . They showed that for a large family of functions,
which they called smooth (see Remark 2.3), this approach yields a good approximation al-
gorithm for the sliding-window model. Their technique yields no results for functions that
are not smooth, specifically graph problems such as maximum-matching size. We extend this
framework to a much broader family of functions that we call almost-smooth.

More precisely, assume there is an algorithm Λ that C-approximates a left-monotone non-
decreasing function f in the insertion-only model. The smooth-histogram framework (for
the sliding-window model) maintains k = O

(
ε−1 log w

)
instances of Λ. Each instance Λi

processes the stream from some initial point in time until the end of the stream (or until it
is discarded), i.e., it corresponds to some suffix of the stream, referred to as a bucket. The
bucket corresponding to Λi is denoted by Bi, and we denote by Λi (Bi) the value of instance
Λi on the stream Bi. These buckets will satisfy the invariant B1 ⊇W ) B2 ) B3 ) · · · ) Bk,
where W is the active window. In order to use only a small amount of space, whenever
two nonadjacent instances have “close” values, all instances between them will be deleted.
Instances Λi and Λj, for j > i, are considered close if Λi (Bi) and Λj (Bj) are within factor
1 + ε of each other. At each step of receiving a new item from the stream, the sliding-window
algorithm updates all the instances, creates a new instance Λk+1, which initially contains only
the new item, deletes all unnecessary instances, as explained above, and lastly renumbers the
buckets (consecutively starting from 1). For a more elaborate description see Algorithm 1 in
Section 2.

We show that applying this approach to almost-smooth functions yields good approxima-
tion algorithms while only storing a small number of buckets. Intuitively, Λ1 (B1) approxi-
mates f (W ) (up to some factor that depends on d, C and ε) because Λ1 (B1) and Λ2 (B2)
are close up to some factor (since deleted buckets have close value to nearby buckets by the
almost-smoothness of f) and thus they bound Λ (W ). Therefore, by deleting buckets between
close instances we ensure that the number of buckets is small while the approximation ratio
is roughly dC2.

Braverman and Ostrovsky [BO07] proved that all ℓp-norms, for p > 0, are smooth (in our
terminology it means almost-smoothness parameter d = 1) and consequently obtained algo-
rithms that (1 + ε)-approximate these norms in the sliding-window model, with an overhead
(relative to insertion-only algorithms) of roughly factor O

(
ε−1 log w

)
in the space complexity.

While they analyze their framework only for smooth functions (such as ℓp-norms) our
analysis considers the larger family of d-almost-smooth function (which includes all the sub-
additive functions). Many graph problems are 2-almost-smooth (as they are subadditive) but
not smooth, and thus do not fit their analysis. Additionally, they do not consider functions
that have only a C-approximation algorithms in the insertion-only model for constant C > 1.
We analyze the dependence on C and present here the first sliding-window algorithms for
such functions.

We point out that previously studied techniques for estimating “weakly superadditive”
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functions, such as ℓp norms for p ∈ [1, 2] (e.g. the exponential-histogram technique of Datar
et al. [DGIM02, Section 6]), are not relevant to our study of subadditive functions. For
example, maximum-matching is subadditive but not weakly superadditive.

B Proof of Theorem 2.7

To avoid dependence on the length of the entire stream (for the success probability) we make
use of a general observation due to Braverman regarding algorithms for the sliding-window
model. Intuitively, it says that without loss of generality, the entire stream can be assumed
to have length at most twice the size of the window.

Claim B.1. Every sliding-window algorithm Λ can be modified such that it will not depend
on the length of the entire stream, but only depend on at most 2w last items from the stream,
while using at most a factor 2 more space.

Proof of Claim B.1. To avoid dependence on the length of the stream N , and instead be
dependent only on the length of the window w, we can argue as follows: partition the entire

stream D to segments D1, D2, . . . , Dt, of length w each, where t =
⌈

N
w

⌉
(except maybe the

last segment Dt, which is of length 0 < N − (t− 1) w ≤ w). At each segment Di start a new
instance of algorithm Λ, and keep running it during the next segment as well, for at most
2w updates in total (for each instance of Λ). At any point in time, to answer a query the
algorithm queries the instance of Λ on the penultimate segment, which corresponds to a suffix
of the stream of length at least w, and thus contains the entire active window. Thus, at each
point in time it is enough to store only the two instances of algorithm Λ corresponding to the
last two segments, increasing the storage requirement only by a factor of 2.

Proof of Theorem 2.7. Assume, without loss of generality, that the length of the entire stream
is at most 2w, as explained in Claim B.1. Denote by Λ(X) the output of algorithm Λ
when run on the stream X. Assume that Λ has εδ

2w log w failure probability and ε is the

accuracy parameter, i.e., it
(
(1 + ε) C, εδ

2w log w

)
-approximates f . Recall that we use the

term “bucket” to refer to a suffix of the stream. Our algorithm maintains (not explicitly)
k = O

(
ε−1 log n

)
“buckets” B1, . . . , Bk. At all points in time, these buckets will satisfy the

invariant B1 ⊇ W ) B2 ) B3 ) · · · ) Bk, where W is the active window. For each bucket
Bi the algorithm maintains an instance of Λ, denoted by Λi. In order to use only a small
amount of space, whenever two nonadjacent buckets have similar value according to Λ we will
delete all buckets between them. For ease of exposition, the algorithm will be defined using
these buckets, and later we explain how to not actually store the buckets themselves. In each
step of receiving a new item a from the stream, the algorithm updates the current buckets
B1, . . . , Bk and the corresponding instances Λ1(B1), . . . , Λk(Bk) in the following way.
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Algorithm 1: Almost-Smooth Histogram for Sliding-Window Streaming

Initialization Procedure:
1 k ← 0 (no buckets exist yet)

Update Procedure:
2 open a new bucket Bk+1 ← {a}, and start a new instance Λk+1 on this bucket
3 add a to every bucket Bi, i ∈ [k], and update instance Λi accordingly
4 i← 1
5 while i ≤ k − 2 do
6 find the largest j ≥ i such that Λj(Bj) > (1− ε) Λi(Bi)
7 foreach t = i + 1, . . . , j − 1 discard bucket Bt and its associated instance Λt

8 i← min {j, i + 1}
9 if W ⊆ B2 then

10 discard bucket B1 and its associated instance Λ1

11 let k be the number of remaining buckets, and renumber the buckets and their
associated instances (keeping their order) to B1, . . . , Bk

Query Procedure:

12 if B1 = W then
13 return Λ1(B1)

14 else

15 return dcC (1+ε)

(1−ε)2 · Λ2(B2)

Since f is bounded by some polynomial in w, and Λi+2(Bi+2) ≤ (1− ε) Λi(Bi) for every
1 ≤ i ≤ k − 2 (as the “unnecessary” instances were deleted in the process of updating), it
follows that the number of instances are bounded by O

(
ε−1 log w

)
. Hence, the number of

times any instance of Λ is invoked is at most O
(

1
ε log w

)
·m, where m is the length of the

entire stream, which we assumed to be bounded by 2w. Since we set the failure probability to
be εδ

2w log w then by union bound the probability that any invocation of any instance of Λ fails is
δ, i.e., with probability 1−δ every instance of Λ succeeds every time it is invoked. Thus, from
now on we assume that every instance of Λ succeeds every time, i.e., it (1 + ε) C-approximates
f on the corresponding bucket whenever it is invoked.

Now, let us explain how to achieve O
(
ε−1 log w ·

(
s
(
ε, εδ

2w log w

)
+ log w

))
space complex-

ity. We can directly update the instances Λ1, . . . , Λk, without storing the buckets B1, . . . , Bk

explicitly, hence we only need to maintain the storage that algorithm Λ requires. Additional
to the space required by instances Λ1, . . . , Λk, we need to store a counter ci for every instance
Λi, indicating its initialization time (initialized to ci = 1 and incremented each time a new
item arrives), such that we can perform the last step of the algorithm, by comparing the
counter of bucket B2 to the number w (which is the size of the active window W ). This way,

for each bucket Bi we store s
(
ε, εδ

2w log w

)
+log w bits. As we have seen previously, the number

of instances of Λ are bounded by O
(
ε−1 log w

)
. Therefore, the total number of bits used by

the algorithm is O
(
ε−1 log w ·

(
s
(
ε, εδ

2w log w

)
+ log w

))
, as claimed.
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For the approximation ratio denote by Λ̃ the output of the algorithm, and note that either
Λ̃ = Λ1(B1) in the case B1 = W , or Λ̃ = dcC (1+ε)

(1−ε)2 · Λ2(B2) otherwise. If B1 = W then

Λ̃ = Λ(B1) is obviously (1 + ε) C-approximates f on B1 = W . Otherwise B1 ) W ) B2,
which means that at some earlier point in time, denoted by t∗, the algorithm had deleted some
buckets between buckets B1 and B2 to make them adjacent (for the first time). For i ∈ {1, 2}
denote by B′

i the bucket Bi at the time t∗. Let D be the suffix of the stream starting at time
t∗, and observe that B1 = B′

1D and B2 = B′
2D. At time t∗ we had (1− ε) Λ(B′

1) < Λ(B′
2),

which implies

(1− ε) f(B′
1) ≤ (1− ε) Λ(B′

1) < Λ(B′
2) ≤ (1 + ε) C · f(B′

2),

namely (1−ε)
(1+ε)C f(B′

1) ≤ f(B′
2). Note that we used here the formulation of Remark 1.6. Since

f is (c, d)-almost-smooth, at the end of the stream we have 1
d ·

(1−ε)
(1+ε)C f(B1) ≤ f(B2). Now,

by monotonicity 1
c · f(B2) ≤ f (W ) ≤ c · f(B1), and altogether

1

cC (1 + ε)
Λ(B2) ≤ 1

c
·f(B2) ≤ f(W ) ≤ c ·f(B1) ≤ cdC · (1 + ε)

(1− ε)
f(B2) ≤ cdC · (1 + ε)

(1− ε)2 Λ(B2).

Since (1+ε)2

(1−ε)2 ≤ 1 + 20ε for ε ≤ 1
2 , we conclude that at the end of the stream the output of the

algorithm Λ̃ = dcC (1+ε)

(1−ε)2 · Λ(B2) approximates f(W ) as claimed.
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