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—— Abstract

In this paper, we investigate offline and online algorithms for Round-UFPP, the problem of min-
imizing the number of rounds required to schedule a set of unsplittable flows of non-uniform sizes
on a given path with non-uniform edge capacities. Round-UFPP is NP-hard and constant-factor
approximation algorithms are known under the no bottleneck assumption (NBA), which stipu-
lates that maximum size of a flow is at most the minimum edge capacity. We study Round-UFPP
without the NBA, and present improved online and offline algorithms. We first study offline
Round-UFPP for a restricted class of instances called a-small, where the size of each flow is at
most « times the capacity of its bottleneck edge, and present an O(log(1/(1—«)))-approximation
algorithm. Our main result is an online O(loglog cpax)-competitive algorithm for Round-UFPP
for general instances, where cyax is the largest edge capacities, improving upon the previous best
bound of O(log ¢max) due to [16]. Our result leads to an offline O(min(logn,log m,loglog ¢max))-
approximation algorithm and an online O(min(logm,loglog ¢max))-competitive algorithm for
Round-UFPP, where n is the number of flows and m is the number of edges.
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1 Introduction

The unsplittable flow problem on paths (UFPP) considers selecting a maximum-weight subset
of flows to be routed simultaneously over a path while satisfying capacity constraints on the
edges of the path. In this work, we investigate a variant of UFPP known in the literature as
Round-UFPP or capacitated interval coloring. The objective in Round-UFPP is to schedule all
the flows in the smallest number of rounds, subject to the constraint that the flows scheduled
in a given round together respect edge capacities. Formally, in Round-UFPP we are given
a path P = (V, E), consisting of m links, with capacities {c;};cm), and a set of n flows
F ={fi = (si,ti,04) : 1 € [n]} each consisting of a source vertex, a sink vertex, and a size. A
set R of flows is feasible if all of its members can be scheduled simultaneously while satisfying
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capacity constraints. The objective is to partition F into the smallest number of feasible sets
(rounds) Ry, ..., Ry.

One practical motivation for Round-UFP is routing in optical networks. Specifically, a
flow f; of size o; can be regarded as a connection request asking for a bandwidth of size o;.
Connections using the same communication link can be routed at the same time as long as
the total bandwidth requested is at most the link capacity. Most modern networks have
heterogeneous link capacities; for example, some links might be older than others. In this
setting, each round (or color) corresponds to a transmission frequency, and minimizing the
number of frequencies is a natural objective in optical networks.

A common simplifying assumption, known as the no-bottleneck assumption (NBA),
stipulates that the maximum demand size is at most the (global) minimum link capacity;
i.e. maxicy) 0; < minjepy,) cj; most results on UFPP and its variants are under the NBA
(see §1.1). A major breakthrough was the design of O(1)-approximation algorithms for the
unsplittable flow problem on paths (UFPP) without the NBA [10, 2]. In this paper, we make
progress towards an optimal algorithm for Round-UFPP without imposing NBA.

We consider both offline and online versions of Round-UFPP. In the offline case, all flows
are known in advance. In the online case, however, the flows are not known a priori and they
appear one at a time. Moreover, every flow must be scheduled (i.e. assigned to a partition)
immediately on arrival; no further changes to the schedule are allowed.

Even the simpler problem Round-UFPP-NBA, that is, Round-UFPP with the NBA, in the
offline case, is NP-hard since it contains Bin Packing as a special case (consider an instance
with a single edge). On the other hand, if all capacities and flow sizes are equal, then the
problem reduces to interval coloring which is solvable by a simple greedy algorithm.

1.1 Previous work

The unsplittable flow problem on paths (UFPP) concerns selecting a maximum-weight subset
of flows without violating edge capacities. UFPP is a special case of UFP, the unsplittable
flow problem on general graphs. The term, unsplittable refers to the requirement that each
flow must be routed on a single path from source to sink. ' UFPP, especially under the
NBA, UFPP-NBA, and its variants have been extensively studied [9, 3, 7, 6, 8, 11, 14, 22, 13].
Recently, O(1)-approximation algorithms were discovered for UFPP (without NBA) [10, 2].
Note that, on general graphs, UFP-NBA is APX-hard even on depth-3 trees where all
demands are 1 and all edge capacities are either 1 or 2 [18].

Round-UFPP has been mostly studied in the online setting where it generalizes the interval
coloring problem (ICP) which corresponds to the case where all demands and capacities are
equal. In their seminal work, Kierstead and Trotter gave an optimal online algorithm for
ICP with a competitive ratio of 3w — 2, where w denotes the maximum clique size [20]. Note
that, since interval graphs are prefect, the optimal solution is simply w. Many works consider
the performance of the first-fit algorithm on interval graphs. Adamy and Erlebach were the
first to generalize ICP [1]. In their problem, interval coloring with bandwidth, all capacities
are 1 and each flow f; has a size o; € (0,1]. The best competitive ratio known for this
problem is 10 [5, 17] and a lower bound of slightly greater than 3 is known [19]. The online
Round-UFPP is considered in Epstein et. al. [16]. They give a 78-competitive algorithm for
Round-UFPP-NBA, an O(log %)—competitive algorithm for the general Round-UFPP, and

L (Clearly, in the case of paths and trees, the term is redundant. We use the terminology UFPP to be
consistent with the considerable prior work in this area.
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lower bounds of Q(loglogn) and Q(loglog log i‘;‘—a:) on the competitive ratio achievable for
Round-UFPP. In the offline setting, a 24-approximation algorithm for Round-UFPP-NBA is
presented in [15].

1.2 Our results

We design improved algorithms for offline and online Round-UFPP. Let m denote the number
of edges in the path, n the number of flows, and ¢y the maximum edge capacity.

In §3, we design an O(log(1/(1— «)))-approximation algorithm for offline Round-UFPP for

a-small instances in which the size of each flow is at most an « fraction of the capacity of

the smallest edge used by the flow, where 0 < o < 1. This implies an O(1)-approximation

for any a-small instance, with constant «. Previously, constant-factor approximations

were only known for o < 1/4.

In §4, we present our main result, an online O(loglog ¢max))-competitive algorithm

for general instances. This result leads to an offline O(min(logn,logm,loglog cmax))-

approximation algorithm and an online O(min(log m,loglog ¢imax))-competitive algorithm.
Our algorithm for general instances, which improves on the O(log ¢imax)-bound achieved
in [16], is based on a reduction to the classic rectangle coloring problem (e.g., see [4, 21,
12]). We introduce a class of "line-sparse’ instances of rectangle coloring that may be
of independent interest, and show how competitive algorithms for such instances lead to
competitive algorithms for Round-UFPP.

Due to space limitations, we are unable to include all of the proofs in the main body; we
refer the reader to the full version of this paper? for any missing proof and pseudocode as
well as extra figures.

2 Preliminaries

In Round-UFPP we are given a path P = (V, E) consisting of m + 1 vertices and m links,
enumerated left-to-right as vo,e1,v1, ..., Um—1, €m, Um, With edge capacities {c;};e[m), and a
set of n flows F = {f; = (s4,ti,0:) : i € [n]}, where s; and ¢; represent the two endpoints
of flow f;, and o; denotes the size of the flow. Without loss of generality, we assume that
s; < t;. We say that a flow f; uses a link e; if s; < j <t;. For a set of flows F', we denote by
F(e) and F(j) the subset of flows in F' using edge e and e; respectively.

» Definition 1. The bottleneck capacity of a flow f;, denoted by b;, is the smallest capacity
among all links used by f; — such an edge is called the bottleneck edge for flow f;.

A set of flows R is called feasible if all of its members can be routed simultaneously
without causing capacity violation. The objective is to partition F into the smallest number
of feasible sets Ry, ..., R;. A feasible set is also referred to as a round.

Alternatively, partitioning can be seen as coloring where rounds correspond to colors.

» Definition 2. For a set of flows F', we define its chromatic number, x(F), to be smallest
number of rounds (colors) into which F' can be partitioned.

» Definition 3. The congestion of an edge e; with respect to a set of flows F is

s (F) = EF@ (1)

¢

2 https://arxiv.org/abs/1708.00143
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Figure 1 An example of a path with 5 links and two flows. The first flow f1 is from v; to vs of
size 1; the second flow f2 is from wv4 to ve also of size 1. Even though both flows have the same size,
fiis i—large whereas f> is %—small. The reason is different bottleneck capacities, by = 2 and b2 = 4.

that is, the ratio of the total size of flows in F' using e; to its capacity. Likewise r.(F)
denotes the congestion of an edge e with respect to F. Also, let 7max(F') = max; 7;(F') be
the maximum edge congestion with respect to F'. When the set of flows is clear from the
context, we simply write rpax.-

An obvious lower bound on x(F) is maximum edge congestion; that is,
» Observation 4. x(F) > [rmax(F)].

Proof. Suppose e; is any edge of the path. In each round, the amount of flow passing
through the edge is at most its capacity c;. Therefore, the number of rounds required for
the flows in F using e; to be scheduled is at least [r;(F)]. <

Without loss of generality, we assume that the minimum capacity, ciyin, is 1. Furthermore,
let ¢pax = maxecg ce denote the maximum edge capacity. As is standard in the literature,
we classify flows according to the ratio of size to bottleneck capacity.

» Definition 5. Let « be a real number satisfying 0 < o < 1. A flow f; is said to be a-small
if 0; < - b; and a-large if o; > a - b; (refer to Figure 1 for an example). Accordingly, the set
of flows F is divided into small and large classes

FS ={feF|fisa-small}; FL={feF|fisa-large}.
As is often the case for unsplittable flow algorithms, we treat small and large instances

independently. In §3 and §4 we study small and large instances respectively.

3  An approximation algorithm for Round-UFPP with a-small flows

In this section, we design an offline O(1)-approximation algorithm for c-small flows for any
a € (0,1). We note that offline and online algorithms for a-small instances are known when
« is sufficiently small. More precisely, if « = 1/4, 16-approximation and 32-competitive
algorithms for offline and online cases have been presented in [15] and [16] respectively.

» Lemma 6 ([15, 16]). There exist O(1)-approzimation algorithms for Round-UFPP where
all flows are i—small.
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Algorithm 1: ProcMids
input : A set of [, a]-mid flows F
output: A partition of F into rounds (colors)

=

for i + 1 to [logcmax| do
F{fr€e F|271 <b <2}
(Ci,C%) < FlowDec(F;);
R <« ColOptimize({(CF,C%) : k=1, ..., [log cmax | });
5 return R;

W N

'

However, these results do not extend to the case where « is an arbitrary constant in (0,1).
In contrast, we present an algorithm that works for any choice of a € (0, 1). In our algorithm,
flows are partitioned according to the ratio of their size to their bottleneck capacity. If
a < 1/4, we simply use Lemma 6. Suppose that a > 1/4. The overall idea is to further
partition the set of flows into two subsets and solve each independently. This motivates the
following definition.

» Definition 7. Given two real numbers 0 < § < a < 1, a flow f; is said to be [B, a]-mid if
o; € [B - bi, - b;]. Accordingly, we define the corresponding set of flows as

FY(B,0) = {f € F'| f is [3, 0] mid}.
Observe that, FM(3,a) = FS N Fj.

In the remainder of this section, we present an O(1)-approximation algorithm, called
ProcMids, for F™(1/4,a). ProcMids (see Algorithm 1) starts by partitioning FM (1/4, o)
into [log ¢max | classes according to their bottleneck capacity.

Next, it computes a coloring for each class by running a separate procedure called FlowDec,
explained in §3.1. This will result in a coloring of F*(1/4, ) using O(7max 10g Cmax) colors.
Finally, ProcMids runs ColOptimize, described in §3.2, to optimize color usage in different
subsets; this results in the removal logarithmic factor and, thereby, a more efficient coloring
using only O(7max) colors.

3.1 A logarithmic approximation

Procedure FlowDec partitions F into O(rmax(FM)) rounds. In each iteration, it calls
procedure rCover (Algorithm 2) which takes as input a subset F;, C FZM and returns two
disjoint feasible subsets C1, Cy of Fj. In other words, flows in each subset can be scheduled
simultaneously without causing any capacity violation. On the other hand, these two subsets
cover all the links used by the flows in Fj. More formally, C; and C5 are guaranteed to have
the following two properties:

(P1) Yee E:|Ci(e)] <1 and |Cy(e)| <1,
(P2) |F/(e)] > 1= Ci(e) UCs(e) # 0.

rCover maintains a set of flows F” which is initially empty. It starts by finding the
longest flow f;, among those having the first (leftmost) source node. Next, it processes
the flows in a loop. In each iteration, the procedure looks for a flow overlapping with the
currently selected flow f;, . If one is found, it is added to the collection and becomes the
current flow. Otherwise, the next flow is chosen among those remaining flows that start after
the current flow’s sink ¢;,. Finally, rCover splits F” into two feasible subsets and returns
them.

49:5
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Algorithm 2: rCover

input :A set of flows F
output : Two disjoint feasible subsets of F' satisfying Properties (P1) and (P2)

1 F" « 0

2 Smin < Mily, cF Sk;

3 t;, < max{ty | fr € F and sx = Smin};

a F"—{fi};

5 F« F\{fi.};

6 k<« 1;

7 while ¢;, < maxy,cp{t;} do

8 if 3f, € F: s, <t;, andt; >t; then
9 L tin,, < max{t; | f € Fand s; <t;, };
10 else

11 Smin < min{s; | fi € F, s; > t;, };
12 L tin,, < max{t; | fi € F, si = Smin};

13 F”<_FNU{fik+1};

14 | ke k+1

C1 « {fi, € F" | j is odd};
Co «{fi; € F"" | j is even};
17 return (Cq,Cy);

1

S}

1

[

Algorithm 3: ColOptimize

input : A set of pairs {(C}(j),C(j))}, parameter T
output : A new set of pairs {(Di(j), Di(4))}

1 for ¢ < 1 to 4ry.x do

2 for k< 1to 7 do

Di(k) ¢ ULF170 O (er + ),
D(k) ¢ UL O er + b);

w

I

5 return {(Di(k),Ds(k)) :k=1,...,7 and i € {1, ..., 4rmax } };

» Lemma 8. Procedure rCover finds two feasible subsets C1 and Cy satisfying properties
(P1) and (P2).

» Lemma 9. Procedure FlowDec partitions FZM into at most STmaX(FEM) feasible subsets.

3.2 Removing the log factor

In this subsection, we illustrate Procedure ColOptimize (see Algorithm 3), which removes
the logarithmic factor by optimizing color usage. The result is a coloring with O(ryax) colors.

Let 7 be a constant to be determined later. Intuitively, the idea is to combine subsets of
different levels in an alternating manner with 7 serving as the granularity parameter. More
precisely, let C%(j), where a € {1,2}, j € {1, ..., [log cmax |}, and i € {1, ..., 4rpax}, denote
the set of colors resulting from the execution of FlowDec. ColOptimize combines colors
from different classes to reduce the number of colors by a factor of 7/[log ¢max | resulting in
4T - rmax colors being used. Next, we show that setting 7 = log(1/(1 — «)) + 2 results in a
valid coloring.
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» Lemma 10. For 7 =log(1/(1 — «)) + 2, the sets D:(k), where a € {1,2}, k € {1,...,7},
and i € {1, ...,4rmax }, constitute a valid coloring.

The main result of this section now directly follows from Lemma 10.

» Theorem 11. For any o € (0,1), there exists an offline O(log(1/1 — «))-approzimation
algorithm for Round-UFPP with a-small flows. In particular, we have a constant-factor
approximation for any constant o < 1.

4  Algorithms for general Round-UFPP instances

In what follows, we present offline and online algorithms for general instances of Round-UFPP.
Our treatment of large flows involves a reduction from Round-UFPP to the rectangle coloring
problem (RCOL) which is discussed in §4.1. Next, in §4.2, we design an online algorithm for
the RCOL instances arising from the reduction. Later, in §4.3, we cover our online algorithm
for Round-UFPP with %—large flows. Finally, in §4.4, we present our final algorithm for the
general Round-UFPP instances.

4.1 The reduction from Round-UFPP with large flows to RCOL

» Definition 12 (Rectangle Coloring Problem (RCOL).). Given a collection R of n axis-parallel
rectangles, the objective is to color the rectangles with the minimum number of colors such
that rectangles of the same color are disjoint.

Each rectangle R € R is given by a quadruple (z!(R), 2" (R), y*(R),y"(R)) of real numbers,
corresponding to the z-coordinates of its left and right boundaries and the y-coordinates
of its top and bottom boundaries, respectively. More precisely, R = {(z,y) | 2/(R) < x <
2"(R) and y*(R) < y < y*(R)}. When the context is clear, we may omit R and write
a2t z", yt yb. Two rectangles R and R’ are called compatible if they do not intersect each
other; else, they are called incompatible.

The reduction from Round-UFPP with large flows to RCOL is based on the work in [10].
It starts by associating with each flow f; = (s;,¢;,0;), a rectangle R; = (s;,t;,b;,b; — 03). If
we draw the capacity profile over the path P, then R; is a rectangle of thickness o; sitting
under the curve touching the “ceiling.” Let R(F') denote the set of rectangles thus associated
with flows in F'. We assume, without loss of generality, that rectangles do not intersect on
their border; that is, all intersections are with respect to internal points. We begin with an
observation stating that a disjoint set of rectangles constitutes a feasible set of flows.

» Observation 13 ([10]). Let R(F') be a set of disjoint rectangles corresponding to a set of
flows F. Then, F is a feasible set of flows.

The main result here is that if all flows in F' are k-large then an optimal coloring of R(F’)
is at most a factor of 2k worse than the optimal solution to Round-UFPP instance arising
from F. The following key lemma is crucial to the result.

» Lemma 14 ([10]). Let F be a feasible set of flows, and let k > 2 be an integer, such that

every flow in F is %—large, Then there exists a 2k coloring of R(F).

As an immediate corollary, we get the following.

» Corollary 15. Let F be a feasible set of flows, and let k > 2 be an integer, such that every
flow in F is 4-large. Then, x(R(F)) < 2kx(F).

49:7
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Figure 2 A collection R of 4-line-sparse rectangles. The lines can be either (a) horizontal or (b)
vertical.

Proof. Consider an optimal coloring C of F' with x(F') colors. Apply Lemma 14 to each
color class C;, for 1 <i < x(F), to get a 2k-coloring of R(C;). The final result is a coloring
of R(F) using at most 2kx(F) colors. <

We are ready to state the main result of this subsection.

» Lemma 16. Suppose there exists an offline a-approximation (online a-competitive) al-
gorithm A for RCOL. Then, for every integer k > 2 there exists an offline 2ka-approzimation
(online 2ka-competitive) algorithm for Round-UFPP consisting of %—large flows.

Proof. Given a set I of %—large flows for some integer k > 2, construct the set of associated
rectangles R(F') and apply the algorithm 2 to it. The solution is a valid Round-UFPP
solution (Observation 13). Furthermore, by Corollary 15,

A(R(F)) < ax(R(F)) < 2kax(F).

Finally, the reduction does not depend on future flows; hence, it is online in nature. |

4.2 Algorithms for RCOL

In this section, we consider algorithms for the rectangle coloring problem (RCOL). We begin
by introducing a key notion measuring the sparsity of rectangles with respect to a set of
lines. This is similar to the concept of point sparsity investigated by Chalermsook [12].

» Definition 17 (s-line-sparsity). A collection of rectangles R is s-line-sparse if there exists
a set of axis-parallel lines Lz (called an s-line-representative set of R), such that every
rectangle R € R is intersected by kg € [1, s] lines in L (see Figure 2 for an example).

For simplicity, we assume that representative lines are all horizontal. The objective
is to design an online O(log s)-competitive algorithm for RCOL consisting of s-line-sparse
rectangles. In the online setting, rectangles appear one by one; however, we assume that an
s-line-representative set Ly is known in advance. As we will later see, this will not cause
any issues since the RCOL instances considered here arise from Round-UFPP instances with
large flows from which it is straightforward to compute s-line-representative sets. In the
offline case, on the other hand, we get a log(n) approximation by (trivially) computing
an n-line-representative set—associate to each rectangle an arbitrary line intersecting it.
The remainder of this subsection is organized as follows. First, in §4.2.1, we consider the
2-line-sparse case. Later, in §4.2.2, we study the general s-line-sparse case.
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4.2.1 The 2-line-sparse case

Consider a collection of rectangles R and a 2-line-representative set Lg = {{g, 41, ...,k }
(that is, each rectangle R is intersected by either one or two lines in L) where the rectangles
in R appears in an online fashion. Recall, however, that the line set Lg is known in advance.
Without loss of generality, assume that y(¢o) < y(¢1) < ... < y(¢).

For each R € R, let T(R) denote the index of the topmost line in L that intersects R;
T(R) = max{i | ¢; intersects R}. Next, partition R into three subsets

Ri={ReR|T(R)=1l mod 3}, forl=0,1,2. (2)

The following lemma shows that each of the above subsets can be viewed as a collection of
interval coloring problem (ICP) instances.

» Lemma 18. Suppose two rectangles R, R’ € R belong to the same subset; that is, R, R’ € R,

for some 1 € {0,1,2}. Then, the following are true.

(1) If T(R) = T(R') and the projection of R and R’ on the x-axis have a non-empty
intersection, then RN R' # .

(2) If T(R) # T(R'), then RN R = 0.

We will use the optimal 3-competitive online algorithm due to Kierstead and Trotter
for ICP [20]. The algorithm colors an instance of ICP of clique size w with at most 3w — 2
colors which matches the lower bound shown in the same paper. Henceforth, we refer to this
algorithm as the KT algorithm.

Now we can present an O(1)-competitive online algorithm, named COL2SP, with a known
2-line-representative set. COL2SP computes a partition of R into Rg, R1, and Ry as explained
above. Then, it applies the KT algorithm to each subset. Note that COL2SP can be seen as
executing multiple instances of the KT algorithm in parallel.

» Lemma 19. Algorithm COL2SP is an online O(1)-competitive algorithm for RCOL on
2-line-sparse instances given prior knowledge of a 2-line-representative set for the incoming
rectangles. Moreover, COL2SP uses at most 3 - w(R) colors.

4.2.2 The s-line-sparse case

Consider a set of s-line-sparse rectangles R and an s-line-representative set Lz. Our goal
in this subsection is to demonstrate a partitioning of R into O(log s) 2-line-sparse subsets,
where each subset is accompanied by its own 2-line-representative set.

Given a set of lines L, we define the degree of a rectangle R € R, with respect to L, to
be the number of lines in L that intersect R,

Deg, (R) = [{{ € L |¢NR+0}|.

We say that a rectangle R € R is of level | > 0 with respect to Lg, if 2! < Deg;  (R) < 2+,
The partitioning is based on the level of rectangles. More precisely, R is partitioned into
[log s] + 1 “levels"

Lev(i) ={R € R | R is of level i}, for i = 0,1, ..., [log s].

Next we show that each level is a 2-line-sparse set. To this end, we present a 2-line-
representative set for each level. Let Lg = {¢1, 0o, ...., {1} and define

S(i)={¢j e Lg |j=1 mod 2"}, for i € {0,..., [log s].

49:9
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Algorithm 4: RectCol
input :A rectangle R€ R
input :The last state of RectCol; an s-representative-line set L for R
output: A color for R

14« argmin; (27 < Degy (R) < 2/t1);
2 Lev(i) < Lev(i) U {R};
3 return COL2SP(R, Lg);

» Lemma 20. For every i € {0,...,[logs]}, Lev(i) is a 2-line-sparse set and S(i) is a
2-line-representative set for Lev(i).

We are ready to present an O(log s)-competitive online algorithm, named RectCol,
for RCOL with a known line-representative set. Algorithm RectCol works as follows (see
Algorithm 4).

» Lemma 21. RectCol is an online O(log s)-competitive algorithm for RCOL with s-line-
sparse rectangles, given a representative-line set. Moreover, RectCol uses O(w(R) - log s)
colors.

4.3 An algorithm for Round-UFPP with large flows

We are ready to present ProcLarges, an algorithm for Round-UFPP with large flows. For
concreteness, we present the algorithm for i-large flows; this result can be easily generalized
to a-large flows for any o < 1/2.

The online algorithm we have designed for RCOL need to have access to an s-line-
representative set Ly for the set of rectangles R. In our case, these rectangles are constructed
from flows (§4.1) which themselves arrive in an online fashion. However, all we need to be
able to compute an s-line-representative set is the knowledge of the path over which the
flows will be running—that is P = (V, E) with capacities {c.}ccp (recall that we assume that
¢min = 1, which can always be achieved via scaling if needed). It is possible to construct (at
least) three different s-line-representative sets for R:

Ly A set of s = [logy /3 tmax | + 1 horizontal lines L = {lo, 1, ..., s} where the y-coordinate
of the ith line is y(I;) = (3/4)" - cmax. Note that £y is the topmost line.

Lo A set of m vertical lines, one per edge in the path.

L3 A set of n axis-parallel lines, one per rectangle.

Note that L3 is only useful in the offline setting. It is obvious that L, and L3 are valid
line-representative sets for R. Below, we show that Lq is valid as well.

» Lemma 22. L, is an s-line-representative set for R(F).

» Theorem 23. ProclLarges is an O(loglog cmax)-competitive algorithm for Round-UFPP
with %—large flows. Furthermore, the bound can be improved to O(min(logm,loglog cmax))-

Proof. ProcLarges executes algorithm RectCol on R(F) with a representative-line set
L = L, of size O(log ¢imax). The colors returned by RectCol are used for the flows without
modification. Now, setting s = O(10g ¢max), Lemma 21 states that Algorithm RectCol
uses O(w(R(F))loglog ¢max) colors. Lemma 16 completes the argument. Finally, note that
running algorithm RectCol with L = L, as the representative-line set, we get a sparsity of
s =m and a coloring using O(w(R(F))logm) colors. To get the improved bound, we run
the algorithm with L = L4, if log cpax < m; else, we run it with L = L. <
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4.4 Putting it together — The final algorithm

At this point, we have all the ingredients needed to present our final algorithm, So1veRUFPP,
for Round-UFPP. SolveRUFPP simply uses procedure ProcLarges (§4.3) for i—large flows
and procedure ProcSmalls for i—small flows. For ProcSmalls, we can use our algorithm
in §3 or the 16-competitive algorithm in [15] in the offline case; and the 32-competitive
algorithm in [16] in the online case.

» Theorem 24. There exists an online O(min(logm,loglog cmax))-competitive algorithm
and an offline O(min(logn, log m,loglog cmax))-approzimation algorithm for Round-UFPP.

Proof. In the online case, ProcSmalls is a 32-competitive [16]. On the other hand, by Propos-
ition 23, ProcLarges is an O(min(logm,loglog ¢max))-competitive. Thus overall, algorithm
SolveRUFPP is O(min(logm,loglog cmax))-competitive. In the offline case, since the set of
flows F is known in advance, we can get a slightly better bound by using L3 in §4.3 as the third
line-representative set (of sparsity s = n). Thus we get the O(min(logn,logm,loglog cmax))
bound by running the algorithm three times with L1, Lo, and Ls and using the best one. <«

5 Concluding remarks

In this paper, we present improved offline approximation and online competitive algorithms for
Round-UFPP. Our work leaves several open problems. First, is there an O(1)-approximation
algorithm for offline Round-UFPP? Second, can we improve the competitive ratio achievable
in the online setting to match the lower bound of Q(log loglog ¢pmax) shown in [16], or improve
the lower bound? From a practical standpoint, it is important to analyze the performance
of simple online algorithms such as First-Fit and its variants for Round-UFPP and RCOL.
Another natural direction for future research is the study of Round-UFP and variants on
more general graphs.
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