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—— Abstract

The Group Activity Selection Problem (GASP) models situations where a group of agents needs
to be distributed to a set of activities while taking into account preferences of the agents w.r.t.
individual activities and activity sizes. The problem, along with its well-known variants sGASP
and gGASP, has previously been studied in the parameterized complexity setting with various
parameterizations, such as number of agents, number of activities and solution size. However, the
complexity of the problem parameterized by the number of types of agents, a natural parameter
proposed already in the first paper that introduced GASP, has so far remained unexplored.

In this paper we establish the complexity map for GASP, sGASP and gGASP when the number
of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm
and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of
general interest) and identifying certain compression steps which allow us to focus on solutions which
are “acyclic”. These algorithms are complemented by matching lower bounds, which among others
close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In
this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest:
as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted
variant of multi-dimensional Subset Sum, which may find applications in other settings as well.
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1 Introduction

In this paper we consider the GROUP ACTIVITY SELECTION PROBLEM (GASP) together
with its two most prominent variants, the SIMPLE GROUP ACTIVITY SELECTION PROBLEM
(sGasP), and the GROUP ACTIVITY SELECTION PROBLEM WITH GRAPH STRUCTURE
(gGAsP) [6, 18]. Since their introduction, these problems have received considerable attention,
notably in venues dedicated to multi-agent systems and game theory [3, 4, 5, 19, 14, 15]. In
GASP one is given a set of agents, a set of activities, and a set of preferences for each agent
in the form of a complete transitive relation (also called the preference list) over the set of
pairs consisting of an activity a and a number s, expressing the willingness of the agent to
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participate in the activity a if it has s participants. The aim is to find a “good” assignment
from agents to activities subject to certain rationality and stability conditions. Specifically,
an assignment is individually rational if agents that are assigned to an activity prefer this
outcome over not being assigned to any activity, and an assignment is (Nash) stable if every
agent prefers its current assignment over moving to any other activity. In this way GASP
captures a wide range of real-life situations such as event organization and work delegation.

SGASP is a simplified variant of GASP where the preferences of agents are expressed
in terms of approval sets containing (activity, size) pairs instead of preference lists. In
essence SGASP is GASP where each preference list has only two equivalence classes: the
class of the approved (activity, size) pairs (which contains all pairs that are preferred over
not being assigned to any activity), and the class of disapproved (activity, size) pairs (all
possible remaining pairs). On the other hand, gGGASP is a generalization of GASP where
one is additionally given an undirected graph (network) on the set of all agents that can
be employed to model for instance acquaintanceship or physical distance between agents.
Crucially, in gGASP one only considers assignments for which the subnetwork induced by all
agents assigned to some activity is connected. Note that if the network forms a complete
graph, then g(GASP is equivalent to the underlying GASP instance.

Related Work. sGAsp, GAsp, and gGAsP, are known to be NP-complete even in very
restricted settings [6, 18, 14, 15]. It is therefore natural to study these problems through the
lens of parameterized complexity [8, 2]. Apart from parameterizing by the solution size (i.e.,
the number of agents assigned to any activity in a solution) [19], the perhaps most prominent
parameterizations thus far have been the number of activities, the number of agents, and in
the case of gGASP parameterizations tied to the structure of the network [6, 17, 18, 14, 9].
Consequently, the parameterized complexity of all three variants of GASP w.r.t. the number
of activities and/or the number of agents is now almost completely understood.

Namely, computing a stable assignment for a given instance of GASP is known to be
W/[1]-hard and contained in XP parameterized by either the number of activities [6, 17, 15] or
the number of agents [18, 15] and known to be fixed-parameter tractable parameterized by
both parameters [17, 15]. Even though it has never been explicitly stated, the same results
also hold for gGASP when parameterizing by the number of agents as well as when using
both parameters. This is because both the XP algorithm for the number of agents as well as
the fixed-parameter algorithm for both parameters essentially brute-force over every possible
assignment and are hence also able to find a solution for gGAsp. Moreover, the fact that
gGASP generalizes GASP implies that the W[1]-hardness result for the number of agents also
carries over to g(GASP.

On the other hand, if we consider the number of activities as a parameter then gGAsP
turns out to be harder than GAspP: Gupta et al. ([14]) showed that gGAsP is NP-complete
even when restricted to instances with a single activity. The hardness of gGASP has inspired
a series of tractability results [14, 18, 17] obtained by employing additional restrictions on the
structure of the network. One prominent result in this direction has been recently obtained
by Gupta et al. ([14]), showing that gGASP is fixed-parameter tractable parameterized by
the number of activities if the network has constant treewidth.

Already with the introduction of GASP [6] the authors argued that instead of putting
restrictions on the total number of agents, which can be very large in general, it might be
much more useful to consider the number of distinct types of agents. It is easy to imagine
a setting with large groups of agents that share the same preferences (for instance due to
inherent limitations of how preferences are collected). In contrast to the related parameter
number of activity types, where it is known that SGASP remains NP-complete even for a
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constant number of activity types [6], the complexity of the problems parameterized by the
number of agent types (with or without restricting the number of activities) has remained
wide open thus far.

Our Results. In this paper we obtain a complete classification of the complexity of GAsp
and its variants SGASP and gGASP when parameterized by the number of agent types ()
alone, and also when parameterized by t plus the number of activities (a). In particular, for
each of the considered problems and parameterizations, we determine whether the problem
is in FPT, or W[1]-hard and in XP, or paraNP-hard. One distinguishing feature of our lower-
and upper-bound results is that they make heavy use of novel Subset-Sum machinery. Below,
we provide a high-level summary of the individual results presented in the paper.

Result 1. sGAspP is fixed-parameter tractable when parameterized by t + a

This is the only fixed-parameter tractability result presented in the paper, and is essentially
tight: it was recently shown that sGAsP is W[1]-hard when parameterized by a alone [9],
and the W[1]-hardness of the problem when parameterized by ¢ is obtained in this paper.
Our first step towards obtaining the desired fixed-parameter algorithm for SGASP is to show
that every YES-instance contains a solution which is acyclic — in particular, a solution with
no cycles formed by interactions between activities and agent types (captured in terms of
the incidence graph G of an assignment). This is proved via the identification of certain
compression steps which can be applied on a solution in order to remove cycles.

Once we show that it suffices to focus on acyclic solutions, we branch over all acyclic
incidence graphs (i.e., all acyclic edge sets of G); for each such edge set, we can reduce the
problem of determining whether there exists an assignment realizing this edge set to a variant
of SUBSET SUM embedded in a tree structure. The last missing piece is then to show that
this problem, which we call TREE SUBSET SUM, is polynomial-time tractable; this is done
via dynamic programming, whereas each step boils down to solving a simplified variant of
SUBSET SUM.

Result 2. sGAsp is W1-hard when parameterized by ¢

Our second result complements Result 1. As a crucial intermediate step towards Result 2,
we obtain the W[1]-hardness of a variant of SUBSET SUM with three distinct “ingredients”:
1. Partitioning: items are partitioned into sets, and precisely one item must be selected
from each set,
2. Multidimensionality: each item is a d-dimensional vector (d being the parameter)
where the aim is to hit the target value for each component, and
3. Simplicity: each vector contains precisely one non-zero component.
We call this problem SIMPLE MULTIDIMENSIONAL PARTITIONED SUBSET SUM (SMPSS).
Note that SMPSS is closely related to MULTIDIMENSIONAL SUBSET SUM (MSS), which
(as one would expect) merely enhances SUBSET SUM via Ingredient 2. MSS has recently
been used to establish W[1]-hardness for parameterizations of EDGE DISJOINT PATHS [13]
and BOUNDED DEGREE VERTEX DELETION [12]. However, Ingredient 1 and especially
Ingredient 3 are critical requirements for our reduction to work, and establishing the W([1]-
hardness of SMPSS was the main challenge on the way towards the desired lower-bound
result for SGAsP. Since MSS has already been successfully used to obtain lower-bound
results and SMPSS is a much more powerful tool in this regard, we believe that SMPSS
will find applications in establishing lower bounds for other problems in the future.
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Result 3. GAsP is in XP when parameterized by t

This is the only XP result required for our complexity map, as it implies XP algorithms for
SGASP parameterized by t and for GASP parameterized by t. We note that the techniques
used to obtain Result 3 are disjoint from those used for Result 1; in particular, our first step is
to reduce GASP parameterized by t to solving “XP-many” instances of SGASP parameterized
by t. This is achieved by showing that once we know a “least preferred alternative” for every
agent type that is active in an assignment, then the GASP instance becomes significantly
easier — and, in particular, can be reduced to a (slightly modified version of) sGasp. It
is interesting to note that the result provides a significant conceptual improvement over
the known brute force algorithm for GASP parameterized by the number of agents which
enumerates all possible assignments of agents to activities [16, Theorem 3] (see also [15]):
instead of guessing an assignment for all agents, one merely needs to guess a least preferred
alternative for every agent type.

The second part of our journey towards Result 3 focuses on obtaining an XP algorithm
for sGAsP parameterized by ¢t. This algorithm has two components. Initially, we show
that in this setting one can reduce SGASP to the problem of finding an assignment which
is individually rational (i.e., without the stability condition) and satisfies some additional
minor properties. To find such an assignment, we once again make use of SUBSET SUM: in
particular, we develop an XP algorithm for the MPSS problem (i.e., SUBSET SUM enhanced
by ingredients 1 and 2) and apply a final reduction from finding an individually rational
assignment to MPSS.

Result 4. Gasp is W1-hard when parameterized by t + a

Result 5. gGasp is W1-hard when parameterized by t + a and the vertex cover
number [11] of the network

The final two results are hardness reductions which represent the last pieces of the presented
complexity map. Both are obtained via reductions from PARTITIONED CLIQUE (also called
MULTICOLORED CLIQUE in the literature [2]), and both reductions essentially use k + (g)
activities whose sizes encode the vertices and edges forming a k-clique. The main challenge
lies in the design of (a bounded number of) agent types whose preference lists ensure that
the chosen vertices are indeed endpoints of the chosen edges. The reduction for gGASP then
becomes even more involved, as it can only employ a limited number of connections between
the agents in order to ensure that vertex cover of the network is bounded.

We note that Result 5 also followed up on previous work by Gupta, Roy, Saurabh and
Zehavi [14], who showed that gGASP is fixed-parameter tractable parameterized by the
number of activities if the network has constant treewidth. In this sense, our hardness result
represents a substantial shift of the boundaries of (in)tractability: in addition to excluding
fixed-parameter tractability when parameterizing by the number of activities and treewidth,
it also rules out the use of agent types as a parameter and replaces treewidth by the more
restrictive vertex cover number. An overview of our results is provided in Table 1.

2 Preliminaries

For an integer i, we let [i] = {1,2,...,¢} and [i]o = [{] U {0}. We denote by N the set of
natural numbers, by Ny the set N U {0}. For a set S and an integer k, we denote by S* and
29 the set of all k dimensional vectors over S and the set of all subsets of S, respectively.
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Table 1 Lower and upper bounds for sGAsP, GAsP, and gGASP parameterized by the number
of agent types (t), with or without additionally parameterizing by the number of activities (a). In
the case of gGASP, also the parameter vertex cover number (vc) of the network is considered. The
numbers 1 to 5 in the upper index are used to identify results 1 to 5. Entries in bold are shown in
this paper; previously known entries follow from the work of Gupta et al. [14].

Parameter ‘ Lower Bound Upper Bound

sGAsp W[1]? XP
Gasp t W(1] XP?
gGAsP paraNP
sCASP FPT!
Gasp t+a wi1]* XP
gGASP paraNP
gGASP | t+a+vc ‘ w(1]® XP

We refer to the handbook by Diestel ([7]) for standard graph terminology. Due to space
constraints, we also refer to the respective handbooks [8, 2] for standard terminology and
basic notions in parameterized complexity. The vertex cover number of a graph G is the size
of a minimum vertex cover of G.

2.1 Group Activity Selection

The task in the GROUP ACTIVITY SELECTION PROBLEM (GASP) is to compute a stable
assignment 7 from a given set N of agents to a set A of activities, where each agent
participates in at most one activity in A. The assignment 7 is (Nash) stable if and only if it
is individually rational and no agent has an NS-deviation to any other activity (both of these
stability rules are defined in the next paragraph). We use a dummy activity ag to capture all

those agents that do not participate in any activity in A and denote by A* the set AU {ay}.

Thus, an assighment 7 is a mapping from N to A*, and for an activity a € A we use 7~ (a)
to denote the set of agents assigned to a by m; we set |7~ (ag)| = 1 if there is at least one
agent assigned to ag and 0 otherwise.

The set X of alternatives is defined as X = (A x [|N]])U{(ag,1)}. Each agent is associated
with its own preferences defined on the set X. In the case of the standard GASP problem, an
instance I is of the form (N, A, (=,)nen) where each agent n is associated with a complete
transitive preference relation (list) »=,, over the set X. An assignment 7 is individually rational
if for every agent n € N it holds that if 7(n) = a and a # ag, then (a, |t (a)|) =, (ag,1)
(i.e., n weakly prefers staying in a over moving to ag). An agent n where m(n) = a is defined
to have an NS-deviation to a different activity o’ in A if (a/, |7~ (a’)| + 1) =, (a, |7~ 1(a)|)
(i.e., n prefers moving to an activity a’ over staying in a). The task in GASP is to compute a
stable assignment.

gGASP is defined analogously to GASP, however where one is additionally given a set L of
links L C {{n,n’} | n,n" € N An #n’} between the agents on the input; specifically, L can
be viewed as a set of undirected edges and (N, L) as a simple undirected graph. In gGASP,
the task is to find an assignment 7 which is not only stable but also connected; formally,
for every a € A the set of agents 7~1(a) induces a connected subgraph of (N, L). Moreover,
an agent n € N only has an NS-deviation to some activity a # 7(n) if (in addition to the
conditions for NS-deviations defined above) n has an edge to at least one agent in 7=1(a).
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In SGASP, an instance [ is of the form (N, A, (P, )nen), where each agent has an approval
set P, C X \ {(ag,1)} of preferences (instead of an ordered preference list). We denote by
P,(a) the set {i | (a,i) € P, } for an activity a € A. An assignment 7 : N — A* is said
to be individually rational if every agent n € N satisfied the following: if 7(n) = a and
a # ap, then |[7~1(a)| € P,(a). Further, an agent n € N where 7(n) = ag, is said to have an
NS-deviation to an activity a in A if (7~ (a)| + 1) € P,(a).

We now introduce the notions and definitions required for our main parameter of interest,
the “number of agent types”. We say that two agents n and n’ in N have the same agent
type if they have the same preferences. To be specific, P, = P, for SGASP and =, =, for
GAsP and gGAsP. In the case of SGASP and GASP n and n’ are indistinguishable, while
in gGASP n and n’ can still have different links to other agents. For a subset N’ C N, we
denote by T(N') the set of agent types occurring in N’. Note that this notation requires
that the instance is clear from the context. If this is not the case then we denote by T'(1)
the set T(N) if N is the set of agents for the instance I of SGASP, GASP, or gGASP.

For every agent type t € T(I), we denote by N; the subset of N containing all agents of
type t; observe that { N; | t € T(I) } forms a partition of N. For an agent type t € T'(I) we
denote by P, (sGASP) or »=; (GASP) the preference list assigned to all agents of type ¢ and
we use P;(a) (for an activity a € A) to denote P; restricted to activity a, i.e., Pi(a) is equal
to P,(a) for any agent n of type t. For an assignment 7: N — A* ¢t € T(I), and a € A we
denote by 7, the set {n [n € Ny An(n) =a} and by 7; the set (J,c 4 7t,a- Further, m(t)
is the set of all activities that have at least one agent of type ¢ participating in it. We say
that 7 is a perfect assignment for some agent type ¢t € T(I) if w(n) # ay for every n € Ny.
We denote by PE(I, ) the subset of T'(I) consisting of all agent types that are perfectly
assigned by 7, and say that 7 is a perfect assignment if PE(I,7) = T(I).

One notion that will appear through the paper is that of compatibility: for a subset
Q C T(I), we say that « is compatible with @ if PE(I,7) = Q. We conclude this section
with a technical lemma which provides a preprocessing procedure that will be used as a basic
tool for obtaining our algorithmic results. In particular, Lemma 1 allows us to reduce the
problem of computing a stable assignment for a SGASP instance compatible with @) to the
problem of finding an individually rational assignment.

» Lemma 1. Let I = (N, A, (Pp)nen) be an instance of SGASP and Q C T'(I). Then in
time O(|N|*|A|) one can compute an instance y(I,Q) = (N, A, (P))nen) and A4p(I,Q) C A
with the following property: for every assignment m : N — A* that is compatible with Q, it
holds that 7 is stable for I if and only if 7 is individually rational for v(I,Q) and m=*(a) # 0
for every a € Ap(1,Q).

3 Subset Sum Machinery

In this section we introduce the Subset Sum machinery required for our algorithms and lower
bound results. In particular, we introduce three variants of SUBSET SUM, obtain algorithms
for two of them, and provide a W[1]-hardness result for the third.

Tree Subset Sum. Here we introduce a useful generalization of SUBSET SuM, for which we
obtain polynomial-time tractability under the assumption that the input is encoded in unary.
Intuitively, our problem asks us to assign values to edges while meeting a simple criterion on
the values of edges incident to each vertex.
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TREE SUBSET SuM (TSS)

Input: A vertex-labeled undirected tree T' with labeling function X : V(1) — 2".
Question: Is there an assignment « : E(T) — N such that for every v € V(T) it holds
that Z€€E(T)M€e a(e) € A(v).

Let us briefly comment on the relationship of T'SS with SUBSET SuM. Recall that given
a set S of natural numbers and a natural number ¢, the SUBSET SUM problem asks whether
there is a subset S of S such that }___g, s =t. One can easily construct a simple instance
(G, ) of TSS that is equivalent to a given instance (S,t) of SUBSET SUM as follows. G
consists of a star having one leaf I, for every s € S with A\(I5) = {0, s} and A(c) = {¢} for
the center vertex ¢ of the star. Given this simple reduction from SUBSET SuM to TSS it
becomes clear that T'SS is much more general than SUBSET SUM. In particular, instead of a
star T'SS allows for the use of an arbitrary tree structure and moreover one can use arbitrary
subsets of natural numbers to specify the constrains on the vertices. The above reduction in
combination with the fact that SUBSET SuM is weakly NP-hard implies that T'SS is also
weakly NP-hard. In the remainder of names paragraph we will show that TSS (like SUBSET
SuM) can be solved in polynomial-time if the input is given in unary. This will later be used
to obtain Result 1 (in Section 4).

Let I = (T, )\) be an instance of TSS. We denote by max(I) the value of the maximum
number occurring in any vertex label. The main idea behind our algorithm for TSS is to
apply leaf-to-root dynamic programming. In order to execute our dynamic programming
procedure, we will need to solve a special case of T'SS which we call PARTITIONED SUBSET
SuM; this is the problem that will later arise when computing the dynamic programming
tables for T'SS. In the PARTITIONED SUBSET SUM problem one is given a target set R of
natural numbers and ¢ source sets Si,... Sy of natural numbers and the aim is to compute
the set S of all natural numbers s such that there are si, ..., sy, where s; € S; for every ¢
with 1 < < ¢, satisfying (3, ,<,8i) + 5 € R.

» Lemma 2. An instance I = (T, \) of TSS can be solved in time O(|V(T)|? - max(I)?).

Multidimensional Partitioned Subset Sum. Our second generalization of SUBSET SUM is
a multi-dimensional variant of the problem that allows to separate the input set of numbers
into several groups, and restricts the solution to take at most 1 vector from each group. For
technical reasons, we will only search for solutions of size at most r.

MULTIDIMENSIONAL PARTITIONED SUBSET SuM (MPSS)

Input: k €N, r € No, and a family P = {Py,... P} of sets of vectors over Ng.

Question:  Compute the set of all vectors t € {0, ... ,r}k such that there are p1,...,D
with p; € P; for every ¢ with 1 <4 <1 such that ), _._,pi =t.

It is easy to see that SUBSET SUM is a special case of MPSS: given an instance of SUBSET
SUM, we can create an equivalent instance of MPSS by setting r to a sufficiently large
number and simply making each group P; contain two vectors: the all-zero vector and the
vector that is equal to the i-th number of the SUBSET SUM instance in all entries. The
following algorithm is used as a subprocedure for Result 3 (in Section 6).

» Lemma 3. An instance I = (k,r,P) of MPSS can be solved in time O(|I| - r*).
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Simple Multidimensional Partitioned Subset Sum. Here, we are interested in a much more
restrictive version of MPSS, where all vectors (apart from the target vector) are only allowed
to have at most one non-zero component. Surprisingly, we show that the W[1]-hardness of
the previously studied MULTIDIMENSIONAL SUBSET SUM problem [13, 12] carries over to
this more restrictive variant using an intricate and involved reduction. This result forms the
main ingredient needed for our Result 2 (provided in Secction 5). To formalize our problem,
we say that a set P of vectors in N¢ is simple if each vector in P has at most one non-zero
component and the values of the non-zero components for any two distinct vectors in P
are distinct.

SIMPLE MULTIDIMENSIONAL PARTITIONED SUBSET SUM (SMPSS)

Input: deN, teNg, and a family P = {Pi,... P} of simple sets of vectors in Ng.
Parameter: d.

Question: Are there vectors pi,...,p; with p; € P; for every ¢ with 1 <4 < such that
Z1gigl pi =t

» Theorem 4. SMPSS is strongly W[1]-hard.

Proof Sketch. We will employ a parameterized reduction from the PARTITIONED CLIQUE
problem, which is well-known to be W([1]-complete [20]. In PARTITIONED CLIQUE we are given
an integer k along with a graph G whose vertex set V' is partitioned into & given independent
sets V1,..., Vi, and are asked to decide whether G contains a k-clique. We denote by E; ;
the set of edges of G that have one endpoint in V; and one endpoint in V; and we assume
w.lo.g. that |[V; = {vi,...,v.}| = n and |E; j| = m for every i and j with 1 <i < j <k (see
the standard textbooks for a justification of these assumptions [2, 8]).
Given an instance (G, k) of PARTITIONED CLIQUE with partition Vi, ..., Vi, we construct
an equivalent instance I = (d,t,P) of SMPSS in polynomial time, where d = k(k — 1) + (g)
and |P| = (’2“) +nk(2k —3). We will also make use of the following notation. For 7 and j with
1<i<kandl<j<k, wedenote by indJ(i, j) the j-th smallest number in [k] \ {¢} and we
denote by indMin(7) and indMax(i) the numbers indJ(4, 1) and indJ(i, k — 1), respectively.
We assign to every vertex v of G a unique number S(v) from a Sidon sequence S of length
[V(G)| [10]. A Sidon sequence is a sequence of natural numbers such that the sum of each
pair of numbers is unique; it can be shown that it is possible to construct such sequences
whose maximum value is bounded by a polynomial in its length [1, 10].
To simplify the description of I, we will introduce names and notions to identify both
components of vectors and sets in P. Every vector in I has the following components:
For every i and j with 1 < 4,5 < k and i # j, the vertex component ¢, (j). We set
e, ()] to:
n® +nt if j = indMin(i),
(n—1)n8 +n +nt 4+ 3, (¢ + ¢n?) if j > indMin(i) and j < indMax(i), and
(n—1)n® +nb+ "), ¢, otherwise.
For every i and j with 1 < i < j < k, the edge component cg(i,j) with t[cg(i,j)] =
Dvev, uv; S(v).
Note that the total number of components d is equal to k(k — 1) + (g) and that for every
i with 1 < ¢ < k, there are k — 1 vertex components, i.e., the components ci(indJ(i, 1)),
.o, ¢ (indJ(i, k — 1)), which intuitively have the following tasks. The first component, i.e.,
the component ci,(indJ(i,1)) identifies a vertex v € V; that should be part of a k-clique
in G. Moreover, every component ci,(indJ(i,)) (including the first component), is also
responsible for: (1) Signalling the choice of the chosen vertex v € V; to the next component,
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i.e., the component ci,(indJ(i,j + 1)) and (2) Signalling the choice of the vertex v € V; to
the component cg(4, j) that will then verify that there is an edge between the vertex chosen
for V; and the vertex chosen for V;. This interplay between the components will be achieved
through the sets of vectors in P that will be defined and explained next.

Table 2 An illustration of the vectors contained in the sets Py (2,£),..., Pty (4,£) and
P5(2,0),...,P5(3,£). For example the column for the set Pgy (2,£) shows that the set contains
two vectors, one whose only non-zero component ci, (2) has the value n% + £ and a second one
whose only non-zero component cg(1,2) and has the value S(v;). The last column provides the
value for the target vector for the component given by the row. Finally, the value Z is equal to
(n—1)n*+n®+ 3" (0.

| Phv(20)  PM20)  Phv(B.) RGO Phy(0) | i
i (2) n® 42 n* —¢ nS +n?
ci(3) n® + 04 n? n® +4 nt + fn? Z 4 n* + oo (n?)
i (4) n®+4 n® + ¢ A
es(1,2) | S(b) S ocvion, S©)
es(1,3) S@h) > cvion, S©)
ce(1,4) S(vr) Yveriov, S()

Table 3 An illustration of the vectors contained in the sets Pgy (4,€), Phy (i,€), and Pg(i,5)
and their interplay with the components ¢, (), c7V (7), and cv (i, 7). For the conventions used in the
table please refer to Table 2. Additionally, note that the column for Pg(%,j) indicates that the set
contains one vector for every edge {v,u} € F; ;, whose only non-zero component cg (%, j) has the
value S(v) + S(u).

| Phv(,0)  Phy(,0) Pr(i, j) | ¢
() n® 44
A, (i) n® + 4
ce(i,g) | S(vp) S(y)  {SW)+SW) [{v,u} € By} | X, ev,uv, SO)

‘P consists of the following sets, which are illustrated in Table 2 and 3:

For every ¢, 7/, and £ with 1 < i <k, 1 <75 <k —2,and 1 < ¢ < n, the vertex set
Pi(j,£), where j = indJ(4,j"), containing two vectors @:j,l and v;; , defined as follows:
if j/ =1, then @ifj,e[ci/(j)] =n*— ¢ and z’);j’e[c%,(indJ(Lj’ +1))] =n® + £+ n? or

if 1 <j' < k=2, then o\, [c},(j)] = n*+£n? and v, [}, (indJ(i, ' +1))] = n® +L+n?

or

if j/ =k — 2, then Ejjj,e[cﬁ/(j)] =n* + /n? and Ei_’j,e[cﬁ/(indJ(i,j’ +1))] =n8 + 1.
We denote by P{,(]), P{}+(j), and P{,_(j) the sets Uy_, (P{(4,¢)), Pi(j)N {T);fm |1<
¢ <n},and Py (j)\ P (j), respectively.
For every i, j, and £ with 1 <i,j < k, ¢ # j, and 1 < £ < n, the verter incidence set
Pi.(4,€), which contains the two vectors d:j,é and a; ; , such that &;fj,z[ci, ()] =n® +¢
and a; ; ,[cr(i,7)] = S(vj). We denote by Ppy (j), Phy,(j), and Phy_(j) the sets
Uiz, (Phy(4,0)), PE(5) N {ELIM |1 <¢<n}, and Phy () \ Phy . (4), respectively.
For every 4, j with 1 <i < j <k, the edge set Pg(i, j), which for every e = {v,u} € E; ;
contains the vector e such that e[cg(i, j)] = S(v) + S(u); note that Pg(i, ) is indeed a
simple set, because S is a Sidon sequence.

Note that altogether there are nk(k — 2) + (’;) +nk(k—1)= (’;) + nk(2k — 3) sets in P.
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Informally, the two vectors @if ;e and v, in P{.(4,0) represent the choice of whether
or not the vertex v; should be included in a k-clique for G, i.e., if a solution for I chooses
v;rj’ , then vé should be part of a k-clique and otherwise not. The component ci,(j), more
specifically the value for £[ci,(j)], now ensures that a solution can choose at most one such
IRTI
be chosen by a solution for I signals the choice of the vertex for V; to the next component,
i.e., either the component ¢, (j+ 1) if j + 1 # i or the component ci,(j +2) if j 4+ 1 = i. Note
that we only need k — 2 sets P},(j) for every i, because we need to copy the vertex choice

vector in P"} +( 7). Moreover, the fact that all but one of the vectors © , U need to

1,7,m

for V; to only £ — 1 components. A similar idea underlies the two vectors a;tj,l and a; ;g in
PLy (4, 0), i.e., again the component ci,(j) ensures that &Ij}z can be chosen for only one of
the sets Piy (4, 1),..., Pk (j,n) and a; ;, must be chosen for all the remaining ones. Note
that the component ci,(j) now also ensures that the choice made for the sets in P} () is the
same as the choice made for the sets in Pk, (j). Moreover, the choice made for the sets in
PLy(j) is now propagated to the component cg (4, j) (instead of the next vertex component).
Finally, the vectors in the set Pg(i,j) represent the choice of the edge used in a k-clique
between V; and V; and the component cg (i, j) ensures that only an edge, whose endpoints
are the two vertices signalled by the sets Pk (j) and ng(i) can be chosen. <

4 Result 1: Fixed-Parameter Tractability of sGasp

In this section we will establish that SGASP is FPT when parameterized by the number of
agent types and the number of activities by proving Theorem 5.

» Theorem 5. SGASP can be solved in time O(21T(NI-A+AD . ((IN| + |A])|N])?).

Let I = (N, A, (P,)nen) be a SGASP instance and let m: N — A* be an assignment of
agents to activities. We denote by G(w) the incidence graph between T'(N) and A, which is
defined as follows. Gp(7) has vertices T(N) U A and contains an edge between an agent type
t € T(N) and an activity a € A if m o # 0. We say that 7 is acyclic if G;(7) is acyclic.

Our first aim towards the proof of Theorem 5 is to show that if I has a stable assignment,
then it also has an acyclic stable assignment (Lemma 7). We will then show in Lemma 9 that
finding a stable assignment whose incidence graph is equal to some given acyclic pattern graph
can be achieved in polynomial-time via a reduction to the T'SS problem (see Lemma 2). Since
the number of (acyclic) pattern graphs is bounded in our parameters, we can subsequently
solve SGASP by enumerating all acyclic pattern graphs and checking for each of them whether
there is an acyclic solution matching the selected pattern.

A crucial notion towards showing that it is sufficient to consider only acyclic solutions is
the notion of (strict) compression. We say that an assignment 7 is a compression of 7 if it
satisfies the following conditions:

(C1) for every t € T(N) it holds that |m| = |7/,

(C2) for every a € A it holds that |7~ (a)| = |77 !(a)|, and

(C3) for every a € A it holds that the set of agent types 7 assigns to a is a subset of the
agent types 7 assigns to a.

Intuitively, an assignment 7 is a compression of 7 if it maintains all the properties required
to preserve stability and compatibility with a given subset @ C T'(IN). We note that condition
(C3) can be formalized as T(7~(a)) C T(7~'(a)). The following lemma shows that every
assignment that is not acyclic admits a compression.

» Lemma 6. Let m: N — A* be an assignment for I. Then there exists an acyclic assignment
' that compresses .
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The next lemma provides the first cornerstone for our algorithm by showing that it is
sufficient to consider only acyclic solutions. Intuitively, it is a consequence of Lemma 6 along
with the observation that compression preserves stability and individual rationality.

» Lemma 7. If I has a stable assignment, then I has an acyclic stable assignment.

Our next step is the introduction of terminology related to the pattern graphs mentioned
at the beginning of this section. Let G be a bipartite graph with bi-partition {T'(N), A}.
We say that G models an assignment 7 : N — A* if G;(w) = G; in this sense every such
bipartite graph can be seen as a pattern (or model) for assignments. For a subset Q@ C T'(N)
we say that G is compatible with Q if every vertex in @Q and every vertex in Ay(I, Q) (recall
the definition of Ap(I,Q) given in Lemma 1) has at least one neighbor in G note that if G
is compatible with @ then any assignment m modeled by G satisfies 771(a) # () for every
a € Aygy(I,Q). Intuitively, the graph G captures information about which types of agents
are mapped to which activities (without specifying numbers), while @ captures information
about which agent types are perfectly (i.e., “completely”) assigned.

Let @ C T(N) and let G be a bipartite graph with bi-partition {T'(N), A} that is com-
patible with . The following simple lemma shows that, modulo compatibility requirements,
finding a stable assignment for I can be reduced to finding an individually rational assignment
for v(I, Q) (recall the definition of (I, Q@) given in Lemma 1).

» Lemma 8. Let Q C T(N) and let G be a bipartite graph with bi-partition {T'(N), A} that
is compatible with Q. Then for every assignment m: N — A* modeled by G and compatible
with Q, m is stable for I if and only if © is individually rational for ~v(I,Q).

The next lemma forms (along with Lemma 7) the core component for our proof.

» Lemma 9. Let Q C T(N) and let G be an acyclic bipartite graph with bi-partition
{T(N), A} that is compatible with Q. Then one can decide in time O((|N| + |A])?|N|?)
whether I has a stable assignment which is modeled by G and compatible with Q.

We now have all the ingredients needed to establish Theorem 5 (x).

5 Result 2: Lower Bound for sGASP

In this section we complement Theorem 5 by showing that if we drop the number of activities
in the parameterization, then SGASP becomes W[1]-hard. We achieve this via a parameterized
reduction from SMPSS that we have shown to be strongly W[1]-hard in Theorem 4.

» Theorem 10. SGASP is W[1]|-hard parameterized by the number of agent types.

6 Result 3: XP Algorithms for sGasp and GASP

In this section, we present our XP algorithm for GASP parameterized by the number of agent
types. In order to obtain this result, we observe that the stability of an assignment for GASP
can be decided by only considering the stability of agents that are assigned to a “minimal
alternative” w.r.t. their type. We then show that once one guesses (i.e., branches over) a
minimal alternative for every agent type, the problem of finding a stable assignment for
GAsP that is compatible with this guess can be reduced to the problem of finding a perfect
and individual rational assignment for a certain instance of SGASP, where one additionally
requires that certain activities are assigned to at least one agent. Our first task will hence be
to obtain an XP algorithm which can find such a perfect and individually rational assignment
for sGAsp. To that end, we obtain Lemma 11, which allows us to find certain individually
rational assignments in SGASP instances and forms a core part of our XP algorithm for GAsP.
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» Lemma 11. Let I = (N, A, (Py)nen) be an instance of sGASP, Q C T(N), and Ay C
A. Then one can decide in time O(|A| - (IN)TW) whether T has an individual rational

assignment 7 that is compatible with Q such that 7=*(a) # 0 for every a € Asp.

As a secondary result, we can already obtain an XP algorithm for SGASP parameterized
by the number of agent types, which may also be of independent interest, as the obtained
running time is strictly better than that of the algorithm obtained for the more general GASP.

» Theorem 12. An instance I = (N, A, (Pp)nen) of SGASP can be solved in time |A| -
[N[OIT@ND.

Our next aim is to use Lemma 11 to obtain an XP algorithm for GAsp. To simplify the
presentation of our algorithm, we start by introducing the notion of an NS*-deviations that
combines and unifies individual rationality and NS-deviations. Namely, let I = (N, A, (=,
Jnen) be a GASP instance, 7 : N — A* be an assignment, and n € N. We say that n has
an NS*-deviation to an activity o’ € A*\ {w(n)} if (¢, |71 (a')| + 1) =1(n) (a,|7 (a)]). In
order to deal with the case that a’ = ag, we let (ag,i + 1) stand for (ag, 1) for every i.

» Observation 13. An assignment 7 for [ is stable if and only if no agent n € N has an
NS*-deviation to any activity in A* \ {m(n)}.

Let I and 7 be as above and let ¢t € T'(I). We denote by 7} the set of activities my if ¢ is
perfectly assigned by 7 and 7 U {ag}, otherwise. We say an activity a € 7 is minimal with
respect to t if (o, |7~ 1(a’)|) = (a, |7~ 1(a)|) for each a’ € 7} and we address the alternative
(a, |77 1(a)|) as a minimal alternative with respect to t.

The following lemma uses Observation 13 and allows us to characterize the stability
condition of an assignment in terms of minimial activities for each agent type.

» Lemma 14. An assignment 7 for I is stable if and only if for each t € T(N) and each
a € A*\ {am}, it holds that (am,|m *(am)|) = (a, |7t~ (a)| + 1), where a., is a minimal
activity w.r.t. t.

The next theorem now employs the above lemma to construct an instance I’ of SGASP
together with a subset Ay of activities such that for every function fin : T(I) — X (or in
other words for every guess of minimal alternatives in an assignment), it holds that I has a
stable assignment such that fin(¢) is a minimal alternative w.r.t. ¢ for every ¢ € T'(I) if and
only if I’ has a perfect and individual rational assignment 7 such that 7=1(a) # () for every
a € Ayg. For brevity, we will say that an assignment 7 is compatible with fuin if and only if
fmin(t) is a minimal alternative w.r.t. ¢ for every ¢t € T'(I).

» Theorem 15. Let I = (N, A, (=n)nen) be an instance of GASP and let fuin : T(N) — X,
which informally represents a guess of a minimal alternative for every agent type. Then one
can in time O(|N|?|A|) construct an instance I' = (N, AU{as}, (Pn)nen) of SGASP together
with a subset Ay of activities such that |T(I')| < 2|T(I)| and I has a stable assignment
compatible with fmin(t) if and only if I' has a perfect individual rational assignment m with
7w a) # 0 for every a € Ay,

We now have all the ingredients needed to prove the main result of this section.

» Theorem 16. An instance I = (N, A, (=n)nen) of GASP can be solved in time (|A| -
‘NDO(IT(I)I),
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Proof Sketch. Given an instance I = (N, A, (=p)nen) of GASP, the algorithm enumerates
all of the at most (|A| - |N])IT()! possible functions fu, and for each such function fu, the
algorithm uses Theorem 15 to construct the instance I’ = (N, AU {ag}, (Py)nen) of SGASP
with |T(I")] < |T(I)| together with the set A_¢ of activities in time O(|N|?|Al). It then uses
Lemma 11 to decide whether I’ has a perfect individual rational assignment m; such that
71 a) # 0 for every a € Ay in time O((JA] + 1)(|N)TUINY = O((JA| + 1)(IN|ATDN. 1f
this is true for at least one of the functions fi,in, the algorithm returns that I has a solution,
otherwise the algorithm correctly returns that I has no solution. |

7 Results 4 and 5: Two Lower Bounds

Our next result shows that GASP is unlikely to be fixed-parameter tractable parameterized
by both the number of activities (a) and the number of agent types ().

» Theorem 17. GASP is W[1]-hard parameterized by t + a.

Since GAsP and gGASP are equivalent on complete networks the above hardness result
clearly also applies to gGAsP. However, to our surprise, the hardness does even hold if we
additionally parameterize gGASP with the vertex cover number (vc) of the network.

» Theorem 18. gGasP is W[1]|-hard parameterized by t + a + vc.

8 Conclusion

We obtained a comprehensive picture of the parameterized complexity of Group Activity
Selection problems parameterized by the number of agent types, both with and without the
number of activities as an additional parameter. Our positive results suggest that using the
number of agent types is a highly appealing parameter for GASP and its variants; indeed, this
parameter will often be much smaller than the number of agents due to the way preference
lists are collected or estimated (as also argued in initial work on GAsP [6]). For instance,
in the large-scale event management setting of GASP (or SGASP), one would expect that
preference lists for event participants are collected via simple questionnaires — and so the
number of agent types would remain fairly small regardless of the size of the event.

We believe that the techniques used to obtain the presented results, and especially the

Subset Sum tools developed to this end, are of broad interest to the algorithms community.

For instance, MULTIDIMENSIONAL SUBSET SUM (MSS) has been used as a starting point for
W(1]-hardness reductions in at least two different settings over the past year [13, 12], but
the simple and partitioned variant of the problem (i.e., SMPSS) is much more restrictive

and hence forms a strictly better starting point for any such reductions in the future.

This is also reflected in our proof of the W[1]-hardness of SMPSS, which is significantly
more involved than the analogous result for MSS. Likewise, we expect that the developed
algorithms for TREE SUBSET SUM and MULTIDIMENSIONAL PARTITIONED SUBSET SUM
may find applications as subroutines for (parameterized and/or classical) algorithms in
various settings.

Note that there is now an almost complete picture of the complexity of Group Activity
Selection problems w.r.t. any combination of the parameters number of agents, number of
activities, and number of agent types (see also Table 1). There is only one piece missing,
namely, the parameterized complexity of SGASP parameterized by the number of agents,
which we resolve for completeness with the following theorem.

» Theorem 19. sGASP is fized-parameter tractable parameterized by the number of agents.
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Proof. Let I = (N, A, (Py)nen) be a SGASP instance. The main idea behind the algorithm is
to guess (i.e., branch over) the set My of agents that are assigned to ag as well as a partition
M of the remaining agents, i.e., the agents in N \ My, and then check whether there is a
stable assignment 7 for I such that:
(P1) 7~ Y(ap) = My and
(P2) {77 (a) | a € A}\ {0} = M, i.e., M corresponds to the grouping of agents into
activities by .
Since there are at most n™ possibilities for My and M and those can be enumerated in
time O(n™), it remains to show how to decide whether there is a stable assignent for I
satisfying (P1) and (P2) for any given My and M. Towards showing this, we first consider
the implications for a stable assignment resulting from assigning the agents in My to agy.
Namely, let P/, for every n € N be the approval set obtained from P, after removing all
alternatives (a,%) such that i # 0 and there is an agent ng € My with (a,i + 1) € P,,.
Moreover, let Ay be the set of all activities that cannot be left empty if the agents in M
are assigned to ag, i.e., the set of all activities such that there is an agent ng € My with
(a,1) € P,,. Now consider a set M € M, and observe that the set Ay, of activities that the
agents in M can be assigned to in any stable assignment satisfying (P1) and (P2) is given
by: Ay ={a||M|€,cp Pnla)" }. Let B be the bipartite graph having M on one side
and A on the other side and having an edge between a vertex M € M and a vertex a € A if
a € Apr. We claim that I has a stable assignment satisfying (P1) and (P2) if and only if B
has a matching that saturates M U A.y. Since deciding the existence of such a matching
can be achieved in time O(\/|V(B)||E(B)|) = O(v/|N U A||N||A]) (see e.g. [13, Lemma 4]),
establishing this claim is the last component required for the proof of the theorem.

Towards showing the forward direction, let 7 be a stable assignment for I satisfying (P1)
and (P2). Then O = {{a,¢"'(a)} | a € A} is a matching in B that saturates M U A_y.
Note that O saturates M due to (P2), moreover, O saturates Ay since otherwise there
would be an activity a € Ay with 77*(a) = (), which due to the definition of Ay and (P1)
implies there is an agent n with 7(n) = ag such that 1 € P,(a), contradicting our assumption
that 7 is stable.

Towards showing the reverse direction, let O be a matching in B that saturates M U A.
Then the assignment 7 mapping all agents in M (for every M € M) to its partner in
O and all other agents to ay clearly already satisfies (P1) and (P2). It remains to show
that it is also stable. Note that 7 is individually rational because of the construction of B.
Moreover, assume for a contradiction that there is an agent n € Ny with 7(n) = ag and an
activity a € A such that (a, |77 !(a)| + 1) € P,. If |7~ *(a)| = 0, then a € Ay and hence
|m~1(a)| > 0 (because O saturates A_y), a contradiction. If on the other hand |7~ (a)| # 0,
then {M,a} € O (for some M € M), but (a,|r~(a)|) ¢ P, and hence {M,a} ¢ E(B), also
a contradiction. <

For future work, we believe that it would be interesting to see how the complexity map
changes if one were to consider the number of activity types instead of the number of activities
in our parameterizations.
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