
A Faster Interior-Point Method for
Sum-Of-Squares Optimization
Shunhua Jiang #

Columbia University, New York, NY, USA

Bento Natura #

London School of Economics, UK

Omri Weinstein #

The Hebrew University, Jerusalem, Israel
Columbia University, New York, NY, USA

Abstract
We present a faster interior-point method for optimizing sum-of-squares (SOS) polynomials, which
are a central tool in polynomial optimization and capture convex programming in the Lasserre
hierarchy. Let p =

∑
i
q2

i be an n-variate SOS polynomial of degree 2d. Denoting by L :=
(

n+d
d

)
and U :=

(
n+2d

2d

)
the dimensions of the vector spaces in which qi’s and p live respectively, our

algorithm runs in time Õ(LU1.87). This is polynomially faster than state-of-art SOS and semidefinite
programming solvers [16, 15, 27], which achieve runtime Õ(L0.5 min{U2.37, L4.24}).

The centerpiece of our algorithm is a dynamic data structure for maintaining the inverse of the
Hessian of the SOS barrier function under the polynomial interpolant basis [27], which efficiently
extends to multivariate SOS optimization, and requires maintaining spectral approximations to low-
rank perturbations of elementwise (Hadamard) products. This is the main challenge and departure
from recent IPM breakthroughs using inverse-maintenance, where low-rank updates to the slack
matrix readily imply the same for the Hessian matrix.

2012 ACM Subject Classification Mathematics of computing → Continuous functions; Mathematics
of computing → Convex optimization; Mathematics of computing → Semidefinite programming;
Mathematics of computing → Stochastic control and optimization

Keywords and phrases Interior Point Methods, Sum-of-squares Optimization, Dynamic Matrix
Inverse

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.79

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2202.08489

Funding Shunhua Jiang: Supported by NSF CAREER award CCF-1844887.
Bento Natura: This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement no.
757481–ScaleOpt).
Omri Weinstein: Supported by NSF CAREER award CCF-1844887 and ISF grant #3011005535.

Acknowledgements The second author would like to thank Vissarion Fisikopoulos and Elias Tsigar-
idas for introducing him from a practical perspective to Sum-of-Squares Optimization under the
interpolant basis.

1 Introduction

Polynomial optimization is a fundamental problem in many areas of applied mathematics,
operations research, and theoretical computer science, including combinatorial optimization
[5, 36, 4], statistical estimation [13, 14], experimental design [26], control theory [12], signal

EA
T
C
S

© Shunhua Jiang, Bento Natura, and Omri Weinstein;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 79; pp. 79:1–79:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sj3005@columbia.edu
mailto:b.natura@lse.ac.uk
mailto:omri@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.79
https://arxiv.org/abs/2202.08489
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 A Faster Interior-Point Method for Sum-Of-Squares Optimization

processing [31], power systems engineering [11], discrete geometry [2, 3] and computational
algebraic geometry [20]. In the most basic formulation, we are given a collection of k real
n-variate polynomials f1, · · · , fk and an objective function f : Rn → R, and the goal is to
minimize f over the set S := {t ∈ Rn | ∀i ∈ {1, · · · , k} : fi(t) ≥ 0}, that is, to find

inf
t∈Rn
{f(t) | t ∈ S}, (1)

which is equivalent to checking polynomial nonnegativity supc∈R{c | f(t)− c ≥ 0, ∀t ∈ S}.
This is then equivalent to computing supc∈R{c | f − c ∈ K(S)}, where K(S) denotes the
convex cone of all polynomials of degree at most deg(f) that are non-negative on the set S.
This is an instance of the more general conic programming:

min
x∈RN

c⊤x s.t. Ax = b, x ∈ K, (2)

where K ⊂ RN is some convex cone1. The conic optimization problem over the cone K(S) is
intractable in general because there is no simple characterization of K(S). Nevertheless, there
always exists an increasing family of convex cones of weighted sum-of-squares polynomials
that converges to any such cone K(S).

We first introduce the notion of sum-of-squares (SOS) polynomials: Denoting by Vn,d the
vector space of all n-variate polynomials of (total) degree at most d, a polynomial p ∈ Vn,2d

is said to be sum-of-squares (SOS) if it can be written as a finite sum of square polynomials,
i.e., there exist q1, · · · , qℓ such that p =

∑ℓ
i=1 q2

i . The set Σn,2d of SOS polynomials of degree
at most 2d is a (proper) cone contained in Vn,2d, of dimension U := dim(Vn,2d) =

(
n+2d

2d

)
,

as the vector space Vn,2d is isomorphic to RU . If p can be written as p =
∑k

i=1 fisi for
s1 ∈ Σn,2d1 , · · · , Σn,2dk

and k nonzero polynomials f := (f1, · · · , fk), then it is said to be
weighted sum-of-squares (WSOS).

Putinar’s Positivstellensatz [29] states that under mild conditions, any polynomial p

that is non-negative on S can be written as a WSOS polynomial
∑k

i=1 fisi, albeit with
(potentially) unbounded degree si’s. In WSOS optimization we consider sum-of-squares
polynomials si with bounded degree, so the hierarchy of WSOS optimization with increasing
degree (known as the Lasserre hierarchy) can be viewed as a tool for approximating general
polynomial optimization. For more details of this approximation scheme for polynomial
optimization, we refer the readers to the textbooks [19, 7].

This paper concerns algorithms for (W)SOS optimization, which is the conic optimization
program (2) where the underlying cone K is the (W)SOS cone:

min
x∈RU

c⊤x s.t. Ax = b, x ∈ Σn,2d, (3)

where x ∈ Vn,2d is the vector of coefficients which encodes the polynomial. Henceforth, we
focus on the case where K = Σn,2d is the SOS cone. See our full version for how to extend
our algorithm for SOS optimization to WSOS.

The computational complexity of solving Problem 3 naturally depends on the dimensions

L := dim(Vn,d) =
(

n + d

d

)
, U := dim(Vn,2d) =

(
n + 2d

2d

)
(4)

of the underlying vector spaces (Note that L ≤ U ≤ L2). We now turn to explain the
previous approaches for SOS optimization solvers.

1 A subset K ⊂ RN is a convex cone if ∀ x, y ∈ K and α, β ∈ R+, αx + βy ∈ K.

S. Jiang, B. Natura, and O. Weinstein 79:3

SOS Optimization as SDPs

A fundamental fact is that the dual SOS cone is a slice of the SDP cone [24]. More formally,
for any fixed bases p = (p1, p2, · · · , pL) and q = (q1, q2, · · · , qU) to Vn,d and Vn,2d respectively,
there exists a unique linear mapping Λ : RU → RL×L satisfying

Λ(q(t)) = p(t)p(t)⊤, ∀t ∈ Rn. (5)

Here we define p(t) = (p1(t), p2(t), · · · , pL(t))⊤ and q(t) = (q1(t), q2(t), · · · , qU (t))⊤. An
equivalent way to view the definition of Λ in (5) is as follows: For polynomials pi, pj ∈ p there
are unique coefficients λiju such that pipj =

∑
u∈U λijuqu. These λiju define the mapping Λ

unambiguously.
This in turn implies that a polynomial s ∈ Vn,2d (we view s as a vector in RU that

corresponds to its coefficients over the basis q) is in the dual SOS cone Σ∗
n,2d if and only if

Λ(s) is a positive semidefinite (PSD) matrix (proved by [24], see Theorem 10 for details).
As [27] recently observed, the choice of the bases p, q crucially affects the complexity of the
optimization problem, more on this below.

Equation (5) implies the well-known fact that optimization over SOS polynomials (3) can
be reduced to semidefinite programming

min
X⪰0
{⟨C, X⟩ | tr(AiX) = bi, ∀i ∈ [m]}, (SDP)

and can thus be solved using off-the-shelf SDP solvers. However, despite recent breakthroughs
on the runtime of general SDP solvers via interior-point methods (IPMs) [16, 15], this SDP
reformulation of (3) does not scale well for moderately large degrees, i.e., whenever U ≪ L2

in (4). This is because the SDP reformulation always incurs a factor of at least L2, even
when U ≪ L2, as this is the SDP variable size (the PSD matrix X has size L× L). Indeed,
for the current fast-matrix-multiplication (FMM) exponent ω ≈ 2.37 [21, 1], the running
time of state-of-the-art SDP solvers [16, 15] for SOS optimization (Problem 3) is2

Õ
(
L0.5 ·min{UL2 + U2.37, L4.24}

)
. (6)

An alternative approach is to solve Problem 3 directly by designing an ad-hoc IPM
for the dual SOS cone, avoiding the blowup in the SDP reformulation. This was exactly
the motivation of [27]. Like all aformentioned SDP solvers, [27]’s SOS solver is based on
IPMs [25], which iteratively minimize the original objective function plus a barrier function
via Newton steps. When applied to the SOS Problem (3), the choice of the specific bases
p, q crucially affects the structure of the (Hessian of the) barrier function F (s) = F (Λ(s)),
and hence the cost-per-iteration of the IPM. As such, choosing a “good” and efficient basis
is key to a fast algorithm for (3). One of the main contribution of [27] is an efficient basis
for the SOS cone, which efficiently scales to multivariate SOS, yielding an IPM whose total
runtime is

Õ
(
L0.5Uω

)
≈ Õ

(
L0.5U2.37)

. (7)

Our main result is a polynomially faster IPM for Problem 3:

▶ Theorem 1 (Main Result, Informal version of Theorem 16). With current FMM exponent,
there is an algorithm for solving Problem (3), whose total running time is Õ

(
LU1.87)

.

Indeed, this runtime is polynomially faster than (7) and (6), as shown in Figure 1. We
now turn to elaborate on the technical approach for proving Theorem 1.

2 We use Õ(·) to hide Uo(1) and log(1/δ) factors.

ICALP 2022

79:4 A Faster Interior-Point Method for Sum-Of-Squares Optimization

1 1.2 1.4 1.6 1.8 2

2.4

2.6

2.8

3

3.2

3.4

3.6

logL U

lo
g U

(T
)

This paper
PY19
SDP

lower bound

Figure 1 Overview of current running times of recent solvers for SOS. The lower bound bound
stems from solving a linear system in U variables, i.e., T = Ω(Uω) where ω ≈ 2.37.

Faster IPMs via Inverse-Maintenance

Interior-Point Methods (IPMs [18, 30]) are a powerful class of second-order optimization
algorithms for convex optimization, which essentially reduce a conic optimization problem
(2) to solving a sequence of slowly-changing linear systems (via Newton steps). Since their
discovery in the mid 80’s, IPMs have emerged as the “gold-standard” of convex optimization,
as they are known to converge fast in both theory and practice [35]. The main computational
cost of IPMs is computing, in each iteration, the inverse of the Hessian of the underlying
barrier function F (s) = F (Λ(s)), which naively costs at least Uω time per iteration for the
SOS optimization problem [27]. A recent influential line of work [9, 16], inspired by [37]’s
seminal work, has demonstrated that dynamically maintaining the inverse of the Hessian
matrix under low-rank updates using clever data structures, can lead to much cheaper cost-
per-iteration. All of these results rely on a careful combination of dynamic data structures
with the geometry (e.g., spectral approximation) of the underlying optimization method and
barrier function. Similar techniques have been extended to other optimization problems as
well [23, 38, 17, 33, 34]. This paper extends this line of work to SOS optimization.

Our Techniques

Following the framework of [27], we also choose the polynomial interpolant basis representation,
which corresponds to a linear operator Λ : RU → RL×L is Λ(s) = P ⊤ diag(s)P , where
P ∈ RU×L is the matrix whose entries are the evaluation of the Lagrange interpolation
polynomials, through some unisolvent3 set of points in Vn,d (see Section 3 for a formal
definition). This basis induces the aforementioned convenient form of Λ, and generalizes to
the multivariate case. The Hessian of the barrier function F (s) = − log det(Λ(s)) is given by

H(s) =
(
P (P ⊤ diag(s)P)−1P ⊤)◦2 ∈ RU×U ,

3 Any set of points in Rn for which the evaluation of a polynomial in Vn,d on these points uniquely defines
the polynomial.

S. Jiang, B. Natura, and O. Weinstein 79:5

where A ◦ B denotes the element-wise (Hadamard) product of two matrices. The main
bottleneck of each iteration of IPMs is to compute the Hessian inverse H(x)−1 of the Newton
step, which naïvely takes O(Uω) time.

In IPM theory, it has long been known that it suffices to compute a spectral approximation
of the Hessian. We follow the “lazy update” framework in recent developments of LP and
SDP solvers [9, 16], which batches together low-rank updates to M := P (P ⊤ diag(s)P)−1P ⊤,
where rk(M) = L. In each iteration, we can compute a spectral approximation Mnew =
M + UV ⊤, where U, V are low rank matrices with size U × r where r ≪ U is chosen to
optimize the runtime. Since M̃ ≈ M implies that M̃◦2 ≈ M◦2, this also gives a spectral
approximation of the Hessian.

The main challenge here, compared to previous LP and SDP solvers [37, 22, 9, 16, 15], is
that low-rank updates to M do not readily translate to a low-rank update to (M◦2)−1, since
Hadamard-products can increase the rank rk(A ◦B) ≤ rk(A) · rk(B), in contrast to standard
matrix multiplication which does not increase the rank rk(AB) ≤ max{rk(A), rk(B)}. This
means that we cannot directly apply Woodbury’s identity to efficiently update the inverse of
the Hessian, which is the common approach in all aforementioned works. Instead, we employ
the following property which relates rank-one Hadamard-product perturbations to standard
matrix products

M ◦ (u · v⊤) = diag(u) ·M · diag(v),

which means that we can translate the rank-r update of M into a rank-Lr update of M◦2

for r ≤ L. With some further calculations, applying Woodbury’s identity on the resulting
matrix, implies that we can compute ((Mnew)◦2)−1 in time

O
(
Tmat(U, U, Lr)

)
,

which is never worse than Tmat(U, U, U) = Uω as long as r ≤ U/L. Modifying the amortization
tools of [16] and [15], combined with basic spectral theory for Hadamard products, we show
that our amortized cost per iteration is bounded by

O
(
U2 + Uω−1/2 · L1/2)

,

which becomes O
(
U2 + U1.87L0.5)

if we plug in the current matrix multiplication exponent.

2 Preliminaries

In this section we provide the definitions and the tools that we will use. For any integer
n > 0, we define [n] = {1, 2, · · · , n}. We use R+ and R≥0 to denote the set of positive and
non-negative real numbers respectively. We use 0n, 1n ∈ Rn to denote the all-zero and all-one
vectors of size n.

Given a vector v ∈ Rn, for any m ≤ n, we use v[:m] ∈ Rm to denote the first m entries of
v. For a vector v ∈ Rn, we use diag(v) ∈ Rn×n to denote the diagonal matrix whose diagonal
entries are v. For a square matrix A ∈ Rn×n, we use diag(A) ∈ Rn to denote the vector of
the diagonal entries of A. We use rk(A) to denote the rank of a matrix A. We use ker(A)
and Im(A) to denote the kernel space and the column space of A.

We say a matrix A ∈ Rn×n is PSD (denoted as A ⪰ 0) if A is symmetric and x⊤Ax ≥ 0
for all x ∈ Rn. We use Sn×n to denote the set of PSD matrices of size n× n. The spectral
norm of a matrix A ∈ Rn×d is defined as ∥A∥2 = maxx∈Rd,∥x∥2=1 ∥Ax∥2. The Frobenius
norm of A is defined as ∥A∥F =

√∑
i∈[n]

∑
j∈[d] A2

i,j . For any PSD matrix M ∈ Sn×n, we

define the M -norm as ∥x∥M =
√

x⊤Mx, ∀x ∈ Rn.

ICALP 2022

79:6 A Faster Interior-Point Method for Sum-Of-Squares Optimization

We use Tmat(a, b, c) to denote the time to multiply two matrices of sizes a× b and b× c.
A basic fact of fast matrix multiplication is that Tmat(a, b, c) = Tmat(b, c, a) = Tmat(c, a, b)
(see e.g. [6]), and we will use these three terms interchangeably.

▶ Fact 2 (Woodbury identity). Let A ∈ Rn×n, C ∈ Rk×k, U ∈ Rn×k, V ∈ Rk×n where A and
C are invertible, then

(A + UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

▶ Definition 3 (Hadamard product). For any two matrices A, B ∈ Rm×n, the Hadamard
product A ◦B is defined as

(A ◦B)i,j = Ai,j ·Bi,j , ∀i ∈ [m], j ∈ [n].

We also use A◦2 to denote A ◦A.

The Hadamard product has the following properties (the proofs are straightforward).

▶ Fact 4 (Properties of Hadamard product). For matrices A, B ∈ Rm×n, and vectors x ∈ Rm,
y ∈ Rn, we have the following properties.
1. x⊤(A ◦B)y = tr[diag(x)A diag(y)B⊤],
2. A ◦ (x · y⊤) = diag(x) ·A · diag(y).

▶ Definition 5 (Spectral approximation). For any two symmetric matrices A, Ã ∈ Rn×n, any
parameter ϵ ∈ (0, 1), we say Ã and A are ϵ-spectral approximation of each other, denoted as
Ã ≈ϵ A, if we have

e−ϵ · x⊤Ax ≤ x⊤Ãx ≤ eϵ · x⊤Ax, ∀x ∈ Rn.

Spectral approximation has the following properties.

▶ Fact 6 (Properties of spectral approximation). For any two PSD matrices A, Ã ∈ Rn×n,
any parameter ϵ ∈ (0, 1), if Ã ≈ϵ A, then we have
1. B⊤AB ≈ϵ B⊤ÃB, for any matrix B ∈ Rn×n.
2. If both A and Ã are invertible, then A−1 ≈ϵ Ã−1.
3. e−ϵ tr[A] ≤ tr[Ã] ≤ eϵ tr[A].
4. Ã◦2 ≈2ϵ A◦2.

Proof. The proofs of the first three claims are straightforward. We only prove the last claim.
For any vector x ∈ Rn, we have

x⊤A◦2x = tr[diag(x)A diag(x)A]

= tr[A1/2 diag(x)A diag(x)A1/2]

≤ eϵ · tr[A1/2 diag(x)Ã diag(x)A1/2]

= eϵ · tr[Ã1/2 diag(x)A diag(x)Ã1/2]

≤ e2ϵ · tr[Ã1/2 diag(x)Ã diag(x)Ã1/2] = e2ϵ · x⊤Ã◦2x

where the first step follows from Fact 4, the second and the fourth steps follow from the
trace invariance under cyclic permutations and the fact that A1/2 exists when A is PSD, the
third and the fifth steps follow from Part 3 of this fact.

Similarly we can prove x⊤A◦2x ≥ e−2ϵ · x⊤Ã◦2x. Thus we have A◦2 ≈2ϵ Ã◦2. ◀

S. Jiang, B. Natura, and O. Weinstein 79:7

3 Background of sum-of-squares optimization

In this section we provide the background of sum-of-squares optimization. We refer the
readers to [28, 27] for more details.

▶ Definition 7 (Polynomial space). We use Vn,d to denote the set of n-variate polynomials
over the reals of degree at most d, where the degree means the total degree, i.e., the degree of
xd1

1 · · ·xdn
n is

∑n
i=1 di.

▶ Definition 8 (Degree of polynomial space). We define L := dim(Vn,d) =
(

n+d
n

)
and

U := dim(Vn,2d) =
(

n+2d
n

)
.

After fixing a basis (p1, p2, · · · , pL) of Vn,d, there exists a one-to-one correspondence
between any polynomial p =

∑L
i=1 xi · pi ∈ Vn,d and the vector [x1, x2, · · · , xL] ∈ RL. From

now on when the basis is clear from context, we will use Vn,d and RL interchangeably, and
similarly Vn,2d and RU interchangeably.

▶ Definition 9 (SOS polynomials). A polynomial p ∈ Vn,2d is said to be a sum-of-squares
(SOS) polynomial if p can be written as a sum of squares of polynomials, i.e. p =

∑M
i=1 q2

i

for some M ∈ N and polynomials q1, q2, · · · , qM ∈ Vn,d.
We use Σn,2d to denote the set of n-variate SOS polynomials of degree at most 2d.

The set Σn,2d is a closed convex and pointed cone in Vn,2d with non-empty interior (Theorem
17.1 of [24]). The SOS optimization problem requires the variable x ∈ RU to be in the SOS
cone, and it is a special case of conic programming. Given a constraint matrix A ∈ Rm×U

where m ≤ U , and b ∈ Rm and c ∈ RU , the SOS optimization can be written in the following
primal-dual formulation:

Primal: min ⟨c, x⟩
s.t. Ax = b

x ∈ Σn,2d ,

Dual: max ⟨y, b⟩
s.t. A⊤y + s = c

s ∈ Σ∗
n,2d .

(SOS)

Here Σ∗
n,2d := {s ∈ RU | s⊤x ≥ 0, ∀x ∈ Σn,2d} denotes the dual cone of Σn,2d.

Nesterov in [24] noted that the dual SOS cone allows the following characterization.

▶ Theorem 10 (Dual cone characterization, Theorem 17.1 of [24]). For any ordered bases
p = (p1, . . . , pL) and q = (q1, . . . , qU) of Vn,d and Vn,2d, let Λ : RU → RL×L be the unique
linear mapping satisfying Λ(q) = pp⊤.4 Then the dual cone Σ∗

n,2d admits the characterization
under the bases p and q:

Σ∗
n,2d =

{
s ∈ RU | Λ(s) ⪰ 0

}
. (8)

As barrier functions for the cone of positive semidefinite matrices are well-known, this
also gives rise to a barrier function for the dual SOS cone. With the standard log-det barrier
for the semidefinite cone, the following function F : Σ∗

n,2d → R is a barrier function for Σ∗
n,2d:

F (s) = − log det(Λ(s)).

Furthermore, the barrier parameter νF of F (s) is bounded by the barrier parameter L of the
original log-det barrier function ([24]).

4 This equation means ∀t ∈ Rn, Λ([q1(t), · · · , qU (t)]⊤) = [p1(t), · · · , pL(t)]⊤ · [p1(t), · · · , pL(t)].

ICALP 2022

79:8 A Faster Interior-Point Method for Sum-Of-Squares Optimization

Interpolant basis

The barrier function depends on the choice of the basis for both Vn,d and Vn,2d, as the
linear map Λ depends on these two bases. We follow the approach of [27] and focus on
the so-called interpolant bases, which generalises well to multivariate polynomials and is
numerically stable.

For the vector space Vn,2d, consider a set of unisolvent points T = {t1, t2, · · · , tU} ⊆ Rn,
which is a set points such that every polynomial in Vn,2d is uniquely determined by its values
on the points in T . For univariate polynomials any set of U points suffices, but this does
not hold anymore for the multivariate case. To also ensure numerical stability, the so called
(approximate) Fekete points can be used as unisolvent points [32, 8].

The interpolant basis is defined as follows. Let us fix a set of unisolvent points T =
{t1, t2, · · · , tU} ⊆ Rn. Now every tu ∈ T implies a Lagrange polynomial qu which is the
unique polynomial that satisfies qu(tu) = 1 and qu(tv) = 0 for all tv ̸= tu ∈ T . The Lagrange
polynomials form a basis q = (q1, · · · , qU) of Vn,2d. Choose any basis p = (p1, . . . , pL) of
Vn,d. Define the matrix P ∈ RU×L as

Pu,ℓ = pℓ(tu), ∀u ∈ [U], ℓ ∈ [L].

By the definition of the Lagrange polynomials, pipj =
∑U

u=1 pi(tu)pj(tu)qu, so we have
pp⊤ = P ⊤ diag(q)P . Thus under the bases p and q, the linear map Λ : RU → RL×L takes
on the following convenient form:

Λ(s) = P ⊤ diag(s)P. (9)

For more details on how to pick the unisolvent points and how to construct P , we refer
the readers to [27] and the references therein.

4 Algorithm

Since in this paper we focus on the theoretical running time of the algorithm, for simplicity we
use the barrier method (see e.g. [30, Chapter 2]) instead of the more sophisticated Skajaa–Ye
Algorithm used by [27].

The dual formulation of (SOS) is equivalent to the following optimization problem

min−b⊤y s.t. y ∈ DF ,

where with an abuse of the notation we define F : Rm → R+ to be the barrier function

F (y) = − log det(Λ(c−A⊤y)) (10)

for c ∈ RU , and A ∈ Rm×U , and Λ(s) = P ⊤ diag(s)P is the linear operator defined in Eq (9).
DF ⊆ Rm is the domain of F , and DF is the closure of DF .

The barrier parameter of the barrier function F is νF = L. The gradient and the Hessian
of the barrier function F are (define s := c−A⊤y):

g(y) = A · diag
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)
,

H(y) = A ·
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)◦2
·A⊤.

For any η > 0, define a function Fη : Rm → R:

Fη(y) = −η · b⊤y + F (y).

S. Jiang, B. Natura, and O. Weinstein 79:9

The gradient and the Hessian of Fη(y) are:

gη(y) = − η · b + A · diag
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)
,

Hη(y) = A ·
(

P
(
P ⊤ diag(s)P

)−1
P ⊤

)◦2
·A⊤.

Note that Hη(y) = H(y) for any η.
In each iteration the barrier method increases η by a factor of 1 + Θ(1√

L
), and it performs

a Newton step

y ← y −Hη(y)−1 · gη(y).

By standard IPM theory it suffices to use a spectral approximation of the Hessian matrix in
the Newton step. For more details see e.g. [30].

The main technical part of our algorithm is to efficiently maintain a matrix N that is
the spectral approximation of the inverse of the Hessian matrix. To do this, we maintain
another matrix S̃ that is a spectral approximation of S := P ⊤ diag(s)P , and we use the
subroutine LowRankUpdate(Algorithm 3, Lemma 14) to update S̃. After S̃ is updated,
we use another subroutine UpdateHessianInv (Algorithm 2, Lemma 11) to update N . A
complete description of our algorithm can be found in Algorithm 1.

5 Updating Hessian inverse efficiently

In this section we prove how to update the Hessian inverse efficiently. We present the
algorithm UpdateHessianInv in Algorithm 2.

▶ Lemma 11 (Hessian inverse update). In the algorithm UpdateHessianInv (Algorithm 2),
the inputs are the maintained matrices T, N and the updates V1, V2 ∈ RL×r where r satisfies
Lr ≤ U . The inputs satisfy that for some S̃ ∈ SL×L,

T = S̃−1 ∈ RL×L,

N =
(
A · (PS̃−1P ⊤)◦2 ·A⊤)−1 ∈ Rm×m,

Let S̃new = S̃ + V1V ⊤
2 . The algorithm outputs two matrices T new, Nnew such that

T new = (S̃new)−1 ∈ RL×L,

Nnew =
(
A · (P (S̃new)−1P ⊤)◦2 ·A⊤)−1 ∈ Rm×m.

Furthermore, the algorithm takes O(Tmat(U, U, Lr)) time.

Proof. We first prove the correctness by analyzing each step of the algorithm.

Step 1. Compute V1, V2 ∈ RL×r and T new ∈ RL×L.

T new = T + V1 · V2
⊤

= T − TV1 · (I + V ⊤
2 TV1)−1 · V ⊤

2 T ⊤

= (S̃ + V1V ⊤
2)−1 = (S̃new)−1,

where the first two steps follow from algorithm description, the third step follows from the
Woodbury identity (Fact 2) and T = S̃−1.

Thus T new satisfies the requirement of the output.

ICALP 2022

79:10 A Faster Interior-Point Method for Sum-Of-Squares Optimization

Algorithm 1 Main SOS algorithm.

Parameters : δ ∈ (0, 1), ϵN ∈ (0, 0.05), α = ϵN

20
√

L
, t = 40ϵ−1

N

√
L log(L/δ).

Input : A ∈ Rm×U , b ∈ Rm, c ∈ RU

Output : A near feasible and optimal solution.
1 Construct P ∈ RU×L of the interpolant basis. Convert A, b, c to the interpolant basis.
2 Use Lemma 22 to obtain a modified dual SOS optimization problem which has an

initial solution (y, s) ∈ Rm × RU that is optimal for Fη, where η = 1.
3 S̃ ← S ← P ⊤ diag(s)P ; // S̃, S ∈ RL×L

4 T ← S−1 ; // T ∈ RL×L

5 N ←
(
A(PTP ⊤)◦2A⊤)−1 ; // N ∈ Rm×m

6 g ← −η · b + A · diag
(
P (P ⊤ diag(s)P)−1P ⊤)

; // g ∈ Rm

7 for i = 1, 2, · · · , t do
8 δy ← −N · g ; // δy ∈ Rm

9 ynew ← y + δy ; // ynew ∈ Rm

10 snew ← c−A⊤ynew ; // snew ∈ RU

11 ηnew ← η · (1 + α);
12 Snew ← P ⊤ diag(snew)P ; // Snew ∈ RL×L

13 S̃new, V1, V2 ← LowRankUpdate(Snew, S̃);
14 // Lemma 14, S̃new ∈ RL×L, V1, V2 ∈ RL×ri or V1 = V2 = null
15 if V1 = V2 = null then
16 T new ← (S̃new)−1 ; // T new ∈ RL×L

17 Nnew ←
(
A · (PT newP ⊤)◦2 ·A⊤)−1 ; // Nnew ∈ Rm×m

18 else
19 T new, Nnew ← UpdateHessianInv(T, N, V1, V2);
20 // Lemma 11, T new ∈ RL×L, Nnew ∈ Rm×m

21 gnew ← −ηnew · b + A · diag
(

P
(
P ⊤ diag(snew)P

)−1
P ⊤

)
; // gnew ∈ Rm

22 (η, y, s, S̃, T, N, g)← (ηnew, ynew, snew, S̃new, T new, Nnew, gnew);
23 return (y, s)

Step 2. Compute Y ′, Z′ ∈ RU×(L+r) and Y, Z ∈ RU×(L+r)r. We prove that Y and
Z satisfy (PTP ⊤)◦2 + Y · Z⊤ = (PT newP ⊤)◦2:

(PTP ⊤)◦2 + Y · Z⊤ = (PTP ⊤)◦2 +
r∑

i=1
diag(ui) ·

(
Y ′ · (Z ′)⊤)

· diag(vi)

= (PTP ⊤)◦2 +
(
Y ′ · (Z ′)⊤)

◦
(r∑

i=1
ui · v⊤

i

)
= (PTP ⊤)◦2 +

(
2PTP ⊤ + (PV1) · (PV2)⊤)

◦
(
(PV1) · (PV2)⊤)

=
(
PTP ⊤ + (PV1) · (PV2)⊤)◦2

= (PT newP ⊤)◦2,

where the first step follows from the algorithm description of Y and Z, the second step
follows from Part 2 of Fact 4 that diag(x) ·A · diag(y) = A ◦ (x · y⊤), the third step follows
from Y ′ · (Z ′)⊤ = 2PTP ⊤ + (PV1) · (PV2) and (PV1) · (PV2) =

∑r
i=1 ui · v⊤

i (see algorithm
description of Y ′ and Z ′), the last step follows from T new = T + V1 · V2

⊤.

S. Jiang, B. Natura, and O. Weinstein 79:11

Algorithm 2 UpdateHessianInv.

Input : T ∈ RL×L, N ∈ Rm×m, V1, V2 ∈ RL×r

Output : T new ∈ RL×L, Nnew ∈ Rm×m

1 // Step 1
2 V1 ← −TV1 · (I + V ⊤

2 TV1)−1 ; // V1 ∈ RL×r

3 V2 ← TV2 ; // V2 ∈ RL×r

4 T new ← T + V1 · V2
⊤ ; // T new ∈ RL×L

5 // Step 2
6 Y ′ ← [2PT, PV1] ; // Y ′ ∈ RU×(L+r)

7 Z ′ ← [P, PV2] ; // Z ′ ∈ RU×(L+r)

8 Y ← [diag(u1)Y ′, · · · , diag(ur)Y ′], ui is the i-th column of PV1 ; // Y ∈ RU×(L+r)r

9 Z ← [diag(v1)Z ′, · · · , diag(vr)Z ′], vi is the i-th column of PV2 ; // Z ∈ RU×(L+r)r

10 // Step 3

11 Nnew ← N −N · (AY) ·
(
I + (AZ)⊤N(AY)

)−1 · (AZ)⊤ ·N ; // Nnew ∈ Rm×m

12 return T new, Nnew

Step 3. Compute Nnew ∈ Rm×m.

Nnew = N −N · (AY) ·
(
I + (AZ)⊤N(AY)

)−1 · (AZ)⊤ ·N

=
(
A · (PTP ⊤)◦2 ·A⊤ + (AY) · (AZ)⊤)−1

=
(
A · (PT newP ⊤)◦2 ·A⊤)−1

,

where the first step follows from the algorithm description of Nnew, the second step follows
from N =

(
A · (PTP ⊤)◦2 · A⊤)−1 and the Woodbury identity (Fact 2), and the last step

follows from (PT newP ⊤)◦2 = (PTP ⊤)◦2 + Y · Z⊤.
Thus Nnew satisfies the requirement of the output.

Time complexity. It is easy to see that the most time-consuming step is to compute Nnew

on Line 11, and in total this step takes O(Tmat(m, U, Lr) + Tmat(m, m, Lr) + (Lr)ω) time.
Since Lr ≤ U and m ≤ U , overall this algorithm takes at most O(Tmat(U, U, Lr)) time. ◀

6 Correctness

6.1 Standard results from IPM theory
We use the following two results of the barrier method that hold for any cone with a barrier
function. The proofs are standard, (see e.g., [30, Section 2.4]). For completeness we include
a proof in the full version.

▶ Lemma 12 (Invariance of Newton step, [30]). Consider the following optimization problem:
min−b⊤y s.t. y ∈ DF , where F : Rm → R+ is a barrier function with barrier parameter
νF , DF ⊆ Rm is the domain of F , and DF is the closure of DF . For any η ≥ 1, define
Fη(y) = −ηb⊤y + F (y). Let gη(y) ∈ Rm and H(y) ∈ Rm×m denote the gradient and the
Hessian of Fη at y.

Let 0 < ϵN ≤ 0.05 be a parameter. If a feasible solution y ∈ DF , a parameter η > 0, and
a positive definite matrix H̃ ∈ Sn×n satisfy the following:

∥gη(y)∥H(y)−1 ≤ ϵN , H̃ ≈0.02 H(y).

Then ηnew = η · (1 + ϵN

20√
νF

), ynew = y + δy where δy = −H̃−1gηnew(y) satisfy ynew ∈ DF and

∥δy∥H(y) ≤ 2ϵN , ∥gηnew(ynew)∥H(ynew)−1 ≤ ϵN .

ICALP 2022

79:12 A Faster Interior-Point Method for Sum-Of-Squares Optimization

▶ Lemma 13 (Approximate optimality, [30]). Consider the following optimization problem:
min−b⊤y s.t. y ∈ DF , where F : Rm → R+ is a barrier function with barrier parameter
νF , DF ⊆ Rm is the domain of F , and DF is the closure of DF . Let OPT be the optimal
objective value of this optimization problem. For any η ≥ 1, define Fη(y) = −ηb⊤y + F (y).
Let gη(y) ∈ Rm and H(y) ∈ Rm×m denote the gradient and the Hessian of Fη at y.

Let 0 < ϵN ≤ 0.05. If a feasible solution y ∈ DF satisfies ∥gη(y)∥H(y)−1 ≤ ϵN , then we
have −b⊤y ≤ OPT + νF

η · (1 + 2ϵN).

6.2 Low rank update
We use the following low rank update procedure of [16] and [15], which we modify by using a
cutoff when r ≥ U/L. The proof of the following lemma can be found in [15, Theorem 10.8].

Algorithm 3 LowRankUpdate of [16].

Parameters : A real number ϵS < 0.01.
Input : New exact matrix Snew ∈ RL×L, old approximate matrix S̃ ∈ RL×L,
Output : New approximate matrix S̃new ∈ RL×L, update matrices

V1, V2 ∈ RL×r.
1 Zmid ← (Snew)−1/2S̃(Snew)−1/2 − I

2 Compute spectral decomposition Zmid = X diag(λ)X⊤

3 Let π : [L]→ [L] be a sorting permutation such that |λπ(i)| ≥ |λπ(i+1)|.
4 if |λπ(1)| ≤ ϵS then
5 S̃new ← S̃;
6 return (S̃new, 0, 0)
7 else
8 r ← 1;
9 while 2r ≤ U/L and (|λπ(2r)| > ϵS or |λπ(2r)| > (1− 1/ log L)|λπ(r)|) do

10 r ← r + 1;
11 r ← 2r;
12 if r ≥ U/L then
13 S̃new ← Snew ; // Here we deviate from [16]
14 return (S̃new, null, null)
15 else

16 λnew
π(i) ←

{
0 if i = 1, 2, . . . , r

λπ(i) else
17 Ω← supp(λnew − λ) ; // |Ω| = r

18 V1 ← ((Snew)1/2 ·X · diag(λnew − λ)):,Ω ; // V1 ∈ RL×r

19 V2 ← ((Snew)1/2 ·X):,Ω ; // V2 ∈ RL×r

20 S̃new ← S̃ + (Snew)1/2X diag(λnew − λ)X⊤(Snew)1/2 ;
// S̃new = S̃ + V1V ⊤

2 ∈ RL×L

21 return (S̃new, V1, V2);

▶ Lemma 14 (Low rank update). The algorithm LowRankUpdate (Algorithm 3) has the
following properties:

(i) The output matrix S̃new = S̃ + V1V ⊤
2 is a spectral approximation of the input matrix:

S̃new ≈ϵS
Snew.

S. Jiang, B. Natura, and O. Weinstein 79:13

(ii) Consider a total of t iterations of LowRankUpdate. Initially S̃(0) = S(0), and we
use (S(i), S̃(i−1)) and (S̃(i), V

(i)
1 , V

(i)
2) to denote the input and the output of the i-th

iteration. We define the rank ri to be the rank of V
(i)

1 if V
(i)

1 ̸= null, and otherwise we
define ri = U/L.
If the input exact matrices S(0), S(1), · · · , S(t) ∈ RL×L satisfy

∥(S(i−1))−1/2S(i)(S(i−1))−1/2 − I∥F ≤ 0.02, ∀i ∈ [t]. (11)

Then for any non-increasing sequence g ∈ RL
+, the ranks ri satisfy

t∑
i=1

ri · gri
≤ O(t · ∥g∥2 · log L).

Furthermore, the algorithm LowRankUpdate takes O(Lω) time.

6.3 Slowly moving guarantee
In SOS optimization, the matrix S = P ⊤ diag(s)P corresponds to the slack matrix of the
SDP. The following lemma proves similar to SDP, in SOS the matrix S is changing slowly.
Using this lemma we will prove that the requirement Eq. (11) of Lemma 14 is satisfied, which
means we can approximate the change to the slack by a low-rank matrix.
▶ Lemma 15 (Slowly moving guarantee). Let c ∈ RU and A ∈ Rm×U be the input to the
optimization problem. Let P ∈ RU×L be the matrix of the interpolant basis.

For any y ∈ Rm and ynew = y + δy ∈ Rm, let s = c−A⊤y ∈ RU and S = P ⊤ diag(s)P ∈
RL×L. Similarly define snew and Snew from ynew. Let H(y) = A ·

(
P

(
P ⊤ diag(s)P

)−1
P ⊤)◦2 ·

A⊤ ∈ Rm×m. If s, snew ∈ Σ∗
n,2d, then S and Snew are both PSD, and we have

∥S−1/2SnewS−1/2 − I∥F = ∥δy∥H(y).

Proof. Note that if s, snew ∈ Σ∗
n,2d, then by the dual cone characterization (Theorem 10) S

and Snew are both PSD.
For convenience we define M = PS−1P ⊤ ∈ RU×U . Note that H(y) = A ·M◦2 ·A⊤. We

also define δs = snew − s = −A⊤δy. ∀u ∈ [U], we use pu ∈ RL to denote the u-th row of P .

∥S−1/2SnewS−1/2 − I∥2
F = ∥S−1/2(

Snew − S
)
S−1/2∥2

F

= ∥S−1/2(
P diag(δs)P ⊤)

S−1/2∥2
F

= tr
(
S−1(P ⊤ diag(δs)P)S−1(P ⊤ diag(δs)P)

)
= tr

(
S−1(

∑
u∈U

(δs)u · pup⊤
u)S−1(

∑
v∈U

(δs)v · pvp⊤
v)

)
=

∑
u,v∈U

(δs)u(δs)v · tr
(
S−1pup⊤

u S−1pvp⊤
v

)
=

∑
u,v∈U

(δs)u(δs)v · (p⊤
v S−1pu)2

=
∑

u,v∈U

(δs)u(δs)v ·M2
uv = ∥δs∥2

M◦2 ,

(12)

where the third step follows from ∥A∥2
F = tr(A⊤A) and the cyclic property of trace, and the

sixth step again follows from the cyclic property of trace.
Since δs = −A⊤δy, we have

∥δs∥2
M◦2 = δ⊤

s M◦2δs = δ⊤
y AM◦2A⊤δy = δ⊤

y H(y)δy = ∥δy∥2
H(y). (13)

Combining Eq. (12) and (13) we get the bound in the lemma statement. ◀

ICALP 2022

79:14 A Faster Interior-Point Method for Sum-Of-Squares Optimization

6.4 Proof of correctness
Finally we are ready to prove the correctness of Algorithm 1.

▶ Theorem 16 (Correctness of Algorithm 1). Consider the following optimization problem
with A ∈ Rm×U , b ∈ Rm, and c ∈ RU :

Primal: min ⟨c, x⟩
s.t. Ax = b

x ∈ Σn,2d ,

Dual: max ⟨y, b⟩
s.t. A⊤y + s = c

s ∈ Σ∗
n,2d .

Let OPT denote the optimal objective value of this optimization problem. Assume Slater’s
condition and that any primal feasible x ∈ Σn,2d satisfies ∥x∥1 ≤ R.

Then for any error parameters δ ∈ (0, 1), ϵS ≤ 0.01, and ϵN ≤ 0.05, Algorithm 1 outputs
x ∈ Σn,2d that satisfies

⟨c, x⟩ ≤ OPT + δ ·R∥c∥∞ and ∥Ax− b∥1 ≤ 8δL · (LR∥A∥∞ + ∥b∥1).

Proof. We consider the optimization problem min−b⊤y s.t. y ∈ DF , where F : Rm → R+
is the barrier function defined in Eq. (10), and DF is the closure of the domain of F . The
barrier parameter of F is νF = L. This optimization problem is equivalent to the dual
formulation and its optimal value is −OPT. For any η, let Fη(y) = −ηb⊤y + F (y).

In the beginning Algorithm 1 first uses Lemma 22 to convert the optimization problem
to another form which has an initial feasible solution y that is close to the optimal solution
of Fη with η = 1. The initial y satisfies ∥gη(y)∥H(y)−1 ≤ ϵN by Lemma 22. Initially we also
have S̃ = S = P ⊤ diag(s)P (Line 3 in Algorithm 1).

Next we prove the correctness of Algorithm 1 inductively. At each iteration, we assume
the following induction hypothesis is satisfied: (1) ∥gη(y)∥H(y)−1 ≤ ϵN , (2) S̃ ≈ϵS

S. We aim
to prove that the updated ynew, ηnew, Snew, and S̃new still satisfy these two conditions.

In Lemma 11 we have proved that in Algorithm 1 we always maintain N =
(
A ·

(PS̃−1P ⊤)◦2 ·A⊤)−1. Let H̃ = N−1, we have

H̃ = A ·
(
PS̃−1P ⊤)◦2 ·A⊤ ≈2ϵS

A ·
(
PS−1P ⊤)◦2 ·A⊤ = H(y),

where in the second step we use the induction hypothesis that S̃ ≈ϵS
S, and by Fact 6

we have S̃−1 ≈ϵS
S−1, and hence PS̃−1P ⊤ ≈ϵS

PS−1P ⊤, and hence (PS̃−1P ⊤)◦2 ≈2ϵS

(PS−1P ⊤)◦2.
The new vector ynew is computed as ynew = y + δy where δy = −H̃−1gη(y) (Line 8 and 9

of Algorithm 1). And η is updated to ηnew = η · (1 + ϵN

20
√

L
) (Line 11 of Algorithm 1). Since

∥gη(y)∥H(y)−1 ≤ ϵN , and H̃ ≈2ϵS
H(y) where 2ϵS ≤ 0.02 by its definition in Algorithm 3,

the requirements of Lemma 12 are satisfied, so we have

∥gηnew(ynew)∥H(ynew)−1 ≤ ϵN , and ∥δy∥H(y) ≤ 2ϵN .

This proves the first induction hypothesis.
Then using Lemma 15 and since ϵN ≤ 0.01 by its definition in Algorithm 1, we have

∥S−1/2(Snew)S−1/2 − I∥F ≤ ∥δy∥H(y) ≤ 2ϵN ≤ 0.02.

Thus the input matrix Snew to LowRankUpdate satisfies the requirement of Eq. (11) of
Lemma 14, and we have that S̃new ≈ϵS

Snew. This proves the second induction hypothesis.

S. Jiang, B. Natura, and O. Weinstein 79:15

Finally, we know that after t = 40ϵ−1
N

√
L log(L/δ) iterations, η becomes (1 + ϵN

20
√

L
)t ≥

2L/δ2, so using Lemma 13, we have

b⊤y ≥ OPT− νF

η
· (1 + 2ϵN) ≥ OPT− δ2.

Thus the initialization lemma (Lemma 22) ensures that we have a solution x ∈ Σn,2d to the
original primal optimization problem which satisfies

⟨c, x⟩ ≤ OPT + δ ·R∥c∥∞, ∥Ax− b∥1 ≤ 8δL · (LR∥A∥∞ + ∥b∥1). ◀

7 Time complexity

7.1 Worst case time
We first bound the worst case running time of Algorithm 1. The running time of the i-th
iteration depends on the updated rank ri of LowRankUpdate, which is defined to be the
size of V

(i)
1 if V

(i)
1 ̸= null, and U/L otherwise (see Lemma 14).

▶ Lemma 17 (Worst case time of Algorithm 1). In Algorithm 1, the initialization time is
O(Uω), and the running time in the i-th iteration is O(Tmat(U, U, min{Lri, U})).

Proof.

Initialization time. The most time-consuming step of initialization is Line 5, where comput-
ing N =

(
A(PTP ⊤)◦2A⊤)−1 takes O(Tmat(U, U, L) + Tmat(U, U, m)) time. This is bounded

by O(Uω) since L, m ≤ U .

Time per iteration. In each iteration the most time-consuming steps are (1) computing
Snew and calling LowRankUpdate on Line 12-14, (2) executing the if-clause on Line 15-20,
and (3) computing gnew on Line 21.

1. Computing Snew on Line 12 takes Tmat(U, L, L) time. Calling LowRankUpdate on
Line 14 takes O(Lω) time by Lemma 14.

2. In the if-clause on Line 15-20, if V1 = V2 = null, then Lri ≥ U , and we compute
Nnew =

(
A · (PT newP ⊤)◦2 · A⊤)−1, which takes O(Tmat(U, U, U)) time. Otherwise we

call UpdateHessianInv on Line 19, which takes O(Tmat(U, U, Lri)) time by Lemma 11.
In total the if-clause has running time O(Tmat(U, U, min{Lri, U})).

3. Computing the gradient g = −ηnew · b + A · diag
(

P
(
P ⊤ diag(snew)P

)−1
P ⊤

)
on Line 21

takes O(Tmat(U, U, L)) time since m ≤ U .

Thus the total time per iteration is O(Tmat(U, U, min{Lri, U})). ◀

7.2 Amortized time
In this section we bound the amortized running time of Algorithm 1.

Let ω be the matrix multiplication exponent, let α be the dual matrix multiplication
exponent. The current best values are ω ≈ 2.373 and α ≈ 0.314 [21, 10, 1]. Note that the
current best values of ω and α satisfies that α ≥ 5 − 2ω. We use the following modified
lemma from [15]:

ICALP 2022

79:16 A Faster Interior-Point Method for Sum-Of-Squares Optimization

▶ Lemma 18 (Helpful lemma for amortization, modified version of Lemma 10.13 of [15]). Let t

denote the total number of iterations. Let ri ∈ [L] be the rank for the i-th iteration for i ∈ [t].
Assume ri satisfies the following condition: for any vector g ∈ RL

+ which is non-increasing,
we have

∑t
i=1 ri · gri ≤ O(t · ∥g∥2).

If the cost in the i-th iteration is O(Tmat(U, U, min{Lri, U})), when α ≥ 5 − 2ω, the
amortized cost per iteration is U2+o(1) + Uω−1/2+o(1) · L1/2.

We include the proof of Lemma 18 for completeness. The main difference between this
proof and that of [15] is that we cut off at U/L instead of L. Our proof makes use of the
following two facts about ω and α (Lemma A.4 and Lemma A.5 of [9]).

▶ Fact 19 (Relation of ω and α). ω ≤ 3− α.

▶ Fact 20 (Upper bound of Tmat(n, n, r)). For any r ≤ n, we have that Tmat(n, n, r) ≤
n2+o(1) + r

ω−2
1−α · n2− α(ω−2)

(1−α) +o(1).

Proof of Lemma 18. For ri that satisfies ri ≤ U/L, we have

Tmat(U, U, Lri) ≤ U2+o(1) + (Lri)
ω−2
1−α · U2− α(ω−2)

1−α +o(1)

= U2+o(1) + U2− α(ω−2)
1−α +o(1) · L

ω−2
1−α · r

ω−2
1−α

i ,
(14)

where the first step follows from Fact 20.
Define a sequence g ∈ RL

+ such that for r ∈ [L],

gr =
{

r
ω−2
1−α −1 if r ≤ U/L,

(U/L)
ω−2
1−α · r−1 if r > U/L.

Note that g is non-increasing because ω−2
1−α ≤ 1 (Fact 19). Then using the condition in the

lemma statement, we have

t∑
i=1

min{r
ω−2
1−α

i , (U/L)
ω−2
1−α } =

t∑
i=1

ri · gri

≤ t · ∥g∥2

≤ t ·
(∫ U/L

x=1
x

2(ω−2)
1−α −2dx + (U/L)

2(ω−2)
1−α ·

∫ L

x=U/L

x−2dx
)1/2

≤ t ·
(

c · (U/L)
2(ω−2)

1−α −1 + (U/L)2(ω−2
1−α) · (U/L)−1

)1/2

= t ·O((U/L)
(ω−2)
1−α −1/2),

(15)

where the first step follows from the definition of g ∈ RL, the second step follows from the
assumption

∑t
t=1 ri · gri ≤ t · ∥g∥2 in the lemma statement, the third step follows from

upper bounding the ℓ2 norm ∥g∥2
2 =

∑L
r=1 g2

r , and the fourth step follows 2(ω−2)
1−α ≥ 1 when

α ≥ 5− 2ω, so the integral
∫ U/L

x=1 x
2(ω−2)

1−α −2dx = c · x
2(ω−2)

1−α −1∣∣U/L

1 = O
(
(U/L)

2(ω−2)
1−α −1)

where
c := 1/(2(ω−2)

1−α − 1).

S. Jiang, B. Natura, and O. Weinstein 79:17

Thus we have
t∑

t=1
Tmat(U, U, min{Lri, U})

≤
t∑

t=1

(
U2+o(1) + U2− α(ω−2)

1−α +o(1) · L
ω−2
1−α ·min{r

ω−2
1−α

i , (U/L)
ω−2
1−α }

)
= t · U2+o(1) + U2− α(ω−2)

1−α +o(1) · L
ω−2
1−α ·

t∑
t=1

min{r
ω−2
1−α

i , (U/L)
ω−2
1−α }

≤ t · U2+o(1) + U2− α(ω−2)
1−α +o(1) · L

ω−2
1−α · t · (U/L)

(ω−2)
1−α −1/2

= t · (U2+o(1) + Uω−1/2+o(1) · L1/2),

where the first step follows from Eq. (14) and Tmat(U, U, U) = Uω = U2− α(ω−2)
1−α · L

ω−2
1−α ·

(U/L)
ω−2
1−α , the second step follows from moving summation inside, the third step follows

from Eq. (15), and the last step follows from adding the terms together. ◀

Now we are ready to prove our main theorem for the amortized time of Algorithm 1.
▶ Theorem 21 (Time of Algorithm 1). When α ≥ 5− 2ω, the running time of Algorithm 1 is

(U2 · L1/2 + Uω−1/2 · L) · (log(1/δ) + Uo(1)).

Proof. Using Lemma 17 the initialization time is O(Uω) ≤ O(Uω−1/2 · L) since U ≤ L2.
Using Lemma 14 we know that the ranks ri indeed satisfy the requirement of Lemma 18,

and since the worst case time per iteration is O(Tmat(U, U, min{Lri, U})) (Lemma 17), using
Lemma 18 the time per iteration is U2+o(1) + Uω−1/2+o(1) · L1/2. Since there are in total
t = 40ϵ−1

N

√
L log(L/δ) iterations, we get the total running time as claimed. ◀

7.3 Comparison with previous results
In this section we compare the running time of [27], [16, 15], and our result. We assume that
m = Θ(U) when making the comparisons.

Ignoring log(1/δ) and Uo(1) factors, and since L ≤ U ≤ L2, the running times are

[27] (SOS) : L0.5 · Uω,

[16, 15] (SDP)5 : L0.5 ·min{UL2 + Uω, L4 + L2ω−0.5},
Ours (SOS) : L0.5 · (U2 + Uω−0.5 · L0.5).

Current ω and α

Plugging in the current best values ω ≈ 2.373 and α ≈ 0.314, we have
[27] (SOS) : L0.5 · U2.373,

[16, 15] (SDP) : L0.5 ·min{UL2 + U2.373, L4.246}

= L0.5 ·


UL2 when U ∈ (L, L1.457],
U2.373 when U ∈ (L1.457, L1.789],
L4.246 when U ∈ (L1.789, L2),

Ours (SOS) : L0.5 · (U2 + U1.873L0.5).

5 When solving SOS, [16] has running time O(L0.5 · (UL2 + Uω + Lω)) ≤ O(L0.5 · (UL2 + Uω)), and [15]
has running time O(L0.5 · (U2 + L4) + Uω + L2ω) ≤ O(L4.5 + L2ω) since L ≤ U ≤ L2.

ICALP 2022

79:18 A Faster Interior-Point Method for Sum-Of-Squares Optimization

Note that our running time is always better than the previous results, and for several values
of L and U we improve by a polynomial factor. See Figure 1 for an illustration.

8 Initialization

There exist standard techniques to transform a convex program to a form that has an
easily obtainable strictly feasible point, see e.g. [39]. We follow the initialization procedure
presented by [9] and [16] and adapt to SOS optimization. Similar initialization lemma exists
for WSOS optimization. The proof of this lemma can be found in our full version.

Let the matrix P ∈ RU×L and the operator Λ : RU → RL×L that Λ(s) = P ⊤ diag(s)P
be defined as in the interpolant basis paragraph of Section 3.

▶ Lemma 22 (Initialization). Given an instance of (SOS) that fulfills Slater’s condition, and
let R be an upper bound on the ℓ1-norm of the primal feasible solutions, i.e. all primal feasible
x of (SOS) fulfill ∥x∥1 ≤ R, and let δ ∈ (0, 1). We define A ∈ R(m+1)×(U+2), b ∈ Rm+1,
and c ∈ RU+2 as

A =
[

A 0 1
R b−Ag0

1⊤
U 1 0

]
, b =

[1
R b

1 + ⟨1U , g0⟩

]
, c =

 δ
∥c∥∞

c

0
1

 ,

and let

x0 =

g0

1
1

 ∈ RU+2, y0 =
[
0m

−1

]
∈ Rm+1, and s0 =

1U + δ
∥c∥∞

c

1
1

 ∈ RU+2,

where g0 = gΣ∗(s0
[:U]) ∈ RU for the gradient function gΣ∗(s) := diag(P (P ⊤ diag(s)P)−1P ⊤)

that maps from RU to RU . This defines the auxiliary primal-dual system

min ⟨c, x⟩
Ax = b

x ∈ Σn,2d × R2
≥0 ,

max ⟨y, b⟩

A
⊤

y + s = c

s ∈ Σ∗
n,2d × R2

≥0 .

(Aux-SOS)

Then (x0, y0, s0) are feasible to the auxiliary system (Aux-SOS).
Further, under the canonical barrier (we use ai to denote the i-th column of A):

F η(y) = −η⟨y, b⟩−log det
(

Λ
(
(c−A

⊤
y)[:U]

))
−log(cU+1−⟨aU+1, y⟩)−log(cU+2−⟨aU+2, y⟩),

we have that ∥gη0(y0)∥H(y0)−1 = 0 for η0 = 1.
Further, for any solution (x, y, s) to (Aux-SOS) with duality gap ≤ δ2, its restriction

x̂ := x[:U] fulfills

⟨c, x̂⟩ ≤ min
Ax=b,x∈Σn,2d

⟨c, x⟩+ δ ·R∥c∥∞,

∥Ax̂− b∥1 ≤ 8δL · (LR∥A∥∞ + ∥b∥1),
x̂ ∈ Σn,2d.

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

S. Jiang, B. Natura, and O. Weinstein 79:19

2 Christine Bachoc and Frank Vallentin. New upper bounds for kissing numbers from semidefinite
programming. Technical report, Journal of the American Mathematical Society, 2006.

3 Brandon Ballinger, Grigoriy Blekherman, Henry Cohn, Noah Giansiracusa, Elizabeth Kelly, and
Achill Schürmann. Experimental study of energy-minimizing point configurations on spheres.
Experimental Mathematics, 18(3):257–283, 2009. doi:10.1080/10586458.2009.10129052.

4 Boaz Barak, Samuel B. Hopkins, Jonathan A. Kelner, Pravesh K. Kothari, Ankur Moitra, and
Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem.
SIAM J. Comput., 48(2):687–735, 2019. doi:10.1137/17M1138236.

5 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In 2011 IEEE 52nd annual symposium on foundations of
computer science (FOCS), pages 472–481. IEEE, 2011.

6 Markus Bläser. Fast matrix multiplication. Theory of Computing, pages 1–60, 2013.
7 Grigoriy Blekherman, Pablo A Parrilo, and Rekha R Thomas. Semidefinite optimization and

convex algebraic geometry. SIAM, 2012.
8 L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Computing multivariate fekete and leja

points by numerical linear algebra. SIAM Journal on Numerical Analysis, 48(5):1984–1999,
2010. doi:10.1137/090779024.

9 Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In Proceedings of the 51st Annual ACM Symposium on Theory of
Computing (STOC), 2019.

10 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers
of the coppersmith-winograd tensor. In Proceedings of the 2018 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1029–1046. SIAM, 2018.

11 Bissan Ghaddar, Jakub Marecek, and M. Mevissen. Optimal power flow as a polynomial
optimization problem. IEEE Transactions on Power Systems, 31:539–546, 2016.

12 Roxana Heß, Didier Henrion, Jean-Bernard Lasserre, and Tien Son Pham. Semidefinite
approximations of the polynomial abscissa. SIAM J. Control. Optim., 54(3):1633–1656, 2016.
doi:10.1137/15M1033198.

13 Samuel B. Hopkins, Pravesh K. Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm,
and David Steurer. The power of sum-of-squares for detecting hidden structures. In 58th
IEEE Annual Symposium on Foundations of Computer Science, (FOCS), pages 720–731. IEEE
Computer Society, 2017. doi:10.1109/FOCS.2017.72.

14 Samuel B. Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, (STOC),
pages 1021–1034. ACM, 2018. doi:10.1145/3188745.3188748.

15 Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster:
A robust ipm framework and efficient implementation, 2021. arXiv:2101.08208.

16 Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster
interior point method for semidefinite programming. In 2020 IEEE 61st annual symposium on
foundations of computer science (FOCS), pages 910–918. IEEE, 2020.

17 Shunhua Jiang, Yunze Man, Zhao Song, Zheng Yu, and Danyang Zhuo. Fast graph neural
tangent kernel via kronecker sketching. arXiv preprint AAAI’22, 2021. arXiv:2112.02446.

18 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the 16th annual ACM symposium on Theory of computing (STOC), pages 302–311, 1984.

19 Jean Bernard Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 2015. doi:10.1017/
CBO9781107447226.

20 M. Laurent. Sums of squares, moment matrices and optimization over polynomials, pages
155–270. Number 149 in The IMA Volumes in Mathematics and its Applications Series.
Springer Verlag, Germany, 2009.

21 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, pages 296–303, 2014.

ICALP 2022

https://doi.org/10.1080/10586458.2009.10129052
https://doi.org/10.1137/17M1138236
https://doi.org/10.1137/090779024
https://doi.org/10.1137/15M1033198
https://doi.org/10.1109/FOCS.2017.72
https://doi.org/10.1145/3188745.3188748
http://arxiv.org/abs/2101.08208
http://arxiv.org/abs/2112.02446
https://doi.org/10.1017/CBO9781107447226
https://doi.org/10.1017/CBO9781107447226

79:20 A Faster Interior-Point Method for Sum-Of-Squares Optimization

22 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th

Annual Symposium on Foundations of Computer Science (FOCS), pages 424–433. IEEE, 2014.
23 Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current

matrix multiplication time. In Conference on Learning Theory (COLT), pages 2140–2157.
PMLR, 2019.

24 Yurii Nesterov. Squared functional systems and optimization problems. In High performance
optimization, pages 405–440. Springer, 2000.

25 Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex
programming. In Siam Studies in Applied Mathematics, 1987. doi:10.1137/1.9781611970791.

26 Dávid Papp. Optimal designs for rational function regression. Journal of the American
Statistical Association, 107(497):400–411, 2012. doi:10.1080/01621459.2012.656035.

27 Dávid Papp and Sercan Yildiz. Sum-of-squares optimization without semidefinite programming.
SIAM Journal on Optimization, 29(1):822–851, 2019.

28 Pablo Parrilo. Sum of squares : theory and applications : AMS short course, sum of squares :
theory and applications, January 14-15, 2019, Baltimore, Maryland. American Mathematical
Society, Providence, Rhode Island, 2020.

29 Mihai Putinar and Florian-Horia Vasilescu. Positive polynomials on semi-algebraic sets.
Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 328(7):585–589, 1999.
doi:10.1016/S0764-4442(99)80251-1.

30 James Renegar. A Mathematical View of Interior-Point Methods in Convex Optimization. So-
ciety for Industrial and Applied Mathematics, January 2001. doi:10.1137/1.9780898718812.

31 Tae Roh, Bogdan Dumitrescu, and Lieven Vandenberghe. Multidimensional FIR filter design
via trigonometric sum-of-squares optimization. J. Sel. Topics Signal Processing, 1(4):641–650,
2007. doi:10.1109/JSTSP.2007.910261.

32 Alvise Sommariva and Marco Vianello. Computing approximate fekete points by qr factoriza-
tions of vandermonde matrices. Computers & Mathematics with Applications, 57(8):1324–1336,
2009.

33 Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34, 2021.

34 Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural
network in subquadratic time. arXiv preprint, 2021. arXiv:2112.07628.

35 Gilbert Strang. Karmarkar’s algorithm and its place in applied mathematics. The Mathematical
Intelligencer, 9(2):4–10, 1987.

36 Ning Tan. On the Power of Lasserre SDP Hierarchy. PhD thesis, EECS Department,
University of California, Berkeley, December 2015. URL: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2015/EECS-2015-236.html.

37 Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th
Annual Symposium on Foundations of Computer Science (FOCS), pages 332–337. IEEE, 1989.

38 Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), volume 185, pages 63:1–63:15, 2021. doi:10.4230/LIPIcs.ITCS.
2021.63.

39 Yinyu Ye, Michael J Todd, and Shinji Mizuno. An O(
√

nL)-iteration homogeneous and
self-dual linear programming algorithm. Mathematics of operations research, 19(1):53–67,
1994.

https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1080/01621459.2012.656035
https://doi.org/10.1016/S0764-4442(99)80251-1
https://doi.org/10.1137/1.9780898718812
https://doi.org/10.1109/JSTSP.2007.910261
http://arxiv.org/abs/2112.07628
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-236.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-236.html
https://doi.org/10.4230/LIPIcs.ITCS.2021.63
https://doi.org/10.4230/LIPIcs.ITCS.2021.63

	1 Introduction
	2 Preliminaries
	3 Background of sum-of-squares optimization
	4 Algorithm
	5 Updating Hessian inverse efficiently
	6 Correctness
	6.1 Standard results from IPM theory
	6.2 Low rank update
	6.3 Slowly moving guarantee
	6.4 Proof of correctness

	7 Time complexity
	7.1 Worst case time
	7.2 Amortized time
	7.3 Comparison with previous results

	8 Initialization

