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Abstract
We consider the problem of keeping under control the spread of harmful items in
networks, such as the contagion proliferation of diseases or the diffusion of fake news.
We assume the linear threshold model of diffusion where each node has a threshold
that measures the node’s resistance to the contagion. We study the parameterized
complexity of the problem: Given a network, a set of initially contaminated nodes,
and two integers k and �, is it possible to limit the diffusion to at most k other nodes
of the network by immunizing at most � nodes? We consider several parameters
associated with the input, including the bounds k and �, the maximum node degree
�, the number ζ of initially contaminated nodes, the treewidth, and the neighborhood
diversity of the network. We first give W [1] or W [2]-hardness results for each of the
considered parameters. Then we give fixed-parameter algorithms for some parameter
combinations.
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1 Introduction

During the past decade, the study of spreading processes in complex networks has
experienced a particular surge of interest across many research areas from viral mar-
keting, to social media, to population epidemics. Several studies have focused on the
problem of finding a small set of individuals who, given the item to be diffused, allow
its diffusion to a vast portion of the network, by using the links among individuals in
the network to transmit the item to their contacts [39].

Threshold models, where each node has a threshold that measures the node resis-
tance to diffusion, are widely adopted by sociologists to describe collective behaviors
[28], and their use to study the propagation of innovations through a network was
first considered in [31]. The linear threshold model has then been widely used in the
literature to study the problem of influence maximization, which aims at identifying a
small subset of nodes that can maximize influence diffusion [3, 8, 9, 11–13, 31]. The
related Target set selection problem, which aims at selecting the smallest possible set
of nodes, whose activation eventually leads to influencing all the nodes in the network,
has also been widely studied; see for example [3, 7, 10, 24, 31].

Recently, with the aim of keeping under control the spread of harmful items in
networks, some attention has been devoted to the important issue of developing strate-
gies for reducing the spread of negative things through a network. The problem is
motivated by its ability to model complex phenomena such as the proliferation of
disease contagion or the spread of false news. In particular, several studies considered
the problem of which structural changes (immunization measures) can be made to the
network topology in order to block, or limit as much as possible, negative diffusion
processes.

One such measure consists in intervening on the network topology by either block-
ing some links so that they cannot contribute to the diffusion process [33] or by
immunizing some nodes [20]. In this paper, we focus on the second strategy: Limit the
spread to a small region of the network by immunizing a bounded number of nodes
in the network. We study the problem in the linear threshold model [31]. A node gets
influenced/contaminated if it receives the item from a number of neighbors at least
equal to its threshold. The diffusion proceeds in rounds: Initially only a subset of
nodes has the item and is contaminated. At each round, the set of contaminated nodes
is augmented with each node that has a number of already contaminated neighbors at
least equal to its threshold.

In the presence of an immunization campaign, the immunization operation on a
node inhibits the contamination of the node itself. Thus, given a network and a subset
of its nodes, called spreader set, that has the malicious item to be diffused to the other
nodes in the network, we are looking for a small subset of nodes (immunizing set)
that, once immunized, enable to minimize the number of nodes influenced at the end
of the diffusion process.

Under such a diffusion model, we perform a broad parameterized complexity study
of the following Influence-Immunization problem:

Given a network, a spreader set, and two integers k and �, is it possible to limit the
diffusion to at most k other nodes of the network by immunizing at most � nodes?
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We study the parameterized complexity of the Influence-Immunization problem,
formally defined in Sect. 3. Parameterized complexity is a refinement of classical
complexity theory in which one takes into account not only the input size but also
other aspects of the problem given by a parameter p [18, 41]. We recall that a problem
with input size n and parameter p is called fixed parameter tractable (FPT) if it can be
solved in time f (p) · nc, where f is a computable function only depending on p and
c is a constant. On the other hand, the theory of fixed parameter intractability defined
the W -hierarchy

⋃
t≥0 W [t], where FPT = W [0] ⊆ W [1] ⊆ . . . ⊆ W [poly], to

characterize the inherent level of intractability for parameterized problems [18]. For
instance, the W [1]-hardness of a parameterized problem provides a strong evidence
that the problem is not solvable in time f (p)·nO(1), for any function f of the parameter
p.

Our Results
We consider several parameters associated to the input: the bounds k and �, the number
ζ related to initially contaminated nodes, and some parameters of the underlying net-
work: The maximum degree�, the treewidth tw [42], and the neighborhood diversity
nd [37]. The two last parameters, formally defined in Sects. 4.4 and 4.5 respectively,
are two incomparable parameters of a graph that can be viewed as representing sparse
and dense graphs, respectively [37]; they received much attention in the literature [3,
13, 14, 26, 27, 35].

We shall prove that the studied Influence-Immunization problem is:

• W[1]-hard with respect to any of the parameters k, tw or nd;
• W[2]-hardwith respect to the pairs (�,�), or (�, ζ )where ζ = |{v | v ∈ V , t(v) =
0}|;

• FPTwith respect to anyof thepairs (k, �), (k, ζ ), (k,tw), (�,tw), (k,nd), (�,nd).

2 RelatedWork

Several studies highlighted how the spread of epidemics is strongly influenced by the
network structure and, consequently, a smart manipulation of the network enables
maximizing/minimizing the node influenced at the end of a given diffusion process
[5, 21].

Influence maximization/minimization has also been addressed from the game theo-
retic perspective in [4, 6, 38]. Bhawalkar et al. [4] introduced a problem strongly related
to the Target set selection with fixed threshold k. The problem, named Anchored k-
Core, assumes that at the beginning of the process all the nodes are engaged/influenced
but each node remains engaged only if it maintains at least k engaged neighbors. The
model enable to anchor a node. Anchored nodes remain engaged no matter what their
friends do. Given a budget b the goal is to select a set of nodes (anchored nodes) to
maximize the amount of engagement in a given network. The author shows that, for
k = 2, the problem is solvable in polynomial time while for k ≥ 3 the problem is NP-
hard (even to be approximated). Moreover, the problem has shown to be W[2]-hard
with respect to the budget parameter b.
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Meier et al. [38] pose the problem in terms of virus propagation in a network where
each node/player decides whether or not to protect itself. They adopt a game theory
approach, where each player decides to be vaccinated or not, with the aim of maxi-
mizing its own utility function. The goal is to design the best strategy for the benefit
of the overall community.
Similarly, Chen et al. [6] studied the vaccination of nodes in graphs against the outbreak
of infectious disease at random locations.

Influence minimization in the linear threshold model achieved by blocking some
links has been studied in [32, 33]. In [33], the authors addressed the problem of
minimizing the propagation of negative items by removing a limited number of links
in a network. They propose a method for finding a good approximate solution to this
problem based on a natural greedy strategy. In our study, we focus on strategies for
reducing the spread size by immunizing/removing nodes. In this setting, papers [2, 40]
consider a greedy heuristic that immunizes nodes in decreasing order of out-degree.
However, immunizing nodes according to their (out-)degrees is not necessarily an
effective strategy.

When all the node thresholds are equal to 1, the immunization can be obtained by a
cut (set of edges) or a separator (set of nodes) of the network. In particular,Hayrapetyan
et al. [29] introduced the Minimum-size Bounded-Capacity Cut (MinSBCC) problem
where, for a given graph with an identified source, the goal is to find a cut minimizing
the number of nodes on the source side, subject to a budget constraint. Moreover, they
showed a connection between the MinSBCC problem and the problem of choosing
which individuals to immunize in order tominimize an epidemic process. Other papers
dealing with such cut problems are [6, 30] in case of edge cuts and [15, 25] in case of
node separators.

Another conceptually related problem is the Firefighter problem [23]. This problem
models diffusion processes such as an infection (as well as an idea, a computer virus,
or a fire). The Firefighter problem is based on a diffusion process where all the node
thresholds are equal to 1, and the goal is to contain the infection by using targeted
immunizations: at each round of the diffusion process, one can defend (immunize)
a fixed number of nodes, with the goal of minimizing the effect of the infection.
Conversely, in our study, we considered a fixed overall budget �, that is, we are allowed
to immunize, from the beginning, at most � nodes, and we ask whether we are able to
limit the diffusion to at most k nodes.

3 Problem Statement

Let G = (V , E, t) be an undirected graph where V is the set of nodes, E is the set
of edges, and t : V → N is a node threshold function. We use n and m to denote the
number of nodes and edges in the graph, respectively. The degree of a node v is denoted
by dG(v). The neighborhood of v is denoted by �G(v) = {u ∈ V | (u, v) ∈ E}. In
general, the neighborhood of a set V ′ ⊆ V is denoted by �G(V ′) = {u ∈ V |
(u, v) ∈ E, v ∈ V ′, u /∈ V ′}. The graph induced by a node set V ′ in G is denoted
G[V ′] = (V ′, E ′, t ′) where E ′ = {(u, v) | u, v ∈ V ′, (u, v) ∈ E} and t ′(v) = t(v)

for each v ∈ V ′.
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Fig. 1 A graph G (node thresholds appear in red). a The diffusion process in G. b An example of X whose
G[X ] includes nodes not influenced. c An example of immunizing set Y (X ′) = {v3, v8}, which enables to
confine the diffusion to X ′ = {v1, v5} (Color figure online)

Given the network and a spreader set S, after one diffusion round, the influenced
nodes are all those which are influenced by the nodes in S, that is, have a number of
neighbors in S at least equal to their threshold. Noticing that nodes in S are already
contaminated and cannot be immunized, we can then model the diffusion process by a
graph, which represents the network except for the spreader set. Namely, we consider
the graphG = (V , E, t)where: V is the set of nodes of the network excluding those in
the spreader set, E ⊆ V ×V is the edge set, and t is the threshold function t : V → N

where t(v) is equal to the original threshold of the node v in the network decreased
by the number of its neighbors in S (if the difference is negative then t(v) is set to 0).
Hence in G, the diffusion process can be seen as starting at the nodes of threshold 0.
Each node in V , including those of threshold 0, may be immunized.

Definition 1 The diffusion process in G = (V , E, t) in the presence of a set Y ⊆ V
of immunized nodes is a sequence of node subsets DG,Y [1] ⊆ DG,Y [2] ⊆ · · · ⊆
DG,Y [τ ] ⊆ · · · ⊆ V , with1

– DG,Y [1] = {u | u ∈ V − Y , t(u) = 0}, and
– DG,Y [τ ] = DG,Y [τ − 1] ∪

{
u | u ∈ V − Y , | �G(u) ∩ DG,Y [τ − 1] |≥ t(u)

}
.

The process ends at τ ∗ such that DG,Y [τ ∗] = DG,Y [τ ∗ + 1]. We set DG,Y =
DG,Y [τ ∗].
We omit the subscript Y when no node is immunized, that is, DG = DG,∅.
Notice that Definition 1 immediately implies

DG,Y = DG[V−Y ]. (1)

In the following, we assume that for the input graph it holds DG = V ; indeed,
we could otherwise remove all the nodes that cannot be influenced, since they are
irrelevant to the immunization problem. In particular, each remaining node v ∈ V has
t(v) ≤ dG(v), otherwise, it could not be influenced. An example is given in Fig. 1a.

We are now ready to formally define our problem.

Influence- Immunization Bounding (IIB): Given a graph G = (V , E, t)
and bounds k and �, is there a set Y such that |Y | ≤ � and |DG,Y | ≤ k?

1 We shall omit the subscript G whenever the graph is clear from the context.
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For a given set Y we partition the node set into three subsets:

• The set DG,Y , which contains the nodes that get influenced,
• the immunizing set Y , which has the property that, if all its nodes are immunized
then the diffusion process is contained to DG,Y , and

• the set V − Y − DG,Y of the nodes that, by immunizing Y , are not influenced.

We will refer to the nodes in the above subsets as influenced, immunized and safe,
respectively.

In some cases it will be easier to deal with a different formulation of IIB based on
the set of nodes to which one wants to confine the diffusion.

Definition 2 Given X ⊆ V , we define the immunizing set Y (X) of X as

Y (X) = {u | u ∈ V − X , | �G(u) ∩ DG[X ] |≥ t(u)}. (2)

The set DG[X ] of nodes that get influenced in the subgraph G[X ] induced by X , can
clearly be seen as the set of nodes thatwould get influenced in X if X were disconnected
from the rest of the graph. Hence, according to Definition 2, the set Y (X) contains the
nodes in V − X that can be influenced by those in DG[X ].
It is worth mentioning that a node having an initial threshold equal to 0 can only be
influenced or immunized. Indeed, by Definition 2, all the nodes in V −X having initial
threshold equal to 0 belong to Y (X), that is,

{v | v ∈ V , t(v) = 0} ⊆ X ∪ Y (X)

(see Fig. 1c for an example). By the above definitions and by (1), we have

Fact 1

DG[X ] = DG,Y (X) = DG[V−Y (X)] ⊆ X , (3)

Proof Wefirst notice thatY (X) includes all the nodes inV−X that either are influenced
by those in X or have a threshold equal to 0. As a consequence, the influenced nodes
in V −Y (X) can only belong to X . Hence the first equality holds. The second equality
immediately follows by (1). �


The sets DG[X ], Y (X), V −Y (X)−DG[X ] are the influenced, immunized, and safe
sets, respectively.

For some X , some nodes in G[X ] may be not influenced, even though they would
in the whole graph G (see Fig. 1 (b)). However, it is easy to see that for each X the set
X ′ = DG[X ] ⊆ X is such that DG[X ′] = X ′ and Y (X ′) = {u | u ∈ V − X ′, |�G(u) ∩
DG[X ′]| ≥ t(u)} = Y (X).

In the following, we will refer as minimal to a set X such that DG[X ] = X (see
Fig. 1c). We can then state the following.

Fact 2 (IIB equivalent formulation) 〈G, k, �〉 is a yes instance of IIB iff there exists
a minimal set X such that

|X | = |DG[X ]| ≤ k and |Y (X)| ≤ �. (4)
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4 Hardness

In this section we prove some hardness properties of Influence- Immunization
Boundingwith respect to the parameters k, tw, and nd, and to the pair of parameters
(�, �) and (�, ζ ).

4.1 Parameter k

Theorem 1 IIB is W [1]-hard with respect to k, the size of the influenced set.

Proof Wegive a reduction from the cutting at most k vertices with terminal

(CVT- k): Given a graph H = (V (H), E(H)), s ∈ V (H), and two integers k and �,
is there a set XH ⊆ V (H) such that s ∈ XH , |XH | ≤ k, and |�H (XH )| ≤ �?.
The theorem will follow, since Theorem 3 in [25] proves that CVT- k is W [1]-hard
with respect to k.

Toour aim,we construct the instance 〈G, k−1, �〉of IIB whereG = H [V (H)−{s}]
and t(v) = 0 for each node v ∈ �H (s) and t(v) = 1 for each node v ∈ V (H)−{s}−
�H (s).

Suppose first that 〈G, k − 1, �〉 admits a solution. By (4), there exists a minimal set
X such that |X | = |DG[X ]| ≤ k−1 and |Y (X)| ≤ �. Noticing that�H (s) ⊆ X∪Y (X),
one gets that for XH = X ∪ {s} it holds �H (X ∪ {s}) = Y (X). Hence XH = X ∪ {s}
satisfies the inequalities |XH | ≤ k and |�H (XH )| ≤ � and is a solution to CVT- k.

Suppose now XH = X ∪ {s} is a minimum size solution to CVT- k. Then H [XH ]
is connected, otherwise the connected component containing s would be a smaller
solution. Recalling that in G all thresholds are at most 1, we have that all the nodes in
the connected components containing a node with threshold 0 get influenced. Hence,

Y (X) = {u | u ∈ V−X , |�G(u) ∩ DG[X ]| ≥ t(u)}
= {u | u ∈ V−X , t(u)=0} ∪ {u | u ∈ V−X , t(u) = 1, |�G(u) ∩ DG[X ]| ≥ 1}
= {u | u ∈ V−X , t(u)=0} ∪ {u | u ∈ V−X , |�G(u) ∩ X | ≥ 1}
= �H ({s} ∪ X).

As a consequence, X is a solution to IIB. �

The same reduction, recalling that Theorem 5 in [25] proves that CVT- k is W [1]-

hard with respect to �, also gives that IIB is W [1]-hard with respect to �; however, a
stronger result is given in the next section.

4.2 Parameters � and �

Theorem 2 IIB is W [2]-hard with respect to the pair of parameters ζ , the number of
nodes with threshold 0, and �, the size of the immunized set.

Proof We give a reduction from Hitting Set (HS), which is W [2]-complete in the
size of the hitting set: Given a collection {S1, . . . , Sm} of subsets of a ground set
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Fig. 2 The Graph G encoding the HS problem. The big circle on the left represents a set I of h + 1
independent nodes having threshold 0 and sharing all neighbors. The thresholds of nodes appear in red
(Color figure online)

A = {a1, . . . , an} and an integer h > 0, is there a set H ⊆ A such that H ∩ Si �= ∅,

for each2 i ∈ [m] and |H | ≤ h?
Given an instance 〈{S1, . . . , Sm}, A = {a1, . . . , an}, h〉 of HS, we construct an

instance 〈G, n + 1, h〉 of IIB (cf. Figure2). The graph G = (V , E, t) has node set
V = I ∪ A ∪ S, where I = {v0, . . . , vh} is a set of h + 1 independent nodes,
A = {a1, . . . , an} represents the ground set, and S = {s1, . . . , sm} (each s j represents
the set S j ), edge set

E = {(vi , a j ) | vi ∈ I , a j ∈ A} ∪ {(a j , st ) | a j ∈ A, st ∈ S, a j ∈ St },

and threshold function defined by

t(v) =

⎧
⎪⎨

⎪⎩

0 if v ∈ I

1 if v ∈ A

|St | = dG(st ) if v = st ∈ S.

Trivially, DG [1] = I , DG[2] = I ∪ A, and DG [3] = I ∪ A ∪ S = V .
We prove now that 〈{S1, . . . , Sm}, A, h〉 is a yes instance of HS if and only if

〈G, n + 1, h〉 is a yes instance of IIB.
Suppose first there exists H ⊆ A such that |H | ≤ h and H ∩ St �= ∅, for each

t ∈ [m]. If we consider in G the set of nodes Ỹ ⊆ A corresponding to the elements
of H then each node st ∈ S is connected with a node in Ỹ . Consequently, if all the
nodes in Ỹ are immunized, then the number of influenced neighbors of st cannot reach
its threshold t(st ) = dG(st ). Hence, no node in S can get influenced. Let then Y
be the set obtained by padding Ỹ with nodes in A − Ỹ , so to have |Y |= h. Clearly,
DG,Y = I ∪ (A − Y ) with |DG,Y | = n + 1.

Assume now there exists a solution Y of IIB. We notice that:

(a) I ⊆ DG,Y ∪ Y (since all the nodes in I have threshold 0, they are immunized or
influenced).

(b) If there exists vi ∈ I ∩ Y , we can update Y to Y ′ = Y ∪ {a} − {vi }, for any
a ∈ A − Y (this implies that DG,Y ′ ⊆ DG,Y ∪ {vi } − {a}).

(c) If there exists st ∈ S∩Y we can update Y to Y ′ = Y ∪{a}−{st }, for any a ∈ A∩St
(this implies that DG,Y ′ ⊆ DG,Y − {a}).

2 For a positive integer a, we use [a] to denote the set of integers [a] = {1, 2, . . . , a}.
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Fig. 3 a The expansion gadget. b The reduction gadget. c The graph G (Color figure online)

Using a) and iterating on b) and c), we can assume that Y consists of at most h nodes
in A. As a consequence

I ∪ (A − Y ) ⊆ DG,Y .

We show now that

S ∩ DG,Y = ∅.

Indeed, if we assume by contradiction that S ∩ DG,Y �= ∅, we get

|DG,Y | ≥ |I | + |A − Y | + |S ∩ DG,Y | > h + 1 + (n − |Y |) ≥ n + 1,

thus contradicting the hypothesis that Y is a solution of the instance 〈G, n + 1, h〉 of
the IIB problem.

Hence, we have that S ∩DG,Y = ∅, each node in S has some neighbor in Y and the
set H of elements corresponding to the h nodes in Y satisfies H ∩ St �= ∅, for each
t ∈ [m]. �


4.3 Parameters1 and �

We show the W [2]-hardness of IIB with respect to the parameter �, the size of the
immunized set, even when the maximum degree of the graph is at most 3.

Given an instance 〈{S1, . . . , Sm}, A = {a1, . . . , an}, h〉 of HS, we construct an
instance 〈G, k, �〉 of IIB, where the maximum node degree is 3. We start the con-
struction of G by inserting the nodes in A ∪ W ∪ U ∪ S where A = {a1, . . . , an}
represents the ground set and S = {s1, . . . , sm} (each s j represents the set S j ), while
W and U are two auxiliary sets, of at most nm nodes each, that will be used to keep
the degree bounded and, at the same time, simulating a complete bipartite connec-
tion between A and S (depicted using gray connection in Fig. 3c). We then add the
following expansion, reduction and path gadgets.

Expansion gadgets For each i ∈ [n], if the sets containing ai are exactly
Si1 , Si2 , . . . , Siδi then we encode these relationships with a gadget. Namely, we add
δi nodes {wi,i1 , wi,i2 , . . . wi,iδi

}
and the edges (ai , wi,i1) and (wi,i j , wi,i j+1) for j ∈ [δi − 1]. See Fig. 3a.
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Reduction gadgets.For each j ∈ [m], if S j = {a j1, a j2 , . . . , a jγ j
} thenwe encode this

relationship with a gadget. Namely, we add γ j−1 nodes {u j1, j , u j2, j , . . . , u jγ j−1, j }
and the edges:

– (w jr+1, j , u jr , j ), (u jr , j , u jr+1, j ), for r ∈ [γ j−2]
– (w j1, j , u j1, j ), (w jγ j , j

, u jγ j−1, j ), and (u jγ j−1, j , s j ).
The reduction gadget is presented in Fig. 3b.

Path gadgets. We complete the construction by adding m paths each of n + 2nm
nodes, which depart from each s j ∈ S. See Fig. 3c.

Notice that, by construction each node has degree at most 3. We set now the thresh-
olds of the nodes in G as:

t(v) =

⎧
⎪⎨

⎪⎩

0 if v ∈ A

2 if v ∈ U

1 otherwise

Theorem 3 IIB is W [2]-hard with respect to the parameter �, the size of the immunized
set, even when the maximum degree of the graph is at most 3.

Proof We show that 〈{S1, . . . , Sm }, A, h〉 is a yes instance of HS iff 〈G, n + 2nm, h〉 is a
yes instance of IIB.

Suppose first that there exists a set H ⊆ A such that |H | ≤ h and H ∩ S j �= ∅ for
each j ∈ [m]. Consider in G the set of nodes Y corresponding to the elements of H .
Since H ∩ S j �= ∅, for each j ∈ [m], we have that each node s j ∈ S is connected,
through a reduction gadget, with a node in wi, j such that ai ∈ S j ∩ Y . Consequently,
if all the nodes in Y are immunized, then at least one node in the reduction gadget
associated to s j cannot reach the threshold and consequently s j will not be influenced.
Hence, no node in S as well as in the associated path gadgets can get influenced. We
have |Y | ≤ h and |DG,Y | < n + 2nm, where the last inequality follows noticing that
n + 2nm is greater than the number of nodes that remain in G once we eliminate the
nodes in S and in the path gadgets.

Assume now there exists a solution Y to IIB such that |Y | ≤ h and |DG,Y | ≤
n+2nm. Without loss of generality, we can assume that Y ⊆ A. Indeed, if Y contains
either of the nodes wi,i j , ui,i j , si j or a node in the path Pi j , for some i ∈ [n], we could
replace such a node by ai ∈ A without increasing neither the size of Y nor the size of
DG,Y . Hence, we have that Y consists of at most h nodes in A. We argue that the set
H ⊆ A of the elements corresponding to the nodes in Y satisfies H ∩ S j �= ∅, for each
j ∈ [m]. Indeed, assume by contradiction that there is a set S j such that H ∩ S j = ∅.
This implies that in G the node s j will be influenced. Indeed, s j is connected through
gadgets, to all the nodes in S j . Moreover each node in S j belongs to A − Y and has
threshold 0. It follows that s j and, as a consequence, all the n + 2nm nodes on the
associated path get influenced and we obtain the desired contradiction because this
violate the bound on the size of DG,Y . �
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4.4 Graphs of Bounded Treewidth

In this section we show that IIB isW [1]-hard with respect to the treewidth parameter.

Definition 3 A tree decomposition of a graph G = (V , E) is a pair (T , {Wu}u∈V (T )),
where T is a tree and each u ∈ V (T ) is assigned a node subset Wu ⊆ V such that:

1.
⋃

u∈V (T ) Wu = V .
2. For each (v,w) ∈ E, there exists u ∈ V (T ) s.t. Wu contains both v and w.
3. For each v ∈ V , the set Tv = {u ∈ V (T ) | v ∈ Wu}, induces a connected subtree

of T .

The width of a tree decomposition (T , {Wu}u∈V (T )) of a graph G is defined as
maxu∈V (T )|Wu | − 1. The treewidth of G, denoted by tw(G), is the minimum width
over all tree decompositions of G. We show that IIB is W [1]-hard with respect to the
treewidth parameter.

In order to prove that IIB is W [1]-hard with respect to the treewidth, we present a
reduction from Multi- Colored clique (MQ): Given a graph G = (V , E) and a
proper vertex-coloring c : V → [q] for G, does G contain a clique of size q?

It is worth noticing that a node v can belong to a multi-colored clique only if
{v} ∪ �G(v) contains at least one node from each color class. Hence, in the following
we will assume that all the nodes that do not satisfy such a property are removed from
G, since they are irrelevant to the problem.

Given an instance 〈G, q〉 of MQ, we construct an instance 〈G ′ = (V ′, E ′), k, �〉
of IIB. We denote by n′ = |V ′| the number of nodes in G ′. For a color c ∈ [q], we
denote by Vc the class of nodes in G of color c and for a pair of distinct c, d ∈ [q],
we let Ecd be the subset of edges in G between a node in Vc and one in Vd .

Our goal is to guarantee that any optimal solution of IIB in G ′ encodes a clique in
G and vice-versa. Following some ideas in [3], we construct G ′ using the following
gadgets:

Parallel-paths gadget: A parallel-paths gadget of size h, between nodes x and y,
consists of h disjoint paths each built by a connection node which is adjacent to both
x and y. In order to avoid cluttering, we draw such a gadget as an edge with label h
(cf. Figure4a).

Selection gadgets: The selection gadgets encode the selection of nodes (node-
selection gadgets) and edges (edge-selection gadgets):

Node-selection gadget: For each c ∈ [q], we construct a c-node-selection gadget
which consists of a node xv for each v ∈ Vc; these nodes are referred to as node-
selection nodes. We then add a guard node gc that is connected to all the other
nodes in the gadget; thus the gadget is a star centered at gc.
Edge-selection gadget: For each c, d ∈ [q] with c �= d, we construct a {c, d}-
edge-selection gadget which consists of a node xu,v for every edge (u, v) ∈ Ecd ;
these nodes are referred to as edge-selection nodes. We then add a guard node
gcd that is connected to all the other nodes in the gadget; thus the gadget is a star
centered at gcd .
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Fig. 4 a Parallel-paths gadget. b Representation of the graph G′ for a trivial instance of the MQ problem
〈G = (V1 ∪ V2, E1,2), 2〉 (Color figure online)

Overall there are n node-selection nodes with q guard nodes and m edge-selection
nodes with

(q
2

)
guard nodes (cf. Figure4b).

Validationgadgets:Weassign to every node v ∈ V (G) twounique identifier numbers,
low(v) and high(v), with low(v) ∈ [n] and high(v) = 2n − low(v). For every
pair of distinct c, d ∈ [q], we construct two validation gadgets. One between the
c-node-selection gadget and the {c, d}-edge-selection gadget and one between the d-
node-selection gadget and the {c, d}-edge-selection gadget.We describe the validation
gadget between the c-node-selection and {c, d}-edge-selection gadgets. It consists of
two nodes. The first one is connected to each node xv , for v ∈ Vc, by parallel-paths
gadgets of size high(v), and to each edge-selection node xu,v, for (u, v) ∈ Ecd and
v ∈ Vc, by parallel-paths gadgets of size low(v). The other node is connected to
each node xv , for v ∈ Vc, by parallel-paths gadgets of size low(v), and to each edge-
selection node xu,v, for (u, v) ∈ Ecd and v ∈ Vc, by parallel-paths gadgets of size
high(v). Overall, there are q(q −1) validation gadgets, each composed of two nodes.

Black-hole gadget: Finally we add a gadget, which will force the immunizing set
Y to contain at least one node for each selection gadget. We add a set B of |B| =
(n − q)(2nq − 2n + 1) + (

m − (q
2

))
(4n + 1) independent nodes and a complete

bipartite graph between nodes in B and the guard nodes.

To complete the construction, we specify the thresholds of the nodes in G ′

t(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x is a selection node

1 ifx is a connection node orx ∈ B

dG ′(x) − 2n + 1 if x is a validation node

|Vc| if x = gc is a guard node for some c ∈ [q]
|Ecd | if x = gcd is a guard node for some c, d ∈ [q]

The complete construction ofG ′ for an instance of theMQ problem appears in Fig. 4b.
In order to prove the desired hardness result, we show that the reduction is correct

and that G ′ has treewidth O(q2).
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Theorem 4 IIB is W [1]-hard with respect to the treewidth of the input graph.

Proof We first prove that 〈G, q〉 is a yes instance of MQ if and only if 〈G ′, k, �〉,
where k = (n − q)(2nq − 2n + 1) + (

m − (q
2

))
(4n + 1) and � = q + (q

2

)
, is a yes

instance of IIB.
Suppose that K = (V (K ), E(K )) is a multi-colored clique in G of size q. Let C

denote the set of all the connection nodes inG ′ and let XK = {xv | v /∈ V (K )}∪{xu,v |
(u, v) /∈ E(K )}. Set

X = XK ∪ {c ∈ C | �G ′(c) ∩ XK �= ∅}.

We show that

Y = {xv | v ∈ V (K )} ∪ {xu,v | (u, v) ∈ E(K )}

is the immunizing set of X , i.e., Y = Y (X). Notice that |Y |= q + (q
2

)
.

We first notice that DG ′[X ] = X . Indeed, nodes in {xv | v /∈ V (K )} ∪ {xu,v |
(u, v) /∈ E(K )} have threshold 0 and their neighbors in C have threshold 1.
Recalling that for each v ∈ V (G), the set {v} ∪ �G(v) contains at least one node
from each color class (as already noticed, nodes which do not satisfy this property are
irrelevant for the problem and can be removed beforehand), we can easily evaluate the
size of X . Indeed X is composed of:

• n−q nodes in the set of node-selection nodes and their (n−q)2n(q−1) neighbors
in C . Indeed, each node-selection node is connected with q − 1 validation pairs
and, for each node xu , we have low(u) + high(u) = 2n.

• m − (q
2

)
nodes in the set of edge-selection nodes and their (m − (q

2

)
)4n neighbors

in C . Indeed, each edge-selection node is connected with two validation pairs and
for each node xu,v we have that low(u) + high(u) = low(v) + high(v) = 2n.

Overall the set X has size

k = (n − q)(2nq − 2n + 1) +
(

m −
(
q

2

))

(4n + 1). (5)

It remains to show that Y = Y (X). First of all, we observe that Y ⊆ Y (X) because all
the nodes in Y belongs to V ′ − X and have threshold 0, hence, by Definition 2, each
node in Y belongs to Y (X). We show now that for any v ∈ V ′ − (X ∪ Y ) it holds
|�G ′(v) ∩ X | < t(v):

• Each guard node g has a neighbor in Y and its threshold is equal to the number of
its neighbors belonging to its selection gadget. Hence, |�G ′(g) ∩ DG ′[X ]| < t(g).

• For each b ∈ B, it holds |�G ′(b) ∩ X | = 0 < t(b) = 1.
• Consider now the validation nodes. Knowing that K is a multi-colored clique, we
have that for each validation pair there is exactly one node u and one edge (u, v)

such that xu, xu,v ∈ Y . Hence, both nodes have exactly low(·) + high(·) = 2n
neighbors which do not belong to X . Since the threshold of each validation node
x is t(x) = dG ′(x) − 2n + 1, then |�G ′(x) ∩ X | = dG ′(x) − 2n < t(x).
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• Finally, for each connection node c /∈ X , we have |�G ′(c) ∩ X | = 0 < t(c) = 1.

Assume now there exists a solution Y to IIB such that |Y | ≤ � = q + (q
2

)
and

|DG ′,Y | ≤ k = (n − q)(2nq − 2n + 1) +
(

m −
(
q

2

))

(4n + 1). (6)

Noticing that k < |B| + 1 and all the nodes in B get influences as soon as a guard
node is, we have that the immunization of Y saves all the guard nodes.

Noticing that the number of guard nodes is exactly q + (q
2

)
and each guard node is

connected to a distinct set of selection nodes, we have that |Y | = q + (q
2

)
and each

node in Y can save one guard node.
Recalling that the thresholds of guard nodes is equal to the number of neighbors

belonging to the corresponding selection gadget, we have that in order to save a guard
node there are two options: Put the guard node in Y or put in Y one of its neighbors,
belonging to the corresponding selection gadget. Without loss of generality, we can
assume that Y does not include any guard node. Indeed, if Y contains a guard node we
could replace such a node by one of its selection node neighbors without increasing
neither the size of Y nor the size of DG ′,Y .

We can then assume that Y is composed of exactly q node-selection nodes and
(q
2

)

edge-selection nodes.
Let VY ⊆ V be a set of q nodes in G, defined by VY = {v ∈ V | xv ∈ Y }. We argue
that G[VY ] is a clique. By contradiction suppose that G[VY ] is not a clique. There
are two nodes u, v ∈ VY such that (u, v) /∈ E . Let c, d be the colors of v and u,
respectively. Let xw,z be the node in G ′ which save the guard gcd associated to the
pair c, d. Since (u, v) /∈ E we have that w �= u or z �= v or both. Without loss of
generality, we can assume that w �= u. Consider now the validation pair between the
c-node- and {c, d}-edge-selection gadgets. Recalling that Y contains exactly one node
for each selection gadget, we have that both the nodes in the validation pair have all
the neighbors influenced, except for the connections of the nodes xu and xw,z . Since
w �= u, we have that one of the nodes in the validation pair will get influenced. This is
because for any w �= u either high(w) + low(u) < 2n or low(w) + high(u) < 2n.
That is, there is a validation node x having less than 2n not influenced neighbors,
while all the remaining neighbors get influenced. Recalling that the threshold of x is
dG ′(x) − 2n + 1, we have that x get influenced.

Hence, |DG ′,Y | = k + 1. Indeed k are due to non immunized selection nodes and
their connection neighbors (see (5)) plus at least one validation node. This contradicts
(6).

We show now that G ′ admits a tree decomposition of width O(q2). The complete
bipartite network defined by the guard nodes and the nodes in B has treewidth q+(q

2

)
.

Indeed, let A be the set of the guard nodes of size q + (q
2

)
and b1, b2, . . . , b|B| the

nodes in B, the decomposition tree has A as root and A ∪ bi as children.
Then we can add to this network the q + (q

2

)
trees, rooted on the guard nodes and

containing both selections and connection nodes, without increasing the treewidth.
Finally we can add all O(q2) validation nodes, getting a tree decomposition of width
O(q2) for G ′. �
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4.5 Graphs of Bounded Neighborhood Diversity

In this section we prove that IIB is W[1]-hard on graphs of bounded neighborhood
diversity. First of all we define the neighborhood diversity of a graph.

Given a graph G = (V , E), two nodes u, v ∈ V are said to have the same type if
�G(v)\{u} = �G(u)\{v}. The neighborhood diversity of a graph G, introduced by
Lampis in [37] and denoted bynd(G), is theminimum numbernd of sets in a partition
V1, V2, . . . , Vnd, of the node set V , such that all the nodes in Vi have the same type,
for i ∈ [nd]. The family {V1, V2, . . . , Vnd} is called the type partition of G.
Notice that each Vi induces either a clique or an independent set in G. Moreover, for
each Vi , Vj in the type partition, we get that either each node in Vi is a neighbor of
each node in Vj or no node in Vi has a neighbor in Vj . Hence, between each pair Vi
and Vj , there is either a complete bipartite graph or no edges at all.

In order to prove that IIB is W[1]-hard with respect to the neighborhood diversity,
we use a reduction from Multi- Colored clique (MQ), defined in Sect. 4.4. As
before, we refer to Vc as a color class ofG and to Ecd as the set of edges between nodes
in the color classes Vc and Vd . Here we will use the fact that MQ remains W[1]-hard
even if each color class has the same size and for each distinct colors c, d ∈ [q], the
set Ecd has the same size [17]. We then denote by r + 1 the size of each color class
Vc and by s + 1 the size of each set Ecd , in particular we use the following notation

Vc = {vc0, vc1, . . . , vcr }, Ecd = {ecd0 , . . . , ecds } c, d ∈ [q], c �= d (7)

and refer to vci and ecdj as the i-th node in Vc and the j-th edge in Ecd , respectively.
Let 〈G, q〉 be an instance ofMQ.We describe a reduction from 〈G, q〉 to an instance

〈G ′, k, �〉 of IIB such that nd(G ′) is O(q2).
In order to present the reduction we introduce some gadgets that are used in the

construction of G ′. They are inspired by those used in [19]. The rationale behind
the construction is the following. First, we create two sets of gadgets (Selection and
Multiple gadgets), which encode in G ′ the selection of nodes and edges as part of a
potential multicolored clique in G. Then we create another set of gadgets (Incidence
gadgets) that is used to check whether the selected sets of nodes and edges actually
represent a multicolored clique in G. Our goal is to guarantee that any solution of IIB
in G ′ encodes a clique in G and vice-versa.

In the followingwe call an independent set of nodes of a graph sharing all neighbors
a bag. So, a connection between two bags points out a complete bipartite graph among
the nodes in the bags. Figure5 shows the gadgets we are going to introduce and how
they are connected.

Selection Gadget. For each c ∈ [q], the selection gadget Lc consists of three bags:
Lc-neg and Lc-pos of r nodes each, and Lc-guard of � + 1 nodes (the value �, repre-
senting an upper bound on the number of nodes to be immunized, will be determined
later). The bag Lc-guard is connected to both Lc-neg and Lc-pos. The selection gadget
Lc is connected to the rest of the graph G ′ using only nodes from Lc-neg ∪ Lc-pos.

123



Algorithmica (2023) 85:3376–3405 3391

Fig. 5 An overview of the reduction. Each circle represents a bag. The number inside a bag is the number
of nodes of the bag. The threshold of nodes in a bag is displayed in red (Color figure online)

We set now the thresholds of the nodes in Lc as:

t(v) =
{
0 if v ∈ Lc-neg ∪ Lc-pos

r + 1 if v ∈ Lc-guard

Multiple Gadget. For each c, d ∈ [q] with c �= d, we create a multiple gadget Mcd

consisting of six bags: Lcd -pos and Lcd -neg of 2rs nodes each, Lcd -guard of � + 1
nodes, Mcd -pos and Mcd -neg of s + 1 nodes each, and Mcd -guard of � + 1 nodes.
Mcd -guard is connected to the bags Mcd -pos and Mcd -neg. Mcd -pos is connected to
Lcd -pos, andMcd -neg is connected to Lcd -neg. Finally, the bag Lcd -guard is connected
to both Lcd -pos and Lcd -neg.The rest of graphG ′ is connected only to the bags Lcd -pos
and Lcd -neg. We set now the thresholds of the nodes in Mcd as:

t(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if v ∈ Lcd -neg ∪ Lcd -pos

2rs + 1 if v ∈ Lcd -guard

2r j + 1 if v = x j where Mcd -pos = {x0, . . . , xs}
2r j + 1 if v = y j where Mcd -neg = {y0, . . . , ys}
s + 1 if v ∈ Mcd -guard

Incidence Gadget. For each pair of distinct c, d ∈ [q], we construct two incidence
gadgets: Ic:cd (connected with the gadgets Lc and Mcd ) and Id:cd (connected with the
gadgets Ld and Mcd ). In the following we present the gadget Ic:cd which has the same
structure as the gadget Id:cd . The incidence gadget Ic:cd has three bags Ic:cd -pos and
Ic:cd -neg of s + 1 nodes each, and Ic:cd -guard of � + 1 nodes. We connect Ic:cd -guard
to Ic:cd -pos and Ic:cd -neg. Furthermore, we connect Ic:cd -pos to Lc-pos and Lcd -pos.
Similarly, we connect Ic:cd -neg to Lc-neg and Lcd -neg.
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Recalling that there are s + 1 edges in the set Ecd , and that there are s + 1 nodes
in Ic:cd -pos and Ic:cd -neg, we create one-to-one correspondences between Ecd and
Ic:cd -pos and between Ecd and Ic:cd -neg. Namely, for each j = 0, . . . s, we associate
the j-th edge ecdj in Ecd (cfr. (7)) to a node u j ∈ Ic:cd -pos and to a nodew j ∈ Ic:cd -neg
(with u j �= u j ′ and w j �= w j ′ , for j �= j ′). Moreover, if the endpoint of ecdj of color
c is the i th node vci of Vc (cfr. (7)) then we set the thresholds of the nodes in Ic:cd as:

t(v) =

⎧
⎪⎨

⎪⎩

2r j + i + 1 if v = u j ∈ Ic:cd -pos
2r(s − j) + r − i + 1 if v = w j ∈ Ic:cd -neg
s + 1 if v ∈ Ic:cd -guard

It is worth observing that the nodes in Ic:cd -pos (respectively, Ic:cd -neg) have dif-
ferent thresholds. Indeed, the numbers i +1+2r j (respectively, r − i +1+2r(s− j))
are all different, for 0 ≤ i ≤ r and 0 ≤ j ≤ s.

Black-hole Gadget. Finally we add a gadget, which will force the immunizing set
Y to contain a specific number of nodes for selection (r nodes) and multiple gadgets
(2rs nodes). We add a bag B of |B| = k (the value k will be determined later) nodes
and connect it to the guard bags in all the selection, multiple and incidence gadgets.
For each v ∈ B, we set t(v) = 1.

The value of k and � are set to k = qr + (q
2

)
(2r + 3)s and � = qr + (q

2

)
2rs. In

order to prove the desired result, we need the following lemmata 1 and 4.

Lemma 1 If 〈G, q〉 is a yes instance of MQ then 〈G ′, k, �〉 is a yes instance of IIB.
Proof Let K = (V (K ), E(K )) be a multicolored clique of G. We will show how to
select nodes to be added to the immunizing set Y according to the nodes in K . First of
all notice that, all the nodes in the bags Lc-pos, Lc-neg, Lcd -pos, and Lcd -neg belong
to Y ∪ DG ′,Y , as they all have threshold zero.

For each c ∈ [q], if the unique node of color c in K is vci , the i-th node in Vc,
then we add i nodes of Lc-neg and r − i nodes of Lc-pos to Y . For each pair of
distinct c, d ∈ [q], if the unique edge with endpoints of colors c and d in K is ecdj ,
then we add 2r j nodes of Lcd -neg and 2r(s − j) nodes of Lcd -pos to Y . Overall,
|Y | = � = qr + (q

2

)
2rs. We now prove that |DG ′,Y | = k = qr + (q

2

)
(2r + 3)s.

Consider the diffusion process in V (G ′)−Y . At the first round, all non immunized
nodes with threshold zero are influenced; hence DG ′,Y [1] contains: i nodes of Lc-pos
and r − i nodes of Lc-neg, for all c ∈ [q], 2r j nodes of Lcd -pos, 2r(s − j) nodes of
Lcd -neg, for all c, d ∈ [q] with c �= d.

We claim that, at the second round, the additional influenced nodes (in the
neighborhood of DG ′,Y [1]) are exactly: s nodes in Mcd -pos ∪ Mcd -neg, s nodes
in Ic:cd -pos ∪ Ic:cd -neg, and s nodes in Id:cd -pos ∪ Id:cd -neg, for each pair of dis-
tinct c, d ∈ [q]. Indeed, let Mcd -pos = {x0, . . . , xs} and Mcd -neg = {y0, . . . , ys}.
Since at the end of the first round the nodes in Mcd -pos have 2r j influenced neigh-
bors in Lcd -pos and the nodes in Mcd -neg have 2r(s − j) influenced neighbors in
Lcd -neg, recalling that t(x j ) = t(y j ) = 2r j + 1, we have that nodes x0, . . . , x j−1
in Mcd -pos and nodes y0, . . . , ys− j−1 in Mcd -neg get influenced. Overall s nodes in

123



Algorithmica (2023) 85:3376–3405 3393

Mcd -pos ∪ Mcd -neg are influenced at the second round.
Consider now the incidence gadgets. Since there are 2r j + i influenced nodes in
Lc-pos∪ Lcd -pos that are in neighborhood of the nodes in Ic:cd -pos, recalling that the
thresholds of nodes in Ic:cd -pos are:

t(u j ) = 2r j + i + 1 > 2r j + i and

t(uh) = 2rh + h′ + 1 for each 0 ≤ h ≤ s, h �= j , and 0 ≤ h′ ≤ r ,

we have

t(uh) ≤ 2rh + r + 1 ≤ 2r( j − 1) + r + 1 = 2r j − r + 1 ≤ 2r j + i if h < j

t(uh) ≥ 2rh + 1 ≥ 2r( j + 1) + 1 > 2r j + 2r + 1 > 2r j + i if h > j .

Hence, nodes u0, . . . , u j−1 in Ic:cd -pos are influenced at the second round.
We nowmake a similar analysis for the nodes in Ic:cd -neg. Since there are 2r(s− j)+
r − i influenced nodes in Lc-neg ∪ Lcd -neg that are in neighborhood of the nodes in
Ic:cd -neg, recalling that the threshold of nodes in Ic:cd -neg are:

t(w j ) = 2r(s − j) + r − i + 1 > 2r(s − j) + r − i and

t(wh) = 2r(s − h) + r − h′ + 1 for some 0 ≤ h′ ≤ r ,

we have

t(wh) ≥ 2r(s − h) + 1 ≥ 2r(s − j) + 2r + 1 > 2r(s − j) + r − i for h < j

t(wh) ≤ 2r(s − h) + r + 1 ≤ 2r(s − j) − r + 1 ≤ 2r(s − j) + r − i for h > j .

Hence, nodes w j+1, . . . , ws in Ic:cd -neg are influenced at the second round. Overall,
we have that s nodes in Ic:cd -pos ∪ Ic:cd -neg are influenced at the second round.
Using exactly the same argument we can show that s nodes in Id:cd -pos ∪ Id:cd -neg
are influenced at the second round.

Finally, the nodes in Lc-guard (resp. Lcd -guard) have r (resp. 2rs) influenced
neighbors at the end of the first round and since all of them have threshold r +1 (resp.
2rs + 1), we have that none of them gets influenced at the second round.

We notice now that only the nodes in Mcd -guard and Ic:cd -guard have neighbors in
DG ′,Y [2]. However, they cannot be influenced (indeed, each of them has threshold s+1
but it has only s influenced neighbors in DG ′,Y [2] – either in Mcd -pos ∪ Mcd -neg or
in Ic:cd -pos∪ Ic:cd -neg). We have that DG ′,Y [3] = DG ′,Y [2] and the diffusion process
stops.

Summarizing, DG ′,Y contains: r influenced nodes for each of the q nodes in the
clique K (those that are influenced in the selection gadgets Lc for c ∈ [q]), 2rs + s
influenced nodes for each of the

(q
2

)
edges in K (those in the multiple gadgets Mcd ,

for c, d ∈ [q]) and 2s influenced nodes, for each of the
(q
2

)
edges in K (those in the

incidence gadgets Ic:cd and Id:cd , for distinct c, d ∈ [q]). Hence, the setDG ′,Y contains
k = qr + (q

2

)
(2r + 3)s nodes. �
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Let Y be an immunizing set such that |Y | ≤ � = qr + (q
2

)
2rs and |DG ′,Y | ≤ k =

qr + (q
2

)
(2r + 3)s. In the following we derive some useful constraints on the nodes

contained in Y and DG ′,Y .

Lemma 2 For distinct c, d ∈ [q], no node in Lc-guard, Lcd-guard, Ic:cd -guard,
Id:cd -guard, Mcd-guard can be in DG ′,Y .

Proof Since the threshold of each v ∈ B is t(v) = 1, it is sufficient that at least one
guard node g ∈ Lc-guard ∪ Lcd -guard ∪ Ic:cd -guard ∪ Id:cd -guard ∪ Mcd -guard is
influenced to influence the whole B. However this cannot be since |B| + 1 = k + 1 >

|DG ′,Y |. �

Lemma 3 For distinct c, d ∈ [q], both Y and DG ′,Y contain

1. exactly r nodes of (Lc-pos ∪ Lc-neg),
2. exactly 2rs nodes of (Lcd-pos ∪ Lcd-neg),
3. a multiple of 2r nodes of Lcd-pos and Lcd-neg.

Proof First of all notice that all the nodes in Lc-pos, Lc-neg, Lcd -pos, and Lcd -neg
have threshold zero, and consequently belong to Y ∪ DG ′,Y .
We claim that at most r of the nodes of (Lc-pos∪ Lc-neg) can be in DG ′,Y . Indeed, if
DG ′,Y contains at least r +1 nodes in (Lc-pos∪ Lc-neg) then each node g ∈ Lc-guard
(recall t(g) = r+1) either is influenced (i.e., g ∈ DG ′,Y ) or is immunized (i.e., g ∈ Y ).
However, by Lemma 2, no node in Lc-guard can be influenced. Moreover, it cannot
occur that all the nodes in Lc-guard are immunized, since |Lc-guard|= � + 1 > |Y |.
Using the same argument we can prove that at most 2rs of the nodes of (Lcd -pos ∪
Lcd -neg) can be in DG ′,Y .

This allows to say that Y contains at least r nodes of (Lc-pos∪ Lc-neg) and at least
2rs nodes of (Lcd -pos∪ Lcd -neg). However, if there exists c ∈ [q] or a pair of distinct
c, d ∈ [q] such that Y contains strictly more than r nodes of (Lc-pos ∪ Lc-neg) or
2rs nodes of (Lcd -pos ∪ Lcd -neg), then |Y | > qr + (q

2

)
2rs and this is not possible.

Hence, 1) and 2) follow.
To prove that 3) holds, we proceed by contradiction. Suppose that DG ′,Y contains

2ra + z nodes of Lcd -pos, for some a < s and 0 < z < 2r . By 2) we have that
DG ′,Y contains 2r(s − a) − z nodes of Lcd -neg. Let Mcd -pos = {x0, . . . , xs} and
Mcd -neg = {y0, . . . , ys}. Recalling that the nodes in Mcd -pos are neighbors of those
in Lcd -pos, the nodes in Mcd -neg are neighbors of those in Lcd -neg and t(xi ) =
t(yi ) = 2ri +1, we have that nodes x0, . . . , xa of Mcd -pos and nodes y0, . . . , ys−a−1
of Mcd -neg get influenced. Since these s + 1 influenced nodes are neighbors of each
node g ∈ Mcd -guard, whose threshold is t(g) = s + 1, it follows that either g is
influenced or it is immunized. By Lemma 2, no node in Mcd -guard can be influenced.
On the other hand, it cannot occur that all the nodes in Mcd -guard are immunized,
since |Mcd -guard| = � + 1 > |Y | and we obtain the desired contradiction. �

Lemma 4 If 〈G ′, k, �〉 is a yes instance of IIB then 〈G, q〉 is a yes instance of MQ.

Proof Since 〈G ′, k, �〉 is a yes instance of IIB, there exists an immunizing set Y of
size at most � = qr + (q

2

)
2rs such that |DG ′,Y | ≤ k = qr + (q

2

)
(2r + 3)s.
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We proceed by identifying the clique K of G according to the number of nodes that
are in Lc-neg ∩ Y for each c ∈ [q] and in Lcd -neg ∩ Y , for each distinct c, d ∈ [q].
Namely, we select:

• the node vci ∈ Vc, such that |Lc-neg ∩ Y | = i , for some 0 ≤ i ≤ r , and
• the edge ecdj ∈ Ecd such that |Lcd -neg ∩ Y | = 2r j , for some 0 ≤ j ≤ s.

The above selection is correct since, by Lemma 3, we know that

|Y ∩ (Lc-pos ∪ Lc-neg)| = r and |Y ∩ (Lcd -pos ∪ Lcd -neg)| = 2rs;

in particular, Y contains a multiple of 2r nodes of both Lcd -pos and Lcd -neg.
Let V (K ) be the set of the q selected nodes and E(K ) be the set of the

(q
2

)
selected

edges. We argue that K = (V (K ), E(K )) is a clique. By contradiction assume there
are two distinct colors c, d ∈ [q] such that vci ∈ V (K ) and ecdj ∈ E(K ) but vci is not

an endpoint of ecdj . Consider the incidence gadget Ic:cd . Let Ic:cd -pos = {u0, . . . , us}
and Ic:cd -neg = {w0, . . . , ws}. Assume that vch is the endpoint of color c of e

cd
j . Recall

that nodes u j and w j represent the edge ecdj and that, by the construction of G ′, it
holds t(u j ) = 2r j + h + 1 and t(w j ) = 2r(s − j) + r − h + 1.
Recalling that the nodes of Ic:cd -pos have 2r j + i influenced neighbors (those in
DG ′,Y ∩ (Lc-pos ∪ Lcd -pos)) and the nodes of Ic:cd -neg have 2r(s − j) + r − i
influenced neighbors, (those in DG ′,Y ∩ (Lc-neg ∪ Lcd -neg)), we can perform an
analysis similar to that in the proof of Lemma 1, thus obtaining that all the nodes
u0, . . . , u j−1 in Ic:cd -pos and w j+1, . . . , ws in Ic:cd -neg get influenced. It remains to
analyze the nodes u j and w j . We will prove that at least one of them gets influenced:
If h < i then t(u j ) = 2r j + h + 1 ≤ 2r j + i and u j is influenced; if h > i then
t(w j ) = 2r(s − j) + r − h + 1 ≤ 2r(s − j) + r − i and w j is influenced. This
allows to say that if vch ∈ ecdj then s + 1 nodes among those in Ic:cd -pos and Ic:cd -neg
are influenced. As a consequence, each node g ∈ Ic:cd -guard, whose threshold is
t(g) = s + 1, must either be influenced or immunized. By Lemma 2, no node in
Ic:cd -guard can be influenced. On the other hand, it cannot occur that all the nodes
in Ic:cd -guard are immunized, since |Ic:cd -guard| = � + 1 > |Y | and we obtain the
desired contradiction. �


Theorem 5 IIB is W[1]-hard with respect to the neighborhood diversity of the input
graph.

Proof By the above Lemmas, we have that 〈G, q〉 is a yes instance ofMQ iff 〈G ′, k, �〉
is a yes instance of IIB, where k = qr + (q

2

)
(2r + 3)s, � = qr + (q

2

)
2rs.

We complete the proof by showing thatG ′ has neighborhood diversity O(q2). Since
each bag in G ′ is a type set in the type partition of G ′ and, since for each c ∈ [q], there
are three bags in Lc and, for each c, d ∈ [q] with c �= d there are six bags in Mcd ,
and three bags in both Ic:cd and Id:cd , we have that the neighborhood diversity of G ′
is 3q + 12

(q
2

)
. �
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5 FPT Algorithms

In this section, we present FPT algorithms for several pairs of parameters.

5.1 Parameters k and �

For such a pair of parameters, we observe that the fixed parameter tractability of IIB
with respect to k + � can be proved by the arguments used in Theorem 1 of [25]
for the problem cutting at most k vertices with terminal. For the sake of
completeness, the proof is given in the following.

Theorem 6 IIB can be solved in time 2k+�(k + �)O(log(k+�)) · nO(1).

Proof Let 〈G, k, �〉 be the input instance of IIB. Consider a random labelling of the
nodes of G, where each node is independently assigned either 0 or 1 with equal
probability. Let now H = G[V1] be the graph induced by the set V1 of nodes having
label 1. Consider the set DH of influenced nodes when we run the diffusion process
on H . If |DH | ≤ k and |Y (DH )| ≤ � then (4) holds for X = DH and we can answer
yes.

We estimate now the number of needed iterations of random labelling. Suppose
G contains a set X satisfying (4). For such a set, it holds |X | = |DG[X ]| ≤ k and
|Y (X)| ≤ �, then a random labelling identifies a solution of IIB if and only if all the
nodes in X are labelled 1 and all the nodes in Y (X) are labelled 0, that is,

X ⊆ V1 and Y (X) ∩ V1 = ∅.

Indeed, in such a case the above procedure identifies DH = X as a solution. This
happens with probability 2−(|DH |+|Y (DH )|) ≥ 2−(k+�). Hence, the algorithm requires
time 2k+�nO(1).

A derandomization of the above process can be done using universal sets. A (n, i)-
universal set is a collection of binary vectors of length n such that for each set of i
indices, each of the 2i possible combinations of values appears in some vector of the
set. To run the algorithm, it suffices to try all labellings induced by a (n, k+�)-universal
set. Naor et al. [18] give a construction of (n, i)-universal sets of size 2i i O(log i) log n
that can be listed in linear time. �


5.2 Parameters k and �

Theorem 7 IIB can be solved in time O(ζ 3kn5), where ζ=|{v ∈ V | t(v) = 0}|.
Proof Let 〈G, k, �〉 be the input instance of IIB. Suppose v1, . . . vζ are the nodes in
G having threshold 0 and let � denote the maximum degree of a node in G. Consider
the graph G ′ = (V ′, E ′) obtained from G by adding the internal nodes and the edges
of a �-ry tree whose leaves are v1, . . . vζ . Assume 〈G, k, �, 〉 is a yes instance of IIB.
We notice that in G, the solution set X (cfr. (4)) can be disconnected but any of its
connected components must include at least one node of threshold 0. Hence, in G ′ the
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nodes in X are now connected through a path in the �-ry tree. This implies that there
exists X ′ ⊆ V ′ such that: X ⊆ X ′, (X ′ − X) ⊆ V ′ − V , and G ′[X ′] is connected. In
particular, if s is the root of the tree, we can assume that s ∈ X ′. In the worst case, all
the paths within the �-ry tree go through the root s, hence |X ′| ≤ |X | log� ζ + 1.

Let k′ = k log� ζ +1.We use the following result [36], Lemma 2: There are at most
4k

′
�k′

connected subgraphs that contain s and have order at most k′. Furthermore,
these subgraphs can be enumerated in O(4k

′
�k′

(|V ′|+|E ′|)) time. This can be done

in time O(ζ 3kn3) noticing that (4�)k
′
(|V ′|+|E ′|) ≤ 4�ζ

k+ k
log4 � (2n2) ≤ 8ζ 3kn3.We

can then apply the result in [36] to enumerate all the connected subgraphs ofG ′ of size
up to k′. For each candidate set X ′ (the node set of the current connected subgraph)
one has to determine whether X ′ ∩V is a solution according to (4), which can be done
in O(n2) time. �


5.3 Parameters k (or1) and Treewidth

We present an algorithm that makes use of the nice tree decomposition of a graph [34].

Definition 4 A tree decomposition (T , {Wu}u∈V (T )) is called nice if it satisfies condi-
tions 1. and 2.:

1. Wr = ∅ for r the root of T and Wv = ∅ for every leaf v of T .

2. Every non-leaf node of T is of one of the following three types:

– Introduce: a node u with exactly one child u′ such that Wu = Wu′ ∪ {v} for a
node v /∈ Wu′ .

– Forget: a node u with exactly one child u′ such thatWu′ = Wu ∪{v} for a node
v /∈ Wu .

– Join: a node u with two children u1, u2 such that Wu = Wu1 = Wu2

Lemma 5 [34] If a graph G admits a tree decomposition of width at most tw, then
it admits a nice tree decomposition of width at most tw. Moreover, given a tree
decomposition (T , {Wu}u∈V (T )) of G of width at most tw, one can compute in time
O(tw2 max{|V (T )|, |V (G)|}) a nice tree decomposition of G of width at most tw
that has at most O(tw|V (G)|) nodes.

We give a dynamic programming algorithm, which exploiting a nice tree decom-
position, enables to solve a minimization version of IIB, namely the

Influence Diffusion Minimization (IDM): Given a graph G = (V , E, t)
and a budget �, find a set Y such that |Y | ≤ � and |DG,Y | is minimized.

Consider a graph G = (V , E) with treewidth tw and nice tree decomposition
(T , {Wu}u∈V (T )). Let T be rooted at node r and denoted by T (u) the subtree of T
rooted at u, for any node u of T . Moreover, we denote by W (u) the union of all the
bags in T (u), i.e.,W (u) = ⋃

v∈T (u) Wv . We will denote by su = |Wu | the size of Wu .
We recursively compute the solution of IDM. The algorithm exploits a dynamic

programming strategy and traverses the input tree T in a breadth-first fashion. Fix a
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node u in T , in order to be able to recursively reconstruct the solution, we calculate
optimal solutions under different hypotheses based on the following considerations:

• For each node v ∈ Wu we have three cases: v gets influenced, v is immunized,
or v is safe. We are going to consider all the 3su combinations of such states with
respect to some solution of the problem. We denote each combination with a vec-
tor C of size su indexed by the elements of Wu , where the element indexed by
v ∈ Wu denotes the state influenced (0), immunized (1), safe (2) of node v. The
configuration C = ∅ denotes the vector of length 0 corresponding to an empty bag.
We denote by Cu the family of all the 3su possible state vectors of the su nodes in
Wu .

• Let U be a subset of V (G). Let us first notice that by 3) of Definition 3, all
the edges between nodes in V − W (u) and W (u) connect a node in V − W (u)

with a node in Wu (the bag corresponding to the root of T (u)). We are going to
consider all the possible contribution to the diffusion process, of nodes in V −
W (u); that is, for each v ∈ Wu , we consider all the possible thresholds among
t(v), t(v) − 1, . . . , t(v) − min{k, t(v)} (recall that at most k nodes belong to X
and can therefore reduce the threshold of v). We notice that, for each node v,
it is possible to bound the number of thresholds to be considered by the value
min{k, t(v)}. Moreover, since no node with t(v) > dG(v) can be influenced and
we can purge such nodes from G in a preprocessing step, we can assume that in
G it holds (maxv∈V t(v)) ≤ �.
As a consequence, we will have up to μsu threshold combinations, where μ =
min{k,�}. We will denote each possible threshold combination with a vector T ,
indexed by the su elements in Wu , where the element indexed by v belongs to
{max{0, t(v) − k}, . . . , t(v)} and denotes the threshold of v ∈ Wu . The configu-
ration T = ∅ denotes the vector of length 0 corresponding to an empty bag. We
denote byTu the family of all the possible threshold combinations of nodes inWu .

The following definition introduces the values that will be computed by the algo-
rithm in order to keep track of all the above cases:

Definition 5 For each node u ∈ T , each j = 0, . . . , �, C ∈ Cu and T ∈ Tu we denote
by Xu( j, C, T ) the minimum number of influenced nodes one can attain in G[W (u)]
by immunizing at most j nodes inW (u), where the states and the thresholds of nodes
in Wu are given by C and T .

By noticing that the root r of a nice tree decomposition has Wr = ∅, we have that the
solution of the IDM instance 〈G, �〉 can be obtained by computing Xr (�,∅,∅).

Lemma 6 For each u ∈ T , the computation of Xu( j, C, T ), for each j ∈ {0, . . . , �},
state configuration C ∈ Cu, and threshold configuration T ∈ Tu comprises
O(�3twμtw) values, where μ = min{k,�}, each of which can be computed recur-
sively in time O(2tw + �).

Proof Weshowhowuse a bottom–up strategy to compute all the values of Xu( j, C, T ),
for each u ∈ T , j = 0, . . . , �, state configuration C ∈ Cu , and threshold configuration
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T ∈ Tu . By Definition 5, we know that such values are O(�3twμtw), where μ =
min{k,�}.
For each leaf u ∈ T and for each j = 0, . . . , � we have Xu( j,∅,∅) = 0.
For any internal node u, we show how to compute each values Xu( j, C, T ), for each
j = 0, . . . , �, C ∈ Cu , and T ∈ Tu in time O(2tw + �).
We have three cases to consider according to the type of u (cf. Definition 4):

1) Node u is an introduce node. In this case u has exactly one child u′ and we have
that Wu = Wu′ ∪ {v} for some node v /∈ Wu′ .
For a given node u ∈ V (T ) (introducing a node v ∈ V ) and state configuration
C, we denote by Su(C) the set of influenced nodes (according to the configuration
C) that belongs to Wu ∩ �G(v). Given a threshold configuration T associated to a
set of nodes W , and a set of nodes S ⊆ W , we denote by T (S) the configuration
obtained starting from T and decreasing by one the threshold of each node in S. In
the following we assume w.l.o.g. that the element indexed by v is the last element
of the vectors C and T . We have that for each j = 0, . . . , �, each C ∈ Cu and each
T ∈ Tu .

Xu( j, C=[C′, c], T =[T ′, t]) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minS⊆Su(C),|S|≥t
(
Xu′( j, C′, T ′(Su(C)−S))

)+1,

if c = 0 AND t ≤ |Su(C)|
Xu′( j − 1, C′, T ′),

if c = 1 AND j > 1

Xu′( j, C′, T ′),
if c = 2 AND t > |Su(C)|

+∞, otherwise.

(8)

It is worth to observe that the size of Su(C) is bounded by tw and for this reason
the above value can be computed in time O(2tw)

2) Node u is a forget node. In this case u has exactly one child u′ and we have that
Wu′ = Wu ∪ {v} for some node v /∈ Wu . We have for each j = 0, . . . , �, each
C ∈ Cu , and each T ∈ Tu

Xu( j, C, T ) = minc∈{0,1,2}{Xu′( j, C′ = [C, c], T ′ = [T ,max{0, t(v) − |Su(C)|}])}(9)

3) Node u is a join node. In this case u has exactly two child u1, u2 such that
Wu = Wu1 = Wu2 . We have for each j = 0, . . . , �, each C ∈ Cu , and each
T ∈ Tu

Xu( j, C, T ) = min0≤a≤ j−I (C){Xu1(a + I (C), C, T ) + {Xu2( j − a, C, T )},(10)

where I (C) denotes the number of immunized nodes in the configuration state C.

By induction on the tree, we can prove that the recursive formula presented in
(8)–(10) coincides with the definition of Xu(·, ·, ·); hence, the algorithm is correct. �

Theorem 8 IDM is solvable in time O(ntw(2tw+�)�3twμtw), whereμ = min{k,�}.
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Proof By using Lemma 18 in [34], we have that the desired value Xr (�,∅,∅), which
corresponds to the solution of the IDM instance 〈G, �〉, can be computed in time
O(ntw(2tw + �)�3twμtw). The optimal set X can be computed in the same time by
standard backtracking techniques. �


5.4 Graphs of Bounded Neighborhood Diversity

We give FPT algorithms for IIB with respect to both the pairs (k,nd) and (�,nd).
We first present some result that will be useful in the rest of this section.
Let {V1, V2, . . . , Vnd} be the type partition of G. Below, we assume that the nodes

of each Vi = {vi,1, . . . , vi,|Vi |} are sorted in non-decreasing order of thresholds, i.e.,
t(vi, j ) ≤ t(vi, j+1).

Lemma 7 Fix i ∈ [nd].
(i) Let X = DG[X ] and Y = Y (X) be its immunizing set. Set umax =

argmaxu∈X∩Vi t(u). If there exists v ∈ Y ∩ Vi such that t(v) ≤ t(umax ) then
X ′ = X − {umax } ∪ {v} satisfies X ′ = DG[X ′] and |Y (X ′)| = |Y |.

(ii) Let Y be an immunizing set. Set vmax = argmaxv∈Y∩Vi t(v). If there exists u ∈
DG,Y ∩ Vi such that t(u) ≤ t(vmax ) then setting Y ′ = Y − {vmax } ∪ {u} it holds
|DG,Y ′ | ≤ |DG,Y |.

Proof We first prove (i). Consider X ′ = X −{umax }∪ {v} and the diffusion process in
G[X ′]. We have that v is influenced at a round which is at most equal to that in which
umax is influenced during the diffusion process in G[X ] (recall t(v) ≤ t(umax ) and
that v and umax have the same neighbors). Furthermore, since all the neighbors of v

and umax have the same number of neighbors in X ′ as in X we have that all the nodes
in X ′ are influenced, that is X ′ = DG[X ′], and umax ∈ Y (X ′). This allows to say that
|Y (X ′)| = |Y |.

We now prove (ii). If we consider the diffusion process in G[V − Y ′] we have
that no node outside DG,Y − {u}, except eventually for node vmax , can be influenced.
Hence, DG,Y ′ ⊆ DG,Y − {u} ∪ {vmax }. �


Parameters nd and k

Algorithm IIB-k below constructs one candidate set for each nd-ple ( f1, . . . , fnd),
where fi = |X ∩ Vi | for some solution X , such that

∑nd
i=1 fi ≤ k.

Algorithm 1 IIB-k(G, k, �)
Input: A graph G = (V , E, t), integers k, � and a type partition V1, . . . , Vnd of G.

1 foreach f = 1, . . . , k do
2 foreach f = ( f1, f2, . . . , fnd) such that

∑nd
i=1 fi = f do

3 foreach i ∈ [nd] do let Xi = {vi,1, . . . , vi, fi } ⊆ Vi Set X = ⋃nd
i=1 Xi

if |Y (X)|≤ � then return yes

4 return no
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Theorem 9 Algorithm IIB-k solves IIB in time O(n2 2k+nd−1).

Proof Given f ≤ k, Algorithm IIB-k(G, k, �) considers all the possible nd-ples
( f1, f2, . . . , fnd) with

∑nd
i=1 fi = f ; for each f = ( f1, f2, . . . , fnd) it constructs

the set X = ⋃nd
i=1 Xi where Xi consists of the first (e.g. with the smallest thresholds)

fi nodes in Vi . Then it computes the immunizing set of X , Y (x) (cf. Definition 2). If
|Y (X)| ≤ � then we answer yes. In case no f gives a set X such that |Y (X)| ≤ �, we
answer no.

We show now that Algorithm IIB-k outputs yes iff there exists X satisfying (4).
If the output of Algorithm IIB-k is yes then trivially the current set X has |X | ≤ k

and its immunizing set |Y (X)| ≤ �.
Let now X̃ be a minimal set satisfying (4), that is, X̃ = DG[X̃ ], |X̃ | ≤ k, and

|Y (X̃)| ≤ �.
Define X̃i = X̃ ∩ Vi and let |X̃i | = fi , for i ∈ [nd]. Clearly, ∑nd

i=1 fi = f .
Consider the nd-ple f = ( f1, f2, . . . , fnd) and the set X = ⋃nd

i=1 Xi constructed at
line 4 of algorithm IIB-nd-k. Recall that |Xi | = fi and t(v) ≤ t(w) for each v ∈ Xi

and w ∈ Vi − Xi , for each i ∈ [nd]. We show that the algorithm outputs yes on X .
Fix any i ∈ [nd]. Knowing that |X̃i | = |Xi | = fi , we have that if X̃i �= Xi , then

there exists u ∈ X̃i − Xi and v ∈ Xi − X̃i such that t(v) ≤ t(u). W.l.o.g assume that
u is the node with maximum threshold in X̃i − Xi . Since X̃ = DG[X̃ ], we have that
u has at least t(u) neighbors in X̃ . Furthermore, since v, u ∈ Vi we have that u and
v have the same neighbors. Hence, v has at least t(u) ≥ t(v) neighbors in X̃ . As a
consequence, since v /∈ X̃ we have v ∈ Y (X̃). Consider X̃ ′ = X̃ − {u} ∪ {v}. By (i)
in Lemma 7, we have that X̃ ′ = DG[X̃ ′] with |X̃ ′| = |X̃ | and |Y (X̃ ′)| = |Y (X̃)|.

Hence, trading each node in X̃i − Xi for one in Xi − X̃i , for each i such that
X̃i �= Xi , we can prove that |Y (X)| = |Y (X̃)| ≤ �. Therefore, the algorithm returns
yes.

Now we evaluate the running time of the algorithm. For each fixed f ∈ [k], the
number of all the possible nd-ples ( f1, . . . , fnd) with

∑nd
i=1 fi = f , is

( f +nd−1
f

) ≤
(k+nd−1

f

)
. Noticing that for each choice of ( f1, . . . , fnd) one needs time O( f ) to

construct X and O(n2) to obtain Y (X) and that

∑

f ∈[k]

(
f + nd − 1

f

)

≤
∑

f ∈[k]

(
k + nd − 1

f

)

< 2k+nd−1,

the desired result follows. �


Parameters nd and �

An idea similar to that in Algorithm 1 can be used to prove IIB is FPT with respect to
nd and �.
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Algorithm 2 IIB-�(G, k, �)
Input: A graph G = (V , E, t), integers k, � and a type partition V1, . . . , Vnd of G.

1 foreach h = 1, . . . , � do
2 foreach h = (h1, h2, . . . , hnd) such that

∑nd
i=1 hi = h do

3 foreach i ∈ [nd] do let Yi = {vi,1, . . . , vi,hi } ⊆ Vi Set Y = ⋃nd
i=1 Yi

if |DG,Y | ≤ k then return yes

4 return no

Theorem 10 Algorithm IIB-� solves IIB in time O(n2 2�+nd−1).

Proof Given h ≤ �, Algorithm IIB-�(G, k, �) considers all the possible nd-ples
(h1, h2, . . . , hnd) with

∑nd
i=1 hi = h; for each h = (h1, h2, . . . , hnd) we construct

the set Y = ⋃nd
i=1 Yi where Yi consists of the first (e.g. with the smallest thresholds) hi

nodes in Vi . We then consider the diffusion process inG and the setDG,Y of influenced
nodes when the elements of Y are immunized. If |DG,Y | ≤ k then we answer yes. In
case no h gives a set Y such that |DG,Y | ≤ k, we answer no.

If Algorithm IIB-nd-� returns yes then the set Y constructed by algorithm IIB-�
has size at most � and we know that |DG,Y | ≤ k.

Assume now that there exists Ỹ such that |Ỹ | = h ≤ � and |DG,Ỹ | ≤ k. Assume
w.l.o.g. that no smaller solution exists, that is, for any Y such that |DG,Y | ≤ k it holds
|Y | ≥ h.

Define Ỹi = Y (DG,Ỹ ) ∩ Vi and let |Ỹi | = hi , for i ∈ [nd]. Clearly, ∑nd
i=1 hi = h.

Consider the nd-ple h = (h1, h2, . . . , hnd) and the set Y = ⋃nd
i=1 Yi constructed at

line 4 of algorithm IIB-nd-�. Recall that |Yi | = hi and t(v) ≤ t(w) for each v ∈ Yi
and w ∈ Vi − Yi .

Since |Ỹi | = |Yi | = hi , we have that if Ỹi �= Yi , for some i , then there are
v ∈ Ỹi − Yi and u ∈ Yi − Ỹi such that t(u) ≤ t(v). W.l.o.g select u as the node with
minimum threshold in Yi − Ỹi and v as the node with maximum threshold in Ỹi − Yi .
By the fact that v ∈ Ỹ and Ỹ is minimal, we know that v must have at least t(v)

neighbors in DG,Ỹ (otherwise, Ỹ − {v} would be a smaller solution). Furthermore,
since v, u ∈ Vi we have that they have the same neighbors. As a consequence, also
u has at least t(v) ≥ t(u) neighbors in DG,Ỹ . Knowing that u /∈ Ỹ , we have that

u ∈ DG,Ỹ . Set Y
′ = Ỹ − {v} ∪ {u}. By (ii) in Lemma 7, we have that DG,Y ′ satisfies

|DG,Y ′ | ≤ |DG,Ỹ | ≤ k. Hence, Y ′ is also a solution.
Starting from Y ′, we then can repeat the above reasoning until we get Yr = Y , the

immunizing set considered in the algorithm for the tuple h. Hence, |DG,Y | ≤ k.
We now evaluate the running time. Fix h ∈ [�], for each (h1, . . . , hnd) with∑nd
i=1 hi = h, one needs time O(h) to get Y and O(n2) to get DG,Y , moreover

the number of all possible such nd-tuple is
(h+nd−1

h

)
. Summing over all h we get

∑
h∈[�]

(h+nd−1
h

)
< 2�+nd−1 and the theorem holds. �
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6 Conclusion

We introduced the influence immunization problem on networks under the threshold
model and analyzed its parameterized complexity. We considered several parameters
and showed that the problem remains intractable with respect to each one. We have
also shown that for some pairs (e.g., (ζ , �) and (�, �)) the problem remains intractable.
On the positive side, the problem was shown to be FPT for some other pairs: (k, �),
(k, ζ ), (k,tw), (�,tw), (k,nd) and (�,nd). It would be interesting to assess the
parameterized complexity of IIB with respect to the remaining pairs of parameters;
in particular with respect to k and �.
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