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1 Sorbonne Université, CNRS LIP6, INRIA, Paris, France

E-mails: {sebastien.bouchard,franck.petit}@lip6.fr
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Abstract

Two mobile agents represented by points freely moving in the plane and starting at two different
positions, have to meet. The meeting, called rendezvous, occurs when agents are at distance at most
r of each other and never move after this time, where r is a positive real unknown to them, called the
visibility radius. Agents are anonymous and execute the same deterministic algorithm. Each agent has a
set of private attributes, some or all of which can differ between agents. These attributes are: the initial
position of the agent, its system of coordinates (orientation and chirality), the rate of its clock, its speed
when it moves, and the time of its wake-up. If all attributes (except the initial positions) are identical and
agents start at distance larger than r then they can never meet, as the distance between them can never
change. However, differences between attributes make it sometimes possible to break the symmetry and
accomplish rendezvous. Such instances of the rendezvous problem (formalized as lists of attributes), are
called feasible.

Our contribution is three-fold. We first give an exact characterization of feasible instances. Thus it is
natural to ask whether there exists a single algorithm that guarantees rendezvous for all these instances.
We give a strong negative answer to this question: we show two sets S1 and S2 of feasible instances such
that none of them admits a single rendezvous algorithm valid for all instances of the set. On the other
hand, we construct a single algorithm that guarantees rendezvous for all feasible instances outside of
sets S1 and S2. We observe that these exception sets S1 and S2 are geometrically very small, compared
to the set of all feasible instances: they are included in low-dimension subspaces of the latter. Thus,
our rendezvous algorithm handling all feasible instances other than these small sets of exceptions can be
justly called almost universal.
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1 Introduction

1.1 The background and the problem

Two mobile entities starting at different locations of some environment, have to meet. This task, extensively
researched in the literature, is known as rendezvous. The rendezvous problem was considered both in the
network environment, when entities model software agents navigating in a communication network, and in
the geometric context, when entities model mobile robots circulating in some terrain. The aim of rendezvous
may be exchange of information gathered about the environment or joint planning of some future task, such
as network maintenance or decontamination of a terrain where human presence would be hazardous.

We consider a geometric version of rendezvous: mobile entities, called agents, are represented by points
freely moving in the plane and starting at two different positions. Rendezvous occurs when agents are at
distance at most r of each other (according to some absolute measure of length) and never move after this
time, where r is a positive real unknown to them, called the visibility radius.

Agents are anonymous and execute the same deterministic algorithm. Each agent has a set of private at-
tributes, some or all of which can differ between agents. These attributes are: the position of the agent,
its system of coordinates (orientation and chirality), the rate of its clock, its speed when it moves, and the
time of its wake-up. If all attributes (except the initial positions) are identical and agents start at distance
larger than r then they can never meet, as the distance between them can never change. However, differ-
ences between attributes make it sometimes possible to break the symmetry and accomplish rendezvous.
Such instances of the rendezvous problem (formalized as lists of attributes), are called feasible. Note that an
instance is feasible, if there exists an algorithm, even specifically designed for this instance given as input,
that guarantees rendezvous for it. (However, agents executing this algorithm do not know which agent is
which in the instance).

The central question considered in this paper is:

Which instances of the rendezvous problem are feasible and how to guarantee rendezvous
for as many of them as possible by a single algorithm?

1.2 The model

In order to formally define our model, we consider some absolute system Γ of Cartesian coordinates, some
absolute length unit normalized to 1, some absolute time unit normalized to 1, and some point in time called
0. The rest of the description is with respect to these absolute notions, unknown to the agents. The visibility
radius of the agents is expressed in absolute length units.

Each agent has a private system of Cartesian coordinates with the origin at the starting point of the agent.
The x-axis of this system is rotated with respect to the x-axis of the absolute system by an angle 0 ≤ φ < 2π,
and the chirality of the private system with respect to Γ is either +1, if after rotating the absolute system by
angle φ both systems are the same up to a shift, or -1, if after this rotation the y axis of the absolute system
has the opposite direction than that of the private system.

Each agent has a private clock, such that the lapse of time between consecutive tics of this clock, called the
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time unit of the agent, lasts τ units of the absolute time. The clock of the agent starts at its wake-up which
occurs at some absolute time t ≥ 0. Each agent has some constant speed v defined as the absolute distance
it travels in an absolute time unit. Whenever the agent moves, it does so with this constant speed v. Each
agent defines its private unit of length as the distance it travels during its time unit. Thus, in absolute terms,
the length of a private unit of length of an agent is τv.

Agents execute the same deterministic algorithm. There are two types of move instructions in this algorithm.
The first type is go (dir, d) which is executed by an agent as going d units of length of the agent in direction
dir in its private system of coordinates. In our algorithms we use directions N,S,E,W as a shorthand.
Directions N and S are, respectively, the positive and negative direction along the y-axis and directions
E and W are, respectively, the positive and negative direction along the x-axis. An example of such an
instruction is go (S, 2) executed by going 2 units of length of the agent in the negative direction parallel to
its y-axis. The second type of instructions is wait (z) which is executed by an agent as waiting idle for z
time units of the agent. We assume that agents can measure angles and distances precisely, although in our
algorithms these quantities are pretty simple: angles are rational multiples of π and distances are rational
numbers.

We call A the agent woken up first and B the other agent. In the case of simultaneous wakeup these names
are given arbitrarily. For the sake of simplicity and without loss of generality, we consider all the attributes
of agent A to be the absolute ones: its system of coordinates is Γ, its unit of time is the absolute unit and
its wake up time is 0. Its speed is normalized to 1. (Of course, agents do not know which of them is
A and which is B, this convention is only for description ease). Using this convention, an instance of the
rendezvous problem can be given as a list of attributes of the agentB, together with the value of the visibility
radius. More precisely, an instance is a tuple (r, x, y, φ, τ, v, t, χ), where r > 0 is the visibility radius (in the
measure of length of agent A), (x, y) are coordinates of the initial position ofB in the system of coordinates
of A, 0 ≤ φ < 2π is the angle such that the directions of x-axes of A and B are the same after rotating the
system of A by angle φ (in the counterclockwise direction of A), τ > 0 is the number of time units of A
between consecutive tics of the clock of B, v > 0 is the speed of B in time and length units of A, t ≥ 0 is
the time difference between the wakeup time of B and wakeup time of A in time units of A, and χ is +1 or
-1 depending on whether the directions of y-axes of A and B agree or not after rotating the system of A by
angle φ (in the counterclockwise direction of A).

Using the above formalization of an instance of the rendezvous problem we can reformulate our central
question as:

Which instances (r, x, y, φ, τ, v, t, χ) are feasible and how to guarantee rendezvous for as
many of them as possible by a single algorithm?

1.3 Our results

Our contribution is three-fold. We first give an exact characterization of feasible instances. Thus it is natural
to ask whether there exists a single algorithm that guarantees rendezvous for all these instances. We give a
strong negative answer to this question: we show two sets S1 and S2 of feasible instances such that none
of them admits a single rendezvous algorithm valid for all instances of the set. On the other hand, we
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construct a single algorithm that guarantees rendezvous for all feasible instances outside of sets S1 and S2.
We observe that these exception sets S1 and S2 are geometrically very small, compared to the set of all
feasible instances: they are included in low-dimension subspaces of the latter. More precisely, while the set
of all feasible instances contains a ball of positive radius in the space R7, the exception set S1 is contained
in a copy of the subspace R3 and the exception set S2 is contained in a copy of the subspace R4. Thus, our
rendezvous algorithm handling all feasible instances other than these small sets of exceptions can be justly
called almost universal.

Our Algorithm AlmostUniversalRV generalizes results both from [18] and from [38] (in the latter
case for two agents). Indeed, our algorithm guarantees rendezvous for all instances (r, x, y, φ, τ, v, t, χ)

when wakeup of the agents is simultaneous (i.e., t = 0), and either (1) τ = v = 1 is not satisfied or (2)
orientations are different (i.e., 0 < φ < 2π) and the chirality is the same (i.e., χ = 1). This is exactly
the set of instances for which the rendezvous algorithm from [18] works. On the other hand, our algorithm
guarantees rendezvous for all instances (r, x, y, φ, τ, v, t, χ) for which τ = v = 1, φ = 0, χ = 1, and which
satisfy the assumption t > dist((0, 0), (x, y)) − r, where dist is the Euclidean distance. For two agents,
this is exactly the set of instances for which the gathering algorithm from [38] works (this set of instances
was called the set of good configurations in [38]). Apart from these sets of instances, already handled by the
algorithms from [18] and [38], respectively, our Algorithm AlmostUniversalRV guarantees rendezvous
for many more instances: all those outside the small exception sets. This was neither the case in [18] nor in
[38].

There are two major differences between [18] and our study. The first is that we consider arbitrary time
delays between wake-ups of agents, while the authors of [18] restricted attention to simultaneous wake-
ups. The second difference is in the notion of rendezvous feasibility. The authors of [18] were interested
in conditions under which rendezvous is feasible for all possible initial positions of agents, formulated
such conditions, and designed a single algorithm guaranteeing rendezvous for all initial positions if the
conditions are satisfied. By contrast, we first look at each instance separately, and characterize those for
which rendezvous is possible even using an algorithm dedicated to this instance. We call such instances
feasible. Then we design an algorithm guaranteeing rendezvous for “almost all” feasible instances with a
precise meaning of “almost all”. It is interesting to notice that large classes of instances rejected by [18]
are not only possible to solve by a dedicated algorithm but can in fact be handled all together by our single
algorithm. Such are e.g., many instances for which chiralities of the agents are different. As for [38], we
differ from it by considering a much larger context: possibly different coordinate systems, clock rates and
speeds of the agents.

1.4 Related work

The rendezvous problem for mobile agents, and more generally its version for many agents, called gathering,
was extensively studied in the literature, in various environments. Models under which it was investigated
can be classified along two main dichotomies. The first of them concerns the way in which agents move: it
can be either deterministic or randomized. The second dichotomy is according to the type of environment
in which agents navigate: it can be a network modeled as a graph or a terrain modeled as the plane, possibly
with obstacles. The present paper considers deterministic rendezvous in the plane.

An excellent survey of randomized rendezvous in various models is [4], cf. also [2, 3, 6]. Deterministic
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gathering in networks was surveyed in [36]. Gathering many labeled agents in the presence of Byzantine
agents was studied in [12, 26]. The gathering problem was also studied in the context of oblivious robot
systems in the plane, cf. [16, 27], and fault-tolerant gathering of robots in the plane was studied, e.g., in
[1, 17].

Deterministic gathering in graphs of agents equipped with tokens used to mark nodes was considered, e.g.,
in [33]. Deterministic rendezvous of two agents with unique labels was studied in [23, 31, 39]. These papers
considered the time of gathering in arbitrary graphs. In [23] the authors showed a rendezvous algorithm
polynomial in the size of the graph, in the length of the shorter label and in the delay between the starting
times of the agents. In [31, 39] rendezvous time was polynomial in the first two of these parameters and
independent of the delay. In [19, 28] the optimization criterion for rendezvous was the memory size of the
agents: it was considered in [28] for trees and in [19] for general graphs. Memory needed for randomized
gathering in the ring was discussed, e.g., in [32].

Apart from the synchronous model when clocks of the agents tick at the same rate, measuring rounds, several
authors considered asynchronous gathering in the plane [13, 15, 27] and in networks [9, 20, 22, 25, 29]. In
[15, 27] agents were anonymous, but were assumed to have total or restricted capability of seeing other
agents. However, in the latter scenario only connected initial configurations were discussed. In [13], a
related task of approach of two agents at distance 1 was investigated and agents were assumed to have
distinct integer labels, which were used to break symmetry.

Computational tasks in anonymous networks were studied in the literature, starting with the seminal paper
[8], followed, e.g., by [7, 11, 34]. While the considered tasks, such as leader election in message passing
networks or computing Boolean functions, differ from rendezvous studied in the present paper, the main
concern is usually symmetry breaking, similarly as in our case.

Deterministic rendezvous of anonymous agents in arbitrary anonymous graphs was previously studied in
[19, 24, 29, 37]. Papers [19, 24] were concerned with the synchronous scenario. The authors of [29]
characterized initial positions that allow asynchronous rendezvous. In [37], the authors considered the
problem of synchronous rendezvous of two anonymous agents in arbitrary graphs. They used wake-up time
to break symmetry between the agents, but the situation was very different from our present setting. While
in [37] the authors designed a universal algorithm that guarantees rendezvous for all instances for which a
dedicated rendezvous algorithm exists, in our setting such a single rendezvous algorithm in the plane cannot
exist.

The two papers closest to our present study are [18] and [38]. Each of them considered a different particular
scenario: in [18] it was assumed that wake-up times of agents were simultaneous, while in [38] the authors
considered gathering of many agents but only with the same coordinate systems, clock rates and speeds.
Our present paper generalizes both of them (the latter for the case of two agents). The relation between our
results and those from [18] and [38] was described above in the subsection “Our results”.

2 Terminology and preliminaries

While all our algorithms are executed by interpreting distances, directions and time segments according to
the local attributes of each agent, in our analysis we will understand all these values in the absolute system
of coordinates, absolute time and length units, i.e., according to our convention, those of agent A (unless
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explicitly specified otherwise). In particular dist((x, y), (x′, y′)) denotes the Euclidean distance between
points (x, y) and (x′, y′) in the system of coordinates of agent A, measured in its unit of length.

Without loss of generality, we assume that r < dist((0, 0), (x, y)). Otherwise rendezvous is accomplished
immediately, and thus all instances with r ≥ dist((0, 0), (x, y)) are trivially feasible.

Instances (r, x, y, φ, τ, v, t, χ) for which τ = v = 1, i.e., those in which clock rates of both agents are the
same and speeds are the same, are called synchronous.

We will use two procedures from the literature. In [18], the authors described a procedure guaranteeing
rendezvous for all instances (r, x, y, φ, τ, v, t, χ) for which wakeup of the agents is simultaneous (i.e., t = 0),
and either (1) the instance is not synchronous, or (2) orientations are different (i.e., 0 < φ < 2π) and the
chirality is the same (i.e., χ = 1). They did not define precisely what are the allowed moves of the agents, but
an inspection of their algorithms shows that they use two types of moves: straight segments and circles. Our
model does not allow circles but it is easy to see that the procedure from [18] remains valid (i.e., guarantees
rendezvous for the same instances) if each circle is replaced by the square inscribed in it with sides parallel
to the axes of the system of coordinates of the agent. We call CGKK the procedure from [18] modified in this
way. 1

Latecomers is the Algorithm GATHER(2) from [38]. It guarantees rendezvous for all synchronous in-
stances (r, x, y, φ, τ, v, t, χ) for which the systems of coordinates of the agents are a shift of each other, and
satisfying the assumption t > dist((0, 0), (x, y))−r, i.e., for instances where τ = v = 1, φ = 0, χ = 1 and
t > dist((0, 0), (x, y))− r. In [38], the authors considered the problem of gathering n ≥ 2 agents with the
same clock rates and speeds, and with systems of coordinates being shifts of one another. They designed an
algorithm GATHER (n) which guarantees gathering under some condition on instances which is equivalent
to t > dist((0, 0), (x, y))− r, for n = 2.

We will need the following notion of canonical line.

Definition 2.1 (Canonical Line) We define the canonical line of an instance I = (r, x, y, φ, τ, v, t, χ) as
follows:

1. if φ = 0 this is the line parallel to the x-axes of both agents and equidistant from the origins of their
respective coordinate systems;

2. otherwise (φ 6= 0), this is the line parallel to the bisectrix of the angle between the x-axes of the
agents and equidistant from the origins of their respective coordinate systems;

An example of an instance and of its canonical line is depicted in Figure 1.

We denote by projA(s) (respectively, by projB(s)) the orthogonal projection of the position of agent A
(resp. agent B) at time s on the canonical line of instance I. To facilitate reading and when it is clear from
the context, projA (resp. projB) refers to projA(0) (resp. projB(0)).

1 Note that, as opposed to [18], we needed to say precisely which moves are allowed because some of our results are negative
and thus we need to prove that some actions are impossible. In [18] this could be left implicit, as they only had positive results. We
decided for the easiest option with segment moves but is is easy to see that all our results (also the negative ones) remain valid if
circles are allowed as they were in [18].
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Figure 1: Illustration of the geometric setting of an instance with its canonical line in a case where the
chiralities of the agents A and B are different. The dashed line D represents the bisectrix of the angle
between the x-axes of the agents, while the solid line L represents the canonical line of the instance.

Sometimes, an agent will consider a local system Rot(α): this system is the coordinate system resulting
from rotating the system of the agent by the angle α, counterclockwise w.r.t. this system.

We end this section by giving a simple lemma and its corollary that will be used recurrently throughout the
paper.

Lemma 2.1 Consider any deterministic algorithmA and any synchronous instance I = (r, x, y, φ, τ, v, t, χ)

such that χ = −1. Let z ≥ t be a time such that rendezvous does not occur before time z when applying al-
gorithmA to the instance I and let ~u be the vector from projA to projB . The trajectory followed by the later
agent B until time z is an image of the trajectory followed by agent A until time z − t by a transformation
that is a composition of a shift by vector ~u with the axial symmetry using the canonical line of I.

Proof. Agent A starts time t ahead of agent B and instance I is synchronous: in particular τ = v = 1 and
the length unit of each agent is 1. Moreover, by Definition 2.1, the agents are initially at the same distance
d of the canonical line of I, one on either side of this line if d > 0. Hence, in view of χ = −1 and since the
agents apply the same deterministic algorithm, the lemma follows. �

Corollary 2.1 Consider any synchronous instance I = (r, x, y, φ, τ, v, t, χ) such that χ = −1 and any
deterministic algorithm A. Let z ≥ t be a time such that rendezvous does not occur before time z when
applying algorithm A to the instance I. We have the following equality: dist(projA(z − t), projB(z)) =

dist(projA, projB).
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3 Characterization of Feasible Instances and Almost Universal Rendezvous

The aim of this section is to show two main results of this paper. The first result consists of a complete
characterization of the feasible instances.

Theorem 3.1

1. All non-synchronous instances are feasible.

2. A synchronous instance (r, x, y, φ, τ, v, t, χ) is feasible if and only if:

(a) χ = 1 and φ 6= 0 or

(b) χ = 1 and φ = 0 and t ≥ dist((0, 0), (x, y))− r, or

(c) χ = −1 and t ≥ dist(projA, projB)− r.

The second result is the design of an algorithm called AlmostUniversalRV, detailed later in this section,
which achieves rendezvous for the set of instances that is given by the following theorem: obviously all these
instances are feasible.

Theorem 3.2 Algorithm AlmostUniversalRV guarantees rendezvous for all instances (r, x, y, φ, τ, v, t, χ)

which are either non-synchronous or such that:

• χ = 1 and φ 6= 0 or

• χ = 1 and φ = 0 and t > dist((0, 0), (x, y))− r, or

• χ = −1 and t > dist(projA, projB)− r.

Some feasible instances are not caught by our algorithm. Precisely, it is the case of the synchronous instances
for which

• either φ = 0, t = dist((0, 0), (x, y))− r, and χ = 1

• or t = dist(projA, projB)− r and χ = −1.

In Section 4, we explain why these two sets of exceptions are small, in a geometric sense, compared to the
set of all feasible instances, and we show that no single algorithm can achieve rendezvous for all instances
of either of these small sets.

Notice that the second theorem permits, roughly speaking, to show a big part of the “if” implication of the
first theorem. Hence, in the rest of this section, we start by presenting Algorithm AlmostUniversalRV

and proving Theorem 3.2, before proceeding with the proof of Theorem 3.1 that will rely in part on Theo-
rem 3.2.
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3.1 Algorithm AlmostUniversalRV and proof of Theorem 3.2

3.1.1 Intuition

We begin with the following categorization of the instances described in Theorem 3.2 into four disjoint
types.

• type 1. Synchronous instances for which χ = −1 and t > dist(projA, projB)− r.

• type 2. Synchronous instances for which χ = 1, φ = 0, and t > dist((0, 0), (x, y))− r.

• type 3. Instances for which τ 6= 1.

• type 4. All instances described in Theorem 3.2 that are not of type 1, 2, or 3.

This categorization turns out to be pertinent for our purpose. Indeed, when thinking about the design of Al-
gorithm AlmostUniversalRV, it appears that each of the above four types of instances calls for its own
rendezvous strategy. Since combining these strategies into a single algorithm is pretty easy, and unnecessary
to understand the intuitions, we focus below on describing the high-level idea of four algorithms, each of
them being tailored to achieve rendezvous for all the instances of one of the above types.

First consider the instances of type 1. For this type, there is a particular subset for which rendezvous can
be easily achieved. This subset is the one composed of every instance I in which the agents are initially on
the canonical line L of I, with their x-axes parallel to L and going in the same direction. For instance I,
rendezvous can be achieved simply by instructing the agents to execute a linear search procedure, derived
from the literature on the Cow-Path Problem [10]. This procedure consists in applying successive steps
i = 1, 2, . . . till seeing the other agent, where in each step i the sequence of move instructions is as follows:
go East at distance 2i, then go West at distance 2i+1, and then go back to the initial position by going
East at distance 2i. Using Corollary 2.1 together with the fact that instance I is synchronous and t >
dist(projA, projB)− r, it can be proved that the agents see each other by the time agent A finishes step λ,
where λ is the smallest integer such that t ≤ 2λ.

Actually, if the stop condition of the procedure were removed, we would even observe the agents getting
regularly at a distance strictly smaller than r of each other from step λ on. This is closely related to the fact
that t > dist(projA, projB) − r. If t were exactly equal to dist(projA, projB) − r, the agents would get
regularly at a distance r but never less, while they would never see each other if t were strictly smaller than
dist(projA, projB)− r. Since getting the agents at distance exactly r of each other is already enough, there
is room for possible deviations, i.e. a margin of error for which rendezvous could be still ensured even if the
movements of the agents were not exactly on line L and/or parallel to L. Obviously, this is true only if the
magnitude of these deviations remains “related” to the magnitude of the margin of error. Although possibly
very small, this margin turns out to be crucial to generalize the strategy described above to any instance of
type 1. This generalization can be done by requiring each agent to enumerate the triples of positive integers
(i, j, k), and for each triple (i, j, k) to act as follows in a local system Rot(kπ

2i
): go North at distance j

2i

and execute the first i steps of the linear search procedure, then go South at distance 2j
2i

and execute again
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the first i steps of the linear search procedure, and finally go back to the initial position by going North at
distance j

2i
.

In doing so, we are guaranteed to recreate at some point almost the same favorable conditions as those we
naturally have when the agents are initially on the canonical line and meet by the end of their execution of
step λ. This can be proven using, among others, Lemma 2.1 and the fact that χ = −1. Note that under
the aforementioned term “almost the same favorable conditions”, we mean in particular that the agents get
pretty close to the canonical line and start a linear search that will last enough time and that will not deviate
much from the canonical line, with respect to the authorized margin of error, to achieve rendezvous.

To conclude with the case of instances of type 1, it is interesting to observe that without room for error, it
would be impossible to get a single algorithm achieving rendezvous for all the instances of type 1. This is
highlighted by the instances that are like those of type 1 except that t = dist(projA, projB) − r replaces
t > dist(projA, projB)− r: we show in Section 4 that there exists no algorithm achieving rendezvous for
all these instances (cf. Theorem 4.1).

Concerning the instances of type 2, there is not much to say. This case can be directly solved via a procedure
from the literature, called Latecomers, introduced in the preliminaries section. Just note that the smooth
functioning of procedure Latecomers (resp. the approach described for the first type) heavily relies on
the fact that χ = 1 and φ = 0 (resp. on the fact that χ = −1), and thus it cannot be used to handle the
instances of type 1 (resp. of type 2).

Now, let us turn attention to the instances of type 3, which presents a major contrast with the previous two
types. Indeed, we face here instances that are not synchronous, as each of them has the particularity of
having an agent whose time unit is different from 1. However, far from being a problem, this particularity
can be exploited to our advantage. To see how, consider any planar search procedure P(a, b) that allows
an agent, whose initial position is p and whose unit of length is u, to get at distance at most au of all
points at distance at most bu from p. Although this question does not really matter here, note that there
are multiple ways of designing such a procedure, for instance via spiral movements or via series of parallel
linear searches: it is this latter option that will be used in our solution. Also consider an instance J of type
3 and suppose ideally that the two agents of J initially know all parameters of the instance. The agents
can thus compute the distance d that initially separates them, the smaller (resp. larger) of the two time units
τmin (resp. τmax) and the unit of length uX of the agent X having time unit τmin. Hence, they can also
determine the smallest integer ∆ such that ∆(τmax − τmin) − t ≥ n, where n is the number of local time
units spent by an agent to execute P( r

uX
, d
uX

) (this number is the same for all agents whatever the value of
its unit of time). Note that integer ∆ necessarily exists because τmax > τmin in view of the definition of an
instance of type 3.

In such an ideal situation, rendezvous can be achieved by requiring each agent to apply two steps that are
stopped before the end as soon as an agent sees the other. Here are the two steps: (1) wait time ∆ (w.r.t my
local time unit), and (2) execute procedure P( r

uX
, d
uX

). Actually, integer ∆ has been chosen so that agent
X starts the second step at least time n ahead of the other agent, even if agent X is initially the later agent to
wake up and to start the first step. As a result, agentX can execute entirely procedure P( r

uX
, d
uX

), while the
other agent stays idle at its initial position. Since uX is the unit of length of agent X , procedure P( r

uX
, d
uX

)

allows agent X to get at distance at most r of all points at distance at most d from its initial position. Hence,
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agent X necessarily sees the other agent and rendezvous is accomplished by the time it finishes executing
the second step.

Unfortunately, we are never in such an ideal situation. That being said, with some appropriate arrangements,
the same principle can be re-applied to achieve rendezvous from any instance of type 3. This can be done
by instructing the agents to construct a series of assumptions about the useful parameters (i.e., τmin, τmax,
d, etc.) and for each series to execute the aforementioned two steps using the newly made assumptions. For
each series, we need to take the precaution of modulating the length of the waiting period of the second
step according to the previous series that has been tested, in order to ensure that an agent stays idle while
the other executes a planar search when the assumptions are good. In fact, it is true that we can never
guarantee finding a series containing the exact values of the parameters. However, if the construction of the
assumptions is conducted in an appropriate manner, we can obtain at some point lower and upper bounds on
the parameters that are close enough to the reality to get the job done.

To finish with the intuitive explanations, it remains to address the case of the instances of type 4. These
are all instances listed in Theorem 3.2 that are of none of the previous three types. At first sight, they form
a heterogeneous set. We find there the non-synchronous instances for which τ = 1 and the synchronous
instances for which χ = 1 and φ 6= 0 (since these latter instances are synchronous, they also have τ = 1).
Each of these instances has at least one parameter whose value prevents it from being handled through
one of the methods described earlier. In spite of their heterogeneity, the instances of type 4 all share two
characteristics. The first characteristic is that they all have a time unit τ that is equal to 1. The second
characteristic, that relies on the function h presented below, is that for each instanceK of type 4, rendezvous
can be achieved for instance h(K) by applying a procedure from the literature, called CGKK, introduced in
the preliminaries section. The function h associates to any instance another one that is identical except that
the visibility radius of the agents is divided by 2 and the delay between the starting times is set to 0 (if it was
not the case). The two above characteristics, which can be found together only in the instances of type 4,
can be used to design a mechanism that is outlined below and that achieves rendezvous for any instance of
this type.

For a better understanding of the idea behind this mechanism, suppose ideally that the agents of a given
instance K of type 4 initially know the delay t between their starting times as well as a positive number γ
such that no agent of K can travel a distance greater than r

4 during a period lasting time γ or less. Under
these ideal assumptions, rendezvous can be achieved through an algorithm that consists of an execution
of procedure CGKK that is interrupted after each period lasting a time γ, called a segment. Each of these
interruptions corresponds to a waiting period lasting exactly time t, at the end of which the execution of
CGKK is resumed with the next segment. Naturally, as soon as an agent sees the other, it stops forever.

In order to explain why rendezvous is ensured here, we need to juggle two instances, namely K and its
image h(K), and thus we need to bring in some precisions to avoid any ambiguity. For instance K, we keep
the usual way to denote the reference agent by A and the other agent by B, while for instance h(K), the
reference agent is denoted by A′ and the other agent by B′. We also keep the usual way of describing a
situation with respect to the coordinate system and the parameters of a reference agent, using indistinctly
those of agents A or A′ as they are identical by definition.

The precisions being given, we can sketch our arguments. Consider an execution of procedure CGKK for
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instance h(K). According to the properties of this procedure, agents A′ and B′ achieve rendezvous at some
time α in which they occupy some positions p′ and q′ respectively. According to the construction of h(K),
we know that p′ and q′ are separated by a distance r

2 . Now, consider the execution of the algorithm described
above for instance K. When agent A (resp. B) executes the dαγ eth segment of procedure CGKK, it can be
shown that the agent passes through position p′ (resp. q′). Furthermore, each interruption of procedure
CGKK lasts exactly the time equal to the delay between the agents, and neither A nor B can travel a distance
greater than r

4 during a segment. Consequently, if rendezvous has not occurred before, it can be also shown
that when agent A finishes its dαγ eth interruption, it is at distance at most r

4 from position p′, while at the
same time agent B starts its dαγ eth interruption and is at distance at most r4 from position q′. Note that the
above arguments rely on the fact that parameter τ is 1 in instances K and h(K). From the fact that positions
p′ and q′ are separated by a distance r

2 , it follows that the agents of K get at distance at most r of each other,
and rendezvous is achieved by the time agent A finishes its dαγ eth interruption of procedure CGKK.

Of course, all of this works for an ideal situation in which the agents of instance K initially know the
values of some relevant parameters. However, similarly to what has been described for the instances of
type 3, the agents do not need the exact values of these parameters. Instead, they can guess and use good
approximations that will turn out be sufficient to achieve rendezvous for all instances of type 4.

3.1.2 Algorithm

Algorithm 1 gives the pseudocode of Algorithm AlmostUniversalRV. It is mainly composed of a repeat
loop that is interrupted as soon as the executing agent sees the other one. This loop consists of four blocks
of lines (marked by comments in Algorithm 1), each of them dedicated to the resolution of rendezvous for
one of the types of instances mentioned earlier. Throughout the lines of each block, the reader will be able
to recognize the corresponding strategy that is outlined in Section 3.1.1.

Algorithm AlmostUniversalRV is designed to ensure rendezvous by the time agent A finishes to exe-
cute the block 1 ≤ x ≤ 4 during the ith iteration of the repeat loop, if the instance is of type x and satisfies
some conditions depending on i (e.g., the visibility radius is at least 1

2i
, the delay between the agents is at

most 2i, etc). Actually, in the proof of correctness, we will show that for every instance I of one of the four
types, there exists a specific value of i such that rendezvous is guaranteed by the time any agent finishes the
block dedicated to the type of I in the ith iteration of the repeat loop of Algorithm 1.

Algorithm 1 relies on procedure PlanarCowWalk, described in Algorithm 2 which in turn relies on pro-
cedure LinearCowWalk described in Algorithm 3. When an agent executes LinearCowWalk(i), for a
positive integer i, it performs the first i steps of a linear search on a line l that is parallel to the x-axis of
its local system. Each step 1 ≤ k ≤ i permits the agents to visit all points of the line l situated at distance
at most 2k (w.r.t its unit of length) from where it started LinearCowWalk(i). When an agent executes
PlanarCowWalk(i) from a point p, it performs LinearCowWalk(i) from each point whose coordinates
expressed in its local system are as follows: the x-coordinate is the same as the one of point p and the y-
coordinate is k

2i
, where k is an integer such that |k| ≤ 22i. Procedure PlanarCowWalk is used to achieve

rendezvous both for the instances of type 1 and of type 3. In particular, for the instances of type 3, procedure
PlanarCowWalk plays the role of the planar search procedure mentioned in Section 3.1.1: as we will see
in the proof of Lemma 3.4, the procedure allows an agent to get at distance at most r of all points belonging
to an area of a “certain size” provided that the integer given as input is “large enough”. For example, an
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execution of PlanarCowWalk(i) from a point p ensures that the agent gets at distance at most r of all
points at distance at most d from p, if its unit of length is at least 1, d ≤ 2i and 1

2i
≤ r.

Algorithm 1 AlmostUniversalRV
1: execute the instructions of lines 2 to 22 given below and interrupt the execution as soon as the other

agent is seen.
2: i← 1
3: repeat
4: /* instances of type 1 */
5: for j ← 1 to 2i+1 do
6: execute PlanarCowWalk(i) in the coordinate system Rot( jπ

2i
)

7: end for
8: /* instances of type 2 */
9: wait(2i)

10: execute Latecomers during time 2i

11: P ← the path followed in the latest execution of line 10
12: backtrack on P
13: /* instances of type 3 */
14: wait(215i2)
15: execute PlanarCowWalk(i)
16: /* instances of type 4 */
17: let S1S2 . . . S22i be the solo execution of CGKK during time 2i, where each Sj takes time 1

2i

18: execute S1wait(2i). . .S22i−1wait(2i)S22iwait(2i)
19: P ′ ← the path followed in the latest execution of line 18
20: backtrack on P ′

21: i← i+ 1
22: end repeat

3.1.3 Correctness

In the sequel, we prove the correctness of Algorithm AlmostUniversalRV. Overall, the proof is split
into four lemmas, each of them showing that the algorithm achieves rendezvous for all instances of one of
the four types.

In this proof, every execution by an agent of the repeat loop of Algorithm 1 will be viewed as a series of
consecutive phases i = 1, 2, 3, . . ., where phase i is the part of its execution corresponding to the ith iteration
of the repeat loop. In a given phase i, every execution by an agent of the for loop of Algorithm 1 will be
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Algorithm 2 PlanarCowWalk(i)

1: execute LinearCowWalk(i)
2: for j ← 1 to 2 do
3: repeat 22i times
4: if j = 1 then
5: go (N, 1

2i
)

6: else
7: go (S, 1

2i
)

8: end if
9: execute LinearCowWalk(i)

10: end repeat
11: if j = 1 then
12: go (S, 2i)
13: else
14: go (N, 2i)
15: end if
16: end for

Algorithm 3 LinearCowWalk(i)

1: for j ← 1 to i do
2: go (E, 2j); go (W, 2j+1); go (E, 2j)
3: end for

viewed as a series of consecutive epochs j = 1, 2, 3, . . . , 2i+1, where epoch j is the part of its execution
corresponding to the jth iteration of the for loop.

Before addressing the lemmas dedicated to the four types, we give the following simple lemma that will be
used several times and that is related to the position occupied by an agent at some points during its execution
of Algorithm AlmostUniversalRV.

Lemma 3.1 Consider Algorithm AlmostUniversalRV executed for an instance I = (r, x, y, φ, τ, v, t, χ).
Each time agent A (resp. B) starts the execution of a line of Algorithm 1 whose number is not 11, 12, 19 or
20, it does so from its initial position (0, 0) (resp. (x, y)).

Proof. In view of Algorithm 3, each execution by an agent of procedure LinearCowWalk begins and ends
at the same point. Thus, in view of Algorithm 2, each execution by an agent of procedure PlanarCowWalk
begins and ends at the same point as well. Moreover, during the execution of Algorithm AlmostUniversalRV,
each time an agent finishes processing line 12 (resp. line 20) without having seen the other agent, it is at the
point from which it started the previous processing of line 10 (resp. line 18).

From the above explanations, it follows that within any given phase i executed by an agent, each time it
starts a line of Algorithm 1 whose number is not 11, 12, 19 or 20, it does so from the point at which it started
phase i. It also follows that the execution of phase i by an agent starts and ends at the same point if during
this execution the agent does not see the other one.
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As a result, we can prove by induction on i that the lemma is true due to the fact that the execution by agent
A (resp. B) of phase 1 starts from its initial position (0, 0) (resp. (x, y)). �

Now, we enter the core of the proof with the following lemma showing that Algorithm AlmostUniversalRV

can indeed deal with all instances of type 1.

Lemma 3.2 Algorithm AlmostUniversalRV guarantees rendezvous for all instances of type 1.

Proof. Let I = (r, x, y, φ, τ, v, t, χ) be an arbitrary instance of type 1 and let e = t−dist(projA, projB)+r.
Assume by contradiction that rendezvous does not occur by the time agent B finishes executing the for loop
of Algorithm 1 during phase i = σ + ω, where σ and ω are defined as follows:

• σ = dlog(t+ r + e+
√
x2 + y2 + 8

min{r,e} + π

arcsin (
min{r,e}

16(t+r+e+1)
)
)e.

• ω = dlog( π

arccos (
dist(projA,projB)−r+ e

2
t

)
)e if dist(projA, projB)− r + e

2 > 0, ω = 1 otherwise.

In view of the definition of instance I, we know that t > dist(projA, projB) − r. By the definition of e,
we then have e > 0 and dist(projA, projB)− r + e

2 < t. Recall that r > 0. Hence, we have 8
min{r,e} > 0,

0 < min{r,e}
16(t+r+e+1) < 1 and arcsin ( min{r,e}

16(t+r+e+1)) > 0. In the case where dist(projA, projB) − r + e
2 > 0,

we also have t > 0, 0 <
dist(projA,projB)−r+ e

2
t < 1 and arccos (

dist(projA,projB)−r+ e
2

t ) > 0. This means that
i is well-defined.

To proceed further, we need to introduce some notations and conventions.

Let Σ be the system of coordinates resulting from the rotation of Γ (the coordinate system of A) around its
origin that ensures that the following two conditions are met: (1) the x-axis of Σ is parallel to the canonical
line L of instance I and (2) projA is East of projB in Σ or coincides with it. For ease of reading, the rest
of this proof assumes the units of length and time of agent A but assumes the coordinates system Σ, unless
specified otherwise. Moreover, when in this proof we speak of an angle between two lines, it is always the
smallest unoriented angle between them.

According to lines 5 to 7 of Algorithm 1, there exists an integer 1 ≤ j ≤ 2i+1 such that the system Rot( jπ
2i

)

constructed by agent A during epoch j of phase i, which will be denoted by RotA( jπ
2i

), has the following
two properties: (1) its x-axis forms an angle 0 ≤ α < π

2i
with the x-axis of Σ (as well as with L), and

(2) the direction of its positive x-axis is between East (included) and North (excluded). Note that the North
direction is naturally excluded in the second property because i ≥ 2 and thus α < π

4 . In the sequel, each
time we refer to an epoch j, it is always the one of phase i, and thus we omit to mention it.

An example of the three coordinate systems Γ, Σ and RotA( jπ
2i

) is depicted in Figure 2.

Now we can start the substantial part of the proof with the following claim.

Claim 3.1 There is a time when agent A starts executing procedure LinearCowWalk(i) during epoch j
from a point that is at a distance at most min{r,e}

8 from line L.
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Figure 2: Illustration of the three coordinate systems Γ, Σ and RotA( jπ
2i

) for an instance in which the
chiralities of the agents A and B are different. The coordinate system Γ is the one represented with the solid
axes at the bottom of the figure, while Σ (resp. RotA( jπ

2i
)) is the coordinate system represented with the

dashed (resp. dotted) axes. As defined in the proof of Lemma 3.2, the x-axis of Σ (resp. RotA( jπ
2i

)) forms
an angle 0 (resp. α) with the canonical line L of the instance.

Proof of the claim: In the proof of this claim, when we speak of some coordinates (resp. of the x-axis or
y-axis), it is always implicit that they are expressed in (resp. they are those of) system RotA( jπ

2i
).

By Lemma 3.1, agent A is located at its initial position at the beginning of epoch j. By Definition 2.1, we

know that the initial position of agent A is at distance at most
√
x2+y2

2 from line L. By the definition of
epoch j, we also know that α is the angle between L and the x-axis. This means that the angle between the
y-axis and the line perpendicular to L passing through projA is also α as depicted in Figure 3. From these
explanations, it follows that the distance between the initial position of agent A and the intersection o of the

y-axis with L is at most
√
x2+y2

2 cos(α) . Since, in view of the definition of angle α, we have cos(π4 ) < cos(α) ≤
cos(0), the distance between the initial position of agent A and the intersection o is at most

√
x2 + y2,

which is at most 2i by the definition of i. In particular, the coordinates of point o are (0, yo) where yo is
some real belonging to [−2i, 2i].

By Algorithm 2, we know that for every integer k ∈ {−22i, . . . , 22i} agentA executes procedure LinearCowWalk(i)

from point (0, k
2i

) in epoch j. Moreover, by the definition of i, we have 1
2i
≤ min{r,e}

8 . Hence, during epoch

j, agent A starts executing procedure LinearCowWalk(i) from a point o′ such that dist(o, o′) ≤ min{r,e}
8 ,

which concludes the proof of this claim. ?

In the sequel, we denote by s the first time when agent A starts executing procedure LinearCowWalk(i)

during epoch j from a point that is at a distance at most min{r,e}
8 from line L.

Let L′ be the line on which agent A executes procedure LinearCowWalk(i) from time s on. By the
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Figure 3: Illustration of some geometric arguments used in the proof of Claim 3.1

definition of epoch j, the angle between the x-axis of system RotA( jπ
2i

) and line L is α. Moreover, line L′

is parallel to the x-axis of RotA( jπ
2i

), in view of Algorithm 2. Hence we get the following claim:

Claim 3.2 The angle between line L and line L′ is α.

Claim 3.3 Let p and q be two points separated by a distance t and visited by agent A during its execution
of procedure LinearCowWalk(i) started at time s. The projections of p and q onto line L are separated
by a distance at least dist(projA, projB)− r + e

2 .

Proof of the claim: If dist(projA, projB)− r+ e
2 ≤ 0 the lemma trivially holds. Hence, we assume in the

proof of this claim that dist(projA, projB)− r + e
2 > 0.

Let tp (resp. tq) be some time when agent A occupies point p (resp. q).

From Claim 3.2, we have the following equality

dist(projA(tp), projA(tq)) = dist(p, q) cos(α) (1)

By assumption, dist(p, q) = t. Moreover, by the definition of angle α and the fact that i ≥ 1, we know that
0 ≤ α < π

2i
≤ π

2 . Hence, from equality (1), we get

dist(projA(tp), projA(tq)) ≥ t cos(
π

2i
) (2)
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By the definition of i, we also have the following inequality

i ≥ log(
π

arccos (
dist(projA,projB)−r+ e

2
t )

) (3)

The above inequality implies the one below

π

2i
≤ arccos (

dist(projA, projB)− r + e
2

t
) (4)

From inequalities (2) and (4), it follows that dist(projA(tp), projA(tq)) ≥ dist(projA, projB) − r + e
2 ,

which proves the claim. ?

Let pA be the position occupied by agent A at time s. In view of Lemma 3.1 as well as Algorithms 1 and 2,
we know that the coordinates of pA are (0, u) for some real u in system RotA( jπ

2i
). Let k be the smallest

positive integer such that t+r+e+1 ≤ 2k and let λ be the time s+
∑k−1

z=1 2z+2. In view of Algorithm 3 and
the fact that i ≥ k, we know that in system RotA( jπ

2i
), agent A moves East from point pA to a point p′A with

coordinates (2k, u) during the time interval [λ, λ + 2k]. Then, during the time interval [λ + 2k, λ + 2k+1],
agent A goes back to point pA.

Note that, by definition, agent A starts time t ahead of agent B. Moreover, both agents execute Algorithm 1
that is deterministic, and instance I is synchronous. Hence, we know that, in the system Rot( jπ

2i
) considered

by agent B in epoch j, agent B moves East from a point pB with coordinates (0, u) to a point p′B with
coordinates (2k, u) during the time interval [λ+ t, λ+ t+2k]. Then, during the time interval [λ+ t+2k, λ+

t+ 2k+1], agent B goes back to point pB .

The move made by agent A (resp. B) during the time interval [λ, λ+ 2k] (resp. [λ+ t, λ+ t+ 2k]) will be
called its positive move, while the move made by agentA (resp. B) during the time interval [λ+2k, λ+2k+1]

(resp. [λ+ t+ 2k, λ+ t+ 2k+1]) will be called its negative move.

Claim 3.4 During its positive and negative moves, agent A as well as agent B are always at distance at
most min{r,e}

4 from line L.

Proof of the claim: In the light of Lemma 2.1 and the fact that the positive and negative moves of a given
agent take place along the same segment, it is enough to show that the claim is true during the positive move
of agent A.

According to the definitions of points pA and p′A, these points are respectively the starting point and the
endpoint point of the positive move of agent A which occurs from time λ to time λ + 2k. It follows that
projA(λ) (resp. projA(λ+ 2k)) is the orthogonal projection of pA (resp. p′A) on line L. By Claim 3.1, we
have dist(pA, projA(λ)) ≤ min{r,e}

8 . Moreover, by Claim 3.2, the angle between line L and line L′, which
passes through the segment [pA, p

′
A], is α. Hence, we can state that
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dist(p′A, projA(λ+ 2k)) ≤ min{r, e}
8

+ dist(pA, p
′
A) sin(α) (5)

By the definition of a positive move, we know that dist(pA, p′A) ≤ 2k. By the definition of angle α and the
fact that i ≥ 1, we also know that 0 ≤ α < π

2i
≤ π

2 . From (5), we get the following inequality

dist(p′A, projA(λ+ 2k)) ≤ min{r, e}
8

+ 2k sin(
π

2i
) (6)

By the definition of i, we also have the following inequality

i ≥ log(
π

arcsin ( min{r,e}
16(t+r+e+1))

) (7)

This implies

π

2i
≤ arcsin (

min{r, e}
16(t+ r + e+ 1)

) (8)

By the definition of integer k, we know that 2k ≤ 2(t+ r + e+ 1). As a result, from (6) and (8), we obtain

dist(p′A, projA(λ+ 2k)) ≤ min{r, e}
8

+ 2(t+ r + e+ 1)
min{r, e}

16(t+ r + e+ 1)
≤ min{r, e}

4
(9)

From Claim 3.1 and formula (9), we know that each point of the segment [pA, p
′
A] is at distance at most

min{r,e}
4 from line L, which concludes the proof of the claim. ?

Claim 3.5 The distance between projA(λ+ 2k) and projB(λ+ t+ 2k) is dist(projA, projB). Moreover,
projA(λ+ 2k) is not West of projB(λ+ t+ 2k).

Proof of the claim: By the definition of system Σ, we know that projA is not West of projB . Thus, by
Lemma 2.1, we know that projA(λ + 2k) is not West of projB(λ + t + 2k). Moreover, by Corollary 2.1,
we have dist(projA(λ+ 2k), projB(λ+ t+ 2k)) = dist(projA, projB), which proves the claim. ?

Claim 3.6 projA(λ + 2k) (resp. projB(λ + 2k)) is not West (resp. not East) of projA(λ + t + 2k) (resp.
projB(λ+ t+ 2k)) and the distance between these two projections is at least dist(projA, projB)− r+ e

2 .
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Proof of the claim: In view of Claim 3.3 and the definition of the negative and positive moves, we know that
the distance between projA(λ− t+ 2k) and projA(λ+ 2k) as well as the distance between projA(λ+ 2k)

and projA(λ+ t+ 2k) is at least dist(projA, projB)− r+ e
2 . By the definition of the negative and positive

moves and the definition of system RotA( jπ
2i

), we know that projA(λ− t+2k) is not East of projA(λ+2k)

and projA(λ + 2k) is not West of projA(λ + t + 2k). From these explanations and Lemma 2.1, it also
follows that projB(λ+2k) is not East of projB(λ+ t+2k) and the distance between both these projections
is at least dist(projA, projB)− r + e

2 . This concludes the proof of the claim. ?
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Figure 4: Examples of the two cases addressed at the end of the proof of Lemma 3.2. The figure (a)
corresponds to the case where the projections of A and B are the same at some point during the negative
move of A, while the figure (b) corresponds to the complementary case. In each of these two figures, the
arrow from p′A to pA (resp. pB to p′B) represents the part of the negative move (resp. positive move) made
by agent A (resp. agent B) in the interval [λ+ 2k, λ+ t+ 2k].

Now, we want to argue that at some point during its negative move, agent A is at a distance at most r of
agent B. There are two cases to consider.

First suppose that there is a time µ in the interval [λ + 2k, λ + t + 2k] such that projA(µ) = projB(µ).
For example, this can occur when the projections of A and B cross each other at time µ as depicted in
Figure 4(a). Since from time λ+2k to time λ+t+2k, agentA (resp. B) executes a part of its negative (resp.
positive) move, Claim 3.4 implies that at time µ the agents are at distance at most r4 of projA(µ) = projB(µ)

and thus at distance at most r2 of each other.

Now suppose that for every time µ in the interval [λ + 2k, λ + t + 2k], we have projA(µ) 6= projB(µ).
For example, this can occur when the distance between the projections of A and B continuously decreases
during the interval [λ+ 2k, λ+ t+ 2k] without reaching 0, as depicted in Figure 4(b). Since the projections
of A and B never coincide with each other during the interval [λ + 2k, λ + t + 2k], Claims 3.5 and 3.6
imply that dist(projA(λ+ t+ 2k), projB(λ+ t+ 2k)) = dist(projA(λ+ 2k), projB(λ+ t+ 2k))− δ =
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dist(projA, projB)−δ, where δ is the distance traveled by the projection ofA during the interval [λ+2k, λ+

t+ 2k], which respects the double inequality dist(projA, projB)− r + e
2 ≤ δ < dist(projA, projB).

This means that dist(projA(λ + t + 2k), projB(λ + t + 2k)) is at most equal to dist(projA, projB) −
(dist(projA, projB)− r+ ε

2) = r− ε
2 . Note that, since for every time µ in the interval [λ+ 2k, λ+ t+ 2k],

we have projA(µ) 6= projB(µ), we can state that dist(projA(λ + t + 2k), projB(λ + t + 2k)) is positive
and thus r − ε

2 is positive. This implies r > ε
2 . Since from time λ + 2k to time λ + t + 2k, agent A (resp.

B) executes a part of its negative (resp. positive) move, Claim 3.4 implies that at time λ+ t+ 2k each agent
is at distance at most e4 from its projection onto line L. Hence, by Pythagoras’ theorem, it follows that the

distance between the agents at time λ + t + 2k, is at most
√

( e2)2 + (r − e
2)2 =

√
e2

4 + r2 − 2r e2 + e2

4 .

Since r > e
2 , we know that

√
e2

4 + r2 − 2r e2 + e2

4 ≤
√

e2

4 + r2 − 2 e
2

4 + e2

4 ≤ r. Hence, the distance

between the agents at time λ+ t+ 2k is at most r.

Consequently, in all cases, agents A and B are at distance at most r, and rendezvous is achieved in view
of line 1 of Algorithm 1, by the time agent B completes the execution of the for loop of phase i: this is a
contradiction and proves the lemma. �

The following lemma shows that Algorithm AlmostUniversalRV can handle every instance of type 2.

Lemma 3.3 Algorithm AlmostUniversalRV guarantees rendezvous for all instances of type 2.

Proof. Fix an arbitrary instance I = (r, x, y, φ, τ, v, t, χ) of type 2, and consider the execution EX1 of
procedure Latecomers for I. According to the properties of this procedure (cf. Section 2), EX1 lasts a
finite time ∆, at the end of which rendezvous is achieved. Now, consider the execution EX2 of Algorithm
AlmostUniversalRV for I. Suppose by contradiction that rendezvous never occurs in EX2 and denote
by s the time when agent A starts executing line 10 of Algorithm 1 during phase dlog(t + ∆)e. Note that,
during this phase, processing lines 9 and 10 of Algorithm 1 consists, in the local system of each agent,
respectively in waiting a time at least t and in executing procedure Latecomers during a time at least
∆. However, the units of time of both agents are identical because I, which is an instance of type 2, is
by definition synchronous. Therefore, since rendezvous never occurs in EX2, we know that agent B waits
during the time interval [s, s + t] (in which it processes line 9 of Algorithm 1), starts executing procedure
Latecomers at time s + t and keeps running it till at least time s + t + ∆. We also know that agent A
starts executing procedure Latecomers at time s and keeps running it till at least time s+ ∆. Moreover,
Lemma 3.1 implies that the position occupied by agent A (resp. B) in EX2 at time s is the same as the
initial position of agent A (resp. B) in EX1.

From the above arguments, it follows that for each time z ∈ [s, s + ∆], the position occupied by agent A
(resp. agent B) in EX2 is the same as the one occupied by agent A (resp. agent B) at time z − s in EX1.
In particular, the position occupied by agent A (resp. agent B) at time s+ ∆ in EX2 is the same as the one
occupied by agent A (resp. agent B) at time s + ∆ − s = ∆ in EX1. Note that, the positions occupied
by the agents at time s + ∆ in EX2 are necessarily separated by a distance greater than r as otherwise by
Algorithm 1 rendezvous occurs at this time during this execution. As a result, agents A and B are separated
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by a distance greater than r at time ∆ in EX1. This implies, that rendezvous does not occurs at time ∆ in
EX1, which is a contradiction and proves the lemma. �

We continue with the next lemma that concerns the instances of type 3.

Lemma 3.4 Algorithm AlmostUniversalRV guarantees rendezvous for all instances of type 3.

Proof. Fix an arbitrary instance I = (r, x, y, φ, τ, v, t, χ) of type 3. By definition of such an instance, the
two agents have different clocks. The agent with the faster clock will be called agent X , while the other
agent will be called agent Y . Denote by uX (resp. uY ) the unit of length of agent X (resp. Y ). Also denote
by τX (resp. τY ) the unit of time of agent X (resp. Y ). As usual, all times and durations (resp. distances)
are expressed w.r.t the unit of time (resp. length) of the reference agent A of I, unless explicitely stated
otherwise. Note that, agent A is either X or Y .

To proceed with the proof, we will show that rendezvous occurs by the time agent X finishes the execution

of line 15 of Algorithm 1 in phase i = dlog( τX
τY −τX + τY

τX
+ uX

r +

√
x2+y2

uX
+ t)e. Note that integer i is

well-defined as τY > τX > 0.

Claim 3.7 The execution by agent X of procedure PlanarCowWalk(i) from its initial position pX allows
it to get at distance at most r of all points at distance at most 2iuX from pX .

Proof of the claim: In the proof of this claim all coordinates and distances are expressed in the system of
X (whose origin is pX ), except where otherwise specified.

Let (f, g) be the cartesian coordinates of a given point located at distance at most 2i from point pX . We
have |f | ≤ 2i, and therefore there exist two integers −22i ≤ a ≤ 22i and − 1

2i+1 ≤ b ≤ 1
2i+1 such that

f = a
2i

+ b. Similarly, there exist two integers −22i ≤ c ≤ 22i and − 1
2i+1 ≤ d ≤ 1

2i+1 such that g = c
2i

+ d.
In view of Algorithm 2, we know that agent X ends up executing LinearCowWalk(i) from point (0, c

2i
).

By Algorithm 3, this execution of LinearCowWalk(i) allows the agent to traverse all the points (f ′, c
2i

)

such that −2i ≤ f ′ ≤ 2i. Hence, there is a time when the agent occupies the position ( a
2i
, c

2i
). The distance

between (f, g) and ( a
2i
, c

2i
) is
√
b2 + d2, which is at most

√
2( 1

2i+1 )2 < 1
2i

. Recall that this distance of 1
2i

is
expressed in the unit of length of agent X . Expressed in the global unit, this distance is equal to uX

2i
, which

is at most r by the definition of i. This concludes the proof of this claim. ?

In phase i, the instruction at line 15 of Algorithm 1 consists, for agentX , in executing PlanarCowWalk(i).
By Lemma 3.1, this execution starts from the initial position pX of agent X . Hence, in view of Claim 3.7
and the fact that, by the definition of i, 2iuX ≥

√
x2 + y2, we know that if agent Y waits at its initial

position pY during the entire execution of line 15 of Algorithm 1 in phase i by agent X , rendezvous occurs
by the time agent X finishes this execution.

Note that if agent Y executes the waiting period at line 14 of Algorithm 1 during phase i, it is located at its
initial position pY according to Lemma 3.1. So, in the light of the above arguments, it is enough to show the
following two properties:
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• If agent X starts executing procedure PlanarCowWalk(i) at line 15 of Algorithm 1 in phase i,
agent Y has at least started the waiting period of the previous line during the same phase.

• Agent Y cannot have started executing line 15 of Algorithm 1 in phase i before agent X finishes the
execution of the same line in the same phase.

This is done through Claims 3.8 to 3.10 that are proved below and that therefore conclude the proof of this
lemma.

Claim 3.8 The execution by agent X (resp. Y ) of the first i − 1 phases of Algorithm 1 and of the lines 5
to 12 in phase i of Algorithm 1 lasts a time at most 215(i−1)2+4i+9τX (resp. 215(i−1)2+4i+9τY ).

Proof of the claim:

The execution of an instruction by agent X takes time cτX for some real c iff the execution of the same
instruction by agent Y takes time cτY . As a result, it is enough to show that the claim holds for agent X . In
the rest of the proof of this claim, all durations are in the units of time of agent X .

Let k be a positive integer. According to Algorithm 3 (resp. Algorithm 2), the execution by agent X of
procedure LinearCowWalk(k) (resp. PlanarCowWalk(k)) takes time at most 2k+3 (resp. at most
23k+5). This implies that the execution by agent X of lines 5 to 10 (resp. lines 14 to 18) of Algorithm 1 in
phase k takes time at most 24k+6 + 2k+1 (resp. at most 215k2 + 23k+5 + 23k + 2k). The execution by agent
X of line 12 of Algorithm 1 during phase k is upper bounded by 2k. Moreover, since the execution by agent
X of line 18 of Algorithm 1 in phase k takes time at most 23k + 2k and consists in waiting at least time 23k,
the execution of line 20 of Algorithm 1 in phase k takes time at most 2k.

Consequently, the execution time of phase k by agent X is upper bounded by 24k+6 + 2k+1 + 215k2 +

23k+5 + 23k + 2k + 2k+1, which is at most 215k2+1.

Hence, the execution by agent X of the first i − 1 phases of Algorithm 1 and of the lines 5 to 12 in
phase i of Algorithm 1 lasts a time at most 24i+6 + 2i+2 +

∑k=i−1
k=1 215k2+1. This is upper bounded by

24i+7 + 215(i−1)2+2 ≤ 215(i−1)2+4i+9, which concludes the proof of this claim. ?

Claim 3.9 If agent X starts executing line 15 of Algorithm 1 in phase i, agent Y has at least started to
execute line 14 of Algorithm 1 in the same phase.

Proof of the claim: Let qX (resp. qY ) be the time, if any, when agent X (resp. Y ) starts the execution of
line 15 (resp. line 14) of Algorithm 1 in phase i.

qY has higher value when agent Y is agent B than when it is agent A. qX has lower value when agent X
is agent A than when it is agent B. In view of Claim 3.8 and the fact that 2i ≥ t, by the definition of i, we
have qY ≤ 2i + (215(i−1)2+4i+9)τY and qX ≥ (215(i−1)2+4i+9 + 215i2)τX .

Consequently we have the following inequality
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qX − qY ≥ (215(i−1)2+4i+9 + 215i2)τX − 2i − (215(i−1)2+4i+9)τY (10)

By the definition of i, we have 2i ≥ τY
τX

, which implies that τX ≥ τY
2i

. Hence, we get

qX − qY ≥ (215(i−1)2+4i+9 + 215i2)
τY
2i
− 2i − (215(i−1)2+4i+9)τY (11)

The above inequality can be rewritten as follows

qX − qY ≥ 215i2−iτY − (215(i−1)2+4i+9)
(2i − 1)τY

2i
− 2i (12)

This implies

qX − qY ≥ 215i2−iτY − (215(i−1)2+4i+9)τY − 2i ≥ (215i2−i − 215(i−1)2+4i+9)τY − 2i (13)

Since, agent Y is the agent with slower clock, we know that τY ≥ 1. Moreover, we know that i ≥ 1 and
thus 15(i− 1)2 + 4i+ 9 ≤ 15i2 − i− 1. From (13), we have

qX − qY ≥ 215i2−i−1 − 2i > 0 (14)

Consequently, the difference qX − qY is always positive, which concludes the proof of the claim. ?

Claim 3.10 Agent Y cannot have started executing line 15 of Algorithm 1 in phase i before agentX finishes
the execution of the same line in the same phase.

Proof of the claim: Let sX (resp. sY ) be the time, if any, when agent X (resp. Y ) finishes (resp. starts) the
execution of line 15 of Algorithm 1 in phase i.

sY has lower value when agent Y is agent A than when it is agent B. sX has higher value when agent
X is agent B than when it is agent A. Note that according to Algorithms 3 and 2, an execution by agent
X of PlanarCowWalk(i) takes time at most 23i+5τX . Moreover, by the definition of i, we know that
2i ≥ t. Hence, in view of Claim 3.8, we can state that sX ≤ 2i + (215(i−1)2+4i+9 + 215i2 + 23i+5)τX and
sY ≥ (215(i−1)2+4i+9 + 215i2)τY .

Consequently, we have the following inequality
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sY − sX ≥ (215(i−1)2+4i+9 + 215i2)τY − 2i − (215(i−1)2+4i+9 + 215i2 + 23i+5)τX (15)

By the definition of i, we have 2i ≥ τX
τY −τX , which implies that 2iτY

2i+1
≥ τX . Hence (15) implies

sY − sX ≥ (215(i−1)2+4i+9 + 215i2)τY − 2i − (215(i−1)2+4i+9 + 215i2 + 23i+5)
2iτY

2i + 1
(16)

Hence, we have

sY − sX ≥ (215(i−1)2+4i+9 + 215i2)
τY

2i + 1
− 2i − 23i+5 2iτY

2i + 1
(17)

In view of the fact that τY ≥ 1 and i ≥ 1, inequality (17) implies that

sY − sX ≥
215i2τY
2i + 1

− 2i − 23i+5 2iτY
2i + 1

≥ 215i2τY
2i + 1

− 24i+6τY
2i + 1

> 0 (18)

As a result, the difference sY − sX is always positive, which concludes the proof of this claim. ?

�

Now, it remains to deal with the instances of type 4. This is the aim of the following lemma.

Lemma 3.5 Algorithm AlmostUniversalRV guarantees rendezvous for all instances of type 4.

Proof. Let I = (r, x, y, φ, τ, v, t, χ) be an arbitrary instance of type 4 and let I ′ = ( r2 , x, y, φ, τ, v, 0, χ) be
an instance of type 4 which is identical to I except that the visibility radius of the agents has been reduced
by half and the delay between the starting times of the agents is 0 (while it is not necessarily the case in I).
By the definition of type 4, instances I and I ′ belong to the set made of the non-synchronous instances for
which τ = 1 and of the synchronous instances for which χ = 1 and φ 6= 0 (since these latter instances are
synchronous, they also have τ = 1).

In instance I, we keep our usual way to denote the reference agent by A and the other agent by B. In
instance I ′, the reference agent is denoted by A′ while the other agent is denoted by B′. We also keep the
usual way to describe a situation with respect to the coordinate system and the parameters of a reference
agent, using indistinctly those of agentA orA′ as they are identical by convention. Note that, the four agents
all have the same clock rate and agent A (resp. agent B) shares the same unit of length with agent A′ (resp.
B′). These elements must be kept in mind when reading the rest of this proof, as they condition the validity
of the arguments.
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First consider the execution EX ′ of procedure CGKK for instance I ′. According to the properties of this
procedure (cf. Section 2), rendezvous occurs in EX ′ after a finite time ∆, at the end of which the position
p′ occupied by agent A′ is at distance at most r2 from the position q′ occupied by agent B′.

Now, consider the execution EX of Algorithm AlmostUniversalRV for instance I and suppose by
contradiction that rendezvous does not occur in EX by the time agent A finishes to execute phase i =

dlog(t + ∆ + 4(v+1)
r )e. Let SA,1SA,2 . . . SA,22i (resp. SB,1SB,2 . . . SB,22i) be the solo execution of CGKK

by agent A (resp. B) during time 2i, where each segment SA,j (resp. SB,j) takes time 1
2i

.

Since 2i ≥ ∆, we know that agent A (resp. B) executes at some point segment SA,d2i∆e (resp. SB,d2i∆e)
at line 18 of Algorithm 1 during phase i. When it does so, we know that agent A (resp. B) passes through
position p′ (resp. q′) in view of execution EX ′ and the fact that by Lemma 3.1 it always starts to execute
line 18 of Algorithm 1 from its initial position (0, 0) (resp. (x, y)). Since 2i ≥ t and the clock rates of the
agents in instance I are identical, we also know that when agent A finishes, say at some time s, the waiting
period lasting 2i just after the execution of segment SA,d2i∆e in phase i, agent B finishes or is still executing
the waiting period lasting 2i just after segment SB,d2i∆e during the same phase.

As a result, at time s, agent A (resp. B) is located at a position p (resp. q) which is at distance at most
1
2i

(resp. v
2i

) from p′ (resp. q′) because the execution by agent A (resp. B) of segment SA,d2i∆e (resp.
SB,d2i(∆−t)e) takes time 1

2i
. By the definition of i, we know that 1

2i
≤ r

4(v+1) . Hence, position p (resp. q)
is at distance at most r

4 from position p′ (resp q′). This implies that position p′ and q′ are separated by a
distance greater than r

2 as otherwise, by Algorithm 1 rendezvous occurs at time s before agent A finishes
to execute phase i = dlog(t + ∆ + 4(v+1)

r )e. This contradicts the fact that the position p′ occupied by
agent A′ is at distance at most r

2 from the position q′ occupied by agent B′ when rendezvous occurs in
EX ′. As a result, we know that rendezvous occurs in EX by the time agent A finishes executing phase
i = dlog(t+ ∆ + 4(v+1)

r )e, which concludes the proof of the lemma. �

Theorem 3.2 is a direct consequence of Lemmas 3.2, 3.3, 3.4, and 3.5.

3.2 Proof of Theorem 3.1

We are now able to address the proof of Theorem 3.1 that provides a characterization of the feasible in-
stances.

The next two lemmas follow from Theorem 3.2.

Lemma 3.6 Every non-synchronous instance is feasible.

Lemma 3.7 Every synchronous instance (r, x, y, φ, τ, v, t, χ) for which χ = 1 and φ 6= 0 is feasible.

The following lemma follows from [38]:

Lemma 3.8 Every synchronous instance (r, x, y, φ, τ, v, t, χ) for which χ = 1 and φ = 0 is feasible if and
only if t ≥ dist((0, 0), (x, y))− r.
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The following lemma is the counterpart of the previous one for different chiralities. Notice that in this case,
we do not need the assumption that φ = 0.

Lemma 3.9 Every synchronous instance (r, x, y, φ, τ, v, t, χ) for which χ = −1 is feasible if and only if
t ≥ dist(projA, projB)− r.

Proof. We first show the “only if” implication. By contradiction, consider a synchronous instance I for
which χ = −1 and t < dist(projA, projB) − r, and suppose that some deterministic algorithm A guar-
antees rendezvous for instance I at some time z. This implies dist(projA(z), projB(z)) ≤ r. Suppose
that z < t. At time z, agent B is still idle while agent A has traversed a distance at most z. Hence,
dist(projA(z), projB(z)) ≥ dist(projA, projB) − z > dist(projA, projB) − t > r which is a con-
tradiction. This proves z − t ≥ 0, and in view of Corollary 2.1, we have dist(projA(z − t), projB(z)) =

dist(projA, projB). Hence, dist(projA(z − t), projA(z)) ≥ dist(projA, projB)−r. Consequently, agent
A has to travel at least dist(projA, projB)− r during time interval [z − t, z] which contradicts the fact that
t < dist(projA, projB)− r.

We now show the “if” implication. By Theorem 3.2, we know that every synchronous instance for which
χ = −1 and t > dist(projA, projB)− r is feasible. It is then enough to consider a synchronous instance I
for which χ = −1 and t = dist(projA, projB)− r and to prove that I is feasible.

Let us describe a rendezvous algorithm working for I. Each of the agents computes the canonical line L
of I which, by definition, has the same equation in the system of coordinates of each of them. Each agent
considers its local coordinate system Rot(φ+π

2 ) and executes in this system the following instructions,
which are interrupted as soon as it sees the other agent. The agent goes to the orthogonal projection on L of
its initial position. Then, it goes North at distance t and then South at distance t.

Recall that the canonical line L of I is at the same distance from the initial positions of both agents. Also
note that, for each agent, the last two moves are made along L, and direction North in the system Rot(φ+π

2 )

is the same for both agents.

It remains to prove that the above algorithm guarantees rendezvous for instance I.

Let Σ be the system of coordinates Rot(φ+π
2 ) constructed by agent A and let z be the time when agent A

finishes its move North. At time z, agent B has just reached line L. The rest of the arguments assumes the
units of length and time of agent A but the coordinates system Σ. Note that we cannot have projA = projB
as this would imply t = −r < 0, which would contradict the fact that t ≥ 0. Hence, it is enough to analyze
the algorithm only when projA 6= projB . This is done considering the two cases below.

• Case 1: projB is North of projA.
This case is depicted in Figure 5(a). In view of Corollary 2.1, we have dist(projA(z − t), projB(z)) =

dist(projA, projB). In view of the description of the algorithm and the fact that t < dist(projA, projB),
agent A moves towards projB = projB(z) (without reaching it) during the time interval [z −
t, z]. Hence, dist(projA(z), projB(z)) = dist(projA, projB) − t, which is exactly r because
t = dist(projA, projB) − r. Thus, agents A and B are at distance r of each other at time z and,
according to the algorithm, never move thereafter.
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Figure 5: Examples of the two cases addressed in the proof of Lemma 3.9. The figures (a) and (b) correspond
respectively to the cases 1 and 2. In each of the figures, we give the positions of the projections onto the
canonical line L at some relevant times. The North direction of Σ is bottom up in both figures.

• Case 2: projB is South of projA.
This case is depicted in Figure 5(b). We have dist(projA(z + t), projB(z)) = dist(projA, projB)

because projA(z + t) (resp. projB(z)) is projA (resp. projB). Moreover, agent B moves towards
projA(z+t) (without reaching it) during the time interval [z, z+t]. Hence, dist(projA(z + t), projB(z + t)) =

dist(projA, projB)− t which is, as in the first case, exactly equal to r. Hence, agents A and B are at
distance r of each other at time z + t and, according to the algorithm, never move thereafter.

Hence, in all cases, rendezvous is achieved, which concludes the proof of the “if” implication, and thus the
proof of the lemma. �

Using the above lemmas, we can now prove Theorem 3.1.

Proof of Theorem 3.1
The first statement of the theorem follows from Lemma 3.6. Hence, consider a synchronous instance. The
“if” part of the second statement follows directly from Lemmas 3.7, 3.8, and 3.9.

It remains to prove the “only if” part of the second statement. First suppose that χ = −1. In this case,
the conjunction of the negations of 2a, 2b, and 2c implies t < dist(projA, projB) − r. Hence, the non-
feasibility follows from Lemma 3.9. Next suppose that χ = 1. In view of the negation of 2a, we have
φ = 0. Hence, the negation of 2b implies t < dist((0, 0), (x, y)) − r, and the non-feasibility follows from
Lemma 3.8. �
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4 What Do We Miss

It follows from Theorems 3.1 and 3.2 that the only feasible instances that are not handled by algorithm
AlmostUniversalRV are synchronous instances (r, x, y, φ, τ, v, t, χ) for which

• either φ = 0, t = dist((0, 0), (x, y))− r, and χ = 1

• or t = dist(projA, projB)− r and χ = −1.

Call these sets of instances S1 and S2 respectively.

We now argue that these exception sets, while of course infinite, are small in a geometric sense, compared
to the set of all feasible instances. First consider all feasible instances (r, x, y, φ, τ, v, t, χ) and partition
them into two sets: F1 are those with χ = 1 and F2 are those with χ = −1. Hence each of F1 and F2 can
be formalized as a subset of R7. Since all non-synchronous instances are feasible, both for χ = 1 and for
χ = −1, and synchronous instances (i.e., those for which τ = v = 1) are contained in two copies of the
subspace R5, it follows that each of F1 and F2 contains a ball in R7 of positive radius (intuitively these sets
are “fat” in R7, i.e., not contained in any lower-dimension subspace of this space).

Now consider the exception sets S1 ⊂ F1 and S2 ⊂ F2. S1 is the set of synchronous instances in F1 for
which φ = 0 and t = dist((0, 0), (x, y)) − r. Hence these are instances satisfying four (independent)
linear equations and consequently their set is contained in a copy of a subspace R3 of R7. S2 is the set of
synchronous instances in F2 for which t = dist(projA, projB) − r. Hence these are instances satisfying
three (independent) linear equations and consequently their set is contained in a copy of a subspace R4 of
R7. This shows that the “fat” set of feasible instances contains two exception sets that are very “slim” and
Algorithm AlmostUniversalRV is a single rendezvous algorithm handling all feasible instances except
those two sets. Another way of arguing that the exception sets are small compared to the set F1 ∪ F2 of
all feasible instances is that the latter set has positive 7-dimensional Lebesgue measure (in fact it is easy
to see that this measure is not only positive but infinite) while each of the exception sets S1 and S2 has
7-dimensional Lebesgue measure 0.

Moreover, it follows from [38] that there is no single algorithm guaranteeing rendezvous for all instances
from set S1, and it follows from Theorem 4.1 below that there is no single determinictic algorithm handling
all instances from set S2. Hence we miss little and cannot avoid it altogether.

Theorem 4.1 There does not exist an algorithm guaranteeing rendezvous for every synchronous instance
(r, x, y, φ, τ, v, t, χ) such that χ = −1 and t = dist(projA, projB)− r.

Proof. Assume by contradiction that there exists an algorithmA guaranteeing rendezvous for every synchro-
nous instance such that χ = −1 and t = dist(projA, projB)− r.

Consider an instance I = (r, x, y, φ, τ, v, t, χ) as above such that t > 0 and suppose that agents execute
algorithm A. From Definition 2.1, the inclination of the canonical line of I is φ

2 . By inclination, we mean
the smallest positive angle α such that the x-axis of agent A is parallel to the canonical line after rotating
the system of A by angle α. We have the following claim.
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Claim 4.1 Before rendezvous, the earlier agent A has traversed at some point a non-nul segment of incli-
nation φ

2 .

Proof of the claim: When rendezvous occurs at a time z, we necessarily have dist(projA(z), projB(z)) ≤
r.

Suppose that z < t. At time z, agent B is still idle while agent A has traversed a distance at most z.
Hence, dist(projA(z), projB(z)) ≥ dist(projA, projB) − z > dist(projA, projB) − t = r which is a
contradiction. This proves z − t ≥ 0.

So, in view of Corollary 2.1, we have dist(projA(z − t), projB(z)) = dist(projA, projB). Consequently,
we know that dist(projA(z − t), projA(z)) ≥ dist(projA, projB)−r because dist(projA(z), projB(z)) ≤
r. Moreover, dist(projA(z − t), projA(z)) ≤ t = dist(projA, projB)−r because the distance traveled by
agent A during the time interval [z − t, z] is at most t. Hence, dist(projA(z − t), projA(z)) = t. This can
occur only if agent A traverses a segment of length t parallel to the canonical line during the time interval
[z − t, z]. Since, the inclination of the canonical line is φ

2 , the claim is proved. ?

Now consider the solo execution of algorithm A by an agent and denote by P the polygonal line forming
the trajectory of the agent in its system of coordinates. This line is composed of a possibly infinite but
countable sequence of segments S1, S2, . . . . In view of Claim 4.1, we know that for every angle φ, one of
these segments must have inclination φ

2 . However, the number of possible angles is uncountable. This is a
contradiction. �

5 Conclusion

In our considerations, we assumed the same visibility radius r for both agents, similarly as in [18, 38], in
order to facilitate the reading. However, all our results remain true if the visibility radii are different. Assume
that the visibility radius r1 of one of the agents is not smaller than the visibility radius r2 of the other one.
Rendezvous is defined similarly as before: agents have to see each other (i.e., be at distance at most r2) and
never move after this time.

First note that all our negative results remain true with r replaced by r1: in all these results, agents will still
never see each other. We now argue that all our positive results (i.e., results concerning the algorithms) also
remain correct, after replacing r by r1 in their validity conditions.

Consider either Algorithm AlmostUniversalRV or any algorithm working for a particular instance,
executed as if both agents had the same radius r1. We have the guarantee that at some point, both agents
get at distance r1. At this time, the agent with visibility radius r1 sees the other agent and stops. Now the
aim is for the other agent to get at distance r2 from the agent with visibility radius r1, in order to guarantee
rendezvous. This will happen without any change in the case of algorithm AlmostUniversalRV, as it
contains in each phase a search procedure (i.e., procedure PlanarCowWalk), and can be done adding this
search procedure as the last instruction in the other algorithms.

A natural open problem is to generalize the rendezvous task to that of gathering many agents and to see how
conditions on feasibility of instances change with respect to rendezvous of two agents. Which of the feasible
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instances can be gathered by a single algorithm? In a very restricted case, this problem has been solved in
[38].
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