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Abstract

A k-page upward book embedding (kUBE) of a directed acyclic graph G is a book
embeddings of G on k pages with the additional requirement that the vertices appear in
atopological ordering along the spine of the book. The K\UBE TESTING problem, which
asks whether a graph admits a K UBE, was introduced in 1999 by Heath, Pemmaraju,
and Trenk (STAM J Comput 28(4), 1999). In a companion paper, Heath and Pemmaraju
(SIAM J Comput 28(5), 1999) proved that the problem is linear-time solvable for
k = 1 and NP-complete for k = 6. Closing this gap has been a central question
in algorithmic graph theory since then. In this paper, we make a major contribution
towards a definitive answer to the above question by showing that X\ UBE TESTING
is NP-complete for k > 3, even for st-graphs, i.e., acyclic directed graphs with a
single source and a single sink. Indeed, our result, together with a recent work of
Bekos et al. (Theor Comput Sci 946, 2023) that proves the NP-completeness of 2UBE
for planar s¢-graphs, closes the question about the complexity of the k\UBE problem
for any k. Motivated by this hardness result, we then focus on the 2UBE TESTING
for planar st-graphs. On the algorithmic side, we present an O (f(f) - n + n’)-time
algorithm for 2UBE TESTING, where f is the branchwidth of the input graph and f isa
singly-exponential function on §. Since the treewidth and the branchwidth of a graph
are within a constant factor from each other, this result immediately yields an FPT
algorithm for sz-graphs of bounded treewidth. Furthermore, we describe an O (n)-time
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algorithm to test whether a plane s¢-graph whose faces have a special structure admits
a 2UBE that additionally preserves the plane embedding of the input sz-graph. On the
combinatorial side, we present two notable families of plane sz-graphs that always
admit an embedding-preserving 2UBE.

Keywords Upward book embeddings - st-graphs - SPQR-trees - Branchwidth -
Treewidth - Sphere-cut decomposition

1 Introduction

A k-page book embedding (m, o) of an undirected graph G = (V, E) consists of a
vertex ordering w : V < {1,2,...,|V|}and of an assignmento : E — {1, ..., k} of
the edges of G to one of k sets, called pages, so that for any two edges (a, b) and (c, d)
in the same page, with w(a) < m(b) and m(c) < m(d), we have neither 7 (a) < 7 (c)
< (b)) < w(d) nor (c) < m(a) < w(d) < w(b). From a geometric perspective, a
k-page book embedding can be represented as a drawing I'(;r, o) of G where the k
pages correspond to k half-planes sharing a vertical line, called the spine. Each vertex
v is a point on the spine with y-coordinate 7 (v); each edge e is a circular arc on page
o (e), and no edges in the same page cross. As an example, Fig. la represents a 3-page
book embedding of the complete graph K.

For directed graphs (digraphs), Heath, Pemmaraju, and Trenk introduced a variant
of k-page book embeddings in which all the edges are oriented in the upward direction
[69]. This implies that the input digraph is acyclic and all its vertices appear along the
spine in a topological ordering. This type of book embedding for digraphs is called
a k-page upward book embedding of G (kUBE for short). An example of a 4UBE
is shown in Fig. 1c (throughout the paper, in the figures showing a kUBE, the edges
are oriented from bottom to top; for simplicity the orientation of the edges is not
explicitly shown). Note that, if (;r, o) is a 2UBE and the two pages are co-planar, then
I'(w, o) is an upward planar drawing of G, i.e., a crossing-free drawing with all edges
monotonically increasing in the upward direction. Upward planar drawings represent
a classical subject in topological graph theory [7-9, 26, 27, 32-34, 36, 39, 40, 42, 44,
50, 63, 85].

The page number of a (di)graph G (also called book thickness or stack number) is
the minimum number k such that G admits a k-page (upward) book embedding. Com-
puting the page number of undirected and directed graphs is a widely studied problem,
with applications in a variety of domains, including VLSI design, fault-tolerant pro-
cessing, parallel process scheduling, sorting networks, parallel matrix computations
[37, 66, 84], computational origami [2], and graph drawing [29, 46, 64, 92]. See [53,
54] for additional references and applications.

Book embeddings of undirected graphs Seminal results on book embeddings of
undirected graphs are described in the paper of Bernhart and Kainen [25]. They prove
that the graphs with page number one are exactly the outerplanar graphs, while graphs
with page number two are the sub-Hamiltonian graphs. This second result implies
that it is NP-complete to decide whether a graph admits a 2-page book embedding
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Fig.1 a A 3-page book embedding of K¢. b An orientation of K¢. ¢ A 4-page upward book embedding of
K¢ oriented as in (b)

[91]. Yannakakis [93] proved that every planar graph has a 4-page book embedding,
while the question whether four pages are sometimes necessary for planar graphs has
only been recently settled in the affirmative [24, 94]. The aforementioned works have
inspired several papers about the page number of specific families of undirected graphs
(e.g., [18, 21, 23, 37, 58]) and about the relationship between the page number and
other graph parameters (e.g., [55, 62, 76, 77]). Different authors studied constrained
versions of k-page book embeddings where either the vertex ordering 7 is (totally or
partially) fixed [10, 11, 38, 78, 89, 90], or the page assignment o for the edges is given
[12—14, 70], or further conditions are required for the edges that occur in the same
page [3, 25]. Relaxed versions of book embeddings where edge crossings are allowed
(called k-page drawings) or where edges can cross the spine (called fopological book
embeddings) have also been considered (e.g., [1, 17, 31, 35, 45, 56, 57]). Finally,
2-page (topological) book embeddings find applications to point-set embedding and
universal point set (e.g., [15, 16, 48, 49, 59, 75]).

Book embeddings of directed graphs. As for undirected graphs, there are many
papers devoted to the study of upper and lower bounds on the page number of directed
graphs. Heath, Pemmaraju, and Trenk [69] show that directed trees and unicyclic
digraphs have page number one and two, respectively. Alzohairi and Rival [5], and
later Di Giacomo et al. [46] with an improved linear-time construction, show that series-
parallel digraphs have page number two. Mchedlidze and Symvonis [79] generalize
this result and prove that N-free upward planar digraphs, which include series-parallel
digraphs, also have page number two (a digraph is upward planar if it admits an upward
planar drawing). Bhore et al. [28] provide constant upper bounds on the page number
of several subfamilies of upward outerplanar graphs. Frati et al. [61] give several condi-
tions under which upward planar triangulations have bounded page number. Recently,
Jungeblut, Merker, and Ueckerdt [73] proved the first sublinear upper bound on the
page number of upward planar graphs. Overall, the question asked by Nowakowski
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and Parker [82] more than 30 years ago of whether the page number of planar posets,
and more generally of upward planar digraphs, is bounded remains unanswered. The
page number of acyclic digraphs in terms of posets is also investigated by Alhashem,
Jourdan, and Zaguia [4].

About lower bounds, Nowakowski and Parker [82] give an example of an upward
planar digraph that requires 3 pages in any upward book embedding (see Fig. 10a).
Subsequently, Hung [72] shows an upward planar digraph with page number 4. This
bounds has been improved to 5 pages by Jungeblut, Merker, and Ueckerdt [73]. Heath
and Pemmaraju [67] describe acyclic n-vertex planar digraphs that are not upward
planar and whose upward book embeddings require |n/2] pages. Syslo [88] provides
a lower bound on the page number of a poset in terms of its bump number.

Besides the study of upper and lower bounds on the page number of digraphs,
several papers concentrate on the design of testing algorithms for the existence of
kUBEs. Prior to this paper, the problem was known to be NP-complete only for k = 6
[68]. Only very recently, the case k = 2 has been settled by Bekos et al. [19], who
show that the 2UBE problem is NP-complete for planar sz-graphs and planar posets'.
Furthermore, for k = 2, Mchedlidze and Symvonis give linear-time testing algorithms
for outerplanar and planar triangulated sz-graphs [81]. They also present an O (w?n®)-
time testing algorithm for 2UBEs of n-vertex planar s¢-graphs of width w, where the
width is the minimum number of directed paths that cover all the vertices [79]. Heath
and Pemmaraju [68] describe a linear-time algorithm to recognize digraphs that admit
1UBEs. As for the undirected case, constrained or relaxed variants of kK UBEs for
digraphs are studied [2, 47, 64], as well as applications to the point-set embedding
problem [46, 64].

Contributions. Our paper is motivated by the gap present in the literature about
the computational complexity of the XUBE TESTING problem. Namely, as discussed
above, polynomial-time algorithms are known only for £k = 1, or for k = 2 and
subclasses of planar digraphs, while NP-completeness is known only for exactly 6
pages. Closing this gap has been a central question in algorithmic graph theory for
over 20 years. In this paper, we make a major step towards a definitive answer to the
above question, and address the research direction proposed by Heath and Pemmaraju
[68] about identifying graph classes for which the existence of kUBEs can be solved
efficiently. Our results are as follows:

e We prove that testing whether a digraph G admits a kK UBE is NP-complete for every
k > 3, even if G is an sz-graph (Section 3). An analogous result was previously
known only for the constrained version in which the page assignment is given [2].
Our result and the recent work of Bekos et al. [19] close the question about the
complexity of the k\UBE problem for any k.

e We describe a new meaningful subclass of upward planar digraphs that admit
a 2UBE (Section 4). This class is structurally different from the N-free upward
planar digraphs, the largest class of upward 2-page book embeddable digraphs pre-
viously known.

1 We remark that the result of Bekos et al. [19, 20] appeared after the conference version of our research
was published [30] and after the present paper was submitted.
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e We give a linear-time algorithm to test the existence of an embedding-preserving
2UBE for a family of plane sz-graphs whose faces have a special structure, namely
each face is either a generalized triangle (i.e., it contains a transitive edge) or a
rhombus (i.e., its left and right paths have length two); see Section 5.

e For planar n-vertex st-graphs of bounded branchwidth fi, we describe an FPT
algorithm for the 2UBE TESTING problem that runs in O(f(fi) - n + n3) time,
where f is a singly-exponential function (Section 6). The algorithm works for both
variable and fixed embedding, and it implies a sub-exponential-time algorithm for
general planar st-graphs. Since the treewidth and the branchwidth of a graph are
within a constant factor from each other, this result immediately yields an FPT
algorithm for s¢-graphs of bounded treewidth.

e The approach used in the design of the FPT algorithm also leads to an O (n)-
time testing algorithm for sz-graphs of treewidth at most two (also known as two-
terminal series-parallel graphs) in the fixed embedding setting (Theorem 7). We
recall that in the variable embedding setting an sz-graphs of treewidth at most two
always admits a 2UBE, which can be found in O (n) time [46].

2 Preliminaries

We only consider (di)graphs without loops and multiple edges, and we denote by V (G)
and E (G) the sets of vertices and edges of a (di)graph G. A graph G is 1-connected if
there is a path between any two vertices. G is k-connected, for k > 2, if the removal
of k — 1 vertices leaves the graph 1-connected. A 2-connected (3-connected) graph is
also called biconnected (triconnected).

A planar drawing of G is a geometric representation in the plane such that: (i) each
vertex v € V(G) is drawn as a distinct point p,; (ii) each edge e = (u,v) € E(G)
is drawn as a simple curve connecting p, and p,; (iii) no two edges intersect in I"
except at their common end-vertices (if they are adjacent). A graph is planar if it
admits a planar drawing. A planar drawing I of G divides the plane into topologically
connected regions, called faces. The outer face of T" is the region of unbounded size;
the other faces are internal. A planar embedding of G is an equivalence class of planar
drawings that define the same set of (internal and outer) faces, and it can be described
by the clockwise sequence of vertices and edges on the boundary of each face plus
the choice of the outer face. Graph G together with a given planar embedding is an
embedded planar graph, or simply a plane graph: If T is a planar drawing of G whose
set of faces is described by the planar embedding of G, we say that I' preserves this
embedding, or also that I" is an embedding-preserving drawing of G.

A digraph G is a planar st-graph if: (i) it is acyclic; (i7) it has a single source s
and a single sink #; (iii) it admits a planar embedding £ with s and ¢ on the outer
face. A planar st-graph G together with £ is a planar embedded st-graph or a plane
st-graph.

Let G be a plane s¢-graph and let e = (u, v) be an edge of G. The left face (resp.
right face) of e is the face to the left (resp. right) of e while moving from u to v.
The boundary of every face f of G consists of two directed paths p; and p, from a
common source s ¢ to a common sink ¢ . The paths p; and p, are the left path and the
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Fig.2 a A plane s¢-graph G. b The dual of G is shown in gray. ¢ An embedding-preserving HP-completion
of G; the light blue edges form a directed Hamiltonian sz-path, and the dashed edges are augmenting edges.
d An embedding-preserving 2UBE of G corresponding to (c)

right path of f, respectively. The vertices sy and ¢ are the source and the sink of f,
respectively. If f is the outer face, p; (resp. p;-) consists of the edges for which f is the
left face (resp. right face); in this case p; and p, are also called the left boundary and
the right boundary of G, respectively. If f is an internal face, p; (resp. p,) consists of
the edges for which f is the right face (resp. left face).

The dual graph G* of aplane st-graph G is a plane s¢-graph (possibly with multiple
edges) such that: (i) G* has a vertex associated with each internal face of G and two
vertices s* and t* associated with the outer face of G, that are the source and the sink
of G*, respectively; (ii) for each internal edge e of G, G* has a dual edge from the
left to the right face of e; (iii) for each edge e in the left boundary of G, there is an
edge from s* to the right face of e; and (iv) for each edge e in the right boundary of
G, there is an edge from the left face of e to ¢*.

Consider a planar sz-graph G and let G be a planar sz-graph obtained by augmenting
G with directed edges in such a way that it contains a directed Hamiltonian sz-path
Pg. The graph G is an HP-completion of G. Consider now a plane sz-graph G and
let £ be a planar embedding of G. Let G be an embedded HP-completion of G whose
embedding € is such that its restriction to G is £. We say that G is an embedding-
preserving HP-completion of G. Bernhart and Kainen [25] prove that an undirected
planar graph admits a 2-page book embedding if and only if it is sub-Hamiltonian, i.e.,
it can be made Hamiltonian by adding edges while preserving its planarity. Theorem 1
is an immediate consequence of the result in [25] for planar digraphs (see also Fig. 2);
when we say that a 2UBE (n, o) is embedding-preserving we mean that the drawing
I'(w, o) preserves the planar embedding of G.

Theorem 1 A planar (plane) st-graph G admits a (embedding-preserving) 2UBE
(, o) if and only if G admits an (embedding-preserving) HP-completion G. Also,
the order 7t coincides with the order of the vertices along Pg.
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3 NP-Completeness for kUBE (k > 3)

In this section, we prove that \UBE TESTING, i.e., the problem of deciding whether a
digraph G admits an upward k-page book embedding, is NP-complete for each fixed
k > 3. The proof uses a reduction from the BETWEENNESS problem [83], which is
defined as follows:

BETWEENNESS

Instance: A finite set S of elements and aset R € S x § x § of triplets.

Question: Does there exist an ordering T : S — N of the elements of S such that for
any element (a, b, c) € Reither t(a) < 7(b) < t(c)ort(c) < 1(b) <
(a)?

We incrementally define a set of families of digraphs and prove some properties of
these digraphs. Then, we use the digraphs of these families to reduce a generic instance
of BETWEENNESS to an instance of 3UBE TESTING, thus proving the hardness result
for k = 3. We then explain how the proof can be easily adapted to work for k > 3.

For a digraph G, we denote by u ~~ v a directed path from a vertex u to a vertex
vin G. Let y = (m, o) be a 3UBE of G. Two edges (u, v) and (w, z) of G conflict
if either 7 (1) < w(w) < w(v) < 7w(z) or m(w) < w(u) < 7(z) < w(v). Two
conflicting edges cannot be assigned to the same page. The next property will be used
in the following; it is immediate from the definition of book embedding and from the
pigeonhole principle.

Property 1 In a 3UBE there cannot exist 4 edges that mutually conflict.

Shell digraphs. The first family that we define are the shell digraphs, recursively
defined as follows. Digraph Gy, depicted in Fig. 3a, consists of a directed path P with
eight vertices denoted as so, go, P—1, 11, S(» 4, %)» and po in the order they appear
along P. Besides the edges of P, the following directed edges exists in Go: (so, s(),
(g0, q(’)), (t_1, po). Finally, there is a vertex fg connected to P by means of the two
directed edges (p—_1, tp) and (t(/), tp). Graph G}, is obtained from G,_1 with additional
vertices and edges as shown in Fig. 3b. A new directed path of two vertices s and g,
is connected to G, with the edge (g, sp—1); a second path of four vertices s}, g, 77,
and pj, is connected to G, with the edge (,—1, 51/1)- The following edges exist between
these new vertices: (sy, s}’l), (gn, q,’l), (th—1, pn). Finally, there is a vertex f;, connected
to the other vertices by means of the two directed edges (p;—1, ;) and (t;l, t,). For any
h > 0, the edges (s, 5;,) and (gx, g;,) are called the forcing edges of Gj,; the edges
(pn—1,ty) and (ty,—1, pn) are the channel edges of Gy, ; the edge (t}’l, 1) is the closing
edge of Gj. The vertices and edges of G, \ Gj,— are the exclusive vertices and edges
of Gj,. The following lemma establishes basic properties of the shell digraphs.

Lemma 1 Every shell digraph Gj, for h > 0 admits a 3UBE. Inany 3UBE y = (7, 0)
of G, the following conditions hold for everyi =0, 1, ..., h:

S1 allvertices of G; are between s; and t; in 7w;
S2 the channel edges of G; are in the same page;
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Fig.3 Definition of shell digraphs

S3 ifi > 0, the channel edges of G; and those of G;—1 are in different pages.

Proof The proof is by induction on 4.

Base case i1 = 0. We describe how to define a 3UBE y = (7, o) of G¢. The eight
vertices of the directed path sg ~» po must appear in 7 in the same order they appear
along the path. Consider now #y. Because of the closing edge (t(’), tp), we have n(t(’)) <
7 (tg). If we put tp between t(’) and po, the channel edges (p_1, fo) and (¢_1, po) and the
forcing edges (so, s(’)) and (qo, q(’)) would mutually conflict. But then a 3UBE would
not exist by Property 1. Thus, the only possibility is that #j is the last vertex in 7. This
uniquely defines the order 7 and implies condition S1. As for the page assignment o,
the two forcing edges must be in different pages because they conflict. Since each of
the two channel edges conflicts with both forcing edges, the channel edges cannot be
assigned to the pages used for the forcing edges. Thus, they must be in the same page,
which is possible because the two channel edges do not conflict (this proves condition
S2). Finally, the closing edge conflicts with the channel edge (r_1, po) and thus it
cannot be in the same page as the channel edges; since however it does not conflict
with any other edge it can be assigned to one of the pages used for the forcing edges.
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This concludes the proof that a 3UBE of G exists and that it must satisfy conditions
S1 and S2. Condition S3 does not apply in this case.

Inductive case 2 > 0. By induction, G;_; admits a 3UBE y’ = (n/, ¢’) that satis-
fies S1-S3. We extend y’ to a3UBE y = (i, o) of G}, as follows. Since y’ satisfies S1,
sp—1 is the first vertex in 7" and f,_ is the last one. The vertices of path s;, ~ sj—|
must appear in 7 in the same order they appear along the path. Analogously, the ver-
tices of t,_1 ~» p, must appear in 7 in the order they have along the path. Because
of the closing edge (t;’l, ty), we have n(t;l) < 7 (ty). Therefore, s;, must be the first
vertex along 7. Consider now #;,. If we put #; between #, and py, the channel edges
(ph—1,ty) and (t,—1, pp) and the forcing edges (s;,, s;) and (g, g;,) would mutually
conflict. But then a 3UBE would not exist by Property 1. Thus, #;, must be the last
vertex in 7. This uniquely defines the order 7 and implies condition S1 for Gj,. As for
the page assignment o, observe that the only exclusive edge of G, that conflicts with
some edge of G, is the edge (py—1, tr), which only conflicts with the channel edge
(ph—2, th—1) of Gp—1. This implies that (py—_1, ;) must be in a page different from
the one of (pp—_2, t5—1). The two forcing edges of G, must be in a page different from
the channel edge (pj,—1, t;,) and since they conflict, they must be in different pages.
The channel edge (f,—1, pi) conflicts with the forcing edges but not with the other
channel edge (pn—1, t;). Thus, the channel edges must be in the same page (which
proves condition S2). The fact that the page of (pj—1, ;) must be different from that of
(ph—2, th—1), implies condition S3. Finally, the closing edge conflicts with the channel
edge (t,—1, pn) and thus it cannot be in the same page as the channel edges; since
however it does not conflict with any other edge, it can be assigned to one of the pages
used for the forcing edges. This concludes the proof that a 3UBE of G, exists and that
it satisfies conditions S1, S2, and S3. O

Note that Condition S1 uniquely defines the vertex ordering of Gy, in every 3UBE.
Namely, the path s;, ~» pg precedes each path t;_ ~» p; (fori =1, ..., h), and each
path t;_1 ~» p; precedes the path #; ~~ p; 1 (fori = 1,..., h — 1) (see Fig. 4a for an
example with & = 2).

Filled shell digraphs. Let G, be a shell digraph. A filled shell digraph Hj g (for
h > 0and s > 1) is obtained from G, by adding # + 2 groups o—1, o0, ..., ¢y of s
vertices each; see Fig. 4b for an illustration. The vertices of group «; are denoted as
Vi1, Vi2, ...V . These vertices will be used to map the elements of the set S of an
instance of BETWEENNESS to an instance of 3UBE TESTING. For each vertex v_1 ;
of the set 1 there is a directed edge (p—1, v—1,;) and a directed edge (v—1,;,1-1).
For each vertex v; ; of the set o; with i > 0 and i even, there is a directed edge
(pi, vi,j). Finally, for each vertex v; ; of the set o; with i > 0, there is a directed
edge (U,'_l’j, vi,j).

Lemma2 Every filled shell digraph Hy s for s > 0 and even h > 0 admits a
3UBE. In any 3UBE y = (m,o0) of Hp s the following conditions hold for every
i=-1,0,1,...,h:

F1 the vertices of the group «; are between p; and t; in 1 ;
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Fig.4 a A 3UBE of the shell digraph G ; the colors of the edges represent the pages. b Definition of Hy, ¢
forh=2ands =5

F2 ifi > 0 each edge (vi_1,j, v; j) is in the page of the channel edges of G; (for
j=1,...,s8);
F3 ifi > 0 the vertices of a; are in reverse order with respect to those of aj_1 in 7.

Proof The proof is by induction on 4.

Base case i = 0. We describe how to define a 3UBE y = (r, o) of Hy ;. By Lemma
1, every 3UBE of the subgraph G of Hy s satisfies conditions $S1-S3.

Let v_1; (with 1 < j < &) be a vertex of @_;. The edges (p—1,v-1,;) and
(v-1,j,t—1) imply m(p—1) < m(v—y1,;) and w(v_y ;) < m(t—1), which proves
condition F1 for a_;. Consider now the group «p; the edge (po, vo, ;) implies
7 (po) < m(vo, ;). On the other hand, if we put vy ; after 7y, the edge (v_1,;, vo,;), the
channel edge (p_1, ty), and the two forcing edges (so, s(’)) and (qo, q(’)) would mutually
conflict. But then a 3UBE would not exist by Property 1. Thus, each vertex of group
oo must be between pg and #y in 7, which implies condition F1 for the group «g. As
for the page assignment o, each (v_y_j, vo, ;) conflicts with each forcing edge of Gy,
and thus it must be in the page of the channel edges of G¢. This implies condition F2.
The edges (v_1,;, vo,j) can be assigned to the same page only if the vertices of a_;
appear in reverse order with respect to those of g in . Thus, condition F3 holds and

@ Springer



Algorithmica (2023) 85:3521-3571 3531

a 3UBE of Hp s can be defined by choosing an arbitrary order for the vertices of o
and the reverse order for the vertices of «y.

Inductive case 7 > 0. Consider the subgraph H,fl’s of Hj s consisting of Hy,_p s plus
the exclusive vertices and edges of G;,—1 and of Gj,. By induction and by Lemma 1,
every 3UBE y’ = (7', 0') of H; _ satisfies conditions F1-F3 and conditions $1-S3.
We extend y’ to a 3UBE y = (7, o) of Hj ; as follows. By condition F1 of y’, each
vertex v,—2,j is before #, 2 in 7'; on the other hand, because of the edges (py, vy, i)s
each vertex vy ; must follow pj in 7. This implies that each v,_1 ; is between p;_;
and 7,1 in 7. Indeed, if v,_1,; was before p;_1 in 7, the edge (vy—1,j, vp,;), the
channel edge (p,—1, t;) and the two forcing edges of G, would mutually conflict and
therefore a 3UBE would not exist by Property 1. On the other hand, if v, 1, ; was after
th—1, the edge (vp—2,j, p—1,;), the channel edges (pp—2, 1) and the two forcing
edges of G would mutually conflict and again a 3UBE would not exist by Property
1. Thus, each vertex of group «;—1 must be between pj_1 and #;,_1, which proves
condition F1 for the group a,_1. Consider now a vertex vy, ;. If it was after #; in m,
then the edge (vy—1,j, vp,;), the channel edge (pn—1, ;) and the two forcing edges
of G;, would mutually conflict — again a 3UBE would not exist by Property 1. Hence,
each vertex of «;, is between pj, and f;,, which proves condition F1 also for «y,.

As for the page assignment o, each (v,_2, j, vy—1,;) conflicts with each forcing
edge of Gj,—1 and hence it must be in the page of the channel edges of G,_1. The
same argument applies to the edges (v,—1,;, vy, ;) with respect to the forcing edges
of Gj. Thus the edges (v,—1,, vy, ;) must be in the page of the channel edges of Gy,
which proves condition F2.

The edges (v,—2,j, Uh—1,;) can be assigned to the same page only if the vertices of
aj—> appear in reverse order with respect to those of «;—1 in 7. Similarly, the edges
(Vh—1,j, v, j) can be assigned to the same page only if the vertices of a1 appear in
reverse order with respect to those of «, in . Thus, condition F3 holds and a 3UBE
of Hj, ; can be defined by ordering the vertices of 1 in reverse order with respect
to those of ;5 and the vertices of «j, with the same order as those of o, _». O

Observe that, by Condition F3, all groups «; with even index have the same ordering
in 7 and all groups with odd index have the opposite order. As mentioned above the
vertices in the groups «; will correspond to the elements of the set S of an instance
of BETWEENNESS in the reduced instance of 3UBE TESTING. If the reduced instance
admits a 3UBE, the order of the odd-indexed groups in 7 will give the desired order
for the instance of BETWEENNESS.

3-filled shell digraphs and hardness proof. Starting from a filled shell digraph Hj, s,
a A-filled shell digraph ﬁh,_q is obtained by replacing some edges with a gadget that
has two possible configurations in any 3UBE of I/-I\h,s. More precisely, we replace each
edge (t/, p;) of Hj, s for i odd with the gadget shown in Fig. 5a. The gadget replacing
(t/, pi) will be denoted as A;. Notice that this replacement preserves Conditions F1-F3
of Lemma 2.

Lemma 3 Every A-filled shell digrcg\)h[il\h,s for s > 0 and even h > 0 admits a
3UBE. In any 3UBE y = (m, o) of Hy s the following conditions hold for every odd
i=13....,h—1:
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Fig.5 a A gadget A; (black edges). b The triplet edges of G; (bold edges)

G1 the vertices of the gadget A; are between t] and p; in 1;
G2 the vertices x; and y; are between w; and z; in w and there exists a 3UBE y' =
(', o' of Hy s where the order of x; and y; is exchanged in 7’.

Proof By Lemma 2, every 3UBE y’ = (1, ¢’) of Hj; is such that ¢/ and p; are
consecutive in 7w’ for each i = 0, 1, ..., h. Notice that the gadget A; admits a 3UBE
(actually a 2UBE) y;. If we replace the edge (], p;) with y;, we do not create any
conflict between the edges of A; and the other edges of H}, ;. This proves that fl\h,s
has a 3UBE.

About condition G1, observe that since any vertex of the gadget A; belongs to a
directed path from tl.’ to p;, then the vertices of A; must be between tl.’ and p;. About
condition G2, observe that x; and y; both appear in a directed path from w; to z; and
therefore they must be between w; and z;. Also, suppose that 7 (x;) < 7 (y;) (the other
case is symmetric). If we exchange the order of x; and y; in 77’ we introduce a conflict
between (w;, x;) and (y;, z;), which do not conflict with any other edges. If they are
in the same page in y it is sufficient to change the page of one of them in y’. O

Theorem 2 3UBE TESTING is NP-complete even for st-graphs.

Proof 3UBE TESTING is clearly in NP. To prove the hardness we describe a reduction
from BETWEENNESS. From an instance / = (S, R) of BETWEENNESS we construct an
instance G; of 3UBE TESTING that is an s¢-graph; we start from the A-filled shell
digraphfl\hﬁs with & = 2|R| and s = |S|. Let v, vy, ..., vg be the elements of S.
They are represented in ﬁh,s by the vertices v; 1, v; 2, ..., Vi s of the groups «;, for
i=-1,0,1,...,h Inthe reduction each group «; with odd index is used to encode
one triplet and, in a 3UBE of Gy, the order of the vertices in these groups (which is
the same by condition F3) corresponds to the desired order of the elements of S for
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Fig. 6 A 3UBE of the st-graph G reduced from a positive instance I = (S, R) of BETWEENNESS; the
edge colors represent the corresponding pages

the instance /. Number the triplets of R from 1 to |R| and let (v,, vp, v.) be the j-th
triplet. We use the group «; and the gadget A; withi = 2j — 1 to encode the triplet
(va, Vb, V). More precisely, we add to ﬁh,s the edges (x;, vi.q), (xi, Vi.p), (Vi, Vip),
and (y;, v; c) (see Fig. 5b). These edges are called triplet edges and are denoted as
T;. We will show that in any 3UBE of G the triplet edges are forced to be in the
same page and this is possible if and only if the constraints defined by the triplets in
R are respected. The digraph obtained by the addition of the triplet edges is not an
st-graph because the vertices of the last group «y, are all sinks. The desired instance
G, of 3UBE TESTING is the st-graph obtained by adding the edges (vy,, ;) (for
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j =1,2,...,s). Fig. 6 shows a 3UBE of the st-graph G reduced from a positive
instance / of BETWEENNESS.

We now show that [ is a positive instance of BETWEENNESS if and only if the
st-graph G constructed as described above admits a 3UBE. Suppose first that [ is a
positive instance of BETWEENNESS, i.e., there exists an ordering t of S that satisfies all
triplets in R. The subgraph IiI\h,S of G admits a 3UBE that satisfies conditions S1-S3,
F1-F3, and G1-G2 by Lemmas 1,2 and 3. Observe that the order of the vertices of the
groups «; can be arbitrarily chosen (provided that all groups with even index have the
same order and the groups with odd index have the reverse order). Thus we can choose
the order of the groups with odd index to be equal to t. Let y = (77, o) be the resulting
3UBE of I'-.I\h,s. We now show that if we add the triplet edges to y, these edges do not
conflict. Let (vg, vp, V) be the triplet encoded by the triplet edges 7; and suppose
that 7(v,) < t(vp) < t(v.) (the other case is symmetric). Since the vertices of the
groups with odd index are ordered in 7 as in 7, we have 7w (v; 4) < w(V; p) < T(V; ).
If m(x;) < 7 (y;) then the edges T; do not conflict. If otherwise 7 (y;) < m(x;), by
condition G2 we can exchange the order of x; and y;, thus guaranteeing again that the
triplet edges 7; do not conflict. On the other hand, the triplet edges 7; conflict with
the edges E,A of A;, with the channel edges El."h of G;, and with all the edges E}
connecting group «;—1 to group «;. All the edges in E lA U E,."h U EY can be assigned
to only two pages. Indeed, the edges El.A require two pages, while one page is enough
for the edges of th U E¥. Also, since the edges of ElA do not conflict with those
in th U EY, two pages suffice for all of them. Hence, the triplet edges 7; can all
be assigned to the third page. Since this is true for all the triplet edges, G; admits
a 3UBE.

Suppose now that G; admits a3UBE y = (, o). By Lemmas 1,2 and 3, y satisfies
conditions S1-S3, F1-F3, and G1-G2 . By condition F2 the order of the vertices of the
groups «; with odd index is the same for all groups. We claim that all triplets in R are
satisfied if this order is used as the order t for the elements of S. Let (v,, vp, v.) be the
triplet encoded by the triplet edges 7;. By condition G2, the vertices x; and y; of the
gadget A; are between w; and z; in . Thus the triplet edges 7; conflict with the edges
(ui, zi) and (w;, p;). These two edges must be in two different pages because they
conflict. It follows that the triplet edges 7; must all be in the same page, i.e., the third
one. Since the three edges of 7; are in the same page we have either w(x;) < 7 (y;)
and 7 (vj q) < 7w(vip) < 7w (Vi,c) or T(yi) < 7w(x;) and 7w (vi ¢) < w(Vip) < 7(Viq)
(any other order would cause a crossing between the edges of 7;). In both cases vertex
v; p is between v; 4 and v; , i.e., vp is between v, and v, in 7. Since this is true for all
triplets, [ is a positive instance of BETWEENNESS. O

For k > 3, the reduction from an instance / of BETWEENNESS to an instance G; of
kUBE TESTING is similar. In the shell digraph every pair of forcing edges is replaced
by a bundle of k — 1 edges that mutually conflict (see Fig. 7a). The edges in each
bundle require kK — 1 pages and force all edges that conflict with them to use the k-th
page. Analogously, the two edges (u;, z;) and (w;, p;) of the gadget A; are replaced
by a bundle of k — 1 edges that mutually conflict (see Fig. 7b); this forces the triplet
edges to be in the k-th page. Finally, observe that our reduction does not work for
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Fig. 7 Reduction for XUBE TESTING (example with k = 5). a Replacement of the forcing edges. b
Replacement of the gadget A;. In both figures colors represent the pages

k = 2, as it would yield an instance of 2UBE that never admits a book embedding on
two pages, i.e., it is always a negative instance.

Corollary 1 kUBE TESTING is NP-complete for every k > 3, even for st-graphs.

4 Existential Results for 2UBE

Let f be an internal face of a plane s¢-graph, and let p; and p, be the left and the
right path of f; f is a generalized triangle if either p; or p, is a single edge (i.e., a
transitive edge), and it is a rhombus if each of p; and p, consists of exactly two edges
(see Figs. 8a and 8b).

Let G be a plane st-graph. A forbidden configuration of G consists of a transitive
edge e = (u, v) shared by two internal faces f and g such that sy = s, = u and
tf =ty = v(i.e.,two generalized triangles sharing the transitive edge); see Fig. 8c. The
absence of forbidden configurations is necessary for the existence of an embedding-
preserving 2UBE. If G is triangulated, the absence of forbidden configurations is also
a sufficient condition [81].

Theorem 3 Any plane st-graph such that the left and the right path of every internal
face contain at least two and three edges, respectively, admits an embedding-
preserving 2UBE.

Proof Let G be a plane st-graph such that the left and the right path of every internal
face contain at least two and three edges, respectively. We prove how to construct an
embedding preserving HP-completion. The idea is to construct G by adding a face
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Fig.8 a A generalized triangle G. b A rhombus ¢ A forbidden configuration

of G per time from left to right. Namely, the faces of G are added according to a
topological ordering of the dual graph of G. When a face f is added, its right path is
attached to the right boundary of the current digraph. We maintain the invariant that
at least one edge e in the left path of f belongs to the Hamiltonian path of the current
digraph. The Hamiltonian path is extended by replacing e with a path that traverses
the vertices of the right path of f. To this aim, dummy edges are suitably inserted
inside f. When all faces are added, the resulting graph is an HP-completion G of G.

More precisely, let N be the number of internal faces of G, and let G* be the dual
graph of G. Let s* = fo, f1,..., fn, fn+1 = t* be a topological ordering of G*.
Denote by Gy the left boundary of G and by G;, fori = 1,2, ..., N, the subgraph
of G consisting of the faces fi, f2,..., fi. G; can be obtained by adding the right
path pi of face f; to G;_;. We construct a sequence Go, G1, ..., Gy of st-graphs
such that G; is an HP-completion of G;. Clearly, G y will be an HP-completion of
G. While constructing the sequence, we maintain the following invariant: given any
two consecutive edges along the right boundary of G;, at least one of them belongs to
the Hamiltonian path Pgl, of G;. Gy coincides with G and all its edges are in P*O,

so the invariant holds. Suppose then that G,_1, with i > 1, satisfies the invariant. To
construct G; we must add the right path pﬁ of f; plus possibly some dummy edges
inside f;. Let sy = vg, v1,v2, ..., Uk—1, s = vy be the right path pi of f; and let
Sf =uQ,ur, U2, ..., up—1, 1ty = uy be the left path p; of fi. By hypothesis p! has at
least three edges, and therefore k£ > 3; moreover, since G has no transitive edge, & > 2.
Notice that pf is a subpath of the right boundary of G;_; and that the right boundary of
G; is obtained from the right boundary of G;_; by replacing pf with pi. Let (u_1, s )
be the edge along the right boundary of G;_; entering sy and let (tf, up41) be the
edge along the right boundary of G;_; exiting tr; each of these edges may not exist
if sy = s orty = t. We have different cases depending on whether (sy, u1) and
(up—1, 1) belong to PEH or not.

Case 1: neither (s, u1) nor (u,_1,ts) belong to PfH. See Fig. 9 for an illus-
tration. By the invariant there is an edge (4, u ;1) withO < j < h — 1 between s
and ¢y that belongs to Pgi_] . We add the two dummy edges (u, v1) and (vg_1, uj11),
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Fig.9 Illustration for Theorem 3: a, b Case 1; ¢, d Case 2; e, f Case 4

thus “extending” P, to a Hamiltonian path P of G;; namely, the edge (uj,ujyr)

is bypassed by the path u;, vi, v, ..., vg—1, u41. The only edges of p£ that do not
belong to %,' are (s, vy) and (vg—1, ty). If (u_1, s¢) exists, then by the invariant it
belongs to Pai_l (because (s ¢, u1) does not) and thus the invariant is preserved for
(s 7, v1) and its preceding and following edges. Analogously, if (¢7, us 1) exists, then
by the invariant it belongs to Py, | and thus the invariant is preserved for (vi—1,7y)
and its preceding and following edges.

Case 2: (s 7, u1) does not belong to Pg}_l ,while (u;,_1, t)does. See Fig. 9 for an

illustration. We add the dummy edge (u;—1, v1). This“extends” Pa__l to PE,- of G;
bypassing the edge (uj—1, t) with the path uy,_1, vi, v2, ..., vk—1, tr. The only edge
of pﬁ that does not belong to Pgi is (s, v1). If (u_1, s¢) exists, then by the invariant
it belongs to P*H (because (s, u1) does not) and thus the invariant is preserved for
(s, v1) and its preceding and following edges.
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Case 3: (sy, u1) belongs to Py, while (u,_1,17) does not. This case is sym-
metric to the previous one.

Case4: both (s¢, u1)and (u;,_1, t7) belong to Pz - . See Fig. 9 for an illustration.
We add the two dummy edges (vi—2, #1) and (up—1, vk 1). In this case we “extend”
Pg,_ 1o Pg, bypassing (s s, u1) with the path s 7, vy, ..., vy—2 and bypassing the edge
(up—1,ty) with the path up_1, vi_1, . The only edge of p;. that does not belong to
PE,- is (vk—2, vg—1); moreover, all the edges (s¢, v1), (v1, v2), ..., (Vk—3, vx—2) and
the edge (vk—1, 75) belong to Pg.. Thus the invariant is preserved. O

The next theorem is proved with a construction similar to that of Theorem 3.

Theorem 4 Let G be a plane st-graph such that every internal face of G is a rhombus.
Then G admits an embedding-preserving 2UBE.

Proof During the construction of G; from G;_, we maintain the same invariant as in
Theorem 3. If all faces are rhombi, when we construct Ei from 5,',1, we have that
pf isapathsy, uy, ty and p£ isapathsy, vy, 7y. Atleast one of (s, u1) and (u1, t5)
belongs to Pz . If (sf, u;) belongs to Pz _, We add the dummy edge (vy, u1). In
this case we bypass the edge (s ¢, u1) with the path s¢, vy, uy. If (uy, tr) belongs to
Pg, , we add the dummy edge (u1, v1). In this case we bypass the edge (u1, #5) with
the path u1, vy, #7. In both cases it is easy to see that the invariant is maintained. O

5 Testing 2UBE for Plane Graphs with Special Faces

By Theorem 3, if all internal faces of a plane sz-graph G are such that their left and right
path contain at least two and at least three edges, respectively, G admits an embedding-
preserving 2UBE. If these conditions do not hold, an embedding-preserving 2UBE
may not exist (see Fig. 10a). We now describe an efficient testing algorithm for a plane
st-graph G = (V, E) whose internal faces are generalized triangles or thombi (see
Fig. 10b). We construct a mixed graph Gy = (V, E U Ey), where Ey is a set of
undirected edges and (u, v) € Ey if u and v are the two vertices of a rhombus face
f distinct from s ¢ and ¢ (blue edges in Fig. 10c). For a rhombus face f, the graph
obtained from G by adding the directed edge (u, v) inside f is still a plane s¢-graph
(see, e.g. [22, 41]). Since there is only one edge of Ey inside each thombus face of G,
the following holds.

Property 2 Every orientation of the edges in Ey transforms Gy into an acyclic
digraph.

Theorem 5 Let G be a plane st-graph such that every internal face of G is either
a generalized triangle or a rhombus. There is an O (n)-time algorithm that decides
whether G admits an embedding-preserving 2UBE, and which computes it in the
positive case.

Proof The edges of Ey are the only edges that can be used to construct an embedding-
preserving HP-completion of G. This, together with Theorem 1, implies that G admits
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Fig. 10 a A plane sz-graph that does not admit a 2UBE [82]. b A plane st-graph G whose faces are
generalized triangles or rhombi. b The mixed graph Gy = (V, E, Ey)

a 2UBE if and only if the undirected edges of G ) can be oriented so that the resulting

digraph G_A),I has a directed Hamiltonian path from s to t. By Property 2, any orientation
of the undirected edges of G, gives rise to an acyclic digraph. On the other hand an
acyclic digraph is Hamiltonian if and only if it is unilateral (see, e.g. [6, Theorem 4]);
we recall that a digraph is unilateral if each pair of vertices is connected by a directed
path (in at least one of the two directions) [80]. Testing whether the undirected edges
of Gy can be oriented so that the resulting digraph G_A),[ is unilateral, and computing
such an orientation if it exists, can be done in time O(|V| + |E| + |Ey]) = O(n)
[80, Theorem 4]. A Hamiltonian path of G—A),I is given by a topological ordering of its
vertices. O

6 Testing Algorithms for 2UBE Parameterized by the Branchwidth

In this section, we show that the 2UBE TESTING problem is fixed-parameter tractable
with respect to the branchwidth of the input sz-graph both in the fixed and in the
variable embedding setting. Since the treewidth 7w (G) and the branchwidth bw(G)
of a graph G are within a constant factor from each other (i.e., bw(G) — 1 < rw(G) <
L%bw(G)J — 1 [86]), our FPT algorithm also extends to graphs of bounded treewidth.

We use the SPQR-tree data structure [43] to efficiently handle the planar embed-
dings of the input digraphs, and sphere-cut decompositions [87] to develop a
dynamic-programming approach on the skeletons of the rigid components.

Before presenting the testing algorithm (Subsection 6.3), we briefly recall the defi-
nition of the SPQR-tree T of a biconnected graph (Subsection 6.1) and the definitions
of branchwidth and sphere-cut decomposition (Subsection 6.2).

6.1 SPQR-trees of Planar st-Graphs
Let G be a biconnected graph. An SPQOR-tree T of G is a tree-like data structure

that represents the decomposition of G into its triconnected components, which can
be computed in linear time [43, 65, 71]. See Fig. 11 for an illustration. Each node u
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(9,10) (10,12) (9,11) (11,12)
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Fig. 11 a A biconnected planar sz-graph G, where s and ¢ are labeled 1 and 14, respectively. b The SPQR-

tree of G with respect to the edge (s, #); for each S-, P-, or R-node of the tree, the figure depicts the skeleton

of the node. In a, the left and the right outer face of the S-node with poles 8 and 13 are yellow and green,
respectively

of 7 of degree greater than one corresponds to a triconnected component of G (as
defined in [71]) and has two special vertices, called poles. Namely, let i be a node
of 7 of degree greater than one, and let u and v be its poles; w is associated with a
multigraph skel(u), called the skeleton of . The multigraph skel™ (u) obtained by
adding an edge (u, v) to skel(u) describes the triconnected component corresponding
to i. Node w is either an R-node, an S-node, or a P-node, based on the following cases:

— R-node: If skel* () is triconnected;
— S-node: If skel ™ () is a cycle of length at least three;
— P-node: If skel™ (1) is a bundle of at least three parallel edges;

Also, for each edge of G, there is a corresponding node in 7 having degree one,
which is called a Q-node. If i is a Q-node that corresponds to an edge e, the poles of
u coincide with the end-vertices of e, and skel(u) coincides with e.

A virtual edge e, in skel(u) corresponds to a tree node v adjacent to  in 7. In
the following, we will regard 7 as rooted at an arbitrary Q-node p. The edge e of G
corresponding to p is the reference edge of G, and 7T is the SPQR-tree of G with
respect to e. For every node u of 7, the edges corresponding to the leaves (i.e., the
Q-nodes) of the subtree 7,, of 7 rooted at p induce a subgraph pert(u) of G, called
the pertinent graph of j. The graph pert(u) is described by 7,, in the decomposition.

If G is planar, the SPQR-tree 7 of G with respect to e implicitly describes all
planar embeddings of G in which e is incident to the outer face. All such embeddings
are obtained by combining the different planar embeddings of the skeletons of P- and
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R-nodes: For a P-node p, the different embeddings of skel(u) are the different permu-
tations of its edges. If x is an R-node, skel(u) has two possible planar embeddings,
obtained by flipping skel(u) at its poles. Let u be a node of 7, let £ be an embedding
of G, let £, be the embedding pert(it) in &, and let fﬂo be the outer face of £,,. The
path along ff between s, and 7, that leaves f,? to its left (resp. to its right) when
traversing the boundary of fﬂo from s, to 1, is the left outer path (resp. the right outer
path) of £,,. The left (resp., right) outer face of &, is the face of £, not belonging to
&, that is incident to the left (resp., to the right) outer path of £,. In Fig. 11a, the
left and the right outer face of the S-node with poles 8 and 13 are yellow and green,
respectively.

To ease the description, we can assume that each S-node has exactly two children
[51]. In particular, we will exploit the following property of 7 when G is an s¢-graph
containing the edge ¢ = (s, t) and 7 is rooted at the Q-node of e.

Property 3 [43] Let i be a node of T with poles u and v. We have that pert(u) is
either a uv-graph or a vu-graph.

6.2 Branch decomposition and sphere-cut decomposition

A branch decomposition (T, &) of a graph G consists of an unrooted binary tree T
(i.e., each internal node of T has degree three) and of a bijection & : L(T) < E(G)
between the leaf set £(T) of T and the edge set E(G) of G. For each arc a of T, let
T{ and T} be the two connected components of T — a, and, for i = 1, 2, let G{ be
the subgraph of G that consists of the edges corresponding to the leaves of T/, i.e.,
the edge set {£(u) : u € L(T) N V(Tl-“)}. The middle set mid(a) € V(G) is the
intersection of the vertex sets of G and G, i.e., mid(a) := V(G{) N V(G%). The
width fi((T, &)) of (T, &) is the maximum size of the middle sets over all arcs of T,
ie., fi((T, &)) := max{|mid(a)| : a € E(T)}. An optimal branch decomposition of G
is a branch decomposition with minimum width; this width is called the branchwidth
of G and is denoted by fi = bw(G).

Let ¥ be a sphere. A X-plane graph G is a planar graph G embedded (i.e., topo-
logically drawn) on X. A noose of a X-plane graph G is a closed simple curve on ¥
that (i) intersects G only at vertices and (ii) traverses each face at most once.

The length of a noose O is the number of vertices it intersects. Every noose O
bounds two closed discs A}, and A2 in X, ie, AL NAZ = Oand AL UAZ = X.

Let G be a X-plane graph and let (T, &) be a branch decomposition of G. Suppose
that, for each arc a of T, there exists a noose O, that traverses all and only the vertices
of mid(a) and whose closed discs Alo,, and A%)a enclose the drawing of G{ and of
G4, respectively. Denote by 7, the circular order of the vertices in mid(a) as they
appear along O, and by I1 = {n, : a € E(T)} the set of all the circular orders .
The triple (T, &, I1) is a sphere-cut decomposition of G. A clockwise traversal of O,
in the drawing of G defines the cyclic ordering 7, of mid(a). We always assume that
the vertices of each middle set mid(a) = V(G{) N V(G9) are enumerated according
to 7,. Observe that, Condition II of the definition of noose implies that, for any arc
a € E(T), the graphs G{ and G4 are both connected. Also, the nooses are pairwise
non-crossing, i.e., for any two nooses O, and Oy, it holds that Oy, lies either entirely
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inside Aloa or entirely inside A%)u. We will exploit the following result by Dorn et al
[52, Theorem 1].

Theorem 6 [52] Let G be a connected n-vertex L-plane graph having branchwidth
fi and no vertex of degree one. There exists a sphere-cut decomposition of G having
width fi which can be constructed in O (n3) time.

6.3 Algorithm description

Without loss of generality, we assume that the input s¢z-graph G contains the edge
(s, ), which guarantees that G is biconnected. In fact, in any 2UBE of G vertices s
and ¢ have to be the first and the last vertex of the spine, respectively. Thus, either (s, )
is an edge of G or it can be added to any of the two pages of a 2UBE of G to obtain
a2UBE (m, o) of G U (s, t). Clearly, the edge (s, #) will be incident to the outer face
of I'(w, o).

Overview. Our approach builds upon a classification of the embeddings of each tri-
connected component of the biconnected graph G. Intuitively, such a classification
is based on the visibility of the spine that the embedding “leaves” on its outer face.
Let 7 be the SPQR-tree of G with respect to the reference edge (s, 7). For any node
w of T, we show that the planar embeddings of pert(u) that yield a 2UBE of pert(u)
can be partitioned into a finite number of equivalence classes, called embedding types.
By visiting 7 bottom-up, we describe how to compute all the realizable embedding
types of the pertinent graph of each node, that is, those embedding types that are
allowed by some 2UBE of it. To this aim we will exploit the realizable embedding
types of the pertinent graphs of its children. If there exists at least one embedding type
that is realizable by the pertinent graph of the unique child of the root of 7, which
coincides with the whole graph G minus the edge (s, 7), then G admits a 2UBE. The
most challenging part of this approach is handling the triconnected components that
correspond to the P-nodes, where the problem is reduced to a maximum flow prob-
lem on a capacitated flow network with edge demands, and to the R-nodes, where a
sphere-cut decomposition of bounded width is used to efficiently compute the feasible
embedding types.

Embedding Types Given a 2UBE (7, o), the two pages will be called the left page
(the one to the left of the spine) and the right page (the one to the right of the spine),
respectively. We write o(e) = L (resp. o(e) = R) if the edge e is assigned to the
left page (resp. to the right page). A point p of the spine is visible from the left (right)
page if it is possible to shoot a horizontal ray originating from p and directed leftward
(rightward) without intersecting any edge in ' (7, o).

Let 1 be anode of the SPQR-tree 7 of G rooted at (s, t). Recall that, by Property 3,
since 7 has been rooted at (s, t), the pertinent graph pert(u) and the skeleton skel(u)
of w are s't’-graphs, where s” and ¢” are the poles of 1 . We denote by s, (#,,) the pole of
w that is the source (resp. the sink) of pert(u) and of skel(u). Let (rr,, 0;,) be a 2UBE
of pert(w). In the following we use the symbols L, R, N, and B as abbreviations for left,
right, none, and both, respectively. We say that (rr,, 0,,) has embedding type (for short,
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has Type or is of Type) {s_vis, spine_vis, t_vis), with s_vis, r_vis € {L, R, N} and
spine_vis € {L, R, B, N}, where:

1. s_vis is L (resp., R), if in I"(7r,, 0;,) there is a portion of the spine incident to s
and between s and ¢ that is visible from the left page (resp., from the right page).
If s_vis is neither L nor R, then s_vis is N.

2. t_vis is L (resp., R), if in I'(;,, 0;,) there is a portion of the spine incident to ¢
and between s and ¢ that is visible from the left page (resp., from the right page).
If +_vis is neither L nor R, then ¢_vis is N.

3. spine_vis is L (resp., R), if in (7, 0;,) there is a portion of the spine between s
and ¢ that is visible from the left page (resp., from the right page); spine_vis is B,
ifin I' (7, 0y,) there is a portion of the spine between s and ¢ that is visible from
the left page, and a portion of the spine between s and 7 that is visible from the
right page. If spine_vis is neither L, nor R, nor B, then spine_vis is N.

Further, we say that a node  and pert(u) admit embedding type (for short, admit Type)
(s_vis, spine_vis, t_vis),if pert(i) admits a2UBE of Type (s_vis, spine_vis, t_vis);
in this case, we also say that the Type (s_vis, spine_vis, t_vis) is realizable by
and by pert(u). We have the following.

Lemma4 Let u be a node of T and let (., 0,,) be a 2UBE of pert(i).
Then, (7, 0.) has exactly one embedding type, where the possible embedding
types are the 18 depicted in Fig. 12.

Proof The first part of the statement follows from the definition of embedding type.
To see that the number of possible embedding types allowed by a 2UBE of pert(u)
is at most 18, it suffices to consider the following facts. First, the number of different
embedding types admitted by pert(x) is at most 36. Further, some combinations are
“impossible”, in the sense that not all combinations of values for s_vis, spine_vis, and
t_vis appear in a 2UBE of pert(u). In particular, we have that the following values for
spine_vis are forbidden: (a) spine_vis cannotbe L, if eithers_vis = Rort_vis = R;
(b) spine_vis cannot be R, if either s_vis = L or t_vis = L; (c) spine_vis cannot
be N, if either s_vis # N or t_vis # N. Condition a and Condition b rule out 5
combinations each, while Condition c rules out 8 more combinations (see also Table
1). This leaves us with the 18 embedding types shown in Fig. 12. O

Recall that, for each node u of 7, pert(u) may have exponentially many planar
embeddings, given by the permutations of the children of the P-nodes and by the flips
of the R-nodes. Moreover, there may exist exponentially many 2UBEs associated with
each such planar embedding. The next lemma will be the key tool to help us control
this combinatorial explosion.

Let (rr, o) be a2UBE of G, let i+ be anode of 7, and let (1, 0,) be the restriction
of (r, o) to pert(w). Also, let (r,,, 0,,) # (7, 0,.) be a 2UBE of pert(u). We prove
the following.

Lemma5 If (”;/u 0,2) and (7, o) have the same embedding type, then G admits a

2UBE whose restriction to pert(w) is (,,, o).
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Fig.12 Illustration of the possible embedding types of a 2UBE of pert(ut) for anode u with poles s, and #,,;
the portions of the spine that are visible from the left page or from the right page are green. Embedding
types that are in the same dotted box are one the vertically-mirrored copy of the other. Embedding types on
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the left are the horizontally-mirrored copies of the ones on the right. Embedding types g-(N , B, N) and
8—(N , N, N) are the horizontally-mirrored and vertically-mirrored copies of themselves
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Table 1 Embedding types that are not possible

Ruled out by

Condition a Condition b Condition ¢
t_vis R R R L N L L L R N L L R
spine_vis L L L L L R R R R R N N
S_vis L R N R R R L N L L L R

E] s
(a) Drawing (b) Drawing (c) Drawing I'* of (d) Drawing
I'(m,0) of G I(m),, 0,) of pert(y) G Upert(u) I of G

Fig. 13 Illustrations for Lemma 5. The 2UBEs of pert(u) are of Type Ej -(L, B, N)

Proof Notice that if pert(u) is an edge, the statement does not apply, because pert(u)
does not admit two distinct 2UBEs of the same type. Thus we assume that pert(u)
has at least three vertices. We show how to construct a 2UBE (rr/, o’) of G whose
restriction to pert(u) is (1, o).

For the ease of description we actually show how to construct an upward planar
drawing I'" of G in which each vertex v lies along the spine in the same bottom-to-top
order determined by 7’ and each edge is drawn on the page assigned by o’. Clearly,
such a drawing implies the existence of {7/, o).

Consider a drawing I' (7, o) of G; refer to Fig. 13a. Let Gy be the subgraph of G
composed of the edges of G notin pert(x) and of their endpoints. Consider the drawing
'z of Gz obtained by restricting I' (7, o) to G Denote by 7y the bottom-to-top order
of the vertices of Gz in I'g. Let w1, 72, .. ., i be the maximal subsequences of 7z
between s and ¢ and composed of consecutive vertices in 7y that are also consecutive
in 7 (refer to Fig. 13a). Observe that sequences m;,i = 1, ..., k, may be formed by
a single vertex or by multiple vertices. Also, the first sequence 1 includes s, and the
last sequence my includes #,. Further, since pert(u) has at least three vertices, there
exists at least a vertex of pert(u) between s, and ¢, in I' (7, o'); therefore we have that
k>2.

Drawing I';z contains a face f, that is incident to the ending vertex of the sequence
71, to the starting vertex of the sequence 7k, and, if k¥ > 3, to all the starting and
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ending vertices of the sequences 7;, withi =2, ...,k — 1. Face f,, always contains
the vertices s, and f,,. Some starting and ending vertices of the sequences 7; are
encountered when traversing f,, clockwise from s, to t, (left vertices of f,) and
some of them are encountered when traversing f,, counter-clockwise from s, to 7,
(right vertices of f,). The left (resp. right) vertices of f, are red (resp. blue) in Fig.
13.

‘We show how toinsert into face f;, the drawing I' (nl/y (r,i) of pert(u), producing the
desired drawing I’ of the 2UBE (x’, o/} of G. First, consider the drawing F(nl/p G//L)
of pert(u) (see Fig. 13b) and insert it, possibly after squeezing it, into f}, in such
a way that its spine lays entirely on the line of the spine of I'; and in such a way
that the vertices of 1 do not fall in between the vertices of any maximal sequence 7;,
i = 1,...,k. This is always possible, because k > 2 and there exists a portion of
the spine of I'; that is in the interior of f,,. Observe that this implies that s, and 7,
have now a double representation, since the drawing of the source s,, and sink ¢, of
F(”;/u ‘7;/1) do not coincide with the drawing of s,, and #,, in I'z. Denote by I'* the
resulting drawing (refer to Fig. 13c).

Suppose (77, 0,,) (and, hence, also (n;’“ ol;)) is of Type (x, y, z). Observe that if
vy € {N, R} then there are no left vertices of f,,. Otherwise, if y € {L, B}, then it
is possible to identify two vertices vy, and vy ; of F(n/’L, al;) such that there exists
a portion of the spine between vy, and vy ; that is visible from left. Consider all the
vertices of the sequences 7; whose starting and ending vertices are left vertices of f,,
and move them between v, , and ve, along the spine of I'*, while preserving their
relative order. Analogously, if y € {N, L}, there are no right vertices of f},. Otherwise,
if y € {R, B}, it is possible to identify two vertices v, ; and v, ; of F(”,/u 0;1) such
that there exists a portion of the spine between v, 5 and v, ; that is visible from right.
Consider all the vertices of the sequences ; whose starting and ending vertices are
right vertices of f},, and move them between v, ;, and v, ; along the spine of I'*, while
preserving their relative order.

['* is an upward planar drawing of G except for the fact that there are two duplicated
vertices s, and #),. Thus, by identifying s, with 5;, and #;, with #/,, we obtain the desired
upward drawing I'" of G in which each vertex v lies along the spine and each edge
is drawn as a y-monotone curve on one of the two half-planes defined by the spine.
Next we prove that I' is planar. Clearly, identifying s, with s}, (7, with #,) does not
introduce crossings when s, and s,’L (t,, and ZL) are consecutive along the spine in
I'* (see t, and t, in Fig. 13c). In the case in which s, and s, (#, and t,) are not
consecutive along the spine in I'*, necessarily x € {L, R} (z € {L, R}). Suppose
x = L (z = L), the case when x = R (z = R) being analogous. There cannot exist
in I'z an edge e = (a, b) such that w(a) < 7 (s,) < m(b) and such that o(e) = R.
Therefore, we can continuously move sL, together with its incident edges, toward s,
remaining inside the region bounded by f,, without intersecting any edge of G; (see
Fig. 13d). This concludes the proof. O

We now describe an algorithm to decide if G admits a 2UBE and its running time.
The same procedure can be easily refined to actually compute a 2UBE of G, with no
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additional cost, by decorating eachnode u € 7 with the embedding choices performed
at u, for each of its O (1) possible embedding types.

Testing Algorithm. The algorithm is based on visiting the SPQR-tree 7 of G and on
computing, for each non-root node u of 7, the set of embedding types realizable by u,
assuming to have already computed the set of embedding types realizable by each
of the children of . Lemma 5 is the reason why we only need to maintain a single
2UBE of pert(u), for each embedding type realizable by u, i.e., a constant number
of 2UBEs instead of an exponential number. Since, by Lemmas 4 and 5, G admits a
2UBE if and only if the pertinent graph of the unique child of the root Q-node admits
an embedding type of (at least) one of the 18 possible embedding types, this approach
allows us to solve the 2UBE TESTING problem for G.

The computation of the set of embedding types realizable by u is based on whether
wisanS-, P-, Q-, or an R-node. Recall that the only possible embedding choices for G
happen at P- and R-nodes. While the treatment of Q- and S-nodes does not require any
modification when considering the variable and the fixed embedding settings, for P-
and R-nodes we will discuss how to compute the embedding types that are realizable
by w in both such settings separately. In particular, in the fixed embedding scenario
the above characterization needs to additionally satisfy the constraints imposed by the
fixed embedding on the skeletons of the P- and R-nodes in 7. Note that, a leaf Q-node
only admits Type )-(L, L, L) and Type (-(R, R, R). Also, combining 2UBEs of the
two children of an S-node p always yields a valid 2UBE of pert(u). The next lemma
shows how to compute all the embedding types realizable by .

Lemma 6 Let i be an S-node. The set of embedding types realizable by u can be
computed in O(1) time, both in the fixed and in the variable embedding setting.

Proof Let u be an S-node with poles s, and #,,. Let " and " be the two children of
with poles s,,/, t,v and s,,», t,,», respectively, where s,/ = s, t,y = 5,7, and t,,» = 1.
Clearly, combining each pair of 2UBE:s of the two children of y always yields a 2UBE
of pert(w). Let (x’, y’, z’) and {(x”, y”, z”") be any two embedding types realizable by
and u”, respectively. The embedding type (x, y, z) of any 2UBE of pert(u) resulting
from a series combination of 2UBEs of the above types can be computed as follows.
We have x = x’ and z = z”. As for y, we have that: (i) y = N iff y/ = y” = N; (ii)
y = Lifeither yY = L and y” € {L, N}ory” = L and y’ € {L, N}; (iii) y = R if
either yy = R and y” € {R,N}ory" = Rand y’ € {R, N}; (iv) y = B if at least
one of y’ and y” is B or one of them is L and the other is R. Since there is a constant
number of embedding types realizable by the children of p, the statement follows. O

Since P- and R-nodes require a more complex treatment, in the following we only
state the lemmas concerning the computation time of the set of realizable embedding
types for these nodes. We defer the proofs of such lemmas to the next sections. Specif-
ically, in Subsection 6.5 we show how to efficiently compute the set of embedding
types realizable by a P-node in the fixed and variable embedding setting (Subsection
6.5.1 and Subsection 6.5.2, respectively). We have the following.

Lemma?7 Let u be a P-node with k children. The set of embedding types realizable
by pert() can be computed in O (k) time in the fixed embedding setting.
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Lemma 8 Let i be a P-node with k children. The set of embedding types realizable
by pert(w) can be computed in O (k?) time in the variable embedding setting.

We remark that Lemmas 6 and 7 yield a counterpart, in the fixed embedding setting,
of the linear-time algorithm by Di Giacomo et al. [46] to compute 2UBEs of series-
parallel graphs, which we formalize in the following statement.

Theorem 7 There exists an O (n)-time algorithm to decide whether an n-vertex series-
parallel st-graph admits an embedding-preserving 2UBE.

Finally, in Subsection 6.4 we show how to efficiently compute the set of embedding
types realizable by an R-node. In particular, we prove the following.

Lemma9 Let ;1 be an R-node with k children and whose skeleton has branchwidth fi.
The set of embedding types realizable by pert(i) can be computed in O (2°#B 18P . i
time, both in the fixed and in the variable embedding setting, provided that a sphere-cut
decomposition (T, &, T1) of width B of skel™ (1) is given.

By Lemmas 6 to 9, and since 7 has O(|G|) size [43, 51], we get the following.

Theorem 8 There exists an O (2°B102P) .y 4-n? 4 g (n))-time algorithm to decide if an
n-vertex planar st-graph (resp. plane st-graph) of branchwidth 8 admits a 2UBE (resp.
an embedding-preserving 2UBE), where g(n) is the computation time of a sphere-cut
decomposition of an n-vertex plane graph.

Since g(n) is o3 by the result in [87], we get the following.

Corollary 2 There exists an O (2°PB1¢B) .y  n3)-time algorithm to decide if an n-
vertex planar st-graph (resp. plane st-graph) of branchwidth 8 admits a 2UBE (resp.
an embedding-preserving 2UBE).

Furthermore, since for any n-vertex planar graph, it holds B < 2.122/n
[60], Corollary 2 implies that the 2UBE TESTING problem is solvable in sub-
exponential time.

Corollary 3 There exists an 0 20Wnlogdm 4 3y time algorithm to decide if an n-
vertex planar st-graph (resp. plane st-graph) admits a 2UBE (resp. an embedding-
preserving 2UBE).

6.4 Computing the Embedding Types when y is an R-node

Let 1 be an R-node with poles s, and #,; refer to Fig. 14. We consider the graph
skel™ () = skel(p) U (S0, 1), which is a triconnected planar graph. Since skel™(u)
is a minor of G, its branchwidth is bounded by the branchwidth 8 of G [86, Theorem
4.1]. Let £, be an embedding of skel™ (1) on the sphere and let (T, &, TI) be a sphere-
cut decomposition of skel™ (x) with embedding &,, of width smaller than or equal to
fi; refer to Fig. 14a.

We root T at the leaf p of T such that £(p) = (s, t,,). Consider each arc a =
(pa, cq) of T connecting the parent node p, with the child node ¢, in T. The noose O,
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of a divides the sphere into two closed regions whose boundary is O,. We associate
a with the subgraph skel, of skel™(u) lying in the region not containing the edge
(S, 1)), and we refer to the face of skel, that contains such an edge as the outer face
of skel,. We denote by pert, the subgraph of pert(u) obtained by replacing, in skely,
each virtual edge e with the pertinent graph of the node corresponding to e in the
SPQR-tree 7 of G.

Intuitively, our strategy to compute the embedding types admitted by pert(u) is to
visit the nodes of T in post order. When a node ¢, incident to the edge a = (pg, ¢4) 18
visited, we compute a succinct description of size O (fi) of the properties of the noos