
https://doi.org/10.1007/s00453-023-01142-y

Upward Book Embeddability of st-Graphs: Complexity
and Algorithms

Carla Binucci1 · Giordano Da Lozzo2 · Emilio Di Giacomo1 ·
Walter Didimo1 · Tamara Mchedlidze3 ·Maurizio Patrignani2

Received: 26 October 2021 / Accepted: 9 June 2023
© The Author(s) 2023

Abstract
A k-page upward book embedding (kUBE) of a directed acyclic graph G is a book
embeddings ofG on k pages with the additional requirement that the vertices appear in
a topological ordering along the spine of the book.The kUBE Testingproblem,which
asks whether a graph admits a kUBE, was introduced in 1999 by Heath, Pemmaraju,
andTrenk (SIAMJComput 28(4), 1999). In a companion paper, Heath and Pemmaraju
(SIAM J Comput 28(5), 1999) proved that the problem is linear-time solvable for
k = 1 and NP-complete for k = 6. Closing this gap has been a central question
in algorithmic graph theory since then. In this paper, we make a major contribution
towards a definitive answer to the above question by showing that kUBE Testing
is NP-complete for k ≥ 3, even for st-graphs, i.e., acyclic directed graphs with a
single source and a single sink. Indeed, our result, together with a recent work of
Bekos et al. (Theor Comput Sci 946, 2023) that proves the NP-completeness of 2UBE
for planar st-graphs, closes the question about the complexity of the kUBE problem
for any k. Motivated by this hardness result, we then focus on the 2UBE Testing
for planar st-graphs. On the algorithmic side, we present an O(f (β) · n + n3)-time
algorithm for 2UBE Testing, where β is the branchwidth of the input graph and f is a
singly-exponential function on β. Since the treewidth and the branchwidth of a graph
are within a constant factor from each other, this result immediately yields an FPT
algorithm for st-graphs of bounded treewidth. Furthermore, we describe an O(n)-time

Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze and
Maurizio Patrignani have contributed equally to this work

A preliminary shorter version of this paper appeared in the Proceedings of the 35th International
Symposium on Computational Geometry (SoCG) [30]. The current journal version significantly extends
[30], reporting all technical details, full proofs for all the results, and discussing several additional
references.

B Walter Didimo
walter.didimo@unipg.it

Extended author information available on the last page of the article

123

/ Published online: 14 July 2023

Algorithmica (2023) 85:3521–3571

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01142-y&domain=pdf
http://orcid.org/0000-0002-4379-6059

algorithm to test whether a plane st-graph whose faces have a special structure admits
a 2UBE that additionally preserves the plane embedding of the input st-graph. On the
combinatorial side, we present two notable families of plane st-graphs that always
admit an embedding-preserving 2UBE.

Keywords Upward book embeddings · st-graphs · SPQR-trees · Branchwidth ·
Treewidth · Sphere-cut decomposition

1 Introduction

A k-page book embedding 〈π, σ 〉 of an undirected graph G = (V , E) consists of a
vertex ordering π : V ↔ {1, 2, . . . , |V |} and of an assignment σ : E → {1, . . . , k} of
the edges ofG to one of k sets, called pages, so that for any two edges (a, b) and (c, d)

in the same page, with π(a) < π(b) and π(c) < π(d), we have neither π(a) < π(c)
< π(b) < π(d) nor π(c) < π(a) < π(d) < π(b). From a geometric perspective, a
k-page book embedding can be represented as a drawing �(π, σ) of G where the k
pages correspond to k half-planes sharing a vertical line, called the spine. Each vertex
v is a point on the spine with y-coordinate π(v); each edge e is a circular arc on page
σ(e), and no edges in the same page cross. As an example, Fig. 1a represents a 3-page
book embedding of the complete graph K6.

For directed graphs (digraphs), Heath, Pemmaraju, and Trenk introduced a variant
of k-page book embeddings in which all the edges are oriented in the upward direction
[69]. This implies that the input digraph is acyclic and all its vertices appear along the
spine in a topological ordering. This type of book embedding for digraphs is called
a k-page upward book embedding of G (kUBE for short). An example of a 4UBE
is shown in Fig. 1c (throughout the paper, in the figures showing a kUBE, the edges
are oriented from bottom to top; for simplicity the orientation of the edges is not
explicitly shown). Note that, if 〈π, σ 〉 is a 2UBE and the two pages are co-planar, then
�(π, σ) is an upward planar drawing ofG, i.e., a crossing-free drawing with all edges
monotonically increasing in the upward direction. Upward planar drawings represent
a classical subject in topological graph theory [7–9, 26, 27, 32–34, 36, 39, 40, 42, 44,
50, 63, 85].

The page number of a (di)graph G (also called book thickness or stack number) is
the minimum number k such that G admits a k-page (upward) book embedding. Com-
puting the page number of undirected and directed graphs is a widely studied problem,
with applications in a variety of domains, including VLSI design, fault-tolerant pro-
cessing, parallel process scheduling, sorting networks, parallel matrix computations
[37, 66, 84], computational origami [2], and graph drawing [29, 46, 64, 92]. See [53,
54] for additional references and applications.

Book embeddings of undirected graphs Seminal results on book embeddings of
undirected graphs are described in the paper of Bernhart and Kainen [25]. They prove
that the graphs with page number one are exactly the outerplanar graphs, while graphs
with page number two are the sub-Hamiltonian graphs. This second result implies
that it is NP-complete to decide whether a graph admits a 2-page book embedding

123

3522 Algorithmica (2023) 85:3521–3571

Fig. 1 a A 3-page book embedding of K6. b An orientation of K6. c A 4-page upward book embedding of
K6 oriented as in (b)

[91]. Yannakakis [93] proved that every planar graph has a 4-page book embedding,
while the question whether four pages are sometimes necessary for planar graphs has
only been recently settled in the affirmative [24, 94]. The aforementioned works have
inspired several papers about the page number of specific families of undirected graphs
(e.g., [18, 21, 23, 37, 58]) and about the relationship between the page number and
other graph parameters (e.g., [55, 62, 76, 77]). Different authors studied constrained
versions of k-page book embeddings where either the vertex ordering π is (totally or
partially) fixed [10, 11, 38, 78, 89, 90], or the page assignment σ for the edges is given
[12–14, 70], or further conditions are required for the edges that occur in the same
page [3, 25]. Relaxed versions of book embeddings where edge crossings are allowed
(called k-page drawings) or where edges can cross the spine (called topological book
embeddings) have also been considered (e.g., [1, 17, 31, 35, 45, 56, 57]). Finally,
2-page (topological) book embeddings find applications to point-set embedding and
universal point set (e.g., [15, 16, 48, 49, 59, 75]).

Book embeddings of directed graphs. As for undirected graphs, there are many
papers devoted to the study of upper and lower bounds on the page number of directed
graphs. Heath, Pemmaraju, and Trenk [69] show that directed trees and unicyclic
digraphs have page number one and two, respectively. Alzohairi and Rival [5], and
laterDiGiacomoet al. [46]with an improved linear-time construction, show that series-
parallel digraphs have page number two. Mchedlidze and Symvonis [79] generalize
this result and prove that N -free upward planar digraphs, which include series-parallel
digraphs, also have page number two (a digraph is upward planar if it admits an upward
planar drawing). Bhore et al. [28] provide constant upper bounds on the page number
of several subfamilies of upward outerplanar graphs. Frati et al. [61] give several condi-
tions under which upward planar triangulations have bounded page number. Recently,
Jungeblut, Merker, and Ueckerdt [73] proved the first sublinear upper bound on the
page number of upward planar graphs. Overall, the question asked by Nowakowski

123

Algorithmica (2023) 85:3521–3571 3523

and Parker [82] more than 30 years ago of whether the page number of planar posets,
and more generally of upward planar digraphs, is bounded remains unanswered. The
page number of acyclic digraphs in terms of posets is also investigated by Alhashem,
Jourdan, and Zaguia [4].

About lower bounds, Nowakowski and Parker [82] give an example of an upward
planar digraph that requires 3 pages in any upward book embedding (see Fig. 10a).
Subsequently, Hung [72] shows an upward planar digraph with page number 4. This
bounds has been improved to 5 pages by Jungeblut, Merker, and Ueckerdt [73]. Heath
and Pemmaraju [67] describe acyclic n-vertex planar digraphs that are not upward
planar and whose upward book embeddings require �n/2� pages. Syslo [88] provides
a lower bound on the page number of a poset in terms of its bump number.

Besides the study of upper and lower bounds on the page number of digraphs,
several papers concentrate on the design of testing algorithms for the existence of
kUBEs. Prior to this paper, the problem was known to be NP-complete only for k = 6
[68]. Only very recently, the case k = 2 has been settled by Bekos et al. [19], who
show that the 2UBE problem is NP-complete for planar st-graphs and planar posets1.
Furthermore, for k = 2, Mchedlidze and Symvonis give linear-time testing algorithms
for outerplanar and planar triangulated st-graphs [81]. They also present an O(w2nw)-
time testing algorithm for 2UBEs of n-vertex planar st-graphs of width w, where the
width is the minimum number of directed paths that cover all the vertices [79]. Heath
and Pemmaraju [68] describe a linear-time algorithm to recognize digraphs that admit
1UBEs. As for the undirected case, constrained or relaxed variants of kUBEs for
digraphs are studied [2, 47, 64], as well as applications to the point-set embedding
problem [46, 64].

Contributions. Our paper is motivated by the gap present in the literature about
the computational complexity of the kUBE Testing problem. Namely, as discussed
above, polynomial-time algorithms are known only for k = 1, or for k = 2 and
subclasses of planar digraphs, while NP-completeness is known only for exactly 6
pages. Closing this gap has been a central question in algorithmic graph theory for
over 20 years. In this paper, we make a major step towards a definitive answer to the
above question, and address the research direction proposed by Heath and Pemmaraju
[68] about identifying graph classes for which the existence of kUBEs can be solved
efficiently. Our results are as follows:

• Weprove that testingwhether a digraphG admits a kUBE isNP-complete for every
k ≥ 3, even if G is an st-graph (Section 3). An analogous result was previously
known only for the constrained version in which the page assignment is given [2].
Our result and the recent work of Bekos et al. [19] close the question about the
complexity of the kUBE problem for any k.

• We describe a new meaningful subclass of upward planar digraphs that admit
a 2UBE (Section 4). This class is structurally different from the N -free upward
planar digraphs, the largest class of upward 2-page book embeddable digraphs pre-
viously known.

1 We remark that the result of Bekos et al. [19, 20] appeared after the conference version of our research
was published [30] and after the present paper was submitted.

123

3524 Algorithmica (2023) 85:3521–3571

• We give a linear-time algorithm to test the existence of an embedding-preserving
2UBE for a family of plane st-graphs whose faces have a special structure, namely
each face is either a generalized triangle (i.e., it contains a transitive edge) or a
rhombus (i.e., its left and right paths have length two); see Section 5.

• For planar n-vertex st-graphs of bounded branchwidth fi, we describe an FPT
algorithm for the 2UBE Testing problem that runs in O(f (fi) · n + n3) time,
where f is a singly-exponential function (Section 6). The algorithmworks for both
variable and fixed embedding, and it implies a sub-exponential-time algorithm for
general planar st-graphs. Since the treewidth and the branchwidth of a graph are
within a constant factor from each other, this result immediately yields an FPT
algorithm for st-graphs of bounded treewidth.

• The approach used in the design of the FPT algorithm also leads to an O(n)-
time testing algorithm for st-graphs of treewidth at most two (also known as two-
terminal series-parallel graphs) in the fixed embedding setting (Theorem 7). We
recall that in the variable embedding setting an st-graphs of treewidth at most two
always admits a 2UBE, which can be found in O(n) time [46].

2 Preliminaries

Weonly consider (di)graphswithout loops andmultiple edges, andwe denote by V (G)

and E(G) the sets of vertices and edges of a (di)graph G. A graph G is 1-connected if
there is a path between any two vertices. G is k-connected, for k ≥ 2, if the removal
of k − 1 vertices leaves the graph 1-connected. A 2-connected (3-connected) graph is
also called biconnected (triconnected).

A planar drawing ofG is a geometric representation in the plane such that: (i) each
vertex v ∈ V (G) is drawn as a distinct point pv; (i i) each edge e = (u, v) ∈ E(G)

is drawn as a simple curve connecting pu and pv; (i i i) no two edges intersect in �

except at their common end-vertices (if they are adjacent). A graph is planar if it
admits a planar drawing. A planar drawing � of G divides the plane into topologically
connected regions, called faces. The outer face of � is the region of unbounded size;
the other faces are internal. A planar embedding ofG is an equivalence class of planar
drawings that define the same set of (internal and outer) faces, and it can be described
by the clockwise sequence of vertices and edges on the boundary of each face plus
the choice of the outer face. Graph G together with a given planar embedding is an
embedded planar graph, or simply a plane graph: If � is a planar drawing of G whose
set of faces is described by the planar embedding of G, we say that � preserves this
embedding, or also that � is an embedding-preserving drawing of G.

A digraph G is a planar st-graph if: (i) it is acyclic; (i i) it has a single source s
and a single sink t ; (i i i) it admits a planar embedding E with s and t on the outer
face. A planar st-graph G together with E is a planar embedded st-graph or a plane
st-graph.

Let G be a plane st-graph and let e = (u, v) be an edge of G. The left face (resp.
right face) of e is the face to the left (resp. right) of e while moving from u to v.
The boundary of every face f of G consists of two directed paths pl and pr from a
common source s f to a common sink t f . The paths pl and pr are the left path and the

123

Algorithmica (2023) 85:3521–3571 3525

Fig. 2 aA plane st-graph G. b The dual of G is shown in gray. cAn embedding-preserving HP-completion
of G; the light blue edges form a directed Hamiltonian st-path, and the dashed edges are augmenting edges.
d An embedding-preserving 2UBE of G corresponding to (c)

right path of f , respectively. The vertices s f and t f are the source and the sink of f ,
respectively. If f is the outer face, pl (resp. pr) consists of the edges for which f is the
left face (resp. right face); in this case pl and pr are also called the left boundary and
the right boundary of G, respectively. If f is an internal face, pl (resp. pr) consists of
the edges for which f is the right face (resp. left face).

The dual graph G∗ of a plane st-graphG is a plane st-graph (possibly withmultiple
edges) such that: (i) G∗ has a vertex associated with each internal face of G and two
vertices s∗ and t∗ associated with the outer face of G, that are the source and the sink
of G∗, respectively; (ii) for each internal edge e of G, G∗ has a dual edge from the
left to the right face of e; (iii) for each edge e in the left boundary of G, there is an
edge from s∗ to the right face of e; and (iv) for each edge e in the right boundary of
G, there is an edge from the left face of e to t∗.

Consider a planar st-graphG and letG be a planar st-graph obtained by augmenting
G with directed edges in such a way that it contains a directed Hamiltonian st-path
PG . The graph G is an HP-completion of G. Consider now a plane st-graph G and
let E be a planar embedding of G. Let G be an embedded HP-completion of G whose
embedding E is such that its restriction to G is E . We say that G is an embedding-
preserving HP-completion of G. Bernhart and Kainen [25] prove that an undirected
planar graph admits a 2-page book embedding if and only if it is sub-Hamiltonian, i.e.,
it can be made Hamiltonian by adding edges while preserving its planarity. Theorem 1
is an immediate consequence of the result in [25] for planar digraphs (see also Fig. 2);
when we say that a 2UBE 〈π, σ 〉 is embedding-preserving we mean that the drawing
�(π, σ) preserves the planar embedding of G.

Theorem 1 A planar (plane) st-graph G admits a (embedding-preserving) 2UBE
〈π, σ 〉 if and only if G admits an (embedding-preserving) HP-completion G. Also,
the order π coincides with the order of the vertices along PG.

123

3526 Algorithmica (2023) 85:3521–3571

3 NP-Completeness for kUBE (k ≥ 3)

In this section, we prove that kUBE Testing, i.e., the problem of deciding whether a
digraph G admits an upward k-page book embedding, is NP-complete for each fixed
k ≥ 3. The proof uses a reduction from the Betweenness problem [83], which is
defined as follows:

Betweenness

Instance: A finite set S of elements and a set R ⊆ S × S × S of triplets.
Question: Does there exist an ordering τ : S → N of the elements of S such that for

any element (a, b, c) ∈ R either τ(a) < τ(b) < τ(c) or τ(c) < τ(b) <

τ(a)?

We incrementally define a set of families of digraphs and prove some properties of
these digraphs. Then, we use the digraphs of these families to reduce a generic instance
of Betweenness to an instance of 3UBE Testing, thus proving the hardness result
for k = 3. We then explain how the proof can be easily adapted to work for k > 3.

For a digraph G, we denote by u � v a directed path from a vertex u to a vertex
v in G. Let γ = 〈π, σ 〉 be a 3UBE of G. Two edges (u, v) and (w, z) of G conflict
if either π(u) < π(w) < π(v) < π(z) or π(w) < π(u) < π(z) < π(v). Two
conflicting edges cannot be assigned to the same page. The next property will be used
in the following; it is immediate from the definition of book embedding and from the
pigeonhole principle.

Property 1 In a 3UBE there cannot exist 4 edges that mutually conflict.

Shell digraphs. The first family that we define are the shell digraphs, recursively
defined as follows. Digraph G0, depicted in Fig. 3a, consists of a directed path P with
eight vertices denoted as s0, q0, p−1, t−1, s′

0, q
′
0, t

′
0, and p0 in the order they appear

along P . Besides the edges of P , the following directed edges exists in G0: (s0, s′
0),

(q0, q ′
0), (t−1, p0). Finally, there is a vertex t0 connected to P by means of the two

directed edges (p−1, t0) and (t ′0, t0). Graph Gh is obtained from Gh−1 with additional
vertices and edges as shown in Fig. 3b. A new directed path of two vertices sh and qh
is connected toGh−1 with the edge (qh, sh−1); a second path of four vertices s′

h , q
′
h , t

′
h ,

and ph is connected toGh with the edge (th−1, s′
h). The following edges exist between

these new vertices: (sh, s′
h), (qh, q

′
h), (th−1, ph). Finally, there is a vertex th connected

to the other vertices by means of the two directed edges (ph−1, th) and (t ′h, th). For any
h ≥ 0, the edges (sh, s′

h) and (qh, q ′
h) are called the forcing edges of Gh ; the edges

(ph−1, th) and (th−1, ph) are the channel edges of Gh ; the edge (t ′h, th) is the closing
edge of Gh . The vertices and edges of Gh \Gh−1 are the exclusive vertices and edges
of Gh . The following lemma establishes basic properties of the shell digraphs.

Lemma 1 Every shell digraph Gh for h ≥ 0 admits a 3UBE. In any 3UBE γ = 〈π, σ 〉
of Gh the following conditions hold for every i = 0, 1, . . . , h:

S1 all vertices of Gi are between si and ti in π ;
S2 the channel edges of Gi are in the same page;

123

Algorithmica (2023) 85:3521–3571 3527

Fig. 3 Definition of shell digraphs

S3 if i > 0, the channel edges of Gi and those of Gi−1 are in different pages.

Proof The proof is by induction on h.

Base case h = 0. We describe how to define a 3UBE γ = 〈π, σ 〉 of G0. The eight
vertices of the directed path s0 � p0 must appear in π in the same order they appear
along the path. Consider now t0. Because of the closing edge (t ′0, t0), we have π(t ′0) <

π(t0). If we put t0 between t ′0 and p0, the channel edges (p−1, t0) and (t−1, p0) and the
forcing edges (s0, s′

0) and (q0, q ′
0) would mutually conflict. But then a 3UBE would

not exist by Property 1. Thus, the only possibility is that t0 is the last vertex in π . This
uniquely defines the order π and implies condition S1. As for the page assignment σ ,
the two forcing edges must be in different pages because they conflict. Since each of
the two channel edges conflicts with both forcing edges, the channel edges cannot be
assigned to the pages used for the forcing edges. Thus, they must be in the same page,
which is possible because the two channel edges do not conflict (this proves condition
S2). Finally, the closing edge conflicts with the channel edge (t−1, p0) and thus it
cannot be in the same page as the channel edges; since however it does not conflict
with any other edge it can be assigned to one of the pages used for the forcing edges.

123

3528 Algorithmica (2023) 85:3521–3571

This concludes the proof that a 3UBE of G0 exists and that it must satisfy conditions
S1 and S2. Condition S3 does not apply in this case.

Inductive case h > 0. By induction, Gh−1 admits a 3UBE γ ′ = 〈π ′, σ ′〉 that satis-
fies S1–S3. We extend γ ′ to a 3UBE γ = 〈π, σ 〉 ofGh as follows. Since γ ′ satisfies S1,
sh−1 is the first vertex in π ′ and th−1 is the last one. The vertices of path sh � sh−1
must appear in π in the same order they appear along the path. Analogously, the ver-
tices of th−1 � ph must appear in π in the order they have along the path. Because
of the closing edge (t ′h, th), we have π(t ′h) < π(th). Therefore, sh must be the first
vertex along π . Consider now th . If we put th between t ′h and ph , the channel edges
(ph−1, th) and (th−1, ph) and the forcing edges (sh, s′

h) and (qh, q ′
h) would mutually

conflict. But then a 3UBE would not exist by Property 1. Thus, th must be the last
vertex in π . This uniquely defines the order π and implies condition S1 for Gh . As for
the page assignment σ , observe that the only exclusive edge of Gh that conflicts with
some edge of Gh−1 is the edge (ph−1, th), which only conflicts with the channel edge
(ph−2, th−1) of Gh−1. This implies that (ph−1, th) must be in a page different from
the one of (ph−2, th−1). The two forcing edges of Gh must be in a page different from
the channel edge (ph−1, th) and since they conflict, they must be in different pages.
The channel edge (th−1, ph) conflicts with the forcing edges but not with the other
channel edge (ph−1, th). Thus, the channel edges must be in the same page (which
proves condition S2). The fact that the page of (ph−1, th)must be different from that of
(ph−2, th−1), implies condition S3. Finally, the closing edge conflicts with the channel
edge (th−1, ph) and thus it cannot be in the same page as the channel edges; since
however it does not conflict with any other edge, it can be assigned to one of the pages
used for the forcing edges. This concludes the proof that a 3UBE of Gh exists and that
it satisfies conditions S1, S2, and S3.
�

Note that Condition S1 uniquely defines the vertex ordering of Gh in every 3UBE.
Namely, the path sh � p0 precedes each path ti−1 � pi (for i = 1, . . . , h), and each
path ti−1 � pi precedes the path ti � pi+1 (for i = 1, . . . , h − 1) (see Fig. 4a for an
example with h = 2).

Filled shell digraphs. Let Gh be a shell digraph. A filled shell digraph Hh,s (for
h ≥ 0 and s ≥ 1) is obtained from Gh by adding h + 2 groups α−1, α0, . . . , αh of s
vertices each; see Fig. 4b for an illustration. The vertices of group αi are denoted as
vi,1, vi,2, . . . vi,s . These vertices will be used to map the elements of the set S of an
instance of Betweenness to an instance of 3UBE Testing. For each vertex v−1, j
of the set α−1 there is a directed edge (p−1, v−1, j) and a directed edge (v−1, j , t−1).
For each vertex vi, j of the set αi with i ≥ 0 and i even, there is a directed edge
(pi , vi, j). Finally, for each vertex vi, j of the set αi with i ≥ 0, there is a directed
edge (vi−1, j , vi, j).

Lemma 2 Every filled shell digraph Hh,s for s > 0 and even h ≥ 0 admits a
3UBE. In any 3UBE γ = 〈π, σ 〉 of Hh,s the following conditions hold for every
i = −1, 0, 1, . . . , h:

F1 the vertices of the group αi are between pi and ti in π ;

123

Algorithmica (2023) 85:3521–3571 3529

Fig. 4 a A 3UBE of the shell digraph G2; the colors of the edges represent the pages. b Definition of Hh,s
for h = 2 and s = 5

F2 if i ≥ 0 each edge (vi−1, j , vi, j) is in the page of the channel edges of Gi (for
j = 1, . . . , s);

F3 if i ≥ 0 the vertices of αi are in reverse order with respect to those of αi−1 in π .

Proof The proof is by induction on h.

Base case h = 0. We describe how to define a 3UBE γ = 〈π, σ 〉 of H0,s . By Lemma
1, every 3UBE of the subgraph G0 of H0,s satisfies conditions S1–S3.

Let v−1, j (with 1 ≤ j ≤ s) be a vertex of α−1. The edges (p−1, v−1, j) and
(v−1, j , t−1) imply π(p−1) < π(v−1, j) and π(v−1, j) < π(t−1), which proves
condition F1 for α−1. Consider now the group α0; the edge (p0, v0, j) implies
π(p0) < π(v0, j). On the other hand, if we put v0, j after t0, the edge (v−1, j , v0, j), the
channel edge (p−1, t0), and the two forcing edges (s0, s′

0) and (q0, q ′
0)would mutually

conflict. But then a 3UBE would not exist by Property 1. Thus, each vertex of group
α0 must be between p0 and t0 in π , which implies condition F1 for the group α0. As
for the page assignment σ , each (v−1, j , v0, j) conflicts with each forcing edge of G0,
and thus it must be in the page of the channel edges of G0. This implies condition F2.
The edges (v−1, j , v0, j) can be assigned to the same page only if the vertices of α−1
appear in reverse order with respect to those of α0 in π . Thus, condition F3 holds and

123

3530 Algorithmica (2023) 85:3521–3571

a 3UBE of H0,s can be defined by choosing an arbitrary order for the vertices of α−1
and the reverse order for the vertices of α0.

Inductive case h > 0. Consider the subgraph H ′
h,s of Hh,s consisting of Hh−2,s plus

the exclusive vertices and edges of Gh−1 and of Gh . By induction and by Lemma 1,
every 3UBE γ ′ = 〈π ′, σ ′〉 of H ′

h,s satisfies conditions F1–F3 and conditions S1–S3.
We extend γ ′ to a 3UBE γ = 〈π, σ 〉 of Hh,s as follows. By condition F1 of γ ′, each
vertex vh−2, j is before th−2 in π ′; on the other hand, because of the edges (ph, vh, j),
each vertex vh, j must follow ph in π . This implies that each vh−1, j is between ph−1
and th−1 in π . Indeed, if vh−1, j was before ph−1 in π , the edge (vh−1, j , vh, j), the
channel edge (ph−1, th) and the two forcing edges of Gh would mutually conflict and
therefore a 3UBE would not exist by Property 1. On the other hand, if vh−1, j was after
th−1, the edge (vh−2, j , vh−1, j), the channel edges (ph−2, th−1) and the two forcing
edges of Gh−1 would mutually conflict and again a 3UBE would not exist by Property
1. Thus, each vertex of group αh−1 must be between ph−1 and th−1, which proves
condition F1 for the group αh−1. Consider now a vertex vh, j . If it was after th in π ,
then the edge (vh−1, j , vh, j), the channel edge (ph−1, th) and the two forcing edges
of Gh would mutually conflict – again a 3UBE would not exist by Property 1. Hence,
each vertex of αh is between ph and th , which proves condition F1 also for αh .

As for the page assignment σ , each (vh−2, j , vh−1, j) conflicts with each forcing
edge of Gh−1 and hence it must be in the page of the channel edges of Gh−1. The
same argument applies to the edges (vh−1, j , vh, j) with respect to the forcing edges
of Gh . Thus the edges (vh−1, j , vh, j) must be in the page of the channel edges of Gh ,
which proves condition F2.

The edges (vh−2, j , vh−1, j) can be assigned to the same page only if the vertices of
αh−2 appear in reverse order with respect to those of αh−1 in π . Similarly, the edges
(vh−1, j , vh, j) can be assigned to the same page only if the vertices of αh−1 appear in
reverse order with respect to those of αh in π . Thus, condition F3 holds and a 3UBE
of Hh,s can be defined by ordering the vertices of αh−1 in reverse order with respect
to those of αh−2 and the vertices of αh with the same order as those of αh−2.
�

Observe that, by Condition F3, all groups αi with even index have the same ordering
in π and all groups with odd index have the opposite order. As mentioned above the
vertices in the groups αi will correspond to the elements of the set S of an instance
of Betweenness in the reduced instance of 3UBE Testing. If the reduced instance
admits a 3UBE, the order of the odd-indexed groups in π will give the desired order
for the instance of Betweenness.

3-filled shell digraphs and hardness proof. Starting from a filled shell digraph Hh,s ,
a 	-filled shell digraph ̂Hh,s is obtained by replacing some edges with a gadget that
has two possible configurations in any 3UBE of ̂Hh,s . More precisely, we replace each
edge (t ′i , pi) of Hh,s for i odd with the gadget shown in Fig. 5a. The gadget replacing
(t ′i , pi)will be denoted as	i . Notice that this replacement preserves Conditions F1–F3
of Lemma 2.

Lemma 3 Every 	-filled shell digrapĥHh,s for s > 0 and even h ≥ 0 admits a
3UBE. In any 3UBE γ = 〈π, σ 〉 of ̂Hh,s the following conditions hold for every odd
i = 1, 3, . . . , h − 1:

123

Algorithmica (2023) 85:3521–3571 3531

Fig. 5 a A gadget 	i (black edges). b The triplet edges of Gi (bold edges)

G1 the vertices of the gadget 	i are between t ′i and pi in π ;
G2 the vertices xi and yi are between wi and zi in π and there exists a 3UBE γ ′ =

〈π ′, σ ′〉 of ̂Hh,s where the order of xi and yi is exchanged in π ′.

Proof By Lemma 2, every 3UBE γ ′ = 〈π ′, σ ′〉 of Hh,s is such that t ′i and pi are
consecutive in π ′ for each i = 0, 1, . . . , h. Notice that the gadget 	i admits a 3UBE
(actually a 2UBE) γi . If we replace the edge (t ′i , pi) with γi , we do not create any
conflict between the edges of 	i and the other edges of Hh,s . This proves that ̂Hh,s

has a 3UBE.
About condition G1, observe that since any vertex of the gadget 	i belongs to a

directed path from t ′i to pi , then the vertices of 	i must be between t ′i and pi . About
condition G2, observe that xi and yi both appear in a directed path from wi to zi and
therefore they must be betweenwi and zi . Also, suppose that π(xi) < π(yi) (the other
case is symmetric). If we exchange the order of xi and yi in π ′ we introduce a conflict
between (wi , xi) and (yi , zi), which do not conflict with any other edges. If they are
in the same page in γ it is sufficient to change the page of one of them in γ ′.
�

Theorem 2 3UBE Testing is NP-complete even for st-graphs.

Proof 3UBE Testing is clearly in NP. To prove the hardness we describe a reduction
from Betweenness. From an instance I = 〈S, R〉 of Betweenness we construct an
instance GI of 3UBE Testing that is an st-graph; we start from the 	-filled shell
digrapĥHh,s with h = 2|R| and s = |S|. Let v1, v2, . . . , vs be the elements of S.
They are represented in ̂Hh,s by the vertices vi,1, vi,2, . . . , vi,s of the groups αi , for
i = −1, 0, 1, . . . , h. In the reduction each group αi with odd index is used to encode
one triplet and, in a 3UBE of GI , the order of the vertices in these groups (which is
the same by condition F3) corresponds to the desired order of the elements of S for

123

3532 Algorithmica (2023) 85:3521–3571

Fig. 6 A 3UBE of the st-graph GI reduced from a positive instance I = 〈S, R〉 of Betweenness; the
edge colors represent the corresponding pages

the instance I . Number the triplets of R from 1 to |R| and let (va, vb, vc) be the j-th
triplet. We use the group αi and the gadget 	i with i = 2 j − 1 to encode the triplet
(va, vb, vc). More precisely, we add to ̂Hh,s the edges (xi , vi,a), (xi , vi,b), (yi , vi,b),
and (yi , vi,c) (see Fig. 5b). These edges are called triplet edges and are denoted as
Ti . We will show that in any 3UBE of GI the triplet edges are forced to be in the
same page and this is possible if and only if the constraints defined by the triplets in
R are respected. The digraph obtained by the addition of the triplet edges is not an
st-graph because the vertices of the last group αh are all sinks. The desired instance
GI of 3UBE Testing is the st-graph obtained by adding the edges (vh, j , th) (for

123

Algorithmica (2023) 85:3521–3571 3533

j = 1, 2, . . . , s). Fig. 6 shows a 3UBE of the st-graph GI reduced from a positive
instance I of Betweenness.

We now show that I is a positive instance of Betweenness if and only if the
st-graph GI constructed as described above admits a 3UBE. Suppose first that I is a
positive instance of Betweenness, i.e., there exists an ordering τ of S that satisfies all
triplets in R. The subgraph ̂Hh,s of GI admits a 3UBE that satisfies conditions S1–S3,
F1–F3, and G1–G2 by Lemmas 1,2 and 3. Observe that the order of the vertices of the
groups αi can be arbitrarily chosen (provided that all groups with even index have the
same order and the groups with odd index have the reverse order). Thus we can choose
the order of the groups with odd index to be equal to τ . Let γ = 〈π, σ 〉 be the resulting
3UBE of ̂Hh,s . We now show that if we add the triplet edges to γ , these edges do not
conflict. Let (va, vb, vc) be the triplet encoded by the triplet edges Ti and suppose
that τ(va) < τ(vb) < τ(vc) (the other case is symmetric). Since the vertices of the
groups with odd index are ordered in π as in τ , we have π(vi,a) < π(vi,b) < π(vi,c).
If π(xi) < π(yi) then the edges Ti do not conflict. If otherwise π(yi) < π(xi), by
condition G2 we can exchange the order of xi and yi , thus guaranteeing again that the
triplet edges Ti do not conflict. On the other hand, the triplet edges Ti conflict with
the edges E	

i of 	i , with the channel edges Ech
i of Gi , and with all the edges Eα

i
connecting group αi−1 to group αi . All the edges in E	

i ∪ Ech
i ∪ Eα

i can be assigned
to only two pages. Indeed, the edges E	

i require two pages, while one page is enough
for the edges of Ech

i ∪ Eα
i . Also, since the edges of E	

i do not conflict with those
in Ech

i ∪ Eα
i , two pages suffice for all of them. Hence, the triplet edges Ti can all

be assigned to the third page. Since this is true for all the triplet edges, GI admits
a 3UBE.

Suppose now thatGI admits a 3UBE γ = 〈π, σ 〉. By Lemmas 1,2 and 3, γ satisfies
conditions S1–S3, F1–F3, and G1–G2 . By condition F2 the order of the vertices of the
groups αi with odd index is the same for all groups. We claim that all triplets in R are
satisfied if this order is used as the order τ for the elements of S. Let (va, vb, vc) be the
triplet encoded by the triplet edges Ti . By condition G2, the vertices xi and yi of the
gadget	i are betweenwi and zi in π . Thus the triplet edges Ti conflict with the edges
(ui , zi) and (wi , pi). These two edges must be in two different pages because they
conflict. It follows that the triplet edges Ti must all be in the same page, i.e., the third
one. Since the three edges of Ti are in the same page we have either π(xi) < π(yi)
and π(vi,a) < π(vi,b) < π(vi,c) or π(yi) < π(xi) and π(vi,c) < π(vi,b) < π(vi,a)

(any other order would cause a crossing between the edges of Ti). In both cases vertex
vi,b is between vi,a and vi,c, i.e., vb is between va and vc in τ . Since this is true for all
triplets, I is a positive instance of Betweenness.
�

For k > 3, the reduction from an instance I of Betweenness to an instance GI of
kUBE Testing is similar. In the shell digraph every pair of forcing edges is replaced
by a bundle of k − 1 edges that mutually conflict (see Fig. 7a). The edges in each
bundle require k − 1 pages and force all edges that conflict with them to use the k-th
page. Analogously, the two edges (ui , zi) and (wi , pi) of the gadget 	i are replaced
by a bundle of k − 1 edges that mutually conflict (see Fig. 7b); this forces the triplet
edges to be in the k-th page. Finally, observe that our reduction does not work for

123

3534 Algorithmica (2023) 85:3521–3571

Fig. 7 Reduction for kUBE Testing (example with k = 5). a Replacement of the forcing edges. b
Replacement of the gadget 	i . In both figures colors represent the pages

k = 2, as it would yield an instance of 2UBE that never admits a book embedding on
two pages, i.e., it is always a negative instance.

Corollary 1 kUBE Testing is NP-complete for every k ≥ 3, even for st-graphs.

4 Existential Results for 2UBE

Let f be an internal face of a plane st-graph, and let pl and pr be the left and the
right path of f ; f is a generalized triangle if either pl or pr is a single edge (i.e., a
transitive edge), and it is a rhombus if each of pl and pr consists of exactly two edges
(see Figs. 8a and 8b).

Let G be a plane st-graph. A forbidden configuration of G consists of a transitive
edge e = (u, v) shared by two internal faces f and g such that s f = sg = u and
t f = tg = v (i.e., twogeneralized triangles sharing the transitive edge); seeFig. 8c. The
absence of forbidden configurations is necessary for the existence of an embedding-
preserving 2UBE. If G is triangulated, the absence of forbidden configurations is also
a sufficient condition [81].

Theorem 3 Any plane st-graph such that the left and the right path of every internal
face contain at least two and three edges, respectively, admits an embedding-
preserving 2UBE.

Proof Let G be a plane st-graph such that the left and the right path of every internal
face contain at least two and three edges, respectively. We prove how to construct an
embedding preserving HP-completion. The idea is to construct G by adding a face

123

Algorithmica (2023) 85:3521–3571 3535

Fig. 8 a A generalized triangle G. b A rhombus c A forbidden configuration

of G per time from left to right. Namely, the faces of G are added according to a
topological ordering of the dual graph of G. When a face f is added, its right path is
attached to the right boundary of the current digraph. We maintain the invariant that
at least one edge e in the left path of f belongs to the Hamiltonian path of the current
digraph. The Hamiltonian path is extended by replacing e with a path that traverses
the vertices of the right path of f . To this aim, dummy edges are suitably inserted
inside f . When all faces are added, the resulting graph is an HP-completion G of G.

More precisely, let N be the number of internal faces of G, and let G∗ be the dual
graph of G. Let s∗ = f0, f1, . . . , fN , fN+1 = t∗ be a topological ordering of G∗.
Denote by G0 the left boundary of G and by Gi , for i = 1, 2, . . . , N , the subgraph
of G consisting of the faces f1, f2, . . . , fi . Gi can be obtained by adding the right
path pir of face fi to Gi−1. We construct a sequence G0,G1, . . . ,GN of st-graphs
such that Gi is an HP-completion of Gi . Clearly, GN will be an HP-completion of
G. While constructing the sequence, we maintain the following invariant: given any
two consecutive edges along the right boundary of Gi , at least one of them belongs to
the Hamiltonian path PGi

of Gi . G0 coincides with G0 and all its edges are in PG0
,

so the invariant holds. Suppose then that Gi−1, with i > 1, satisfies the invariant. To
construct Gi we must add the right path pir of fi plus possibly some dummy edges
inside fi . Let s f = v0, v1, v2, . . . , vk−1, t f = vk be the right path pir of fi and let
s f = u0, u1, u2, . . . , uh−1, t f = uh be the left path pil of fi . By hypothesis pir has at
least three edges, and therefore k ≥ 3; moreover, sinceG has no transitive edge, h ≥ 2.
Notice that pil is a subpath of the right boundary ofGi−1 and that the right boundary of
Gi is obtained from the right boundary of Gi−1 by replacing pil with pir . Let (u−1, s f)
be the edge along the right boundary of Gi−1 entering s f and let (t f , uh+1) be the
edge along the right boundary of Gi−1 exiting t f ; each of these edges may not exist
if s f = s or t f = t . We have different cases depending on whether (s f , u1) and
(uh−1, t f) belong to PGi−1

or not.

Case 1: neither (s f , u1) nor (uh−1, t f) belong to PGi−1
. See Fig. 9 for an illus-

tration. By the invariant there is an edge (u j , u j+1) with 0 ≤ j ≤ h − 1 between s f
and t f that belongs to PGi−1

. We add the two dummy edges (u j , v1) and (vk−1, u j+1),

123

3536 Algorithmica (2023) 85:3521–3571

Fig. 9 Illustration for Theorem 3: a, b Case 1; c, d Case 2; e, f Case 4

thus “extending” PGi−1
to a Hamiltonian path PGi

of Gi ; namely, the edge (u j , u j+1)

is bypassed by the path u j , v1, v2, . . . , vk−1, u j+1. The only edges of pir that do not
belong to PGi

are (s f , v1) and (vk−1, t f). If (u−1, s f) exists, then by the invariant it
belongs to PGi−1

(because (s f , u1) does not) and thus the invariant is preserved for
(s f , v1) and its preceding and following edges. Analogously, if (t f , uh+1) exists, then
by the invariant it belongs to PGi−1

and thus the invariant is preserved for (vk−1, t f)
and its preceding and following edges.

Case 2: (s f , u1) does not belong to PGi−1
,while (uh−1, t f)does. See Fig. 9 for an

illustration. We add the dummy edge (uh−1, v1). This“extends” PGi−1
to PGi

of Gi

bypassing the edge (uh−1, t f)with the path uh−1, v1, v2, . . . , vk−1, t f . The only edge
of pir that does not belong to PGi

is (s f , v1). If (u−1, s f) exists, then by the invariant
it belongs to PGi−1

(because (s f , u1) does not) and thus the invariant is preserved for
(s f , v1) and its preceding and following edges.

123

Algorithmica (2023) 85:3521–3571 3537

Case 3: (s f , u1) belongs to PGi−1
, while (uh−1, t f) does not. This case is sym-

metric to the previous one.

Case 4: both (s f , u1)and (uh−1, t f) belong to PGi−1
. See Fig. 9 for an illustration.

We add the two dummy edges (vk−2, u1) and (uh−1, vk−1). In this case we “extend”
PGi−1

to PGi
bypassing (s f , u1)with the path s f , v1, . . . , vk−2 and bypassing the edge

(uh−1, t f) with the path uh−1, vk−1, t f . The only edge of pir that does not belong to
PGi

is (vk−2, vk−1); moreover, all the edges (s f , v1), (v1, v2), . . . , (vk−3, vk−2) and
the edge (vk−1, t f) belong to PGi

. Thus the invariant is preserved.
�

The next theorem is proved with a construction similar to that of Theorem 3.

Theorem 4 Let G be a plane st-graph such that every internal face of G is a rhombus.
Then G admits an embedding-preserving 2UBE.

Proof During the construction of Gi from Gi−1, we maintain the same invariant as in
Theorem 3. If all faces are rhombi, when we construct Gi from Gi−1, we have that
pil is a path s f , u1, t f and pir is a path s f , v1, t f . At least one of (s f , u1) and (u1, t f)
belongs to PGi−1

. If (s f , u1) belongs to PGi−1
we add the dummy edge (v1, u1). In

this case we bypass the edge (s f , u1) with the path s f , v1, u1. If (u1, t f) belongs to
PGi−1

we add the dummy edge (u1, v1). In this case we bypass the edge (u1, t f) with
the path u1, v1, t f . In both cases it is easy to see that the invariant is maintained.
�

5 Testing 2UBE for Plane Graphs with Special Faces

ByTheorem3, if all internal faces of a plane st-graphG are such that their left and right
path contain at least two and at least three edges, respectively,G admits an embedding-
preserving 2UBE. If these conditions do not hold, an embedding-preserving 2UBE
may not exist (see Fig. 10a). We now describe an efficient testing algorithm for a plane
st-graph G = (V , E) whose internal faces are generalized triangles or rhombi (see
Fig. 10b). We construct a mixed graph GM = (V , E ∪ EU), where EU is a set of
undirected edges and (u, v) ∈ EU if u and v are the two vertices of a rhombus face
f distinct from s f and t f (blue edges in Fig. 10c). For a rhombus face f , the graph
obtained from G by adding the directed edge (u, v) inside f is still a plane st-graph
(see, e.g. [22, 41]). Since there is only one edge of EU inside each rhombus face of G,
the following holds.

Property 2 Every orientation of the edges in EU transforms GM into an acyclic
digraph.

Theorem 5 Let G be a plane st-graph such that every internal face of G is either
a generalized triangle or a rhombus. There is an O(n)-time algorithm that decides
whether G admits an embedding-preserving 2UBE, and which computes it in the
positive case.

Proof The edges of EU are the only edges that can be used to construct an embedding-
preserving HP-completion ofG. This, together with Theorem 1, implies thatG admits

123

3538 Algorithmica (2023) 85:3521–3571

Fig. 10 a A plane st-graph that does not admit a 2UBE [82]. b A plane st-graph G whose faces are
generalized triangles or rhombi. b The mixed graph GM = (V , E, EU)

a 2UBE if and only if the undirected edges of GM can be oriented so that the resulting
digraph

−→
GM has a directedHamiltonian path from s to t . By Property 2, any orientation

of the undirected edges of GM gives rise to an acyclic digraph. On the other hand an
acyclic digraph is Hamiltonian if and only if it is unilateral (see, e.g. [6, Theorem 4]);
we recall that a digraph is unilateral if each pair of vertices is connected by a directed
path (in at least one of the two directions) [80]. Testing whether the undirected edges
of GM can be oriented so that the resulting digraph

−→
GM is unilateral, and computing

such an orientation if it exists, can be done in time O(|V | + |E | + |EU |) = O(n)

[80, Theorem 4]. A Hamiltonian path of
−→
GM is given by a topological ordering of its

vertices.
�

6 Testing Algorithms for 2UBE Parameterized by the Branchwidth

In this section, we show that the 2UBE Testing problem is fixed-parameter tractable
with respect to the branchwidth of the input st-graph both in the fixed and in the
variable embedding setting. Since the treewidth tw(G) and the branchwidth bw(G)

of a graph G are within a constant factor from each other (i.e., bw(G)−1 ≤ tw(G) ≤
� 3
2bw(G)� − 1 [86]), our FPT algorithm also extends to graphs of bounded treewidth.
We use the SPQR-tree data structure [43] to efficiently handle the planar embed-

dings of the input digraphs, and sphere-cut decompositions [87] to develop a
dynamic-programming approach on the skeletons of the rigid components.

Before presenting the testing algorithm (Subsection 6.3), we briefly recall the defi-
nition of the SPQR-tree T of a biconnected graph (Subsection 6.1) and the definitions
of branchwidth and sphere-cut decomposition (Subsection 6.2).

6.1 SPQR-trees of Planar st-Graphs

Let G be a biconnected graph. An SPQR-tree T of G is a tree-like data structure
that represents the decomposition of G into its triconnected components, which can
be computed in linear time [43, 65, 71]. See Fig. 11 for an illustration. Each node μ

123

Algorithmica (2023) 85:3521–3571 3539

Fig. 11 a A biconnected planar st-graph G, where s and t are labeled 1 and 14, respectively. b The SPQR-
tree of G with respect to the edge (s, t); for each S-, P-, or R-node of the tree, the figure depicts the skeleton
of the node. In a, the left and the right outer face of the S-node with poles 8 and 13 are yellow and green,
respectively

of T of degree greater than one corresponds to a triconnected component of G (as
defined in [71]) and has two special vertices, called poles. Namely, let μ be a node
of T of degree greater than one, and let u and v be its poles; μ is associated with a
multigraph skel(μ), called the skeleton of μ. The multigraph skel+(μ) obtained by
adding an edge (u, v) to skel(μ) describes the triconnected component corresponding
toμ. Nodeμ is either an R-node, an S-node, or a P-node, based on the following cases:

– R-node: If skel+(μ) is triconnected;
– S-node: If skel+(μ) is a cycle of length at least three;
– P-node: If skel+(μ) is a bundle of at least three parallel edges;

Also, for each edge of G, there is a corresponding node in T having degree one,
which is called a Q-node. If μ is a Q-node that corresponds to an edge e, the poles of
μ coincide with the end-vertices of e, and skel(μ) coincides with e.

A virtual edge eν in skel(μ) corresponds to a tree node ν adjacent to μ in T . In
the following, we will regard T as rooted at an arbitrary Q-node ρ. The edge e of G
corresponding to ρ is the reference edge of G, and T is the SPQR-tree of G with
respect to e. For every node μ of T , the edges corresponding to the leaves (i.e., the
Q-nodes) of the subtree Tμ of T rooted at μ induce a subgraph pert(μ) of G, called
the pertinent graph of μ. The graph pert(μ) is described by Tμ in the decomposition.

If G is planar, the SPQR-tree T of G with respect to e implicitly describes all
planar embeddings of G in which e is incident to the outer face. All such embeddings
are obtained by combining the different planar embeddings of the skeletons of P- and

123

3540 Algorithmica (2023) 85:3521–3571

R-nodes: For a P-node μ, the different embeddings of skel(μ) are the different permu-
tations of its edges. If μ is an R-node, skel(μ) has two possible planar embeddings,
obtained by flipping skel(μ) at its poles. Let μ be a node of T , let E be an embedding
of G, let Eμ be the embedding pert(μ) in E , and let f Oμ be the outer face of Eμ. The
path along f Oμ between sμ and tμ that leaves f Oμ to its left (resp. to its right) when
traversing the boundary of f Oμ from sμ to tμ is the left outer path (resp. the right outer
path) of Eμ. The left (resp., right) outer face of Eμ is the face of E , not belonging to
Eμ, that is incident to the left (resp., to the right) outer path of Eμ. In Fig. 11a, the
left and the right outer face of the S-node with poles 8 and 13 are yellow and green,
respectively.

To ease the description, we can assume that each S-node has exactly two children
[51]. In particular, we will exploit the following property of T when G is an st-graph
containing the edge e = (s, t) and T is rooted at the Q-node of e.

Property 3 [43] Let μ be a node of T with poles u and v. We have that pert(μ) is
either a uv-graph or a vu-graph.

6.2 Branch decomposition and sphere-cut decomposition

A branch decomposition 〈T , ξ 〉 of a graph G consists of an unrooted binary tree T
(i.e., each internal node of T has degree three) and of a bijection ξ : L(T) ↔ E(G)

between the leaf set L(T) of T and the edge set E(G) of G. For each arc a of T , let
T a
1 and T a

2 be the two connected components of T − a, and, for i = 1, 2, let Ga
i be

the subgraph of G that consists of the edges corresponding to the leaves of T a
i , i.e.,

the edge set {ξ(μ) : μ ∈ L(T) ∩ V (T a
i)}. The middle set mid(a) ⊆ V (G) is the

intersection of the vertex sets of Ga
1 and Ga

2, i.e., mid(a) := V (Ga
1) ∩ V (Ga

2). The
width fi(〈T , ξ 〉) of 〈T , ξ 〉 is the maximum size of the middle sets over all arcs of T ,
i.e., fi(〈T , ξ 〉) := max{|mid(a)| : a ∈ E(T)}. An optimal branch decomposition of G
is a branch decomposition with minimum width; this width is called the branchwidth
of G and is denoted by fi = bw(G).

Let
 be a sphere. A
-plane graph G is a planar graph G embedded (i.e., topo-
logically drawn) on
. A noose of a
-plane graph G is a closed simple curve on

that (i) intersects G only at vertices and (ii) traverses each face at most once.
The length of a noose O is the number of vertices it intersects. Every noose O

bounds two closed discs �1
O and �2

O in
, i.e., �1
O ∩ �2

O = O and �1
O ∪ �2

O =
.
Let G be a
-plane graph and let 〈T , ξ 〉 be a branch decomposition of G. Suppose

that, for each arc a of T , there exists a noose Oa that traverses all and only the vertices
of mid(a) and whose closed discs �1

Oa
and �2

Oa
enclose the drawing of Ga

1 and of
Ga

2, respectively. Denote by πa the circular order of the vertices in mid(a) as they
appear along Oa and by � = {πa : a ∈ E(T)} the set of all the circular orders πa .
The triple 〈T , ξ,�〉 is a sphere-cut decomposition of G. A clockwise traversal of Oa

in the drawing of G defines the cyclic ordering πa of mid(a). We always assume that
the vertices of each middle set mid(a) = V (Ga

1) ∩ V (Ga
2) are enumerated according

to πa . Observe that, Condition II of the definition of noose implies that, for any arc
a ∈ E(T), the graphs Ga

1 and Ga
2 are both connected. Also, the nooses are pairwise

non-crossing, i.e., for any two nooses Oa and Ob, it holds that Ob lies either entirely

123

Algorithmica (2023) 85:3521–3571 3541

inside �1
Oa

or entirely inside �2
Oa
. We will exploit the following result by Dorn et al

[52, Theorem 1].

Theorem 6 [52] Let G be a connected n-vertex
-plane graph having branchwidth
fi and no vertex of degree one. There exists a sphere-cut decomposition of G having
width fi which can be constructed in O(n3) time.

6.3 Algorithm description

Without loss of generality, we assume that the input st-graph G contains the edge
(s, t), which guarantees that G is biconnected. In fact, in any 2UBE of G vertices s
and t have to be the first and the last vertex of the spine, respectively. Thus, either (s, t)
is an edge of G or it can be added to any of the two pages of a 2UBE of G to obtain
a 2UBE 〈π, σ 〉 of G ∪ (s, t). Clearly, the edge (s, t) will be incident to the outer face
of �(π, σ).

Overview. Our approach builds upon a classification of the embeddings of each tri-
connected component of the biconnected graph G. Intuitively, such a classification
is based on the visibility of the spine that the embedding “leaves” on its outer face.
Let T be the SPQR-tree of G with respect to the reference edge (s, t). For any node
μ of T , we show that the planar embeddings of pert(μ) that yield a 2UBE of pert(μ)

can be partitioned into a finite number of equivalence classes, called embedding types.
By visiting T bottom-up, we describe how to compute all the realizable embedding
types of the pertinent graph of each node, that is, those embedding types that are
allowed by some 2UBE of it. To this aim we will exploit the realizable embedding
types of the pertinent graphs of its children. If there exists at least one embedding type
that is realizable by the pertinent graph of the unique child of the root of T , which
coincides with the whole graph G minus the edge (s, t), then G admits a 2UBE. The
most challenging part of this approach is handling the triconnected components that
correspond to the P-nodes, where the problem is reduced to a maximum flow prob-
lem on a capacitated flow network with edge demands, and to the R-nodes, where a
sphere-cut decomposition of bounded width is used to efficiently compute the feasible
embedding types.

Embedding Types Given a 2UBE 〈π, σ 〉, the two pages will be called the left page
(the one to the left of the spine) and the right page (the one to the right of the spine),
respectively. We write σ(e) = L (resp. σ(e) = R) if the edge e is assigned to the
left page (resp. to the right page). A point p of the spine is visible from the left (right)
page if it is possible to shoot a horizontal ray originating from p and directed leftward
(rightward) without intersecting any edge in �(π, σ).

Letμ be a node of the SPQR-tree T of G rooted at (s, t). Recall that, by Property 3,
since T has been rooted at (s, t), the pertinent graph pert(μ) and the skeleton skel(μ)

ofμ are s′t ′-graphs, where s′ and t ′ are the poles ofμ .We denote by sμ (tμ) the pole of
μ that is the source (resp. the sink) of pert(μ) and of skel(μ). Let 〈πμ, σμ〉 be a 2UBE
of pert(μ). In the followingwe use the symbols L , R, N , and B as abbreviations for left,
right, none, and both, respectively.We say that 〈πμ, σμ〉 has embedding type (for short,

123

3542 Algorithmica (2023) 85:3521–3571

has Type or is of Type) 〈s_vis, spine_vis, t_vis〉, with s_vis, t_vis ∈ {L, R, N } and
spine_vis ∈ {L, R, B, N }, where:
1. s_vis is L (resp., R), if in �(πμ, σμ) there is a portion of the spine incident to s

and between s and t that is visible from the left page (resp., from the right page).
If s_vis is neither L nor R, then s_vis is N .

2. t_vis is L (resp., R), if in �(πμ, σμ) there is a portion of the spine incident to t
and between s and t that is visible from the left page (resp., from the right page).
If t_vis is neither L nor R, then t_vis is N .

3. spine_vis is L (resp., R), if in �(πμ, σμ) there is a portion of the spine between s
and t that is visible from the left page (resp., from the right page); spine_vis is B,
if in �(πμ, σμ) there is a portion of the spine between s and t that is visible from
the left page, and a portion of the spine between s and t that is visible from the
right page. If spine_vis is neither L , nor R, nor B, then spine_vis is N .

Further, we say that a nodeμ and pert(μ) admit embedding type (for short, admit Type)
〈s_vis, spine_vis, t_vis〉, if pert(μ) admits a 2UBEofType 〈s_vis, spine_vis, t_vis〉;
in this case, we also say that the Type 〈s_vis, spine_vis, t_vis〉 is realizable by μ

and by pert(μ). We have the following.

Lemma 4 Let μ be a node of T and let 〈πμ, σμ〉 be a 2UBE of pert(μ).
Then, 〈πμ, σμ〉 has exactly one embedding type, where the possible embedding

types are the 18 depicted in Fig. 12.

Proof The first part of the statement follows from the definition of embedding type.
To see that the number of possible embedding types allowed by a 2UBE of pert(μ)

is at most 18, it suffices to consider the following facts. First, the number of different
embedding types admitted by pert(μ) is at most 36. Further, some combinations are
“impossible”, in the sense that not all combinations of values for s_vis, spine_vis, and
t_vis appear in a 2UBE of pert(μ). In particular, we have that the following values for
spine_vis are forbidden: (a) spine_vis cannot be L , if either s_vis = R or t_vis = R;
(b) spine_vis cannot be R, if either s_vis = L or t_vis = L; (c) spine_vis cannot
be N , if either s_vis �= N or t_vis �= N . Condition a and Condition b rule out 5
combinations each, while Condition c rules out 8 more combinations (see also Table
1). This leaves us with the 18 embedding types shown in Fig. 12.
�

Recall that, for each node μ of T , pert(μ) may have exponentially many planar
embeddings, given by the permutations of the children of the P-nodes and by the flips
of the R-nodes. Moreover, there may exist exponentially many 2UBEs associated with
each such planar embedding. The next lemma will be the key tool to help us control
this combinatorial explosion.

Let 〈π, σ 〉 be a 2UBE of G, let μ be a node of T , and let 〈πμ, σμ〉 be the restriction
of 〈π, σ 〉 to pert(μ). Also, let 〈π ′

μ, σ ′
μ〉 �= 〈πμ, σμ〉 be a 2UBE of pert(μ). We prove

the following.

Lemma 5 If 〈π ′
μ, σ ′

μ〉 and 〈πμ, σμ〉 have the same embedding type, then G admits a
2UBE whose restriction to pert(μ) is 〈π ′

μ, σ ′
μ〉.

123

Algorithmica (2023) 85:3521–3571 3543

Fig. 12 Illustration of the possible embedding types of a 2UBE of pert(μ) for a nodeμwith poles sμ and tμ;
the portions of the spine that are visible from the left page or from the right page are green. Embedding
types that are in the same dotted box are one the vertically-mirrored copy of the other. Embedding types on
the left are the horizontally-mirrored copies of the ones on the right. Embedding types -〈N , B, N 〉 and
-〈N , N , N 〉 are the horizontally-mirrored and vertically-mirrored copies of themselves

123

3544 Algorithmica (2023) 85:3521–3571

Table 1 Embedding types that are not possible

Ruled out by
Condition a Condition b Condition c

t_vis R R R L N L L L R N L L R R L R N N

spine_vis L L L L L R R R R R N N N N N N N N

s_vis L R N R R R L N L L L R L R N N L R

Fig. 13 Illustrations for Lemma 5. The 2UBEs of pert(μ) are of Type -〈L, B, N 〉

Proof Notice that if pert(μ) is an edge, the statement does not apply, because pert(μ)

does not admit two distinct 2UBEs of the same type. Thus we assume that pert(μ)

has at least three vertices. We show how to construct a 2UBE 〈π ′, σ ′〉 of G whose
restriction to pert(μ) is 〈π ′

μ, σ ′
μ〉.

For the ease of description we actually show how to construct an upward planar
drawing �′ of G in which each vertex v lies along the spine in the same bottom-to-top
order determined by π ′ and each edge is drawn on the page assigned by σ ′. Clearly,
such a drawing implies the existence of 〈π ′, σ ′〉.

Consider a drawing �(π, σ) of G; refer to Fig. 13a. Let Gμ be the subgraph of G
composed of the edges ofG not in pert(μ) and of their endpoints. Consider the drawing
�μ ofGμ obtained by restricting�(π, σ) toGμ. Denote byπμ the bottom-to-top order
of the vertices of Gμ in �μ. Let π1, π2, . . . , πk be the maximal subsequences of πμ

between s and t and composed of consecutive vertices in πμ that are also consecutive
in π (refer to Fig. 13a). Observe that sequences πi , i = 1, . . . , k, may be formed by
a single vertex or by multiple vertices. Also, the first sequence π1 includes sμ and the
last sequence πk includes tμ. Further, since pert(μ) has at least three vertices, there
exists at least a vertex of pert(μ) between sμ and tμ in �(π, σ); therefore we have that
k ≥ 2.

Drawing �μ contains a face fμ that is incident to the ending vertex of the sequence
π1, to the starting vertex of the sequence πk , and, if k ≥ 3, to all the starting and

123

Algorithmica (2023) 85:3521–3571 3545

ending vertices of the sequences πi , with i = 2, . . . , k − 1. Face fμ always contains
the vertices sμ and tμ. Some starting and ending vertices of the sequences πi are
encountered when traversing fμ clockwise from sμ to tμ (left vertices of fμ) and
some of them are encountered when traversing fμ counter-clockwise from sμ to tμ
(right vertices of fμ). The left (resp. right) vertices of fμ are red (resp. blue) in Fig.
13.

We showhow to insert into face fμ the drawing�(π ′
μ, σ ′

μ) of pert(μ), producing the
desired drawing �′ of the 2UBE 〈π ′, σ ′〉 of G. First, consider the drawing �(π ′

μ, σ ′
μ)

of pert(μ) (see Fig. 13b) and insert it, possibly after squeezing it, into fμ in such
a way that its spine lays entirely on the line of the spine of �μ and in such a way
that the vertices of μ do not fall in between the vertices of any maximal sequence πi ,
i = 1, . . . , k. This is always possible, because k ≥ 2 and there exists a portion of
the spine of �μ that is in the interior of fμ. Observe that this implies that sμ and tμ
have now a double representation, since the drawing of the source s′

μ and sink t ′μ of
�(π ′

μ, σ ′
μ) do not coincide with the drawing of sμ and tμ in �μ. Denote by �∗ the

resulting drawing (refer to Fig. 13c).
Suppose 〈πμ, σμ〉 (and, hence, also 〈π ′

μ, σ ′
μ〉) is of Type 〈x, y, z〉. Observe that if

y ∈ {N , R} then there are no left vertices of fμ. Otherwise, if y ∈ {L, B}, then it
is possible to identify two vertices v�,b and v�,t of �(π ′

μ, σ ′
μ) such that there exists

a portion of the spine between v�,b and v�,t that is visible from left. Consider all the
vertices of the sequences πi whose starting and ending vertices are left vertices of fμ,
and move them between v�,b and v�,t along the spine of �∗, while preserving their
relative order. Analogously, if y ∈ {N , L}, there are no right vertices of fμ. Otherwise,
if y ∈ {R, B}, it is possible to identify two vertices vr ,b and vr ,t of �(π ′

μ, σ ′
μ) such

that there exists a portion of the spine between vr ,b and vr ,t that is visible from right.
Consider all the vertices of the sequences πi whose starting and ending vertices are
right vertices of fμ, and move them between vr ,b and vr ,t along the spine of �∗, while
preserving their relative order.

�∗ is an upward planar drawing ofG except for the fact that there are two duplicated
vertices s′

μ and t ′μ. Thus, by identifying sμ with s′
μ and tμ with t ′μ, we obtain the desired

upward drawing �′ of G in which each vertex v lies along the spine and each edge
is drawn as a y-monotone curve on one of the two half-planes defined by the spine.
Next we prove that �′ is planar. Clearly, identifying sμ with s′

μ (tμ with t ′μ) does not
introduce crossings when sμ and s′

μ (tμ and t ′μ) are consecutive along the spine in
�∗ (see t ′μ and tμ in Fig. 13c). In the case in which sμ and s′

μ (tμ and t ′μ) are not
consecutive along the spine in �∗, necessarily x ∈ {L, R} (z ∈ {L, R}). Suppose
x = L (z = L), the case when x = R (z = R) being analogous. There cannot exist
in �μ an edge e = (a, b) such that π(a) < π(sμ) < π(b) and such that σ(e) = R.
Therefore, we can continuously move s′

μ, together with its incident edges, toward sμ,
remaining inside the region bounded by fμ without intersecting any edge of Gμ (see
Fig. 13d). This concludes the proof.
�

We now describe an algorithm to decide if G admits a 2UBE and its running time.
The same procedure can be easily refined to actually compute a 2UBE of G, with no

123

3546 Algorithmica (2023) 85:3521–3571

additional cost, by decorating each nodeμ ∈ T with the embedding choices performed
at μ, for each of its O(1) possible embedding types.

Testing Algorithm. The algorithm is based on visiting the SPQR-tree T of G and on
computing, for each non-root nodeμ of T , the set of embedding types realizable byμ,
assuming to have already computed the set of embedding types realizable by each
of the children of μ. Lemma 5 is the reason why we only need to maintain a single
2UBE of pert(μ), for each embedding type realizable by μ, i.e., a constant number
of 2UBEs instead of an exponential number. Since, by Lemmas 4 and 5, G admits a
2UBE if and only if the pertinent graph of the unique child of the root Q-node admits
an embedding type of (at least) one of the 18 possible embedding types, this approach
allows us to solve the 2UBE Testing problem for G.

The computation of the set of embedding types realizable by μ is based on whether
μ is an S-, P-, Q-, or an R-node. Recall that the only possible embedding choices forG
happen at P- and R-nodes. While the treatment of Q- and S-nodes does not require any
modification when considering the variable and the fixed embedding settings, for P-
and R-nodes we will discuss how to compute the embedding types that are realizable
by μ in both such settings separately. In particular, in the fixed embedding scenario
the above characterization needs to additionally satisfy the constraints imposed by the
fixed embedding on the skeletons of the P- and R-nodes in T . Note that, a leaf Q-node
only admits Type -〈L, L, L〉 and Type -〈R, R, R〉. Also, combining 2UBEs of the
two children of an S-node μ always yields a valid 2UBE of pert(μ). The next lemma
shows how to compute all the embedding types realizable by μ.

Lemma 6 Let μ be an S-node. The set of embedding types realizable by μ can be
computed in O(1) time, both in the fixed and in the variable embedding setting.

Proof Letμ be an S-node with poles sμ and tμ. Letμ′ andμ′′ be the two children ofμ
with poles sμ′ , tμ′ and sμ′′ , tμ′′ , respectively, where sμ′ = sμ, tμ′ = sμ′′ , and tμ′′ = tμ.
Clearly, combining each pair of 2UBEs of the two children ofμ always yields a 2UBE
of pert(μ). Let 〈x ′, y′, z′〉 and 〈x ′′, y′′, z′′〉 be any two embedding types realizable byμ′
and μ′′, respectively. The embedding type 〈x, y, z〉 of any 2UBE of pert(μ) resulting
from a series combination of 2UBEs of the above types can be computed as follows.
We have x = x ′ and z = z′′. As for y, we have that: (i) y = N iff y′ = y′′ = N ; (ii)
y = L if either y′ = L and y′′ ∈ {L, N } or y′′ = L and y′ ∈ {L, N }; (iii) y = R if
either y′ = R and y′′ ∈ {R, N } or y′′ = R and y′ ∈ {R, N }; (iv) y = B if at least
one of y′ and y′′ is B or one of them is L and the other is R. Since there is a constant
number of embedding types realizable by the children of μ, the statement follows.
�

Since P- and R-nodes require a more complex treatment, in the following we only
state the lemmas concerning the computation time of the set of realizable embedding
types for these nodes. We defer the proofs of such lemmas to the next sections. Specif-
ically, in Subsection 6.5 we show how to efficiently compute the set of embedding
types realizable by a P-node in the fixed and variable embedding setting (Subsection
6.5.1 and Subsection 6.5.2, respectively). We have the following.

Lemma 7 Let μ be a P-node with k children. The set of embedding types realizable
by pert(μ) can be computed in O(k) time in the fixed embedding setting.

123

Algorithmica (2023) 85:3521–3571 3547

Lemma 8 Let μ be a P-node with k children. The set of embedding types realizable
by pert(μ) can be computed in O(k2) time in the variable embedding setting.

We remark that Lemmas 6 and 7 yield a counterpart, in the fixed embedding setting,
of the linear-time algorithm by Di Giacomo et al. [46] to compute 2UBEs of series-
parallel graphs, which we formalize in the following statement.

Theorem 7 There exists an O(n)-time algorithm to decide whether an n-vertex series-
parallel st-graph admits an embedding-preserving 2UBE.

Finally, in Subsection 6.4 we show how to efficiently compute the set of embedding
types realizable by an R-node. In particular, we prove the following.

Lemma 9 Let μ be an R-node with k children and whose skeleton has branchwidth fi.
The set of embedding types realizable by pert(μ) can be computed in O(2O(β logβ) · k
time, both in the fixed and in the variable embedding setting, provided that a sphere-cut
decomposition 〈T , ξ,�〉 of width β of skel+(μ) is given.

By Lemmas 6 to 9, and since T has O(|G|) size [43, 51], we get the following.
Theorem 8 There exists an O(2O(β logβ) ·n+n2+g(n))-time algorithm to decide if an
n-vertex planar st-graph (resp. plane st-graph) of branchwidthβ admits a 2UBE (resp.
an embedding-preserving 2UBE), where g(n) is the computation time of a sphere-cut
decomposition of an n-vertex plane graph.

Since g(n) is O(n3) by the result in [87], we get the following.

Corollary 2 There exists an O(2O(β logβ) · n + n3)-time algorithm to decide if an n-
vertex planar st-graph (resp. plane st-graph) of branchwidth β admits a 2UBE (resp.
an embedding-preserving 2UBE).

Furthermore, since for any n-vertex planar graph, it holds β ≤ 2.122
√
n

[60], Corollary 2 implies that the 2UBE Testing problem is solvable in sub-
exponential time.

Corollary 3 There exists an O(2O(
√
n log

√
n) + n3)-time algorithm to decide if an n-

vertex planar st-graph (resp. plane st-graph) admits a 2UBE (resp. an embedding-
preserving 2UBE).

6.4 Computing the Embedding Types when� is an R-node

Let μ be an R-node with poles sμ and tμ; refer to Fig. 14. We consider the graph
skel+(μ) = skel(μ) ∪ (sμ, tμ), which is a triconnected planar graph. Since skel+(μ)

is a minor of G, its branchwidth is bounded by the branchwidth β of G [86, Theorem
4.1]. Let Eμ be an embedding of skel+(μ) on the sphere and let 〈T , ξ,�〉 be a sphere-
cut decomposition of skel+(μ) with embedding Eμ of width smaller than or equal to
fi; refer to Fig. 14a.

We root T at the leaf ρ of T such that ξ(ρ) = (sμ, tμ). Consider each arc a =
(pa, ca) of T connecting the parent node pa with the child node ca in T . The noose Oa

123

3548 Algorithmica (2023) 85:3521–3571

of a divides the sphere into two closed regions whose boundary is Oa . We associate
a with the subgraph skela of skel+(μ) lying in the region not containing the edge
(sμ, tμ), and we refer to the face of skela that contains such an edge as the outer face
of skela . We denote by perta the subgraph of pert(μ) obtained by replacing, in skela ,
each virtual edge e with the pertinent graph of the node corresponding to e in the
SPQR-tree T of G.

Intuitively, our strategy to compute the embedding types admitted by pert(μ) is to
visit the nodes of T in post order. When a node ca incident to the edge a = (pa, ca) is
visited, we compute a succinct description of size O(fi) of the properties of the noose
Oa in a 2UBE of perta . Note that the arc a

∗ incident to the root ρ is such that skela∗
(resp. perta∗) coincides with skel(μ) (resp. with pert(μ)). When we reach a∗, we use
the computed properties for Oa∗ to determine which embedding types are realizable
by pert(μ). The fixed and the variable embedding setting are treated analogously. In
the fixed embedding setting, we only consider the embedding of skel+(μ) in which
the embedding of skel(μ) is inherited by the (fixed) embedding of G. In the variable
embedding setting, instead, we consider each of the two embeddings of skel+(μ)

obtained by flipping the embedding of skel(μ) at its poles.
Let a be an arc of T and let p0, p1, . . . , pk be the sequence of maximal (upward

or downward) directed paths traversed in a clockwise visit of the outer face of skela .
The next lemma shows that k ∈ O(β).

Lemma 10 For each arc a ∈ T , by clockwise visiting the outer face of skela, we
traverse at most O(fi) maximal (upward or downward) directed paths.

Proof Let pu,v be the path along the outer face of skela connecting two vertices of
mid(a) that are clockwise consecutive in the circular ordering πa ∈ � of mid(a). By
Property 3, pert(μ) is an sμtμ-graph, and thus its faces have a single source and a
single sink. If pu,v was composed of more than three maximal (upward or downward)
directed paths, then the outer face of skela would contain either two sources or two
sinks belonging to pu,v . The statement then follows from the fact that |mid(a)| ≤ fi.

�
Let u and v be two clockwise consecutive vertices along the outer face of skela that

are connected by an (upward or downward) directed path pi . Given a 2UBE 〈πa, σa〉
of perta , we associate with pi an outer-visibility triple ti = 〈u_vis, spine_vis, v_vis〉
of pi in 〈πa, σa〉, for i = 1, . . . , k, which encodes the information about the visibility
of the spine between u and v from the outer face of �(πa, σa). In particular, we have:

u_vis = true if and only if there is a portion of the spine incident to u and between
u and v that is visible from the outer face of �(πa, σa).

v_vis = true if and only if there is a portion of the spine incident to v and between
u and v that is visible from the outer face of �(πa, σa).

spine_vis = true if and only if there is a portion of the spine between u and v that is
visible from the outer face of �(πa, σa).

Observe that when u_vis = true or v_vis = true, then necessarily spine_vis =
true. Hence, we have five possible types for the outer-visibility triples 〈u_vis,
spine_vis, v_vis〉.

123

Algorithmica (2023) 85:3521–3571 3549

Fig. 14 Illustrations for theR-node case.aApartial sphere-cut decomposition of the graph skel(μ)∪(sμ, tμ)

rooted at the edge (sμ, tμ), where μ is an R-node. The nooses are dotted curves. b Outer faces of graphs
skela1 and skela2 . c The graphs defined by the directed paths on the outer face of skela1 and skela2 . d The
auxiliary graph A for skela

Wedenote by Xa the set of all the endpoints of the paths p1, . . . , pk . Let 〈πμ, σμ〉 be
a 2UBE of pert(μ), let a be an arc of T , and let 〈πa, σa〉 be the restriction of 〈πμ, σμ〉
to perta . Further, let 〈π ′

a, σ
′
a〉 �= 〈πa, σa〉 be a 2UBE of perta . The next lemma can be

proved with the same strategy as in the proof of Lemma 5.

Lemma 11 Graph pert(μ) admits a 2UBE 〈π ′
μ, σ ′

μ〉 whose restriction to perta is
〈π ′

a, σ
′
a〉 if the following two conditions hold: 1.the bottom-to-top order of the ver-

tices in Xa is the same in πa as in π ′
a, and 2.for each i = 1, . . . , k, the outer-visibility

triple of pi in �(π ′
a, σ

′
a) is the same as the outer-visibility triple of pi in �(πa, σa).

When visiting T bottom-up, we compute and store in each arc a of T those pairs
(πa, 〈t1, t2, . . . , tk〉), called outer-shape pairs, whereπa is a bottom-to-top order of the
vertices in Xa and ti is an outer-visibility triple for path pi , for i = 1, . . . , k, such that
there exists a 2UBE 〈π, σ 〉 of perta satisfying the following properties: 1. ordering πa

is the restriction of π to Xa and 2. ti is the outer-visibility triple determined by 〈π, σ 〉
when clockwise traversing the outer face of �(π, σ) between the endpoints of pi . By
Lemma 11, this information is enough to succinctly describe all the relevant properties

123

3550 Algorithmica (2023) 85:3521–3571

of the 2UBEs of perta . Moreover, by Property 3 skela∗ = skel(μ) is bounded by two
directed paths p1 and p2 whose end-vertices are sμ and tμ. Thus, when we reach the
arc a∗, all the embedding types that are realizable by pert(μ) can be computed by
inspecting the outer-visibility triples t1 and t2, over all outer-shape pairs (πa, 〈t1, t2〉)
stored in a∗.

Next, we show how to compute all outer-shape pairs (πa, 〈t1, t2, . . . , tk〉), for each
arc a ∈ T .

Suppose a leads to a leaf � of T such that ξ(�) = (u, v). Assume that perta is
oriented from u to v and that the clockwise boundary of skela is composed by the
upward path p1 = u, v and the downward path p2 = v, u, the other case being
analogous. Then, all the outer-shape pairs (πa, 〈t1, t2〉) for a are such that πa = u, v,
since perta is an uv-graph. Let μ� be the child of μ in the SPQR-tree T associated
with the virtual edge (u, v). We compute the outer-visibility triples t1 = 〈α, ϕ, γ 〉
and t2 = 〈α′, ϕ′, γ ′〉 for p1 and p2, respectively, starting from the embedding types
realizable by μ�, as follows. For each embedding type 〈s_vis, spine_vis, t_vis〉 of
the node μ� we define t1 and t2 as follows. If s_vis = L , we set α = true and
α′ = f alse. If s_vis = R we set α = f alse and α′ = true. If s_vis = N we set
both α = α′ = f alse. Analogously, we set ϕ and ϕ′ according to the value of t_vis.
We set γ = true if spine_vis = B or spine_vis = L . Otherwise, we set γ = f alse.
Finally, we set γ ′ = true if spine_vis = B or spine_vis = R. Otherwise, we set
γ ′ = f alse.

Suppose now that a leads to a non-leaf node λ of T . Then, λ has two children λ1 and
λ2, reached by two arcs a1 and a2 of T , for which we have already computed all the
outer-shape pairs. We are going to use the following observation, which follows from
the planarity of skel(μ) and from the fact that the nooses are pairwise non-crossing.

Observation 1 Let 〈πμ, σμ〉 be a 2UBE of skel(μ), and let 〈πa1 , σa1〉 and 〈πa2 , σa2〉 be
the 2UBEs of skela1 and skela2 , respectively, determined by 〈πμ, σμ〉. The following
two properties hold: 1. the edges of skela1 lie in the outer face of the drawing obtained
by restricting �(πμ, σμ) to skela2 , and vice versa, and 2. the edges of skela1 and skela2
do not interleave around a vertex in �(πμ, σμ).

For i = 1, 2, let Ai = (Vi , Ei) be the auxiliary (multi)-graph of pertai defined
as follows. Initialize Vi = Xai and add to Ei a directed edge (u, v) for each path p
directed from u to v traversed when clockwise visiting the outer face of skelai ; see
Fig. 14c. Then, replace each directed edge (u, v) with a directed path (u, x ′, x ′′, v),
unless (u, v) is an edge in G. Clearly, graph Ai is connected. Note that, there exists a
one-to-one correspondence between the directed paths along the outer face of skelai
(see Fig. 14b) and the directed paths along the outer face of Ai (see Fig. 14c). We have
that each 2UBE of Ai defines a set 〈t1, . . . , tki 〉, where ti is an outer-visibility triple
describing the visibility of each directed path along the outer face of Ai in the 2UBE.
We define a new graph A as the union of A1 and A2; see Fig. 14d. The purpose of graph
A is that of representing the visibility of the spine on the outer face of perta between
pairs of vertices in Xa in a 2UBE of perta . In particular, by assigning to the faces of
the book embedding the three edges that replace each directed path pi along the outer
face of perta , we are able to model the outer-visibility triples of paths p1, . . . , pk . We
compute all outer-shape pairs 〈πa, 〈t1, . . . , tk〉〉 for a using Algorithm 1.

123

Algorithmica (2023) 85:3521–3571 3551

Algorithm 1 Procedure to compute the outer-shape pairs of an arc a ∈ T .
Step 1 Construct, by brute force, the set U of all the 2UBEs 〈πA, σA〉 of A.
Step 2 Let U∗ be the subset of the 2UBEs 〈πA, σA〉 ∈ U such that the drawing of A1 lies in the outer face
of the drawing of A2 in �(πA, σA), and vice versa, and the edges of these graphs do not interleave around
a vertex.
Step 3 For each 2UBE 〈πA, σA〉 ∈ U∗ of A, perform the following operations:

Step 3.a Let 〈πAi , σAi 〉 be the 2UBE of Ai obtained by restricting 〈πA, σA〉 to Ai . Visit clockwise

the outer face of �(πAi , σAi) of Ai to compute the sequence 〈t i1, . . . , t iki 〉 of the outer-visibility triples
of the maximal directed paths between the vertices in Xai .

Step 3.b If the set of outer-shape pairs stored in a1 contains 〈πa1 , 〈t11 , . . . , t1k1
〉〉 and the set of outer-

shape pairs stored in a2 contains 〈πa2 , 〈t21 , . . . , t2k2
〉〉, then compute a pair 〈πa , 〈t1, . . . , tk 〉〉 for a as

follows:
Step 3.b.1 Set πa as the restriction of πA to the vertices in Xa ⊆ V (A);
Step 3.b.2 Visit clockwise the outer face of �(πA, σA) to compute the sequence 〈t i1, . . . , t iki 〉 of
the outer-visibility triples of the maximal directed paths between the vertices in Xa .

We now prove Lemma 9, which we restate for the reader’s convenience.

Lemma 9 Let μ be an R-node with k children and whose skeleton has branchwidth fi.
The set of embedding types realizable by pert(μ) can be computed in 2O(fi log fi) · k
time, both in the fixed and in the variable embedding setting, provided that a sphere-cut
decomposition 〈T , ξ,�〉 of width β of skel+(μ) is given.

Proof We exploit Algorithm 1 on the arcs of T to compute their outer-shape pairs. As
already observed, this allows us to compute the embedding types realizable by pert(μ)

from the outer-shape pairs of the arc a∗ incident to the root ρ of T . The correctness
of Algorithm 1 descends from Lemma 4, Lemma 11 and Observation 1.

We argue about the running time of Algorithm 1 for a given arc a of Tμ. Note
that the auxiliary graph A corresponding to a contains O(β) vertices, by Lemma 10,
and O(β) edges, since it is planar. First, the running time of Step 1 is bounded by the
number of possible 2UBEs of A. By enumerating all the |V (A)|! ∈ O(β!) ∈ 2O(β logβ)

linear orders of V (A) and all the 2|E(A)| ∈ 2O(β) edge assignments for E(A), we may
construct 2O(β logβ) 2UBEs of A. Step 2 is also bounded by the numbers of 2UBEs
of A, as testing whether the conditions of Observation 1 are satisfied by each such a
2UBE can be performed in time linear in the size of A, i.e., O(β) time. Clearly, for
each of the 2UBEs of A considered at Step 3, the remaining steps of Algorithm 1
can also be performed in O(β) time. Thus, Algorithm 1 runs in 2O(β logβ) time. The
overall running time for computing the embedding types of an R-node μ follows from
the fact that tree T contains O(k) nodes and arcs, since it is a binary tree whose leaves
are the k virtual edges of skel(μ), and from the time spent to compute the outer-shape
pairs for each arc of T , i.e., the running time of Algorithm 1.
�

6.5 Computing the Embedding Types when� is a P-node

We show how to efficiently compute the set of embedding types realizable by the
pertinent graph of a P-node. The fixed and variable embedding settings are treated in
Subsection 6.5.1 and Subsection 6.5.2, respectively.

123

3552 Algorithmica (2023) 85:3521–3571

Fig. 15 Solid lines represent
rejection cases when x ∈ {N , L}
and a ∈ {N , R}

6.5.1 P-nodes: Fixed Embedding

Let μ be a P-node with poles sμ and tμ and let μ1, μ2, . . . , μk be the children of μ in
the left-to-right order defined by the given embedding of G.

Let skeli (μ) and perti (μ) be the subgraphs of skel(μ) and of pert(μ), respectively,
determined by the children μ1, μ2, . . . , μi of μ (1 ≤ i ≤ k). Since pert1(μ) =
pert(μ1), the set X1 of embedding types that are realizable by pert1(μ) are those that
are realizable by pert(μ1). For i = 2, . . . , k, we can compute the set Xi of embedding
types that are realizable by perti (μ) as follows. We consider each embedding type
〈x, y, z〉 ∈ Xi−1 and each embedding type 〈a, b, c〉 that is realizable by pert(μi), and
we either reject the pair, if no embedding type can be obtained by composing 〈x, y, z〉
and 〈a, b, c〉, or compute an embedding type 〈p, q, w〉 for perti (μ), which we add to
Xi . The sequence of the two tests is described below.

Rejection:

• If x ∈ {N , L} and a ∈ {N , R}, we reject the pair (refer to Fig. 15).
• If z ∈ {N , L} and c ∈ {N , R}, we reject the pair.
• If y ∈ {N , L}, we reject the pair unless μi is a Q-node (which admits Type

-〈L, L, L〉). In fact, ifμi is not a Q-node, pert(μi) contains at least a vertex differ-
ent from sμ and from tμ that has to be placed on the spine to the right of perti−1(μ)

and between sμ and tμ. However, in a 2UBE of perti−1(μ) of Type 〈x, y, z〉 with
y ∈ {L, N }, there exists no portion of the spine between sμ and tμ that is visible
from the right page.

• If b ∈ {N , R}, by a similar argument as in the previous case, we reject the pair
unless i = 2 and μ1 is a Q-node (which admits Type -〈R, R, R〉).

Observe that after the above rejections either μi or perti−1(μ) are single edges, or all
the conditions below hold:

• x = R or a = L (refer to Fig. 15).
• z = R or c = L .
• y /∈ {N , L}.
• b /∈ {N , R}.

Embedding Types for perti (μ):
Regarding p: If x = a (i.e., both are L or both are R) then p = x , otherwise (either
x = N , or a = N , or x = R and a = L) p = N .
Regarding w: If z = c (i.e., both are L or both are R) then w = z, otherwise (either
z = N , or c = N , or z = R and c = L) w = N .
Regarding q:

123

Algorithmica (2023) 85:3521–3571 3553

• If y ∈ {N , L} (and, thus, μi is a Q-node) then q = y.
• If y = R and b = L then q = N . If y = R and b = B then q = R. If y = R and
b = R (i = 2 and μ1 is a Q-node, which admits Type -〈R, R, R〉) then q = R.

• If y = B (observe that, since perti−1(μ) is not a single edge, b ∈ {L, B}) then
q = b.

Since the set of rules above defines the set Xk of embedding types realizable by
pertk(μ) = pert(μ) and since the above computations can easily be performed in time
linear in the number of children of μ, we obtain Lemma 7.

6.5.2 P-nodes: Variable Embedding

Let μ be a P-node with poles sμ and tμ, and with children μ1, . . . , μk . A 2UBE
γ of pert(μ) is obtained by choosing a permutation for the children of μ, a 2UBE
γi for each child μi (i = 1, . . . , k), and a bottom-to-top order of the vertices of
pert(μ) whose restriction to each μi corresponds to the bottom-to-top order of the
vertices in γi ; the embedding types that are realizable for μ depend on the embed-
ding types that are realizable for its children. Our approach to compute the realizable
types of pert(μ) consists of considering one type at a time for μ. For each embedding
type, we check whether the children of μ, together with their realizable embedding
types, can be arranged in a finite number of families of permutations (which we
prove to be a constant number) so to yield a 2UBE of the considered embedding
type. In order to ease the following description, consider that the arrangements of
the children for obtaining some embedding types can be easily derived from the
arrangements to obtain the horizontally-mirrored ones by (i) reversing the left-to-
right sequence of the children in the construction and (ii) by taking, for each child,
the horizontally-mirrored embedding type; for instance, the arrangements to construct
a 2UBE of Type -〈L, L, N 〉 can be obtained from the ones to construct a 2UBE
of Type -〈R, R, N 〉, and vice versa. Moreover, two embedding types, namely Type
-〈N , B, N 〉 and Type -〈N , N , N 〉, are (horizontally) self-symmetric. As a conse-

quence, in order to consider all the embedding types that are realizable by pert(μ) we
describe how to obtain only ten “relevant” embedding types (enclosed by a solid poly-
gon in Fig. 12): -〈N , R, R〉, -〈L, B, R〉, -〈R, B, R〉, -〈R, R, R〉, -〈N , B, R〉,
-〈R, B, N 〉, -〈N , B, N 〉, -〈R, R, N 〉, -〈N , R, N 〉, and -〈N , N , N 〉.
In this section, we give necessary and sufficient conditions under which the perti-

nent graph of a P-node admits Type -〈N , R, R〉. Then, we show how to test these
conditions efficiently by exploiting a suitably defined flow network. The conditions
for the remaining relevant embedding types, which can be tested similarly to Type
-〈N , R, R〉, are reported in Appendix A.

Conditions for Type -〈N , R, R〉 . Let μ be a P-node. We define the following two
cases based on the existence of a child of μ that admits Type -〈N , R, R〉:
NRR.1 The children of μ can be partitioned into two sets: The first set consists of a
(possiblymissing)Q-node child and a child that admits Type -〈N , R, R〉. The second
set consists of any number (possibly zero) of children that admit Type -〈L, B, R〉.
NRR.2 The children of μ can be partitioned into three sets: The first set consists
either of a Q-node child, or of a non-Q-node child that admits Type -〈R, R, R〉, or

123

3554 Algorithmica (2023) 85:3521–3571

Fig. 16 a-b Cases NRR.1 and NRR.2 of Lemma 12 for a P-node μ that admits Type -〈N , R, R〉. The
spine is colored either green, blue, or black. The green part is the portion of the spine that is visible from
the right, the black parts correspond to the bottom-to-top sequences of the vertices of pert(μ) inherited
from the 2UBEs of the children of μ (restricted to the vertices different from sμ and from tμ), the blue
parts join sequences inherited from different children. c Capacitated flow network N with edge demands
corresponding to illustration b

both. The second set consists of any number (possibly zero) of children that admit
Type -〈R, B, R〉. The third set consists of any positive number of children that
admit Type -〈N , B, R〉 or Type -〈L, B, R〉, with at most one admitting only Type
-〈N , B, R〉.

Lemma 12 A P-node μ admits Type -〈N , R, R〉 in the variable embedding setting
if and only if Case NRR.1 or Case NRR.2 holds.

Proof Letμ1, . . . , μk be the children ofμ. About the necessity, suppose thatμ admits
a 2UBE γ of Type -〈N , R, R〉 and denote by γi the restriction of γ to μi . At most
one γi can be of Type 〈N , ·, ·〉 and all of them must be of Type 〈·, ·, R〉. Therefore, all
of the γi must be of Type 〈R, R, R〉, or 〈N , R, R〉 or 〈·, B, R〉. It follows that either
one of the γi has Type -〈N , R, R〉 (Case NRR.1) or one has Type -〈N , B, R〉, or
none of the two (Case NRR.2). In Case NRR.1, there is nothing else to be proved
for the necessity. In Case NRR.2, one of γi corresponds to a Q-node and has Type
-〈R, R, R〉, or it corresponds to a non-Q-node and has Type -〈R, R, R〉, or both

because otherwise γ would be of Type 〈·, B, R〉; further one of the γi must have Type
-〈N , B, R〉 or -〈L, B, R〉, because otherwise γ would be of Type 〈R, ·, R〉.
For the sufficiency, we consider the two cases separately. In Case NRR.1 we order

the children of μ so that from left to right we have the possible Q-node child, if any,
followed by the unique child that admits Type -〈N , R, R〉, followed by the children
that admit Type -〈L, B, R〉 in any order; see Fig. 16a. In Case NRR.2 we order the
children of μ so that from left to right we have the possible Q-node child, if any,
followed by the possible non-Q-node child that admits Type -〈R, R, R〉, followed by
the children that admit Type -〈R, B, R〉 in any order, followed by the possible child
that admits only Type -〈N , B, R〉, if any, followed by the children that admit Type
-〈L, B, R〉 in any order, if any; see Fig. 16b.
Assume that μ1, μ2, . . . , μk are ordered as defined above, according to the two

cases NRR.1 and NRR.2. We show that such an ordering of the children of μ can be
used to construct a 2UBE of pert(μ) of Type -〈N , R, R〉. For each μi let 〈π i , σi 〉 be

123

Algorithmica (2023) 85:3521–3571 3555

a 2UBE of pert(μi) of the type of interest (i.e. the one considered in the description
of the ordering); if μ1 is a Q-node, then we consider 〈π1, σ1〉 of Type -〈R, R, R〉,
i.e., σ1

(

(sμ, tμ)
) = L . We denote by πi the restriction of π i to the vertices of pert(μ)

different from sμ and from tμ. We now describe how to construct a 2UBE 〈π, σ 〉 of
pert(μ). In both cases NRR.1 and NRR.2, the assignment σ of the edges of pert(μ)

to the two pages is the one determined by the assignments σi , that is, σ(e) = σi (e) if
e ∈ pert(μi). The bottom-to-top ordering π of the vertices of pert(μ) is constructed
in a different way in the two cases NRR.1 (see Fig. 16a) and NRR.2 (see Fig. 16b).

In Case NRR.1, π is constructed as sμ, π1, π2, . . . , πk, tμ. In Case NRR.2, the chil-
dren ofμwhose 2UBEs have Type -〈R, B, R〉 or Type -〈N , B, R〉 are consecutive
in the left-to-right sequence of the children of μ. Let μp, . . . , μq be the subsequence
formed by these children, with 2 ≤ p ≤ q ≤ k. For each child μi , i = p, . . . , q, by
the definition of Type -〈R, B, R〉 and Type -〈N , B, R〉, there exist two consecutive
vertices v′ and v′′ in πi such that the portion of the spine between them is visible from
the left. Therefore, we can split πi into two subsequences π ′

i and π ′′
i where v′ ∈ π ′

i and
v′′ ∈ π ′′

i . Letμ
∗ be the possible child ofμwhose 2UBE has Type -〈R, R, R〉. Order-

ing π is constructed as sμ, π ′
p, π

′
p+1, . . . , π

′
q , π

∗, π ′′
q , π ′′

q−1, . . . , π
′′
p, πq+1, . . . πk, tμ,

where π∗ = ∅ if μ∗ does not exist. In both Case NRR.1 and Case NRR.2, 〈π, σ 〉 is of
a 2UBE of pert(μ) of Type -〈N , R, R〉.
�

To testwhether pert(μ) admits a 2UBEofType -〈N , R, R〉, we show that deciding
if one of Case NRR.1 or Case NRR.2 of Lemma 12 applies can be reduced to a flow
problem on a network N with edge demands.

We describe the construction of N for Case NRR.2 (refer to Figs. 16b and 16c);
the construction for Case NRR.1 is similar. NetworkN is a capacitated flow network
where each arc e has a label [l, u], where l and u are the lower and upper capacity of
arc e. In particular, N contains a source s; a sink t ; a node μi for each child μi of
μ; a node τ ∈ { -〈R, R, R〉, -〈R, R, R〉, -〈R, B, R〉, -〈N , B, R〉, -〈L, B, R〉},
representing each embedding type used in constructing the sequence of Case NRR.2;
and two special nodes ν1 and ν2. Network N contains the following arcs: (s, μi)

with label [1, 1], for i = 1, . . . , k; an arc (μi , τ) with label [0, 1], for each type τ

for which pert(μi) admits a 2UBE of Type τ ; an arc (-〈R, R, R〉, ν1) with label
[0, 1]; an arc (-〈R, R, R〉, ν1) with label [0, 1]; an arc (ν1, t) with label [1, 2]; an
arc (-〈R, B, R〉, t) with label [0,∞]; an arc (-〈R, B, R〉, ν2) with label [0, 1]; an
arc (-〈L, B, R〉, ν2) with label [0,∞]; and an arc (ν2, t) with label [1,∞]. The size
of N is linear in the number k of children of μ, because the outdegree of nodes μi

is bounded by the number of embedding types, s has outdegree k, and the remaining
nodes have outdegree at most 1.

Clearly, a sequence corresponding to Case NRR.2 exists if and only if N admits
a feasible flow, which has value k. Testing the existence of a feasible flow can be
reduced in linear time to a max-flow problem [74]. We solve this problem by applying
the standard max-flow algorithm by Ford-Fulkerson, which runs in O(|E(N)| × f),
where f is the value of the maximum flow. Since |E(N)| ∈ O(k) and f = k, deciding
the existence of a 2UBE of Type -〈N , R, R〉 of pert(μ) takes O(k2), which proves
Lemma 8 for the case -〈N , R, R〉.

123

3556 Algorithmica (2023) 85:3521–3571

7 Conclusion and Open Problems

Our results provide significant advances on the complexity of the kUBE Testing
problem, i.e., deciding whether a directed graph admits a k-page book embedding. For
k ≥ 3 we showed that the problem is NP-hard; for k = 2 we described polynomial-
time and FPT algorithms for notable families of planar st-graphs. We conclude with
some open problems.

OP1. The digraphs in our NP-completeness proof are not upward planar. Since there
are upward planar digraphs that do not admit a 3UBE [72], one can ask whether
the kUBE Testing problem remains NP-complete for k ≥ 3 and upward planar
digraphs. Observe that this question has been solved for k = 2, as it is known
that 2UBE Testing is NP-complete for planar st-graphs, which are upward
planar [42].

OP2. A natural extension of ourwork is to investigate other families of planar digraphs
for which a 2UBE always exists or for which polynomial-time testing algorithms
can be devised.

OP3. The complexity of our algorithm to test the existence of a 2UBE for graphs
with bounded branchwidth is dominated by the time complexity of computing
a sphere-cut decomposition. This motivates the research of more efficient algo-
rithms to compute a sphere-cut decomposition.

Acknowledgements The research of this work began at the Bertinoro Workshop on Graph Drawing 2018.
The research has been partially supported by the following projects: (i) “Algoritmi e sistemi di analisi
visuale di reti complesse e di grandi dimensioni” – Ricerca di Base 2018, Dipartimento di Ingegneria
dell’Università degli Studi di Perugia. (i i)MIUR Project “AHeAD” under PRIN 20174LF3T8, (i i i)MIUR
Project “MODE” under PRIN 20157EFM5C, (iv)MIUR-DAAD JMP N◦ 34120, (v)H2020-MSCA-RISE
project 734922 – “CONNECT”, (vi) Roma Tre University Azione 4 Project “GeoView”.

Funding Open access funding provided by Università degli Studi di Perugia within the CRUI-CARE
Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A P-nodes: Variable Embedding - Missing Cases from Sub-
section 6.5.2

In this section, we give necessary and sufficient conditions under which a P-
node admits one of the relevant embedding types -〈L, B, R〉, -〈R, B, R〉,
-〈R, R, R〉, -〈N , B, R〉, -〈R, B, N 〉, -〈N , B, N 〉, -〈R, R, N 〉, -〈N , R, N 〉,

123

Algorithmica (2023) 85:3521–3571 3557

http://creativecommons.org/licenses/by/4.0/

Fig. 17 Constructions for P-nodes of Type -〈L, B, R〉, -〈R, B, R〉, and -〈R, R, R〉

and -〈N , N , N 〉. The conditions for -〈N , R, R〉 are discussed in Subsection 6.5.2.
The mentioned embedding types are enclosed by a solid polygon in Fig. 12.

Conditions for Type -〈L, B, R〉, Type -〈R, B, R〉, and Type -〈R, R, R〉.
Lemma 13 (Type -〈L, B, R〉) A P-node μ admits Type -〈L, B, R〉 in the variable
embedding setting if and only if all of its children admit Type -〈L, B, R〉.
Proof For the necessity, let γ be any 2UBE of pert(μ) of Type -〈L, B, R〉. Letμ∗ be
any child ofμ and let γ ∗ be the 2UBE of pert(μ∗) obtained by restricting γ to pert(μ∗).
Since γ is of Type -〈L, B, R〉, there exist in γ ∗: (i) a portion of the spine incident
to sμ and between sμ and tμ that is visible from the left page, and (ii) a portion of the
spine incident to tμ and between sμ and tμ that is visible from the right page. Thus,
γ ∗ has Type -〈L, B, R〉, i.e., μ∗ admits Type -〈L, B, R〉. For the sufficiency, we
order the children of μ arbitrarily; see Fig. 17a for an example. Clearly, the resulting
2UBE of pert(μ) is of Type -〈L, B, R〉.

�
The next lemma is proved similarly to Lemma 13; see Fig. 17b for an example.

Lemma 14 (Type -〈R, B, R〉) A P-node μ admits Type -〈R, B, R〉 in the variable
embedding setting if and only if all of its children admit Type -〈R, B, R〉.
Lemma 15 (Type -〈R, R, R〉) A P-node μ admits Type -〈R, R, R〉 in the variable
embedding setting if and only if it is possible to partition the children of μ into two
sets as follows: The first set consists either of a Q-node child ω or of a child ξ that
admits Type -〈R, R, R〉, or both; the second set consists of any number, possibly zero,
of children admitting Type -〈R, B, R〉.
Proof The necessity is easy to see. In fact, for any child μi of μ, the restriction of a
2UBE of pert(μ) of Type -〈R, R, R〉 to pert(μi) is either of Type -〈R, R, R〉 or
of Type -〈R, B, R〉. Also, a 2UBE of Type -〈R, R, R〉 for pert(μ) is incompatible
with more than one 2UBE of Type -〈R, R, R〉 for its children, unless one of them is
a single edge. If no child ofμ is such that the 2UBE of pert(μ) is of Type -〈R, R, R〉,
then the 2UBE of pert(μ) would have Type -〈R, B, R〉.

123

3558 Algorithmica (2023) 85:3521–3571

Fig. 18 Constructions for
P-nodes of Type -〈N , B, R〉

About the sufficiency: we order the children of μ so that from left to right we have:
the Q-node ω, if any, with Type -〈R, R, R〉, followed by ξ , if any, followed by the
remaining children of μ in any order; see Fig. 17c.
�

Conditions for Type -〈N , B, R〉 . Let μ be a P-node, we define two cases:

NBR.1 All children of μ admit either Type -〈L, B, R〉 or Type -〈R, B, R〉, and
there exist at least a child that admits Type -〈L, B, R〉 and a child that admits Type
-〈R, B, R〉.

NBR.2 There exists a child of μ that admits Type -〈N , B, R〉 and all other children
admit either Type -〈L, B, R〉 or Type -〈R, B, R〉.
Lemma 16 (Type -〈N , B, R〉) A P-node μ admits Type -〈N , B, R〉 in the variable
embedding setting if and only if Case NBR.1 or NBR.2 holds.

Proof It is easy to see that these conditions are necessary. In fact, for any child μi of
μ, the restriction of a 2UBE of pert(μ) of Type -〈N , B, R〉 to pert(μi) is clearly
of Type 〈X , B, R〉, with X ∈ {R, L, N }, since a 2UBE of pert(μ) of type 〈S, B, T 〉
implies that the embeddings of the 2UBEs of the pertinent graphs of all children of μ

must be of type 〈S′, B, T ′〉, with S, S′, T , T ′ ∈ {R, L, N }.
For the sufficiency, both in Case NBR.1 and in Case NBR.2 we order the children

from left to right in such a way that children with 2UBEs of Type -〈R, B, R〉 precede
all children with 2UBEs of Type -〈L, B, R〉; see Figs.18a,18b. In Case NBR.2, the
child with 2UBE of Type -〈N , B, R〉 is placed between the last child with 2UBE of
Type -〈R, B, R〉, if any, and the first child with 2UBE of Type -〈L, B, R〉, if any;
see Fig. 18b.
�

Conditions for Type -〈R, B, N 〉 . Let μ be a P-node, we define two cases:

RBN.1 All children of μ admit either Type -〈R, B, L〉 or Type -〈R, B, R〉, and
there exist at least a child that admits Type -〈R, B, L〉 and a child that admits Type
-〈R, B, R〉.

123

Algorithmica (2023) 85:3521–3571 3559

RBN.2 There exists a child of μ that admits Type -〈R, B, N 〉 and all other children
admit either Type -〈R, B, L〉 or Type -〈R, B, R〉.
Lemma 17 (Type -〈R, B, N 〉) A P-node μ admits Type -〈R, B, N 〉 in the variable
embedding setting if and only if Case RBN.1 or RBN.2 holds.

Proof Cases RBN.1 and RBN.2 are symmetric to Cases NBR.1 and NBR.2, i.e., they
can be obtained from Cases NBR.1 and NBR.2 after a vertical flip of the realizable
embedding types of the children of μ. Thus, the necessity and sufficiency proofs are
symmetric to those presented in Lemma 16.
�
Conditions for Type -〈N , B, N 〉 . Let μ be a P-node. We define six cases:

NBN.1 There exists a child of μ that admits Type -〈N , B, N 〉 and the other children
admit either Type -〈R, B, R〉 or Type -〈L, B, L〉.
NBN.2 It is possible to partition the children of μ into three sets as follows. The first
set consists of at least one child that admits Type -〈R, B, R〉 or Type -〈N , B, R〉,
with at most one child that admits only Type -〈N , B, R〉. The second set consists of
any number, even zero, of children that admit Type -〈L, B, R〉. The third set consists
of at least one child that admits Type -〈L, B, N 〉 or Type -〈L, B, L〉, with at most
one child that admits only Type -〈L, B, N 〉.
NBN.3 This case is obtained from Case NBN.2 by considering the types admitted by
its children after a vertical flip.

NBN.4–NBN.6 These cases are obtained from Cases NBN.1–NBN.3, respectively, by
considering the horizontally-mirrored embedding types for the children of μ.

Lemma 18 (Type -〈N , B, N 〉) A P-nodeμ admits Type -〈N , B, N 〉 in the variable
embedding setting if and only if at least one of Cases NBN.1–NBN.6 holds.

Proof Since Type -〈N , B, N 〉 is self-symmetric, we have that, for each case NBN.1–
NBN.3, we can obtain a symmetric one (i.e., cases NBN.4–NBN.6) by reversing the
left-to-right sequence of the children in the construction and by taking, for each child,
the horizontally-mirrored embedding type. Thus, for each pair of symmetric cases, we
only describe one of them.

For the sufficiency, we consider the three cases separately. In Case NBN.1we order
the children of μ so that from left to right we have the children that admit Type
-〈R, B, R〉 (if any), in any order, followed by the unique child that admits Type
-〈N , B, N 〉, followed by the children that admit Type -〈L, B, L〉 (if any), in any

order; see Fig. 19a. In Case NBN.2 we order the children of μ so that from left to
right we have the possible children that admit Type -〈R, B, R〉 (if any), in any order,
followed by the possible child that admits only Type -〈N , B, R〉 (if any), followed
by the possible children that admit Type -〈L, B, R〉 (if any), in any order, followed
by the possible child that admits only Type -〈L, B, N 〉 (if any), followed by the
possible children that admit Type -〈L, B, L〉 (if any), in any order (see Fig. 19b). In
Case NBN.3 we proceed as in Case NBN.2 by considering the types after a vertical
flip. Clearly, these orderings allow for a 2UBE of pert(μ) of Type -〈N , B, N 〉.

The necessity can be argued by considering that in any 2UBE γ of pert(μ) of Type
-〈N , B, N 〉 the following hold: at most one of the restrictions of γ to the children

123

3560 Algorithmica (2023) 85:3521–3571

Fig. 19 Constructions for
P-nodes of Type -〈N , B, N 〉

of μ is of Type 〈N , ·, ·〉; at most one of the restriction of γ to the children of μ is of
Type 〈·, ·, N 〉; and all the restrictions of γ to the children of μ are of Type 〈·, B, ·〉.
�
Conditions for Type -〈R, R, N 〉 . Let μ be a P-node. We define two cases:

RRN.1 The children of μ can be partitioned into two sets: The first set consists either
of a Q-node child or of a child that admits Type -〈R, R, N 〉, or both. The second set
consists of any number, even zero, of children that admit Type -〈R, B, L〉.
RRN.2 The children of μ can be partitioned into three sets: The first set consists
either of a Q-node child or of a non-Q-node child that admits Type -〈R, R, R〉, or
both. The second part consists of any number, even zero, of children that admit Type
-〈R, B, R〉. The third set consists of at least one child that admits Type -〈R, B, N 〉

or Type -〈R, B, L〉, with at most one child that admits only Type -〈R, B, N 〉.
Lemma 19 (Type -〈R, R, N 〉) A P-node μ admits Type -〈R, R, N 〉 in the variable
embedding setting if and only if Case RRN.1 or Case RRN.2 holds.

Proof Observe that CasesRRN.1 and RRN.2 are symmetric toCasesNRR.1 andNRR.2
(seeLemma12), i.e., they can be obtained fromCasesNRR.1 andNRR.2 after a vertical
flip of the types of the children. The necessity and sufficiency proofs are symmetric
to those presented in Lemma 12.
�

Conditions for Type -〈N , R, N 〉 . Let μ be a P-node, we define six cases:

NRN.1 There exists a child that admits Type -〈N , R, N 〉 and the other non-Q-node
children admit Type -〈L, B, L〉.
NRN.2 It is possible to partition the children of μ into three sets as follows. The first
set consists either of a Q-node child or of a child that admits Type -〈R, R, N 〉, or
both. The second set consists of any number, even zero, of children that admit Type
-〈R, B, L〉. The third set consists of at least one child that admits Type -〈N , B, L〉

or Type -〈L, B, L〉, with at most one child that admits only Type -〈N , B, L〉.
NRN.3This case is obtained fromCaseNRN.2 by considering the types of the children
of μ after a vertical flip.

123

Algorithmica (2023) 85:3521–3571 3561

Fig. 20 Constructions for P-nodes of Type -〈N , R, N 〉

NRN.4 It is possible to partition the children ofμ into two sets as follows. The first set
consists either of aQ-node child or of a non-Q-node child that admitsType -〈R, R, R〉,
or both. The second set consists of at least one child that admits Type -〈N , B, N 〉 or
Type -〈L, B, L〉, with at most one child that admits only Type -〈N , B, N 〉.
NRN.5 It is possible to partition the children of μ into three sets as follows. The
first set consists either of a Q-node child or of a non-Q-node child that admits Type
-〈R, R, R〉, or both. The second set consists of any number, even zero, of children

that admit Type -〈N , B, R〉 or Type -〈L, B, R〉, with at most one child that admits
only Type -〈N , B, R〉. The third set consists of at least one child that admits Type
-〈L, B, N 〉 or Type -〈L, B, L〉, with at most one child that admits only Type
-〈L, B, N 〉.

NRN.6This case is obtained fromCaseNRN.5 by considering the types of the children
of μ after a vertical flip.

Lemma 20 (Type -〈N , R, N 〉) A P-nodeμ admits Type -〈N , R, N 〉 in the variable
embedding setting if and only if one of Cases NRN.1–NRN.6 holds.

Proof For the sufficiency, we consider the six cases separately. In Case NRN.1 we
order the children of μ so that from left to right we have the Q-node child (if any),
with Type -〈R, R, R〉, followed by the unique Type -〈N , R, N 〉 child, followed by
the Type -〈L, B, L〉 children (if any), in any order; see Fig. 20a.

In Case NRN.2 we order the children of μ so that from left to right we have the
Q-node child (if any), with Type -〈R, R, R〉, followed by the Type -〈R, R, N 〉 child
(if any), followed by the Type -〈R, B, L〉 children (if any), in any order, followed
by the unique Type -〈N , B, L〉 child (if any), followed by the Type -〈L, B, L〉
children (if any), in any order; see 20b. In Case NRN.3 we proceed as in Case NRN.2
by considering the types after a vertical flip. In Case NRN.4 we order the children of
μ so that from left to right we have the Q-node child (if any), with Type -〈R, R, R〉,
followed by the Type -〈R, R, R〉 non-Q-node child (if any), followed by the unique
Type -〈N , B, N 〉 child (if any), followed by the Type -〈L, B, L〉 children (if any),
in any order; see Fig. 20c. In Case NRN.5 we order the children of μ so that from
left to right we have the Q-node child (if any), with Type -〈R, R, R〉, followed
by the Type -〈R, R, R〉 non-Q-node child (if any), followed by the unique Type

123

3562 Algorithmica (2023) 85:3521–3571

-〈N , B, R〉 child (if any), followed by the Type -〈L, B, R〉 children (if any), in
any order, followed by the unique Type -〈L, B, N 〉 child (if any), followed by the
Type -〈L, B, L〉 children (if any), in any order; see Fig. 20d. In Case NRN.6 we
proceed as in Case NRN.5 by considering the types after a vertical flip.

The necessity can be argued by considering that in any 2UBE γ of pert(μ) of
Type -〈N , R, N 〉 we have the following: at most one of the restrictions of γ to the
children of μ is of Type 〈N , ·, ·〉; at most one of the restrictions of γ to the children
of μ is of Type 〈·, ·, N 〉; and that all the restrictions of γ on the children of μ must
be of Type 〈·, R, ·〉 or of Type 〈·, B, ·〉. However, not all the restrictions of γ to the
children of μ may be of Type 〈·, B, ·〉 as otherwise the resulting embeddings would
be of Type 〈·, B, ·〉.
�

Conditions for Type -〈N , N , N 〉 . Letμ be a P-node. In order to describe whenμ is
of Type -〈N , N , N 〉, we need to define twenty-six cases.We assume that CaseNNN.i
applies only if Cases NNN.k, with 1 ≤ k ≤ i − 1, do not apply.

NNN.1 There exist two children, one of which is a Q-node and the other admits Type
-〈N , N , N 〉.

NNN.2 It is possible to partition the children of μ into three sets as follows. The first
set consists of a child that admits Type -〈N , R, N 〉; the second set consists either of
a Q-node child or of a non-Q-node child that admits Type -〈R, R, R〉, or both. The
third set consists of any number, even zero, of children that admit Type -〈L, B, L〉.
NNN.3 It is possible to partition the children of μ into five sets as follows. The
first set consists either of a Q-node child or of a non-Q-node child that admits Type
-〈R, R, R〉, or both. The second set consists of any number of children that admit

Type -〈R, B, R〉. The third set consists of a child that admits Type -〈N , B, N 〉.
The fourth set consists of any number of children that admit Type -〈L, B, L〉. The
fifth set consists either of a Q-node child or of a non-Q-node child that admits Type
-〈L, L, L〉, or both.

NNN.4 It is possible to partition the children of μ into four sets as follows. The first
set consists of one child that admits Type -〈R, R, N 〉. The second set consists of
any number of children that admit Type -〈R, B, L〉 or Type -〈L, B, L〉. The third
set consists of at most one child that admits only Type -〈N , B, L〉. The fourth set
consists either of aQ-node child or of a non-Q-node child that admits Type -〈L, L, L〉,
or both.

NNN.5This case is obtained fromCaseNNN.4 by considering the types of the children
of μ after a vertical flip.

NNN.6 There exists a child that admits Type -〈R, R, N 〉, any number of children
that admit Type -〈R, B, L〉, at most one child that admits only Type -〈N , L, L〉,
and at least one child that is either a Q-node or admits Type -〈N , L, L〉.
NNN.7This case is obtained fromCaseNNN.6 by considering the types of the children
of μ after a vertical flip.

NNN.8There exists a child that admitsType -〈R, B, N 〉, atmost one child that admits
only Type -〈N , B, L〉, any number of children that admit Type -〈R, B, R〉, Type
-〈R, B, L〉, or Type -〈L, B, L〉. Furthermore, there exist either a non-Q-node child

123

Algorithmica (2023) 85:3521–3571 3563

Fig. 21 Constructions for P-nodes of Type -〈N , N , N 〉. Subfigures (c) and (d) show the constructions
for Case NNN.3 when there exists no Type -〈R, R, R〉 non-Q-node child and when there exists such a
child, respectively

that admits Type -〈R, R, R〉 or a non-Q-node child that admits Type -〈L, L, L〉, or
both; if only one of such children exists then μ has also a Q-node child.

NNN.9This case is obtained fromCaseNNN.8 by considering the types of the children
of μ after a vertical flip.

NNN.10 There exists a child that admits Type -〈R, B, N 〉, and any number of chil-
dren that admit Type -〈R, B, R〉 or Type -〈R, B, L〉. Furthermore, there exist
either a non-Q-node child that admits Type -〈R, R, R〉 or a child that admits Type
-〈N , L, L〉, or both; if only one of such children exists then μ has also a Q-node

child.

NNN.11 This case is obtained from Case NNN.10 by considering the types of the
children of μ after a vertical flip.

NNN.12 There exists a non-Q-node child that admits Type -〈R, R, R〉, any number
of children that admit Type -〈R, B, R〉 or Type -〈L, B, R〉, and either a Q-node
child or a non-Q-node child that admits Type -〈L, L, L〉, or both.
NNN.13 This case is obtained from Case NNN.12 by considering the types of the
children of μ after a vertical flip.

NNN.14–NNN.26 These cases are obtained from Cases NNN.1–NNN.13, respec-
tively, by considering the types of the children of μ after a horizontal mirroring.

Lemma 21 (Type -〈N , N , N 〉) A P-nodeμ admits Type -〈N , N , N 〉 in the variable
embedding setting if and only if one of Cases NNN.1–NNN.26 holds.

Proof Since Type -〈N , N , N 〉 is self-symmetric, we only need to consider the
CasesNNN.1–NNN.13; theCasesNNN.14–NNN.26being analogous. InCaseNNN.1
we order the children ofμ so that from left to right we have theQ-node child, with Type
-〈R, R, R〉, followed by the Type -〈N , N , N 〉 child; see Fig. 21a. In Case NNN.2

we order the children of μ so that from left to right we have the Type -〈N , R, N 〉
child, followed by the Type -〈L, B, L〉 children (if any), in any order, followed by
the Type -〈L, L, L〉 non-Q-node child (if any), followed by Q-node child (if any),
with Type -〈L, L, L〉; see Fig 21b. In Case NNN.3 we proceed as follows. If there

123

3564 Algorithmica (2023) 85:3521–3571

Fig. 22 Constructions for P-nodes of Type -〈N , N , N 〉. Subfigures (c) and (d) show the constructions
for Case NNN.8 when there exists no Type -〈R, R, R〉 non-Q-node child and when there exists such a
child, respectively

exists no Type -〈R, R, R〉 non-Q-node child, we order the children of μ so that from
left to right we have the Q-node child (which exists by the conditions of the case), with
Type -〈R, R, R〉, followed by the Type -〈R, B, R〉 children (if any), in any order,
followed by the Type -〈N , B, N 〉 child, followed by the Type -〈L, B, L〉 children
(if any), in any order, followed by the Type -〈L, L, L〉 non-Q-node child (which
exists by the conditions of the case). See Fig. 21c. Otherwise (there exists one Type
-〈R, R, R〉 non-Q-node child), we order the children of μ so that from left to right

we have the Type -〈R, R, R〉 non-Q-node child, followed by the Type -〈R, B, R〉
children (if any), in any order, followed by the Type -〈N , B, N 〉 child, followed by
the Type -〈L, B, L〉 children (if any), in any order, followed by the Type -〈L, L, L〉
non-Q-node child (if any), followed by the Type -〈L, L, L〉 Q-node child, if any. See
Fig.21d. In Case NNN.4 we order the children of μ so that from left to right we have
the Type -〈R, R, N 〉 child, followed by the Type -〈R, B, L〉 children (if any), in
any order, followed by the Type -〈N , B, L〉 child (if any), followed by the Type
-〈L, B, L〉 children (if any), in any order, followed by the Type -〈L, L, L〉 non-Q-

node child (if any), followed by the Type -〈L, L, L〉 Q-node child (if any). See Fig.
22a. In Case NNN.5 we proceed as in Case NNN.4 by considering the types after a
vertical flip. In Case NNN.6 we order the children of μ so that from left to right we
have the Type -〈R, R, N 〉 child, followed by any number of Type -〈R, B, L〉 chil-
dren, followed by the child that admits only Type -〈N , L, L〉 (if any), followed by
the Q-node child (if any), with Type -〈L, L, L〉; see Fig. 22b. In Case NNN.7we pro-
ceed as in Case NNN.6 by considering the types after a vertical flip. In Case NNN.8
we proceed as follows. If there exists no Type -〈R, R, R〉 non-Q-node child, we
order the children of μ so that from left to right we have the Q-node child (which
exists by the conditions of the case), with Type -〈R, R, R〉, followed by the Type
-〈R, B, R〉 children (if any), in any order, followed by the Type -〈R, B, N 〉 child,

followed by the Type -〈R, B, L〉 children (if any), in any order, followed by the
Type -〈N , B, L〉 child (if any) followed by the Type -〈L, B, L〉 children, if any, in
any order, followed by the Type -〈L, L, L〉 non-Q-node child (which exists by the
conditions of the case). See Fig. 22c . Otherwise (there exists one Type -〈R, R, R〉
non-Q-node child), we order the children of μ so that from left to right we have the
Type -〈R, R, R〉 non-Q-node child, followed by the Type -〈R, B, R〉 children (if

123

Algorithmica (2023) 85:3521–3571 3565

Fig. 23 Constructions for P-nodes of Type -〈N , N , N 〉. Subfigures (a) and (b) show the constructions
for Case NNN.10 when there exists no Type -〈R, R, R〉 non-Q-node child and when there exists such a
child, respectively

any), in any order, followed by the Type -〈R, B, N 〉 child, followed by the Type
-〈R, B, L〉 children (if any), in any order, followed by the Type -〈N , B, L〉 child

(if any), followed by the Type -〈L, B, L〉 children (if any), in any order, followed by
the Type -〈L, L, L〉 non-Q-node child (if any), followed by the Q-node child (if any),
with Type -〈L, L, L〉; see Fig. 22d. In Case NNN.9 we proceed as in Case NNN.8
by considering the types after a vertical flip. In Case NNN.10 we proceed as follows.
If there exists no Type -〈R, R, R〉 non-Q-node child, we order the children of μ so
that from left to right we have the Q-node child (which exists by the conditions of the
case), with Type -〈R, R, R〉, followed by the Type -〈R, B, R〉 children (if any), in
any order, followed by the Type -〈R, B, N 〉 child, followed by the Type -〈R, B, L〉
children (if any), in any order, followed by the Type -〈N , L, L〉 child (which exists by
the conditions of the case). See Fig. 23a. Otherwise (there exists one Type -〈R, R, R〉
non-Q-node child), we order the children of μ so that from left to right we have the
Type -〈R, R, R〉 non-Q-node child, followed by the Type -〈R, B, R〉 children (if
any), in any order, followed by the Type -〈R, B, N 〉 child, followed by the Type
-〈R, B, L〉 children (if any), in any order, followed by the Type -〈N , L, L〉 child

(if any), followed by the Q-node child (if any), with Type -〈L, L, L〉. See Fig. 23b. In
Case NNN.11we proceed as in Case NNN.10 by considering the types after a vertical
flip. In Case NNN.12 we order the children of μ so that from left to right we have the
non-Q-node Type -〈R, R, R〉 child, followed by the Type -〈R, B, R〉 children (if
any), in any order, followed by the Type -〈L, B, R〉 children (if any), in any order,
followed by the Type -〈L, L, L〉 non-Q-node child (if any), followed by the Q-node
child (if any), with Type -〈L, L, L〉; see Fig. 23c. In Case NNN.13 we proceed as in
Case NNN.12 by considering the types after a vertical flip.

The necessity can be argued by considering that in any 2UBE γ of pert(μ) of Type
-〈N , N , N 〉we have the following: at most one of the restriction of γ to the children

of μ is of Type 〈N , ·, ·〉 and at most one of the restrictions of γ to the children of μ is
of Type 〈·, ·, N 〉 (notice that these two children may coincide in a single child of Type
〈N , ·, N 〉); at most one of the restriction of γ to the non-Q-node children of μ is of
Type 〈L, L, L〉 and at most one of the restriction of γ to the non-Q-node children of
μ is of Type 〈R, R, R〉.
�

123

3566 Algorithmica (2023) 85:3521–3571

References

1. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: The 2-page crossing
number of Kn . In: T. K. Dey and S. Whitesides, editors, Symposium on Computational Geometry
2012, SoCG ’12, pp. 397–404. ACM, (2012)

2. Akitaya, H.A. , Demaine, E.D., Hesterberg, A., Liu, Q.C.: Upward partitioned book embeddings. In:
F. Frati and K. Ma, editors, GD 2017, volume 10692 of LNCS, pp. 210–223. Springer, (2017)

3. Alam, M.J., Bekos, M.A., Dujmovic, V., Gronemann, M., Kaufmann, M., Pupyrev, S.: On dispersable
book embeddings. Theor. Comput. Sci. 861, 1–22 (2021)

4. Alhashem, M., Jourdan, G., Zaguia, N.: On the book embedding of ordered sets. Ars Combin. 119,
47–64 (2015)

5. Alzohairi, M., Rival, I.: Series-parallel planar ordered sets have pagenumber two. In: S. C. North,
editor, Graph Drawing, GD ’96, volume 1190 of LNCS, pp. 11–24. Springer, (1996)

6. Angelini, P., Bekos, M.A., Didimo, W., Grilli, L., Kindermann, P., Mchedlidze, T., Prutkin, R., Symvo-
nis, A., Tappini, A.: Greedy rectilinear drawings. In: Biedl, T., Kerren, A. (eds.) GD 2018, volume
11282 of LNCS. Springer, (2018)

7. Angelini, P., Chaplick, S., Cornelsen, S., Da Lozzo, G.: On upward-planar L-drawings of graphs. In:
Szeider, S., Ganian, R., Silva, A. (eds.) 47th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages
10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2022)

8. Angelini, P., Da Lozzo, G., Di Battista, G., Donato, V.D., Kindermann, P., Rote, G., Rutter, I.:Windrose
planarity: embedding graphs with direction-constrained edges. AMS Trans. Algorithms 14(4), 54:1-
54:24 (2018)

9. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing for embedded planar graphs.
Algorithmica 77(4), 1022–1059 (2017)

10. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: 2-Level quasi-planarity or how
caterpillars climb (SPQR-)trees. In:Marx, D. editor, Proceedings of the 2021 ACM-SIAMSymposium
on Discrete Algorithms. SODA 2021, Virtual Conference 2021, 2779–2798 (2021). (SIAM, , 10 - 13)

11. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link repre-
sentations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017)

12. Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned book embedding
problems. Theor. Comput. Sci. 575, 71–89 (2015)

13. Angelini, P., Di Bartolomeo, M., Di Battista, G.: Implementing a partitioned 2-page book embedding
testing algorithm. In: Graph Drawing, volume of LNCS 7704, 79–89 (2012). (Springer)

14. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability
of two graphs whose intersection is a biconnected or a connected graph. J. Dis. Algorithms 14, 150–172
(2012)

15. Angelini, P., Eppstein, D., Frati, F., Kaufmann, M., Lazard, S., Mchedlidze, T., Teillaud, M., Wolff,
A.: Universal point sets for drawing planar graphs with circular arcs. J. Graph Algorithms Appl. 18(3),
313–324 (2014)

16. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theor. Comput.
Sci. 408(2–3), 129–142 (2008)

17. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page drawings of graphs
with bounded treewidth. In: Duncan, C.A., Symvonis, A. (eds.) GD 2014 8871, 210–221 (2014).
(LNCS,Springer)

18. Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.N.: The book thickness of 1-planar
graphs is constant. Algorithmica 79(2), 444–465 (2017)

19. Bekos,M.A., Da Lozzo, G., Frati, F., Gronemann,M.,Mchedlidze, T., Raftopoulou, C.N.: Recognizing
dags with page-number 2 is NP-complete. Theor. Comput. Sci. 946, 113689 (2023)

20. Bekos,M.A., Da Lozzo, G., Frati, F., Gronemann,M.,Mchedlidze, T., Raftopoulou, C.N.: Recognizing
dags with page-number 2 is NP-complete. In: Angelini, P., von Hanxleden, R. (eds.) Graph Drawing
and Network Visualization. pp, pp. 361–370. Springer International Publishing, Cham (2023)

21. Bekos, M.A., Da Lozzo, G., Griesbach, S., Gronemann, M., Montecchiani, F., Raftopoulou, C.N.:
Book embeddings of nonplanar graphs with small faces in few pages. In: Cabello, S., Chen, D.Z.,
(eds.) 36th International Symposium on Computational Geometry, SoCG 2020, June 23-26, 2020,
Zürich, Switzerland, volume 164 of LIPIcs, pages 16:1–16:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, (2020)

123

Algorithmica (2023) 85:3521–3571 3567

22. Bekos, M.A., Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F., Raftopoulou, C.N.: Edge
partitions of optimal 2-plane and 3-plane graphs. In: Brandstädt, A., Köhler, E., Meer, K., (eds.)
Graph-Theoretic Concepts in Computer Science, WG 2018, volume 11159 of LNCS, pages 27–39.
Springer, (2018)

23. Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of 4-planar graphs.
Algorithmica 75(1), 158–185 (2016)

24. Bekos, M.A., Kaufmann, M., Klute, F., Pupyrev, S., Raftopoulou, C.N., Ueckerdt, T.: Four pages are
indeed necessary for planar graphs. J. Comput. Geom. 11(1), 332–353 (2020)

25. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Combinat. Theory, Series B 27(3), 320–331
(1979)

26. Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506
(2002)

27. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-
source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

28. Bhore, S., Da Lozzo, G., Montecchiani, F., Nöllenburg, M.: On the upward book thickness problem:
combinatorial and complexity results. Eur. J. Comb. 110, 103662 (2023)

29. Biedl, T.C., Shermer, T.C., Whitesides, S., Wismath, S.K.: Bounds for orthogonal 3-d graph drawing.
J. Graph Algorithms Appl. 3(4), 63–79 (1999)

30. Binucci, C., Da Lozzo, G., Giacomo, E.D., Didimo, W., Mchedlidze, T., Patrignani, M.: Upward
book embeddings of st-graphs. In: Barequet, G., Wang, Y., (eds.) 35th International Symposium on
Computational Geometry, SoCG 2019, June 18-21, 2019, Portland, Oregon, USA, volume 129 of
LIPIcs, pages 13:1–13:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, (2019)

31. Binucci, C., Di Giacomo, E., Hossain, M.I., Liotta, G.: 1-page and 2-page drawings with bounded
number of crossings per edge. Eur. J. Comb. 68, 24–37 (2018)

32. Binucci, C., Didimo,W.: Computing quasi-upward planar drawings of mixed graphs. Comput. J. 59(1),
133–150 (2016)

33. Binucci, C., Didimo, W., Patrignani, M.: Upward and quasi-upward planarity testing of embedded
mixed graphs. Theor. Comput. Sci. 526, 75–89 (2014)

34. Brandenburg, F.: Upward planar drawings on the standing and the rolling cylinders. Comput. Geom.
47(1), 25–41 (2014)

35. Cardinal, J., Hoffmann, M., Kusters, V., Tóth, C.D., Wettstein, M.: Arc diagrams, flip distances, and
hamiltonian triangulations. Comput. Geom. 68, 206–225 (2018)

36. Chaplick,S., Chimani, M., Cornelsen, S., Da Lozzo, G., Nöllenburg, M., Patrignani, M., Tollis, I.G.,
Wolff, A.: Planar L-drawings of directed graphs. In: Frati, F., Ma, K., (eds.) GD 2017, volume 10692
of LNCS, pages 465–478. Springer, (2017)

37. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with
applications to VLSI design. SIAM J. Algebraic Dis. Methods 8(1), 33–58 (1987)

38. Cimikowski, R.J.: An analysis of some linear graph layout heuristics. J. Heuristics 12(3), 143–153
(2006)

39. Da Lozzo, G., Di Battista, G., Frati, F.: Extending upward planar graph drawings. Comput. Geom. 91,
101668 (2020)

40. DaLozzo,G., DiBattista, G., Frati, F., Patrignani,M., Roselli, V.: Upward planarmorphs.Algorithmica
82(10), 2985–3017 (2020)

41. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice Hall PTR, USA (1998)

42. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput.
Sci. 61, 175–198 (1988)

43. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
44. Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward

drawings. Dis. Comput. Geomet. 7, 381–401 (1992)
45. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs.

Comput. Geom. 30(1), 1–23 (2005)
46. DiGiacomo, E., Didimo,W., Liotta, G.,Wismath, S.K.: Book embeddability of series-parallel digraphs.

Algorithmica 45(4), 531–547 (2006)
47. Di Giacomo, E., Giordano, F., Liotta, G.: Upward topological book embeddings of dags. SIAM J. Dis.

Math. 25(2), 479–489 (2011)

123

3568 Algorithmica (2023) 85:3521–3571

48. Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points. Int. J. Found.
Comput. Sci. 17(5), 1071–1094 (2006)

49. Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained vertex positions and
few bends per edge. Algorithmica 57(4), 796–818 (2010)

50. Didimo, W.: Upward graph drawing. In: Encyclopedia of Algorithms, pages 2308–2312. Springer,
(2016)

51. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Dis.
Math. 23(4), 1842–1899 (2009)

52. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs:
exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010)

53. Dujmovic, V., Eppstein, D., Hickingbotham, R., Morin, P., Wood, D.R.: Stack-number is not bounded
by queue-number. CoRR, abs/2011.04195, (2020)

54. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Dis. Math. Theor. Comput. Sci. 6(2), 339–358
(2004)

55. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions. Dis. Math. Theor.
Comput. Sci. 7(1), 155–202 (2005)

56. Enomoto, H., Miyauchi, M.S.: Embedding graphs into a three page book with O(m log n) crossings
of edges over the spine. SIAM J. Dis. Math. 12(3), 337–341 (1999)

57. Enomoto, H., Miyauchi, M.S., Ota, K.: Lower bounds for the number of edge-crossings over the spine
in a topological book embedding of a graph. Discret. Appl. Math. 92(2–3), 149–155 (1999)

58. Enomoto, H., Nakamigawa, T., Ota, K.: On the pagenumber of complete bipartite graphs. J. Combinat.
Theory, Series B 71(1), 111–120 (1997)

59. Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of n points for one-bend drawings of
planar graphs with n vertices. Dis. Comput. Geomet. 43(2), 272–288 (2010)

60. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. J. Graph
Theory 51(1), 53–81 (2006)

61. Frati, F., Fulek, R., Ruiz-Vargas, A.J.: On the page number of upward planar directed acyclic graphs.
J. Graph Algorithms and Appl. 17(3), 221–244 (2013)

62. Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discret. Appl. Math. 109(3), 215–221
(2001)

63. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing.
SIAM J. Comput. 31(2), 601–625 (2001)

64. Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A., Whitesides, S.: Computing upward topological
book embeddings of upward planar digraphs. J. Dis. Algorithms 30, 45–69 (2015)

65. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed) Graph
Drawing, GD 2000, volume 1984 of LNCS, pages 77–90. Springer, (2000)

66. Heath, L., Leighton, F., Rosenberg, A.: Comparing queues and stacks as mechanisms for laying out
graphs. SIAM J. Dis. Math. 5(3), 398–412 (1992)

67. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of posets. SIAM J. Dis. Math. 10(4), 599–625
(1997)

68. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM J.
Comput. 28(5), 1588–1626 (1999)

69. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I.
SIAM J. Comput. 28(4), 1510–1539 (1999)

70. Hong, S., Nagamochi, H.: Simpler algorithms for testing two-page book embedding of partitioned
graphs. Theor. Comput. Sci. 725, 79–98 (2018)

71. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3),
135–158 (1973)

72. Hung, L.T.Q.: A Planar Poset which Requires 4 Pages. PhD thesis, Institute of Computer Science,
University of Wrocław, (1989)

73. Jungeblut, P., Merker, L., Ueckerdt, T.: A sublinear bound on the page number of upward planar
graphs. In: J. S. Naor and N. Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022,
pages 963–978. SIAM, (2022)

74. Kleinberg, J.M., Tardos, É.: Algorithm design. Addison-Wesley, (2006)
75. Löffler, M., Tóth, C.D.: Linear-size universal point sets for one-bend drawings. In: Graph Drawing,

volume 9411 of LNCS, pages 423–429. Springer, (2015)

123

Algorithmica (2023) 85:3521–3571 3569

76. Malitz, S.M.: Genus g graphs have pagenumber O(
√
g). J. Algorithms 17(1), 85–109 (1994)

77. Malitz, S.M.: Graphs with E edges have pagenumber O(
√
E). J. Algorithms 17(1), 71–84 (1994)

78. Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in linear embeddings
of graphs. IEEE Trans. Comput. 39(1), 124–127 (1990)

79. Mchedlidze, T., Symvonis, A.: Crossing-free acyclic hamiltonian path completion for planar st-
digraphs. In: Dong, Y., Du, D., Ibarra, O.H., (eds.) Algorithms and Computation, ISAAC 2009, volume
5878 of LNCS, pages 882–891. Springer, (2009)

80. Mchedlidze, T., Symvonis, A.: Unilateral orientation of mixed graphs. In: SOFSEM 2010, volume
5901 of LNCS, pages 588–599. Springer, (2010)

81. Mchedlidze, T., Symvonis, A.: Crossing-optimal acyclic HP-completion for outerplanar st-digraphs. J.
Graph Algorithms and Appl. 15(3), 373–415 (2011)

82. Nowakowski, R., Parker, A.: Ordered sets, pagenumbers and planarity. Order 6(3), 209–218 (1989)
83. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
84. Pemmaraju, S.V.: Exploring the Powers of Stacks and Queues via Graph Layouts. PhD thesis, Virginia

Polytechnic Institute and State University at Blacksburg, Virginia, (1992)
85. Rextin, A., Healy, P.: Dynamic upward planarity testing of single source embedded digraphs. Comput.

J. 60(1), 45–59 (2017)
86. Robertson, N., Seymour, P.D.: Graph minors. x. obstructions to tree-decomposition. J. Comb. Theory,

Ser. B, 52(2):153–190,(1991)
87. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)
88. Syslo, M.M.: Bounds to the page number of partially ordered sets. In: Nagl, M., (ed.) Graph-Theoretic

Concepts in Computer Science, WG ’89, volume 411 of LNCS, pp. 181–195. Springer, (1989)
89. Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M., (eds.) STACS 88, volume

294 of LNCS, pp. 61–72. Springer, (1988)
90. Unger, W.: The complexity of colouring circle graphs (extended abstract). In: Finkel,A., Jantzen, M.,

(eds.) STACS 92, volume 577 of LNCS, pp. 389–400. Springer, (1992)
91. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Tech-

nical report, 298, EECS Department, Princeton University, (1982)
92. Wood, D.R.: Bounded degree book embeddings and three-dimensional orthogonal graph drawing. In:

Graph Drawing, volume 2265 of LNCS, pp. 312–327. Springer, (2001)
93. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)
94. Yannakakis, M.: Planar graphs that need four pages. J. Comb. Theory, Ser. B, 145:241–263, (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Carla Binucci1 · Giordano Da Lozzo2 · Emilio Di Giacomo1 ·
Walter Didimo1 · Tamara Mchedlidze3 ·Maurizio Patrignani2

Carla Binucci
carla.binucci@unipg.it

Giordano Da Lozzo
giordano.dalozzo@uniroma3.it

Emilio Di Giacomo
emilio.digiacomo@unipg.it

Tamara Mchedlidze
t.msentlintze@uu.nl

Maurizio Patrignani
maurizio.patrignani@uniroma3.it

123

3570 Algorithmica (2023) 85:3521–3571

http://orcid.org/0000-0002-4379-6059

1 Department of Engineering, University of Perugia, Perugia, Italy

2 Department of Engineering, Roma Tre University, Rome, Italy

3 Utrecht University, Utrecht, The Netherlands

123

Algorithmica (2023) 85:3521–3571 3571

	Upward Book Embeddability of st-Graphs: Complexity and Algorithms
	Abstract
	1 Introduction
	2 Preliminaries
	3 NP-Completeness for kUBE (k 3)
	4 Existential Results for 2UBE
	5 Testing 2UBE for Plane Graphs with Special Faces
	6 Testing Algorithms for 2UBE Parameterized by the Branchwidth
	6.1 SPQR-trees of Planar st-Graphs
	6.2 Branch decomposition and sphere-cut decomposition
	6.3 Algorithm description
	6.4 Computing the Embedding Types when µ is an R-node
	6.5 Computing the Embedding Types when µ is a P-node
	6.5.1 P-nodes: Fixed Embedding
	6.5.2 P-nodes: Variable Embedding

	7 Conclusion and Open Problems
	Acknowledgements
	Appendix A P-nodes: Variable Embedding - Missing Cases from Subsection 6.5.2
	References

