
Algorithmica (2023) 85:3602–3648
https://doi.org/10.1007/s00453-023-01150-y

Algebraic Restriction Codes and Their Applications

Divesh Aggarwal1 · Nico Döttling2 · Jesko Dujmovic2,3 ·
Mohammad Hajiabadi4 · Giulio Malavolta5 ·Maciej Obremski1

Received: 4 November 2022 / Accepted: 27 June 2023 / Published online: 24 July 2023
© The Author(s) 2023

Abstract
Consider the following problem: You have a device that is supposed to compute a
linear combination of its inputs, which are taken from some finite field. However, the
device may be faulty and compute arbitrary functions of its inputs. Is it possible to
encode the inputs in such a way that only linear functions can be evaluated over the
encodings? I.e., learning an arbitrary function of the encodings will not reveal more
information about the inputs than a linear combination. In this work, we introduce the
notion of algebraic restriction codes (AR codes), which constrain adversaries who
might compute any function to computing a linear function. Our main result is an
information-theoretic construction AR codes that restrict any class of function with a
bounded number of output bits to linear functions. Our construction relies on a seed
which is not provided to the adversary. While interesting and natural on its own, we
showanapplicationof this notion in cryptography. In particular,we show thatARcodes

B Jesko Dujmovic
jesko.dujmovic@cispa.de

Divesh Aggarwal
divesh.aggarwal@gmail.com

Nico Döttling
doettling@cispa.de

Mohammad Hajiabadi
mdhajiabadi@uwaterloo.ca

Giulio Malavolta
giulio.malavolta@hotmail.it

Maciej Obremski
obremski.math@gmail.com

1 National University of Singapore, Queenstown, Singapore

2 Helmholtz Center for Information Security (CISPA), Saarbrücken, Saarland, Germany

3 Saarbrücken Graduate School of Computer Science, Saarbrücken, Saarland, Germany

4 University of Waterloo, Waterloo, ON, Canada

5 Bocconi University, Milan, Lombardy, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01150-y&domain=pdf

Algorithmica (2023) 85:3602–3648 3603

lead to the first construction of rate-1 oblivious transfer with statistical sender security
from the Decisional Diffie–Hellman assumption, and the first-ever construction that
makes black-box use of cryptography. Previously, such protocols were known only
from the LWE assumption, using non-black-box cryptographic techniques. We expect
our new notion of AR codes to find further applications, e.g., in the context of non-
malleability, in the future.

Keywords Algebraic restriction codes · Oblivious transfer · Rate 1 · Statistically
sender private · OT · Diffie–Hellman · DDH

1 Introduction

In this work, we consider leakage problems of the following kind: Assume we have
a device which takes an input x and is supposed to compute a function f (x) from
a certain class of legitimate functions F . For concreteness, assume that the class F
consists of functions computing linear combinations, e.g., f (x1, x2) = a1x1 + a2x2.
However, the device might be faulty, and instead of computing f it might compute
another function g. We want to find a way to encode x into an x̂ such that the following
two properties hold:

• If the device correctly implements a linear function f , then we can efficiently
decode the output y to f (x).

• If, on the other hand, the device implements a non-linear function g, then the
output g(x̂) does not reveal more information about x than f (x) for some linear
function f .

First, note that this notion is trivially achievable ifF includes the identity function,
or in fact any invertible function, as in this case we can simulate g(x̂) from f (x)
by first recovering x from f (x), encoding x to x̂ and finally evaluating g on x̂ . For
this reason, in this work, we will focus on function classes F whose output-length is
smaller than their input-length, such as the linear combination functions mentioned
above. In general, we will allow both the encoding and decoding procedure to depend
on a secret seed, which is not given to the evaluating device/adversary.

It is worthwhile comparing the type of security this notion provides to tamper-
resilient primitives such as non-malleable codes (NM-codes) [1–3] and non-malleable
extractors [4–7]. Such notions are geared towards prohibiting tampering altogether.
Moreover, a central aspect for security for such notions is that the decoder tries to
detect if some tampering happened, and indeed the decoder plays a crucial role in
modelling the security of non-malleable codes. In contrast, AR codes do and should
allowmanipulation bybenign functions from the classF . Furthermore,weonly require
a decoder for correctness purposes, whereas security is defined independently of the
decoder.

One motivation to study the above problem comes from cryptography, specifically
secure computation, where this is, in fact, a natural scenario. Indeed, a typical blueprint
for secure two-party computation [8] in two rounds proceeds as follows: One party,
called the receiver, encrypts his input y under a homomorphic encryption scheme [9–

123

3604 Algorithmica (2023) 85:3602–3648

12] obtaining a ciphertext c, and sends both the public keypk and the ciphertext c to the
other party, called the sender. The sender, in possession of an input x homomorphically
performs a computation f on input x and ciphertext c, obtaining a ciphertext c′ which
encrypts f (x, y). The ciphertext c′ is sent back to the receiver who can then decrypt
it to f (x, y).

For the case of a malicious receiver, the security of this blueprint breaks down
completely: Amalicious receiver can choose both the public key pk and the ciphertext
c maliciously, i.e. they are generally not well-formed. Effectively, this means that
the sender’s homomorphic evaluation will result in some value f̃ (x) (where f̃ will
be specified by the receiver’s protocol message) instead of an encryption of f (x, y).
Critically, the value f̃ (x) might reveal substantially more information about x than
f (x, y) and compromise the sender’s security.
Generally speaking, in this situation, there is no direct way for the sender to enforce

which information about x the receiver obtains. A typical cryptographic solution for
achieving malicious security involves using zero-knowledge proofs to enforce honest
behavior for the receiver. This technique, however, is typically undesirable as it often
leads to less efficient protocols (due to these tools using non-black-box techniques)
and the need for several rounds of interaction or a trusted setup. We aim to upgrade
such protocols to achieve security against malicious receivers without additional cryp-
tographic machinery.

To see how algebraic restriction codes will help in this scenario, consider the fol-
lowing. Upon receiving a public key pk and a ciphertext c from the receiver (who
potentially generated them in amaliciousway) the sender proceeds as follows. First, he
encodes his own input x into x̂ using a suitable AR code with a fresh seed s. Next, also
then sender evaluates the function f (x̂, ·) homomorphically on the ciphertext c (which
encrypts the receiver’s input y), resulting in a ciphertext c′ = Eval(pk, f (x̂, ·), c). For
simplicity’s sake, assume that the sender now sends c′ and the seed s back to the
receiver, who decrypts c′ to ẑ = f (x̂, y) and uses the seed s to decode ẑ to his output
z using the decoding algorithm of the AR code.

How can we argue that even a malicious receiver cannot learn more than the legiti-
mate output z? Let’s take a closer look on the computation which is actually performed
on the encoding x̂ . The output ciphertext c′ is computed via c′ = Eval(pk, f (x̂, ·), c).
Thus, if we can assure that the function g(x̂) = Eval(pk, f (x̂, ·), c) is in the class G
which is restricted by the AR code, then security of the AR code guarantees that c′
does not leak more than z = f (x, y) about x , irrespective of the choice of pk and c.

1.1 Our Results

In this work, we formalize the notion of algebraic restriction codes and provide con-
structions which restrict general function classes to linear functions over finite fields.
Let G and F be two function classes. Roughly, a G–F AR code provides a way to
encode an x in the domain of the functions in F into a codeword x̂ in the domain of
the functions in G, in a way that any function f ∈ F can still be evaluated on x̂ , by
evaluating a function f ′ ∈ G on x̂ . Furthermore, given f ′(x̂) we can decode to f (x).
Security-wise, we require that for any g ∈ G there exists a function f ∈ F , such that

123

Algorithmica (2023) 85:3602–3648 3605

g(x̂) can be simulated given only the legitimate output f (x). AR codes provide an
information-theoretic interface to limit the capabilities of an unbounded adversary in
protocols in which some weak restrictions (characterized by the class G) are already
in place. In this way, AR codes will allow us to harness simple structural restrictions
of protocols to implement very strong security guarantees.

In this work we consider seeded AR codes, where both the encoding and decoding
procedures of the AR code have access to a random seed s, which is not provided to
the function g.

Our first construction of AR-codes restricts general linear functions to linear com-
binations.

Theorem 1 (Formal: Theorem 4, Page 21) Let Fq be a finite field, let F be the class
of functions Fk

q × F
k
q → F

k
q of the form (x, y) �→ ax + y, and let G be the class of all

linear functions Fn
q × F

n
q → F

n
q of the form (x, y) �→ Ax + y. There exists a seeded

AR code AR1 which restricts G to F .

Our main contribution is a construction of seeded AR codes restricting arbitrary
functions with bounded output length to linear combinations.

Theorem 2 (Formal: Theorem 5, Page 26) Let Fq be a finite field, let F be the class
of functions Fq × Fq → Fq of the form (x, y) �→ ax + by, and let G be the class of
all functions Fn

q × F
n
q → {0, 1}1.5·n log(q). There exists a seeded AR code AR2 which

restricts G to F .

We note that the constant 1.5 in the theorem is arbitrary and can in fact be replaced
with any constant between 1 and 2.

The main ingredient of this construction is the following theorem, which may be
of independent interest and which we will discuss in some greater detail. The theorem
exhibits a new correlation-breaking property of the inner-product extractor.

In essence, it states that for a suitable parameter choice, if x1, . . . , xt are uniformly
random vectors in a finite vector space and s is a random seed (in the same vector
space), then anything that can be inferred about the 〈x1, s〉, . . . , 〈xt , s〉 via a joint
leak f (x1, . . . , xt) of bounded length can also be inferred from a linear combination∑

i ai 〈xi , s〉, i.e. f (x1, . . . , xt) does not leak more than
∑

i ai 〈xi , s〉.
Theorem 3 (Formal: Theorem 5, Page 26) Let q be a prime power, let t, s be positive
integers, and ε > 0 and n = O(t + s/ log(q) + (log 1

ε
)/ log(q)). Let x1, . . . , xt be

uniform in F
n
q and s is uniform in F

n
q and independent of the xi . For any f : Ftn

q →
{0, 1}n log q+s , there exists a simulator Sim and random variables a1, . . . , at ∈ Fq

such that

s, f (x1, . . . , xt), 〈x1, s〉, . . . , 〈xt , s〉, a1, . . . , at

≈2ε Sim

(

s, a1, . . . , at ,
t∑

i=1

aiui

)

, u1, . . . , ut , a1, . . . , at

where u1, . . . , ut are uniform and independent random variables in Fq , independent
of (a1, . . . , at).

123

3606 Algorithmica (2023) 85:3602–3648

One way to interpret the theorem is that the inner product extractor breaks all
correlations [induced by a leak f (x1, . . . , xt)], except linear ones. Recall that our
notion of AR codes it is crucial that linear relations are preserved.

We then demonstrate an application of AR codes in upgrading the security of oblivi-
ous transfer (OT) protocols while simultaneously achieving optimal communication, a
question that had remained opened due to insurmountable difficulties, explained later.
Specifically, we obtain the first rate-1 OT protocol with statistical sender privacy from
the decisional Diffie Hellman (DDH) assumption. While our motivation to study AR
codes is to construct efficient and high rate statistically sender private OT protocols,
we expect AR codes and in particular the ideas used to construct them to be useful in
a broader sense.

2 Technical Outline

In what follows, we provide an informal overview of the techniques developed in this
work.

2.1 Warmup: Algebraic Restriction Codes for General Linear Functions

Before discussing the ideas leading up to our main result, we will first discuss the
instructive case of AR codes restricting general linear functions to simple linear func-
tions. Specifically, fix a finite field Fq and let G be the class of linear functions
F
2m
q → F

m
q of the form g(x̂1, x̂2) = Ax̂1 + x̂2, where A ∈ F

m×m
q is an arbitrary

matrix. We want to restrict G to the class F consisting of linear functions F2n
q → F

n

of the form f (x1, x2) = a · x1 + x2, where a ∈ Fq is a scalar.
Our construction proceeds as follows. The seed s specifies a random matrix R ∈

F
n×m
q , such a matrix has full rank except with probability≤ 2−(m−n). To encode a pair

of input vectors x1, x2 ∈ F
n
q , the encoder samples uniformly random x̂1, x̂2

pick←−F
m
q

such that Rx̂1 = x1 and Rx̂2 = x2, and outputs the codeword (x̂1, x̂2). To evaluate
a scalar linear function given by a ∈ Fq on such a codeword, we (unsurprisingly)
compute ŷ = ax̂1 + x̂2. To decode ŷ we compute y = Rŷ. Correctness of this AR
code construction follows routinely:

y = Rŷ = R(ax̂1 + x̂2) = Rax̂1 + Rx̂2 = aRx̂ + Rx̂2 = ax1 + x2.

i.e. correctness holds as the scalar a commutes with the matrix R.
In this case it will also be more convenient to look at the problem from the angle of

randomness extraction; Specifically, assume that x̂1, x̂2
pick←−F

m
q are chosen uniformly

random. We want to show that for any matrix A ∈ F
m×m
q anything that can be learned

about Rx̂1 and Rx̂2 from Ax̂1 + x̂2 can also be learned from a · Rx̂1 + Rx̂2 for some
a ∈ Fq .

How can we find such an a for any given A?

123

Algorithmica (2023) 85:3602–3648 3607

First notice that if x̂1 happens to be an eigenvector ofAwith respect to an eigenvalue
ai , then it indeed holds that Ax1 + x2 = aix1 + x2. Thus, a reasonable approach is
to set the extracted scalar a ∈ Fq to one of the eigenvalues of A (or 0 if there are no
eigenvalues). If the matrixA has several distinct eigenvalues ai , we will set a to be the
eigenvalue whose eigenspace Vi has maximal dimension. Note that since the sum of
the dimensions of all eigenspaces ofA is at most n, there can be at most one eigenspace
whose dimension is larger thanm/2. Furthermore, the eigenvalue ai corresponding to
this eigenspace will necessarily be the extracted value a.

Rather than showing how we can simulate ŷ = Ax̂1 + x̂2 in general, in this sketch
we will only briefly argue the following special case. Namely, if all the eigenspaces
ofA have dimension smaller than or equal tom/2, then with high probability over the

choice of the random matrix R
pick←−F

n×m
q it holds that x1 = Rx̂1 and x2 = Rx̂2 are

uniform and independent of ŷ. Thus assume that ŷ = Ax̂1 + x̂2 was not independent
of x1 = Rx̂1 and x2 = Rx̂2. Since these three variables are linear functions of the
uniformly random x̂1 and x̂2 theremust exist a non-zero linear relation given by vectors
u, v ∈ F

n
q andw ∈ F

m
q such that u�x1 +v�x2 +w�ŷ = 0 for all choices of x̂1 and x̂2.

But this means that it holds that u�R + w�A = 0 and v�R + w� = 0. Eliminating
w�, this simplifies to the equation u�R = v�RA.

We will now argue that for any such matrix A ∈ F
m×m
q (whose eigenspaces all

have dimension ≤ m/2) with high probability over the choice of the random matrix
R, such a relation given by (u, v) �= 0 does not exist. We will take a union bound over
all non-zero u, v and distinguish the following cases:

• If u and v are linearly independent, then u�R and v�R are uniformly random and
independent (over the random choice of R). Thus the probability that u�R and
v�RA collide is 1/qm .

• If u and v are linearly dependent, then (say) u = αv. In this case u�R = v�RA
is equivalent to αv�R = v�RA, i.e. the uniformly random vector v�R is an
eigenvector of the matrix A with respect to the eigenvalue α. However, since all
eigenspaces of A have dimension at most m/2, the probability that v�R lands in
one of the eigenspaces bounded by m/qm/2.

Since there are q2n possible choices for the vectors u, v ∈ F
n
q , choosing m suffi-

ciently large (e.g. m > 5n) implies that the probability that such u, v ∈ F
n
q exist is

negligible. The full proof is provided in Sect. 6.

2.2 Algebraic Restriction Codes for Bounded Output Functions

We will now turn to algebraic restriction codes for arbitrary functions with bounded
output length. Now let Fq be the finite field of size q, let G be the class of all functions
from F

2n
q → {0, 1}1.5n log(q) and let F be the class of linear functions F

2
q → Fq ,

i.e. all functions of the form f (x1, x2) = a1x1 + a2x2 for some a1, a2 ∈ Fq . Our
AR code construction follows naturally from the inner product extractor. The seed s

consists of a random vector s
pick←−F

n
q , to encode x1, x2 ∈ Fq we choose uniformly

random x1, x2 ∈ F
n
q with 〈x1, s〉 = x1 and 〈x2, s〉 = x2. Likewise, to decode a value

y we compute y = 〈y, s〉, correctness follows immediately as above. To show that

123

3608 Algorithmica (2023) 85:3602–3648

this construction restricts G to F , we will again take the extractor perspective. Thus,
assume that x1, x2 ∈ F

n
q are distributed uniformly random and let g : Fn

q × F
n
q →

{0, 1}1.5n log(p) be an arbitrary function.
We need to argue that for any g ∈ G there exist exist a1, a2 ∈ Fq such that g(x1, x2)

can be simulated given y = a1〈x1, s〉 + a2〈x2, s〉, but no further information about
〈x1, s〉 and 〈x2, s〉. Our analysis distinguishes two cases.
• In the first case, both 〈x1, s〉 and 〈x2, s〉 are statistically close to uniform given

g(x1, x2). In other words, it directly holds that g(x1, x2) contains no information
about 〈x1, s〉 and 〈x2, s〉. We can simulate g(x1, x2) by choosing two independent
x′
1 and x′

2 and computing g(x′
1, x

′
2).• In the second case 〈x1, s〉 and 〈x2, s〉 are (jointly) statistically far from uniform

given g(x1, x2). In this case we will rely on a variant of the XOR Lemma [13]
to conclude that there must exist a1, a2 ∈ Fq such that a1x1 + a2x2 is also far
from uniform given g(x1, x2). Roughly, the XOR Lemma states that if it holds
for two (correlated) random variables z1, z2 that for all a1, a2 ∈ Fq (such that
one of them is non-zero) that a1z1 + a2z2 are statistically close to uniform, then
(z1, z2) must be statistically close to uniform in F

2
q . Consequently, the existence

of such a1, a2 ∈ Fq in our setting follows directly from the contrapositive of the
XOR Lemma. But this implies that a1x1 + a2x2 must have very low min-entropy
given g(x1, x2). Otherwise, the leftover hash lemma would imply that a1x1 +
a2x2 = 〈a1x1 + a2x2, s〉 is close to uniform given g(x1, x2), in contradiction to
the conclusion above. But this means that a1x1+a2x2 is essentially fully specified
by g(x1, x2). In other words g(x1, x2) carries essentially the entire information
about a1x1 + a2x2. But now recall that the bit size of g(x1, x2) is 1.5n log(q) bits
and the bit size of a1x1+a2x2 is n log(q) bits. Thus, there is essentially not enough
room in g(x1, x2) to carry significant further information about x1 or x2. Again
relying on the leftover hash lemma, we then conclude that given g(x1, x2), 〈x1, s〉
and 〈x2, s〉 are statistically close to uniform subject to a1〈x1, s〉 + a2〈x2, s〉 = y.

While this sketch captures the very high level ideas of our proof, the actual proof
needs to overcome some additional technical challenges and relies on a careful parti-
tioning argument. The proof can be found in Sect. 7.

2.3 From AR Codes to Efficient Oblivious Transfer

We display the usefulness of AR codes in cryptography by constructing a new obliv-
ious transfer (OT) [14, 15] protocol. OT is a protocol between two parties, a sender,
who has a pair of messages (m0,m1), and a receiver who has a bit b, where at the
end, the receiver learns mb, while the sender should learn nothing. OT is a central
primitive of study in the field of secure computation: Any multiparty functionality can
be securely computed given a secure OT protocol [16, 17]. In particular, statistically-
sender private (SSP) [18, 19] 2-message OT has recently received a lot of attention
due to its wide array of applications, such as statistical ZAPs [20, 21] and maliciously
circuit-private homomorphic encryption [22]. While the standard security definitions
for OT are simulation-based (via efficient simulators), SSP OT settles for a weaker
indistinguishability-based security notion for the receiver and an inefficient simulation

123

Algorithmica (2023) 85:3602–3648 3609

notion for the sender. On the other hand, SSP OT can be realized in just two messages,
without a setup and from standard assumptions, a regime in which no OT protocols
with simulation-based security are known.1

In this work, we obtain the first OT protocol that simultaneously satisfies the fol-
lowing properties:

(1) It is round-optimal (2 messages) and it does not assume a trusted setup.
(2) It satisfies the notion of statistical sender privacy (and computational receiver

privacy). That is, a receiver who may (potentially) choose her first round message
maliciously will be statistically oblivious to at least one of the two messages of
the sender.

(3) It achieves optimal rate for information transfer (i.e., it is rate-1).
(4) It makes only black-box use of cryptographic primitives, in the sense that our

protocol does not depend on circuit-level implementations of the underlying prim-
itives.

Prior to our work, we did not know any OT protocol that simultaneously satisfied
all of the above properties from any assumption. The only previous construction was
based on LWE (using expensive fully-homomorphic encryption techniques), which
only satisfies the first three conditions, but not the last one. (See Sect. 3.) We obtain
constructions that satisfy all the above conditions fromDDH/LWE.Optimal-rate OT is
an indispensable tool in relazing variousMPC functionalitieswith sublinear communi-
cation [24]. As direct corollaries, we obtain two-messagemaliciously secure protocols
for keyword search [24] and symmetric private information retrieval (PIR) protocols
[25] with statistical server privacy and with asymptotically optimal communication
complexity from DDH/LWE. Our scheme is the first that makes only black-box use of
cryptography, which we view as an important step towards the practical applicability
of these protocols.

2.3.1 Packed ElGamal

Before delving into the description of our scheme, we recall the vectorized variant of
the ElGamal encryption scheme [26]. LetG be an Abelian group of prime order p and
let g be a generator of G. In the packed ElGamal scheme, a public key pk consists of

a vector h = (h1, . . . , hn) ∈ G
n where hi = gxi for random xi

pick←−Zp. The secret sk
is the vector x = (x1, . . . , xn) ∈ Z

n
p. To encrypt a m = (m1, . . . ,mn) ∈ {0, 1}n , we

choose a uniformly random r
pick←−Zp and set the ciphertext c to

c = (d0,d) = (gr ,hr · gm)

where both exponentiations and group operations of vectors are component-wise.
We call d0 the header of the ciphertext and d = (d1, . . . , dn) the payload of c,
we further call d1, . . . , dn the slots. To decrypt a ciphertext c, we compute m =
1 In fact, it can be shown that any simulator for such a protocol would need to make non-black-box use of
the adversary, as it would immediately imply a two-message zero-knowledge protocol, which was shown
black-box impossible in [23]

123

3610 Algorithmica (2023) 85:3602–3648

dlogg(d
−x
0 · d). If we disregard the need for efficient decryption, we can encrypt

arbitrary Z
n
p vectors rather than just binary vectors. For such full range plaintexts

the rate of packed ElGamal, i.e. the ratio between plaintext size and ciphertext size
comes down to (1− 1/(n+ 1)) log(p)/λ, assuming a group element can be described
using λ bits. If λ ≈ log(p), as is the case for dense groups, the rate approaches 1, for
sufficiently large n. Finally, for a matrix X ∈ {0, 1}n×k , we encrypt X column-wise,
to obtain a ciphertext-matrix C.

2.3.2 Homomorphism and Ciphertext Compression

Packed ElGamal supports two types of homomorphism. It is linearly homomorphic
with respect to Zp-linear combinations. Namely, if c is an encryption of a vector
m ∈ Z

n
p and c

′ is an encryption of a vectorm′ ∈ Z
n
p, then for anyα, β ∈ Zp it holds that

c′′ = cα ·c′β is awell-formed encryption ofαm+βm′ (again, disregarding the need for
efficient decryption for large plaintexts). This routinely generalizes to arbitrary linear
combinations, namelywe can define a homomorphic evaluation algorithm Eval1 which
takes as input a public key pk, a ciphertext matrix C encrypting a matrix X ∈ Z

n×m
p ,

and two vectors a ∈ Z
m
p and b ∈ Z

n
p and outputs an encryption of Xa + b. By re-

randomizing the resulting ciphertext this can be made function private, i.e. the output
ciphertext leaks nothing beyond Xa + b about a and b.

The second type of homomorphism supported by packed ElGamal is a limited type
of homomorphism across the slots. Specifically, let c = (d0,d) be an encryption
of a message m ∈ Z

n
p and let M ∈ Z

m×n
p be a matrix. Then there is a homomorphic

evaluation algorithm Eval2 which takes the public key pk, the ciphertext c and a matrix
M ∈ Z

m×n
p and outputs a ciphertext c′, such that c′ encrypts the message m′ = Mm

under a modified public key pk′ = gMx. Furthermore, if the decrypter knows the
matrixM, it can derive the modified secret sk′ = Mx and decrypt c′ tom′ (given that
m′ ∈ {0, 1}m).

Finally, the packed ElGamal scheme supports ciphertext compression for bit-
encryptions [27]. There is an efficient algorithm Shrink which takes a ciphertext
c = (d0,d) and produces a compressed ciphertext c̃ = (d0, K ,b), where K is a
(short) key and b ∈ {0, 1}n is a binary vector. Consequently, compressed ciphertexts
are of size n + poly bits and therefore have rate 1 − poly/n, which approaches 1 for
a sufficiently large n (independent of the description size of group elements). Such
compressed ciphertexts can then be decrypted using a special algorithm ShrinkDec,
using the same secret key sk. Compressed ciphertexts generally do not support any
further homomorphic operations, so ciphertext compression is performed after all
homomorphic operations.

2.3.3 Semi-Honest Rate-1 OT from Packed ElGamal

The packed ElGamal encryption scheme with ciphertext compression immediately
gives rise to a semi-honestly secure OT protocol with download rate 1. Specifically,
the receiver whose choice-bit is b generates a key-pair pk, sk, encrypts the matrix b · I
to a ciphertext matrix C, and sends ot1 = (pk,C) to the sender. The sender, whose

123

Algorithmica (2023) 85:3602–3648 3611

input are two strings m0 and m1 ∈ {0, 1}n uses Eval1 to homomorphically evaluate
the function

f (X) = X(m1 − m0) + m0

on the ciphertext C, obtaining a ciphertext c. It then compresses the ciphertext c to a
compressed ciphertext c̃ and sends ot1 = c̃ back to the receiver who can decrypt it to
a valuem′ using the ShrinkDec algorithm. By homomorphic correctness it holds that
b · I · (m1 − m0) + m0 = mb.

However, note that the sender privacy of this protocol completely breaks down
against malicious receivers. Specifically, a malicious receiver is not bound to encrypt-
ing the scalar matrix b · I, but could instead encrypt an arbitrary matrix A ∈ Z

n×n
p ,

thereby learning A(m1 − m0) + m0 instead of mb. By e.g. choosing

A =
(
0 0
0 I

)

the receiver could learn half of the bits ofm0 and half of the bits ofm1, thus breaking
sender privacy.

2.3.4 Malicious Security via AR Codes

Next we show how to make the above protocol statistically sender private against
malicious receivers using AR codes. The protocol follows the same outline as above,
except that the sender samples a seed R for an AR code and encodes its inputs

x̂1 = Encode(R,m1 − m0) and x̂2 = Encode(R,m0).

Then it computes a ciphertext c = Eval1(pk,C, x̂1, x̂2). If the sender were to transmit
directly this ciphertext, the rate of the scheme would degrade (due to the size of the
encodings) and the decryption would not be efficient, since c contains an encoding
ŷ ∈ Z

m
p . To deal with this issue, we observe that decoding ŷ to y via y = Rŷ is exactly

the type of operation supported by the homomorphic evaluation Eval2. Thus, we let the
sender further compute c′ = Eval2(pk, c,R). By homomorphic correctness of Eval2,
it holds that c′ is an encryption ofRŷ = y = mb ∈ {0, 1}n under a modified public key
pk′ (which depends on R). Since c′ encrypts a binary message, the sender can further
use the ciphertext compression algorithm Shrink to shrink c′ into a rate-1 ciphertext
c̃. The sender now sends R and c̃ back to the receiver, who derives a key from sk and
R, and uses it to decrypt c̃ via ShrinkDec.

If we were to do things naively, the protocol would still not achieve rate-1 since
we have to also attach to the OT second message a potentially large matrix R. This
can be resolved via a standard trick: By reusing the same matrix R in several parallel
instances of the protocol, we can amortize the cost of sending the matrix R. Note that
R can be reused as we only need to ensure that the matrix A does not depend on R.
Thus, we have achieved a rate-1 protocol.

123

3612 Algorithmica (2023) 85:3602–3648

There is one subtle aspect that we need to address before declaring victory: The
security of AR codes only guarantees that a malicious receiver may learn a(m1 −
m0) + m0 for some a ∈ Zp, rather than b(m1 − m0) + m0 = mb for b ∈ {0, 1}. To
address this last issue, we let the sender compute x̂1 and x̂2 by

x̂1 = Encode(R, x1)

x̂2 = Encode(R, x2),

where x1 =
(
m1 − m0 + r0
m1 − m0 + r1

)

and x2 =
(

m0
m0 − r1

)

and r0, r1 are uniformly ran-

dom.
Consequently, instead of a(m1 − m0) + m0 the ciphertext c now encrypts

f (x1, x2) = a ·
(
m1 − m0 + r0
m1 − m0 + r1

)

+
(

m0
m0 − r1

)

,

and by the security of the AR code c does not leak more information about x1 and x2
then f (x1, x2). Now, note that if a = 0, then

f (x1, x2) =
(

m0
m0 − r1

)

,

where we note that r′
1 = m0 − r1 is uniformly random. On the other hand, if a = 1,

then

f (x1, x2) =
(
m1 + r0

m1

)

,

where we note that r′
0 = m1 + r0 is uniformly random. Finally, if a /∈ {0, 1}, then

f (x0, x1) = a ·
(
m1 − m0 + r0
m1 − m0 + r1

)

+
(

m0
m0 − r1

)

=
(
am1 + (1 − a)m0
am1 + (1 − a)m0

)

+
(

a · r0
(1 − a) · r1

)

,

which is uniformly random as the last term is uniformly random. I.e. if a /∈ {0, 1} the
receiver will learn nothing about m0 and m1. Thus, we can conclude that even for a
malformed public key pk and ciphertext C the view of the receiver can be simulated
given at most one mb, and statistical sender privacy follows.

2.3.5 Back to Rate-1

Note that now the ciphertext c is twice as long as before, which again ruins the rate of
our scheme. However, note that in order to get a correct scheme, if a = 0 the receiver

only needs to recover the first half z0 of the vector f (x1, x2) =
(
z0
z1

)

, whereas ifa = 1

123

Algorithmica (2023) 85:3602–3648 3613

she needs the second part z1. Our final idea is to facilitate this by additionally using a
rate-1 OT protocol OT′ = (OT′

1,OT
′
2,OT

′
3) with semi-honest security (e.g. as given in

[27]). We will further use the fact that the packed ElGamal ciphertext c̃ can be written
as (h, c̃0, c̃1), where h is the ciphertext header, c̃0 is a rate-1 ciphertext encrypting z0
and c̃1 is a rate-1 ciphertext encrypts z1 (both with respect to the header h).

We modify the above protocol such that the receiver additionally includes a first
message ot ′1 computed using his choice bit b. Instead of sending both c̃0 and c̃1 to
the receiver (which would ruin the rate), we compute the sender message ot ′2 for OT

′
as ot ′2 ← OT2(ot ′1, c̃0, c̃1) and send (h, ot ′2) to the receiver. The receiver can now
recover c̃b from ot ′2 and decrypt the ciphertext (h, c̃b) as above. Note that now the
communication rate from sender to receiver is 1. Note that we do not require any form
of sender security from the rate-1 OT. Finally, note that as discussed above the the
protocol can bemade overall rate-1 by amortizing for the size of the receiver’smessage
(i.e. repeating the protocol in parallel for the same receiver message but independent
blocks of the sender message).

2.3.6 Certified Versus Uncertified Groups

We conclude this overview by discussing two variants of groups where we can imple-
ment the OT as specified above. In certified groups, we can assume that G in fact
implements a group of prime order p, even if maliciously chosen. In these settings,
our simpler variant of AR codes suffices, since we are warranted that a malicious
receiver can only obtain information of the form Ax̂1 + x̂2 (for an arbitrarily chosen
matrix A). In non-certified groups, the linearity of the group is no longer checkable
by just looking at its description G. Here we can only appeal to the fact that have a
bound on the size of the output learned by the receiver, enforced by the fact that our
OT achieves rate-1: The second OT message is too short to encode both x̂1 and x̂2. In
these settings, we need the full power of bounded-output AR codes, in order to show
the statistical privacy of the above protocol.

2.4 Roadmap

Wediscuss some relatedworks in Sect. 3. The preliminaries are provided in Sect. 4.We
will introduce algebraic restriction codes in Sect. 5. In Sect. 6 we show that canonic AR
codes restrict general linear functions to simple linear functions. In Sect. 7we show that
canonic AR codes restrict output-bounded functions to simple linear combinations,
where the main result of this section is stated in Theorem 5. In Sect. 8 we provide our
construction of rate-1 SSP OT fromDDH and we discuss novel applications in Sect. 9.

3 RelatedWork

A recent line of works [27] proposed a new approach to constructing semi-honest OT
with a rate approaching 1. This framework can be instantiated from a wide range of
standard assumptions, such as the DDH, QR and LWE problems. The core idea of

123

3614 Algorithmica (2023) 85:3602–3648

this approach is to construct OT from a special type of packed linearly homomorphic
encryption scheme which allows compressing ciphertexts after homomorphic evalu-
ation. Pre-evaluation ciphertexts in such packed encryption schemes typically need
to encrypt a structured plaintext containing redundant information to guarantee cor-
rectness of homomorphic evaluation. In the context of statistical sender privacy, this
presents an issue as a malicious receiver may deviate from the structure required by
the protocol to (potentially) learn correlated information about m0 and m1.

Regarding the construction of SSP OT, all current schemes roughly follow one of
three approaches sketched below.

3.1 The Two Keys Approach [18, 19, 28, 29]

In this construction blueprint, the receivermessage ot1 specifies two (correlated) public
keys pk0 and pk′

1 under potentially different public key encryption schemes. The
sender’s message ot2 now consists of two ciphertexts c0 = Enc(pk0,m0) and c1 =
Enc′(pk′

1,m1). Statistical sender privacy is established by choosing the correlation
between the keys pk0 and pk′

1 in such a way that one of these keys must be lossy,
and that this is either directly enforced by the underlying structure or checkable by
the sender. Here, lossiness means that either c0 or c1 loses information about their
respective encrypted message. In group-based constructions following this paradigm
[18, 19, 28], the sender must trust that the structure on which the encryption schemes
are defined actually implements a group in order to be convinced that either pk0 or
pk′

1 is lossy. We say that the group G must be a certified group. This is problematic
if the group G is chosen by the receiver, as the group G could e.g. have non-trivial
subgroups which prevent lossiness.

Furthermore, note that since the sender’s message ot2 contains two ciphertexts,
each of which should, from the sender’s perspective be potentially decryptable, this
approach is inherently limited to rates below 1/2.

3.2 The Compactness Approach [30]

The second approach to construct SSP OT is based on high rate OT. Specifically,
assume we are starting with any two round OT protocol with a (download) rate greater
than 1/2, say for the sake of simplicity with rate close to 1. This means that the
sender’s message ot2 is shorter than the concatenation of m0 and m1. But this means
that, from an information theoretic perspective ot2 must lose information about either
m0 or m1. This lossiness can now be used to bootstrap statistical sender privacy as
follows. The sender chooses two random messages r0 and r1 and uses them as his
input to the OT. Moreover, he uses a randomness extractor to derive a key k0 from
r0 and k1 from r1 respectively. Now the sender provides two one-time pad encrypted
ciphertexts c0 = k0 ⊕ m0 and c1 = k1 ⊕ m1 to the receiver. A receiver with choice
bit b can then recover rb from the OT, derive the key kb via the randomness extractor
and obtain mb by decrypting cb.

To argue statistical sender privacy using this approach, we need to ensure that one of
the keys k0 or k1 is uniformly random from amalicious receivers perspective. Roughly

123

Algorithmica (2023) 85:3602–3648 3615

speaking, due to the discussion above the second OT message ot2 needs to lose either
half of the information in r0 or r1. Thus, in the worst case, the receiver could learn half
of the information in each r0 and r1 from ot2. Consequently, we need a randomness
extractor which produces a uniformly random output as long as its input has n/2 bits
of min-entropy. Thus, we can prove statistical sender privacy for messages of length
smaller than n/2.

But in terms of communication efficiency, this means that we used a high rate n-bit
string OT to implement a string OT of length ≤ n/2, which means that the rate of
the SSP OT we’ve constructed is less than 1/2. This is true without even taking into
account the addition communication cost required to transmit the ciphertexts c0 and
c1. Thus, this approach effectively trades high rate for statistical sender privacy at
the expense of falling back to a lower rate. We conclude that this approach is also
fundamentally stuck at rate 1/2.

3.3 The Non Black-Box Approach [31, 32]

While the above discussion seems to imply that there might be an inherent barrier
in achieving SSP OT with rate > 1/2, there is in fact a way to convert any SSP OT
protocol into a rate-1 SSP OT protocol using sufficiently powerful tools. Specifically,
using a rate-1 fully-homomorphic encryption (FHE) scheme [31, 32], the receiver can
delegate the decryption of ot2 to the sender. In more detail, assume thatOT3(st, ot2) is
the decryption operation which is performed by the receiver at the end of the SSP OT
protocol. By providing an FHE encryption FHE .Enc(st) of the OT receiver state st
alongwith the firstmessage ot1, the receiver enables the sender to performOT3(st, ot2)
homomorphically, resulting in an FHE encryption c of the receivers output mb. Now
the receiver merely has to decrypt c to recover mb. In terms of rate, note that the
OT sender message now merely consists of c, which is rate-1 as the FHE scheme is
rate-1. Further note that this transformation does not harm SSP security, as from the
sender’s view the critical part of the protocol is over once ot2 has been computed. I.e.
for the sender performing the homomorphic decryption is merely a post-processing
operation. On the downside, this transformation uses quite heavy tools. In particular,
this transformationneeds tomakenonblack-box useof the underlyingSSPOTprotocol
by performing the OT3 operation homomorphically.

In summary, to the best of our knowledge, all previous approaches to construct SSP
OT are either fundamentally stuck at rate 1/2 or make non black-box usage of the
underlying cryptographic machinery, making it prohibitively expensive to run such a
protocol in practice.

Finally, we mention that if one wishes to settle on a computational instead of statis-
tical privacy for the sender, it is possible to build rate-1 OT using existing techniques
by relying on super-polynomial hardness assumptions. The idea is that the parties will
first engage in a (low-rate) OT protocol OT1, so that the receiver will learn one of the
two random PRG seeds (s0, s1) sampled by the sender. In parallel, the sender prepares
two ciphertexts (ct0 := PRG(s0) ⊕ m0, ct1 := PRG(s1) ⊕ m1) for his two input mes-
sages (m0,m1), and communicates one of them to the receiver using a semi-honest
rate-1 OT protocol. Even given both (ct0, ct1) the receiver cannot recover both m0

123

3616 Algorithmica (2023) 85:3602–3648

and m1, because OT1 will guarantee at least one of the seeds remains computationally
hidden to the receiver. The above protocol is rate-1 because the added communication
of obliviously transferring (s0, s1) is independent of the size of m0. The main draw-
back of this above protocol is that, since we do not rely on a trusted setup, we cannot
extract the choice bit in polynomial time from the receiver, and hence we will have to
rely on complexity leveraging to establish sender security. In particular, the best we
can guarantee is that a malicious computationally-bounded receiver cannot compute
both messages of the sender. This notion will fall short in replacing rate-1 SSP OT in
the aforementioned applications.

4 Preliminaries

We will denote finite fields of unspecified size by F, and for any prime-power q
we will denote the finite field of size q by Fq . We will use uF to denote a uniform
and independent random variable over F, and likewise uFt to denote a uniform and
independent random variable over Ft .

Z are the integers and Zq = Z/qZ are the integers modulo q. Vectors are small,
bold letter (i.e. a,b) whilematrices are big, bold letters (i.e.A,B). For sets of functions
we use big, italic letters (i.e. F ,G). We also use [n] instead of {1, . . . , n}.

For a cyclic group we useG and usually call its generator g. As a shorthand for the
matrix of group elements (gMi, j)i, j∈[n] wewrite gM whereM is a matrix is fromZ

n×n

and similarly for vectors and rectangular matrices. This allows for notations such as
(gM)v = gMv where M is a n × n matrix of group elements and v is a n vector of
group elements.

We use span(M) to indicate the column span of matrix M and LKer(M) its left
kernel.

Definition 1 (Computational Indistinguishability) Two random variables B and C are
computationally indistinguishable if for every polynomial adversary A

∣
∣
∣
∣ Prb∼B

[A(b) = 1] − Pr
c∼C

[A(c) = 1]
∣
∣
∣
∣

is negligible in the security parameter

Sometimes we denote this with A ≈ B.

4.1 Statistical Measures

We introduce some standard concepts for statistical measures.

Definition 2 (Statistical Distance) We define the statistical distance between two dis-
crete random variables A, B to be

�(A; B) = 1

2

∑

υ

|Pr[A = υ] − Pr[B = υ]|

123

Algorithmica (2023) 85:3602–3648 3617

We use �(A; B|C) as a shorthand for �((A,C) ; (B,C)). Sometimes we write
A ≈ε B instead of �(A; B) ≤ ε.

We call two random variables statistically indistinguishable if their statistical dis-
tance is negligible in some the security parameter. We denote this as ≈ or ≈s . Since
≈ by itself is ambiguous we will make it clear from the context.

Definition 3 (Min-Entropy) We define the min-entropy of a random variable A to be

H∞(A) = − log(max
υ

Pr[A = υ])

Definition 4 (Average Conditional Min-Entropy) We define the average conditional
min-entropy of random variable A given the random variable B

H̃∞(A|B) = − log
(
Eb∼B

[
max
a

Pr[A = a|B = b]
])

We will make use of the following simple Lemma.

Lemma 1 (See e.g. [33]) Let F be a finite field and m > n be integers. A uniformly

random matrix R
pick←−F

n×m has full rank, except with probability 2−(m−n).

We will use the following variant of the leftover hash lemma.

Lemma 2 Let r be uniform in Fn, and l be a random variable in Fn, Z ∈ Z such that
(l, Z) is independent of r. If

H̃∞(l|Z) ≥ log q + 2 log

(
1

ε

)

,

then

�((r, Z , 〈l, r〉) (r, Z , uF)) ≤ ε,

where 〈·, ·〉 is the inner product over F.
Wewill need the following simple lemma from [34]. Variants of this lemma have been
used in the past to prove the security of various non-malleable code constructions
(such as [2, 3]).

Lemma 3 Let S be some random variable distributed over a set S, and let S1, . . . ,S j

be a partition of S. Let φ : S → T be some function, and let D1, . . . , Dj be some
random variables over the set T . Assume that for all 1 ≤ i ≤ j ,

�
(
φ(S)|S∈Si Di

) ≤ εi .

Then

�(φ(S) D) ≤
∑

εi Pr[S ∈ Si],

123

3618 Algorithmica (2023) 85:3602–3648

for some random variable D ∈ T such that for all d Pr[D = d] = ∑
i Pr[S ∈

Si] · Pr[Di = d]. In particular, if εi ≤ ε for i = 1, . . . , j − 1, and Pr[S ∈ S j] ≤ δ,
then

�
(
φ(S)|S∈Si Di

) ≤ ε

j−1∑

i=1

Pr[S ∈ Si] + Pr[S ∈ S j] ≤ ε + δ, .

The following is a fundamental property of statistical distance.

Lemma 4 For any, possibly random, function α, if �(A ; B) ≤ ε, then
�(α(A) ; α(B)) ≤ ε.

We will need the following lemma.

Lemma 5 ([3,Claim4])Let X1, X2,Y1,Y2 be randomvariables such that (X1, X2) ≈ε

(Y1,Y2). Then, for any non-empty set A, we have:

�(X2|X1∈A; Y2|Y1∈A) ≤ 2ε

Pr[X1 ∈ A] .

5 Algebraic Restriction Codes

In this section, we will define our main technical tool: Algebraic Restriction Codes.
An algebraic restriction code allows encoding a linear function so that any (suitably
bounded) malicious evaluation algorithm cannot exfiltrate information that could not
have been obtained via a valid evaluation of the function.Wewill use algebraic restric-
tion codes as a powerful interface to achieve circuit privacy without sacrificing other
crucial properties such as high rate. Algebraic restriction codes can be seen as a spe-
cific type of secret sharing which allows for certain homomorphic operations while
inhibiting others.

In particular, algebraic restriction codes will become useful in striking a bal-
ance between seemingly conflicting goals: Relying on additional structure to achieve
advanced functionality while not making this additional structure a potential avenue to
attack function privacy. Generally, we allow AR-codes to be seeded, i.e. all operations
take as additional input a seed s. We now will define algebraic restriction codes as
follows.

Definition 5 An algebraic restriction code consists of three algorithms Encode, Eval
and Decode with the following syntax.

• Encode(s, x): Takes as input a seed s, an input x and outputs an encoding c
• Eval(c, f): Takes as input an encoding c, a function f ∈ F and outputs an encoding
d

• Decode(s, d): Takes as input a seed s, an encoding d and outputs a value y

In terms of correctness, we require that for all seeds s, all inputs x and all functions
f ∈ F that

Decode(s, Eval(Encode(s, x), f)) = f (x).

123

Algorithmica (2023) 85:3602–3648 3619

In terms of security we require that AR codes restrict a potentially larger class G
of functions to F . Specifically, we require that for any malicious evaluation function
g ∈ G that evaluating g on an encoding of an input x corresponds to an honest
evaluation of a function f ∈ F on x . We formalize this via a simulation-based security
notion.

Definition 6 (Restriction Security) We say that a code AR is G-F restriction secure,
if there exists a (randomized) extractor E , which takes as input a function g ∈ G and
outputs a function f ∈ F and auxiliary information aux, and a simulator S such that
for every x and every function g ∈ G it holds that

(s, g(Encode(s, x)), aux) ≈ (s,S(s, aux, f (x)), aux),

where s is a uniformly random seed and (f , aux) ← E(g). Here, ≈ is either compu-
tational or statistical indistinguishability.

A crucial aspect of algebraic restriction codes will be the complexity of both eval-
uation and decoding. Specifically, we will be interested in algebraic restriction codes
for which both Eval and Decode are linear functions.

5.1 Concatenating AR Codes

Concatenation is a powerful concept in coding theory, allowing to combine properties
of different codes. We will now briefly show that concatenating AR codes has the
expected effect: If AR1 restricts a classH to a class G′ and AR2 restricts a class G ⊇ G′
to another class F , then the code AR3 obtained by first encoding with AR2 and then
with AR1 restrictsH to F .

Lemma 6 Let AR1 be an AR code which restricts a class H to a class G. Let further
AR2 be an AR code which restricts the class G to a class F . Let AR3 be the AR code
obtained by first encoding with AR2 and then with AR1, i.e. AR3.Encodes1,s2(x) =
AR1.Encodes1(AR2.Encodes2(x)). Then the code AR3 restrictsH to F .

Proof Let S1 be the simulator for AR1 and S2 be the simulator for AR2. We define
the extractor in the canonic way via E3 via E3(h) = (f , (aux1, aux2)) where
(f , aux2) = E2(g) and (g, aux1) = E(h). Furthermore, we define the simulatorS3 via
S3((aux1, aux2), y) = S1(aux1,S2(aux2, y)). Let h ∈ H be a tampering function.
We get that

(h(AR1.Encodes1(AR2.Encodes2(x))), aux1, aux2)

≈ (S1(s1, aux1, g(AR2.Encodes2(x))), aux1, aux2)

≈ (S1(s1, aux1,S2(s2, aux2, f (x))), aux1, aux2)

≈ (S3((s1, s2), (aux1, aux2), y), aux1, aux2).

��

123

3620 Algorithmica (2023) 85:3602–3648

While Lemma 6 provides a general concatenation theorem for AR codes, in our
applications we will rely on a slight variant for specific function classes where AR1 is
a H − G AR code and AR2 is a G′ − F AR code for which the classes G and G′ are
not identical, but rather G′ is a subclass of G. In the following, we will identify the
extension field Fqk with F

k
q as a vector space.

Lemma 7 Let Fq be a finite field and let Fqk be its extension field of degree k. Let
G be the class of functions Fqk × Fqk → Fqk of the form (x, y) �→ ax + by (for
a, b ∈ Fqk), and let H be a class of functions containing G. Let G′ be the class of

functions Fk
q × F

k
q → F

k
q of the form (x, y) �→ Ax + y (for AinFk×k

q). Finally, let F
be the class of functions Fn

q ×F
n
q → F

n
q which are either of the form (x, y) �→ α ·x+y

(for α ∈ Fq) or (x, y) �→ x. If AR1 is aH− G AR code and AR2 is a G′ −F AR code,
then the concatenation of AR1 and AR2 is a H − F AR code AR3.

Proof Let E1 and S1 be the extractor and simulator for AR1, and let E2 and S2 be the
extractor and simulator for AR2. We start by constructing the extractor E3 for AR3. On
input h ∈ H, E3 proceeds as follows:

• Compute (g, aux1) ← E1(h), and parse g as a function (x, y) �→ ax + by for
a, b ∈ Fqk .

• If b = 0, set f to be the function (x, y) �→ x and set aux2 = ∅.
• Otherwise:

• Let A,B ∈ F
k×k
q be the multiplication matrices corresponding to a, b ∈ Fqk

(Notice that B is invertible as b �= 0) and set g′ to be the function (x, y) �→
B−1Ax + y.

• Compute (f , aux2) ← E2(g′)

• Set aux3 = (aux1, aux2)
• Output (f , aux3).

Now the simulatorS3 is given as follows. On input (s = (s1, s2), aux3, z),S3 proceeds
as follows:

• If aux2 = ∅, set z′ ← AR2.Encodes2(z, 0). Otherwise, compute z′ ← b ·
S2(s2, aux2, z).

• Compute and output z′′ ← S1(s1, aux1, z′).

Now fix a function h ∈ H and let (g, aux1) ← E1(h), where we parse g as a
function (x, y) �→ ax + by for a, b ∈ Fqk . We will distinguish two cases, b = 0 and
b �= 0.

1. In the first case, conditioned on b = 0 it holds that

((s1, s2), h(AR1.Encodes1(AR2.Encodes2(x, y))), aux1, aux2)

≈ ((s1, s2),S1(s1, aux1, g(AR2.Encodes2(x, y))), aux1, aux2)

≡ ((s1, s2),S1(s1, aux1, g(AR2.Encodes2(x, 0))), aux1, aux2)

≈ ((s1, s2),S3((s1, s2), (aux1, aux2), f (x, y)), aux1, aux2).

123

Algorithmica (2023) 85:3602–3648 3621

2. In the second case, conditioned on b �= 0 it holds that

((s1, s2), h(AR1.Encodes1(AR2.Encodes2(x, y))), aux1, aux2)

≈ ((s1, s2),S1(s1, aux1, g(AR2.Encodes2(x, y))), aux1, aux2)

≡ ((s1, s2),S1(s1, aux1, b · g′(AR2.Encodes2(x, y))), aux1, aux2)
≈ ((s1, s2),S1(s1, aux1, b · S2(s2, aux2, f (x, y))), aux1, aux2)

≈ ((s1, s2),S3((s1, s2), (aux1, aux2), f (x, y)), aux1, aux2).

Overall, we conclude that

((s1, s2), h(AR1.Encodes1(AR2.Encodes2(x, y))), aux1, aux2)

≈ ((s1, s2),S3((s1, s2), (aux1, aux2), f (x, y)), aux1, aux2),

which concludes the proof. ��

6 FromArbitrary Linear to Simple Linear Functions

In this section, we will show a simple construction of AR codes which constrain an
adversary from arbitrary linear functions to simple linear functions. Specifically, we
consider the following two classes of functions:

• The class F consists of all functions f : Fn
q × F

n
q → F

n
q of the form f (x, y) =

ax + y, where a ∈ Fq

• The class G consists of all functions g : Fm
q × F

m
q → F

m
q of the form g(x, y) =

Ax + y, where A ∈ F
m×m
q .

Note that the functions in the class the classF have two degrees of freedom,whereas
the functions in class G have 2m2 degrees of freedom.

Let s = R
pick←−F

n×m
q be a uniformly random matrix. The AR code AR1 is given as

follows.

Encode(s, x1, x2):

• Choose x̂1, x̂2
pick←−F

m
q uniformly at random under the restriction that Rx̂1 = x1

and Rx̂2 = x2.
• Output c ← (x̂1, x̂2)

Eval(c, a1, a2):

• Parse c = (x̂1, x̂2)
• Compute and output ŷ ← x̂1a1 + x̂2a2

Decode(s, ŷ):

• Compute and output y ← Rŷ.

The technical core of this section is Lemma 8.

123

3622 Algorithmica (2023) 85:3602–3648

Lemma 8 Let q > 0 be a modulus and n > 0. Let A ∈ F
m×m
q be a square matrix.

Let a ∈ Fq be the eigenvalue of A for which the dimension of the corresponding

eigenspace Va is maximal. Let x1, x2,u
pick←−F

m
q be chosen uniformly at random. Let

further R
pick←−F

n×m
q be chosen uniformly at random. Given that m ≥ 2n + 2 + 2t it

holds that

(R,Rx1,Rx2,Ax1 + x2) ≡ (R,Rx1,Rx2, ax1 + x2 + (A − a · I)u), (1)

except with probability 2q−t over the choice of R.

Using Lemma 8, we will establish the main result of this section, Theorem 4.

Theorem 4 Let F , G be the two classes defined above. The AR code AR1 restricts G
to F .

Proof of Theorem 4 Let g(x̂1, x̂2) = Ax̂1 + x̂2, and let a ∈ Fq be the eigenvalue of
A for which the corresponding eigenspace has the largest dimension, if no non-zero
eigenvalue exists set a = 0. By Lemma 1 the matrix R has full rank, except with
negligible probability 2−(m−n). By Lemma 8, for uniformly random x̂1 and x̂2 it holds
that

(R,Rx̂1,Rx̂2,Ax̂1 + x̂2) ≡ (R,Rx̂1,Rx̂2, ax̂1 + x̂2 + (A − a · I)u), (2)

except with negligible probability over the choice of R. Thus fix a R which has both
full rank and for which (2) holds, and fix two vectors x1, x2 ∈ F

n
q . Since R has full

rank, we can condition on Rx̂1 = x1 and Rx̂2 = x2 and obtain that

Ax̂1 + x̂2 ≡ ax̂1 + x̂2 + (A − a · I)u. (3)

This implies that for all but a negligible fraction of the R we can simulate g(x̂1, x̂2)
from y = ax1 + x2 by choosing a uniformly random random ŷ with Rŷ = y, and a
uniformly random u ∈ F

m
q and outputting z = ŷ + (A− a · I)u. By (3) it holds that z

and g(x̂1, x̂2) are identically distributed. ��
Proof of Lemma 8 First note that leaving out R, the lefthandside of (1) can be written
as M0 · (x1, x2)� where

M0 =
⎛

⎝
R

R
A I

⎞

⎠ ,

whereas the righthandside of (1) (again leaving out R) can be written as M1 ·
(x1, x2,u)� where

M1 =
⎛

⎝
R

R
aI I A − aI

⎞

⎠ .

123

Algorithmica (2023) 85:3602–3648 3623

Consequently, since x1, x2 and u are chosen uniformly random from F
m
q , it holds

that the two distributions on the lefthand side and the righthand side are identically
distributed, if and only if the columns ofM0 andM1 span the same space. First observe
that span(M0) ⊆ span(M1), as M0 · (x1, x2)� = M1(x1, x2, x1)�.

To show the other inclusion, note that span(M1) ⊆ span(M0), if and only if
LKer(M0) ⊆ LKer(M1). Therefore, let (v1, v2,w) be a vector in LKer(M0), i.e. it holds
that v1R + wA = 0 and v2R + w = 0. This immediately implies that v1R = v2RA.
We will show that this implies that v2R is an eigenvector of A. As R is chosen
uniformly fromF

n×m
q , it holds byTheorem4 thatR has full rank, exceptwith negligible

probability 2−(m−n). Now recall that a is the eigenvalue of A with the eigenspace of
highest dimension and recall that v2RA = v1R. We will show that this implies that
v1RA = a · v2R, except with negligible probability over the choice of R. That is, we
will show that

Pr
R

[∃v1, v2 �= 0 s.t. v2RA = v1R and v2RA �= av2R] ≤ negl. (4)

In other words, it holds for all v1, v2 �= 0 that v2RA = v1R implies v2RA �=
av2R, except with negligible probability over the choice of R. From this is follows
immediately that LKer(M0) ⊆ LKer(M1), as w = −v2R and therefore w(A − aI) =
−av2R + av2R = 0. We will establish (4) via a union-bound over the v1, v2, and
towards this goal we will distinguish two cases.

1. In the first case, v1 and v2 are linearly dependent, i.e. there exists an α ∈ Fq such
that v1 = αv2. If α = a then the probability of the event is 0. Thus consider
α �= a, and let Vα be the eigenspace of A corresponding to the eigenvalue α,
where Vα = {0} if α is not an eigenvalue of A. Observe that it must hold that the
dimension of Vα is at most m/2, as otherwise α would be the eigenvalue with the
eigenspace of the largest dimension and therefore α = a. Consequently, it holds
that

Pr[v1R = v2RA] = Pr[αv2R = v2RA]
= Pr[v2R ∈ Vα] ≤ q−m/2,

as v2R is distributed uniformly random over Fm
q and the dimension of Vα is at

most m/2.
We further note that there are at most qn choices for v2 and q choices for α, thus
in this case there are are qn+1 possible choices for the pair (v1, v2).

2. In the second case, v1 and v2 are linearly independent. In this case v1R and v2R
are distributed independently and uniformly random. Consequently, it holds that

Pr
R

[v1R = v2RA and v2RA �= av2R] ≤ Pr
R

[v1R = v2RA] ≤ 1/qm .

Note that in this case there are less than q2n choices for the pair v1, v2.

123

3624 Algorithmica (2023) 85:3602–3648

We can conclude that

Pr
R

[∃v1, v2 s.t. v1R = v2RA and v2RA �= av2R] ≤ qn+1q−m/2 + q2nq−m .

As m ≥ 2n + 2 + 2t , we can bound this probability by 2q−t . ��

7 FromOutput-Bounded Functions to Linear Combinations

In this section, we will show that the AR code induced by the inner product extractor
restricts arbitrary functions of bounded output length to linear functions. Specifically,
consider the following two classes of functions:

• The classF consists of all functions f : (Fq)
t → Fq of the form f (x1, . . . , xt) =∑t

i=1 ai xi , where a1, . . . , at ∈ Fq

• The class G consists of all functions g : (Fn
q)

t → {0, 1}n log(q)+l (for some l <

n log(q)).

Let s = s
pick←−F

n
q be a uniformly random vector. The AR code AR2 is given as

follows.

Encode(s, x1, . . . , xt):

• Choose x1, . . . , xt
pick←−F

n
q uniformly at random under the restriction that 〈xi , s〉 =

xi for all i ∈ [t].
• Output c = (x1, . . . , xt)

Eval(c, a):

• Parse c = (x1, . . . , xt) and a = (a1, . . . , at).
• Compute and output y ← ∑t

i=1 aixi

Decode(s, y):

• Compute and output y ← 〈y, s〉.
Restriction security of this construction follows immediately from Corollary 1 at

the end of this section.

7.1 A Conditional XOR Lemma

The following is straightforward from a Markov-like argument.

Lemma 9 • For any ε > 0, and any correlated random variables X ∈ S and E if

�(X , E ; U , E) ≤ ε,

then for any δ > 0, with probability at least 1 − ε
δ
over the choice of i ← E,

�(X |E=i ; U) ≤ δ.

123

Algorithmica (2023) 85:3602–3648 3625

• For any δ > 0, if

�(X |E=i ; U) ≤ δ

holds with probability at least p over the choice of i ← E, then

�(X , E ; U , E) ≤ δ + (1 − δ) · (1 − p).

Lemma 10 Let X ∈ S be a random variable for some set S. Assume that �(X US) =
ε. Then if X ′ is an i.i.d copy of X then

4ε2 ≥ Pr[X = X ′] − 1

|S| ≥ 4ε2

|S| .

Proof Let px = Pr[X = x] for x ∈ S. Then

Pr[X = X ′] − 1

|S| =
∑

x∈S

(

px − 1

|S|
)2

≥ 1

|S|

(
∑

x∈S

∣
∣
∣
∣px − 1

|S|
∣
∣
∣
∣

)2

= 4ε2

|S| .

Also,

Pr[X = X ′] − 1

|S| =
∑

x∈F

(

px − 1

|S|
)2

≤
(
∑

x∈S

∣
∣
∣
∣px − 1

|S|
∣
∣
∣
∣

)2

= 4ε2.

��

Lemma 11 Let X ∈ S, Z ∈ T be correlated random variables for some sets S, T .
Assume that �(X , Z US, Z) = ε. Then if (X ′, Z ′) is an i.i.d copy of (X , Z) then

4ε2 ≥ Pr[X = X ′, Z = Z ′] − 1

|S| Pr[Z = Z ′] ≥ 4ε2

|S| · |T | .

Proof Let pz = Pr[Z = z], and let px,z = Pr[X = x, Z = z]. Then

Pr[X = X ′, Z = Z ′] − 1

|S| · Pr[Z = Z ′] =
∑

x∈S,z∈T

(

px,z − pz
|S|

)2

≥ 1

|S| · |T |

(
∑

x∈S

∣
∣
∣
∣px,z − pz

|S|
∣
∣
∣
∣

)2

= 4ε2

|S| · |T | .

123

3626 Algorithmica (2023) 85:3602–3648

Also,

Pr[X = X ′, Z = Z ′] − 1

|S| · Pr[Z = Z ′] =
∑

x∈S,z∈T

(

px,z − pz
|S|

)2

≤
(
∑

x∈S

∣
∣
∣
∣px,z − pz

|S|
∣
∣
∣
∣

)2

= 4ε2.

��
The following is a variant of the well known Vazirani’s XOR lemma. This was

proved in [35] in the quantum setting.

Lemma 12 Let x = (x1, . . . , xt) ∈ F
t be a random variable, and E be some

correlated random variable. Assume that for all α1, . . . , αt ∈ F not all zero,
�(

∑t
i=1 αi xi , E ; uF, E) ≤ ε. Then

�(x, E uFt , E) ≤ 3p3t/4
√

ε.

Proof We start by choosing E and fixing it. By Lemma 9 and the union bound, we
have that with probability at least 1 − pt ε

δ
over the choice of E , we have that for all

α1, . . . , αt ∈ F not all zero,

�

(
t∑

i=1

αi xi ; uF

)

≤ δ,

where the distribution of xi ’s is conditioned on the choice of E . Let x′ = (x ′
1, . . . , x

′
t)

be i.i.d. as x conditioned on the choice of E . By Lemma 10, we have that for all
α1, . . . , αt ∈ F not all zero,

Pr

(
t∑

i=1

αi (xi − x ′
i) = 0

)

≤ 1

p
+ 4δ2.

Let a = (a1, . . . , at) be uniform in Ft and independent of x, x′. Then,

Pr

[
t∑

i=1

ai (xi − x ′
i) = 0

]

= Pr

[
t∑

i=1

ai (xi − x ′
i) = 0|a �= 0

]

· Pr[a �= 0] + Pr[a = 0]

≤
(
1

p
+ 4δ2

)

·
(

1 − 1

pt

)

+ 1

pt
.

123

Algorithmica (2023) 85:3602–3648 3627

Thus,

(
1

p
+ 4δ2

)

·
(

1 − 1

pt

)

+ 1

pt

≥ Pr

[
t∑

i=1

ai (xi − x ′
i) = 0

]

= Pr

[
t∑

i=1

ai (xi − x ′
i) = 0|x �= x′

]

· Pr[x �= x′] + Pr[x = x′]

= Pr[x = x′] + 1

p
· (1 − Pr[x = x′]).

Simplifying, we get,

Pr[x = x′] ≤ 1

pt
+ 4δ2

1 − 1/pt

1 − 1/p
≤ 1

pt
+ 8δ2.

Using the inequality in Lemma 10, we get that

�(x ; uFt) ≤
√

2δ2 pt ≤ 2δ · pt/2.

Recall that this is conditionedon the correct choice of E whichwehavewith probability
at least 1 − pt ε

δ
. Using Lemma 9 with δ = pt/4

√
ε, we have that

�(x, E ; uFt , E) ≤ 2δ · pt/2 + pt
ε

δ
= 3p3t/4

√
ε.

��
We remark here that if there is no side information E , then there is no union bound in
the first step, and δ = ε so that the statistical distance is 2pt/2ε.

7.2 Combinatorial Simulator

We now prove our main technical result, which yields algebraic restriction codes for
functions of bounded output length.

Theorem 5 Let q be a prime power, let n, t, s be positive integers and ε > 0 such that

n log q − (9t + 3) log q − s − 2 log t − 28 ≥ 16 log
1

ε
.

Let x1, . . . , xt be uniform in F
n
q and s is uniform in F

n
q and independent of the xi .

For any f : Ftn
q → {0, 1}n log q+s , there exists a simulator Sim and random variables

a1, . . . , at ∈ Fq such that

123

3628 Algorithmica (2023) 85:3602–3648

s, f (x1, . . . , xt), 〈x1, s〉, . . . , 〈xt , s〉, a1, . . . , at

≈2ε s, Sim

(

s, a1, . . . , at ,
t∑

i=1

aiui

)

, u1, . . . , ut , a1, . . . , at

where u1, . . . , ut are uniform and independent random variables in Fq , independent
of (a1, . . . , at).

We will use the XOR lemma (Lemma 12) to prove this theorem. We will begin
by showing that if we start with x1, . . . , xt being uniform in any large enough set
T , then there exists a large subset T ′ ⊆ T and some fixed a1, . . . , at in Fq such
that conditioned on (x1, . . . , xt) being in this subset, the only information about
〈x1, s〉, . . . , 〈xt , s〉 obtained by learning f (x1, . . . , xt) and S is

∑t
i=1 ai 〈xi , s〉. More

formally,

Lemma 13 Let q be a prime power, let n, t, s be positive integers and ε > 0 such that

n log q − (9t + 3) log q − s − 2 log t − 28 ≥ 16 log
1

ε
.

Let T ⊆ F
tn
q such that |T | ≥ ε · qtn. For any f : Ftn

q → {0, 1}n log q+s , there exist
a1, . . . , at ∈ Fq , non-empty set T ′ ⊆ T , and a simulator Sim, such that for the tuple
(x1, . . . , xt) distributed uniformly in T ′ and s uniformly and independently in in Fn

q ,

�

(

s, f (x1, . . . , xt), 〈x1, s〉, . . . , 〈xt , s〉 ; s, Sim

(

s,
t∑

i=1

aiui

)

, u1, . . . , ut

)

≤ ε,

where u1, . . . , ut are uniform and independent random variables in Fq .

Proof Let x1, . . . , xt be uniform in T . Consider the following cases.

CASE 1: �(x, f (x1, . . . , xt), 〈x1, s〉, . . . , 〈xt , s〉; s, f (x1, . . . , xt), u1, . . . , ut)
≤ ε. In this case, let T1 = T . The simulator Sim ignores the inputs and just samples
s, x1, . . . , xt according to the given input distribution, andoutputs s, f (x1, . . . , xt).
Thus, the given statement implies

�

(

s, f (x1, . . . , xt), 〈x1, s〉, . . . , 〈xt , s〉 ; s, Sim

(

s,
t∑

i=1

aiui

)

, u1, . . . , ut

)

≤ ε,

Notice that since the simulator ignores the input, the above statement holds for
any choice of a1, . . . , at .
CASE 2: �(s, f (x1, . . . , xt), 〈x1, s〉, . . . , 〈xt , s〉 ; s, f (x1, . . . , xt), u1, . . . , ut)
> ε. Lemma 12 shows that if all non-trivial linear combinations of 〈xi , s〉
are close to uniform given E = (s, f (x1, . . . , st)), then the joint distribution

123

Algorithmica (2023) 85:3602–3648 3629

〈x1, s〉, . . . , 〈xt , s〉 is close to uniform given E . Applying the contrapositive, we
get that there exists a1, . . . , at ∈ Fq , not all 0, such that

�

(〈
t∑

i=1

aixi , s

〉

, s, f (x1, . . . , xt) ; u, s, f (x1, . . . , xt)

)

>
ε2

9q3t/2
.

Notice that this implies that there is a non-trivial correlation between
∑t

i=1 ai 〈xi , s〉
and (s, f (x1, . . . , xt)).Wewill show that for this choice of a1, . . . , at , and an appropri-
ate choice of the subset T ′, this correlation is essentially the only correlation between
the joint distribution (〈x1, s〉, . . . , 〈xt , s〉) and (s, f (x1, . . . , xt)).
By the Markov inequality, with probability at least ε2

18q3t/2
over the choice of y ←

f (x1, . . . , xt) iy holds that

�

(〈
t∑

i=1

aixi , s

〉

, s| f (x1,...,xt)=y ; u, s

)

>
ε2

18q3t/2
. (5)

Let Y be the set of all y which satisfy the above. For all y ∈ Y , let Ty be the preimage
of y for the function f , i.e., the set of all (x1, . . . , xt) such that f (x1, . . . , xt) = y.
We have that an element chosen uniformly at random from T is in Ty for some y ∈ Y
with probability at least ε2

18q3t/2
. This implies that

∣
∣
∣
∣
∣
∣

⋃

y∈Y
Ty

∣
∣
∣
∣
∣
∣
≥ ε2

18q3t/2
· |T | ≥ ε3

18q3t/2
· qtn .

Let y be some element in Y . By the contrapositive of the leftover hash lemma
(Lemma2),wehave that themin-entropyof

∑t
i=1 aixi conditionedon f (x1, . . . , xt) =

y is at most log q + 2 log 1
�
, where

� := �

(〈
t∑

i=1

aixi , s

〉

, s| f (x1,...,xt)=y ; u, s

)

>
ε2

18q3t/2
,

using the inequality in 5. Thus

H∞

(
t∑

i=1

aixi | f (x1, . . . , xt) = y

)

≤ log q + 4 log
1

ε
+ 3t log q + 2 log 18. (6)

This implies that for each y ∈ Y , there is a large number of elements (x1, . . . , xt) ∈ Ty
such that

∑t
i=1 aixi is fixed. We now select only those elements from Ty which

correspond
∑t

i=1 aixi being fixed. For each y ∈ Y , let φ(y) be the most frequently

123

3630 Algorithmica (2023) 85:3602–3648

occurring value of
∑t

i=1 aixi for (x1, . . . , xt) ∈ Ty , and let

T ′
y =

{

(x1, . . . , xt) ∈ Ty
∣
∣
∣
∣

t∑

i=1

aixi = φ(y)

}

.

By the inequality in 6, we have that

|T ′
y | ≥ |Ty | · ε4

324q3t+1 ,

which implies that

∣
∣
∣
∣
∣
∣

⋃

y∈Y
T ′
y

∣
∣
∣
∣
∣
∣
≥ ε3

18q3t/2
· qtn · ε4

324q3t+1 ≥ ε7

213q9t/2+1 · qtn . (7)

Notice that for any (x1, . . . , xt) in
⋃

y∈Y T ′
y , it holds that

∑t
i=1 aixi is equal to

φ(f (x1, . . . , xt)), i.e., it is uniquely determined given f (x1, . . . , xt).
Intuitively, since

∑t
i=1 aixi carries roughly n log p bits of information, and it is a

deterministic function of f (x1, . . . , xt), we expect that f (x1, . . . , xt) can be uniquely
determined with (a little more than an) additional s bits of information. We will now
remove those elements for which it requires a large number of bits to determine
f (x1, . . . , xt) given

∑t
i=1 aixi .

Let Y ′ be the set of all y such that

|φ−1(φ(y))| ≤ 2qtn

|⋃y∈Y T ′
y |

· 2s .

For y ∈ Y \ Y ′

|φ−1(φ(y))| >
2qtn

|⋃y∈Y T ′
y |

· 2s .

The total number of elements in Y \ Y ′ is at most the size of the image of f , i.e.,
qn · 2s . Hence the number of distinct values of φ(y) for y ∈ Y\Y ′ is at most

qn · 2s · |⋃y∈Y T ′
y |

2qtn · 2s = |⋃y∈Y T ′
y |

2q(t−1)n
.

Notice that for any element z ∈ F
n
q , there are at most q(t−1)n values of (x1, . . . , xt)

such that
∑t

i=1 aixi = z. Thus, the number of elements in
⋃

y∈φ−1(z) Ty is at most

123

Algorithmica (2023) 85:3602–3648 3631

q(t−1)n . This implies that

∣
∣
∣
∣
∣
∣

⋃

y∈Y\Y ′
T ′
y

∣
∣
∣
∣
∣
∣
≤ q(t−1)n · |⋃y∈Y T ′

y |
2q(t−1)n

= |⋃y∈Y T ′
y |

2
.

Thus,

∣
∣
∣
∣
∣
∣

⋃

y∈Y ′
T ′
y

∣
∣
∣
∣
∣
∣
≥ |⋃y∈Y T ′

y |
2

.

We let the set T ′ be
⋃

y∈Y ′ T ′
y , and let x1, x2, . . . , xt be uniform in T ′. We have the

following two properties satisfied by (x1, . . . , xt):

• The random variable
∑t

i=1 aixi is a deterministic function of f (x1, . . . , xt).
• The random variable f (x1, . . . , xt) is uniquely determined given

φ(f (x1, . . . , xt)) =
t∑

i=1

aixi and ψ(x1, . . . , xt)

for some function ψ : Ftn
q → {0, 1}s+14+(9t/2+1) log q+7 log 1

ε .2

Since not all a1, . . . , at are 0, we assume without loss of generality that at �= 0. Then,
notice that

H∞(xi |x1, . . . , xi−1, xi+1, . . . , xt−1,

t∑

i=1

aixi)

≥ log |T ′| − (t − 1)n log q

≥ log |
⋃

y∈Y ′
Ty | − 1 − (t − 1)n log q

≥ tn log q − 7 log
1

ε
− 14 − (9t/2 + 1) log q − (t − 1)n log q

= n log q − 7 log
1

ε
− 14 − (9t/2 + 1) log q ,

where we used the inequality (7). Additionally, considering the additional leakage
from ψ(x1, . . . , xt), we get that

H̃∞(xi |x1, . . . , xi−1, xi+1, . . . , xt−1, φ(f (x1, . . . , xt)), ψ(x1, . . . , xt))

2 Since for y ∈ Y ′ we get log |φ−1(φ(y))| ≤ log

(
2qtn

|⋃y∈Y T ′
y | · 2s

)

≤ s+14+(9t/2+1) log q+7 log 1
ε .

123

3632 Algorithmica (2023) 85:3602–3648

= n log q − 14 log
1

ε
− 28 − (9t + 2) log q − s

≥ log q + 2 log
t

ε
,

where we used the fact that the length of ψ(x1, . . . , xt) is at most s + 14 + (9t/2 +
1) log q + 7 log 1

ε
, and also the bound on n log q as given in the lemma statement.

Restating with φ,ψ replaced by the function f , we get the following.

H̃∞(xi |x1, . . . , xi−1, xi+1, . . . , xt−1, f (x1, . . . , xt)) ≥ log q + 2 log
t

ε
.

By the leftover hash lemma (Lemma 2), we have that

〈x1, s〉, 〈x2, s〉, . . . , 〈xt−1, s〉, f (x1, . . . , xt), s

≈ε/t u1, 〈x2, s〉, . . . , 〈xt−1, s〉, f (x1, . . . , xt), x .

Similarly, for i = 2, 3, 4, . . . , t − 1

u1, . . . , ui−1, 〈xi , s〉, 〈xi+1, s〉, . . . , 〈xt−1, s〉, f (x1, . . . , xt), s

≈ε/t u1, . . . , ui−1, ui , 〈xi+1, s〉, . . . , 〈xt−1, s〉, f (x1, . . . , xt), s .

By the triangle inequality, we get that

〈x1, s〉, . . . , 〈xt−1, s〉, f (x1, . . . , xt), s

≈ε(t−1)/t u1, . . . , ut−1, f (x1, . . . , xt), s .

Let Z be the additional randomness needed to sample f (x1, . . . , xt), S given
〈∑t

i=1 aixi , s〉, i.e., for some σ , f (x1, . . . , xt), s ≡ σ(Z , 〈∑t
i=1 aixi , s〉). By the

leftover hash lemma (Lemma 2), we have that

〈
t∑

i=1

aixi , s

〉

, f (x1, . . . , xt), s ≈ε/t u, Sim(u, Z).

Again by the triangle inequality, we have that

〈x1, s〉, . . . , 〈xt−1, s〉,
〈

t∑

i=1

aixi , s

〉

, f (x1, . . . , xt), s

≈ε U1, . . . ,Ut−1,U , σ (U , Z) .

Writing 〈xt , s〉 as 1
at

(
〈∑t

i=1 aixi , s〉 − ∑t−1
i=1 ai 〈xi , s〉

)
and applying Lemma 4, we

have that

〈x1, s〉, . . . , 〈xt , s〉, f (x1, . . . , xt), s

123

Algorithmica (2023) 85:3602–3648 3633

≈ε u1, . . . , ut−1,
1

at
(u −

t−1∑

i=1

aiui), Sim(s, u, Z), s .

Notice that ut := 1
at

(
u − ∑t−1

i=1 aiui
)

is uniform in Fq and independent of

u1, . . . , ut−1. Rearranging, we have that u = ∑t
i=1 aiui . Thus, we obtain

〈x1, s〉, . . . , 〈xt , s〉, f (x1, . . . , xt), s ≈ε u1, . . . , ut−1, ut , Sim

(

s,
t∑

i=1

aiui , Z

)

, s,

as needed. ��

We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5 From Lemma 1, there exists a set T1, simulator Sim1 and
a(1)
1 , . . . , a(1)

t such that for (x(1)
1 , . . . , x(1)

t) distributed uniformly in T1,

s, f
(
x(1)
1 , . . . , x(1)

t

〉
),

〈
x(1)
1 , s

〉
, . . . ,

〈
x(1)
t , s

〉

≈ε σ1

(
t∑

i=1

a(1)
i ui

)

, u1, . . . , ut .

Since a(1)
1 , . . . , a(1)

t are fixed and public we can rewrite above as:

s, f
(
x(1)
1 , . . . , x(1)

t

)
,
〈
x(1)
1 , s

〉
, . . . ,

〈
x(1)
t , s

〉
, a(1)

1 , . . . , a(1)
t

≈ε σ1

(
t∑

i=1

a(1)
i ui

)

, u1, . . . , ut , a
(1)
1 , . . . , a(1)

t .

If |Ftn
q \ T1| ≥ εqtn , then we again apply Lemma 1 to obtain a set T2, simulator Sim2

and a(2)
1 , . . . , a(2)

t such that for (x(2)
1 , . . . , x(2)

t) distributed uniformly in T2,

s, f
(
x(2)
1 , . . . , x(2)

t

)
,
〈
x(2)
1 , s

〉
, . . . ,

〈
x(2)
t , s

〉
, a(2)

1 , . . . , a(2)
t

≈ε σ2

(
t∑

i=1

a(2)
i ui

)

, u1, . . . , ut , a
(2)
1 , . . . , a(2)

t .

We continue to obtain sets T1, T2, . . . , T
 by applying Lemma 1, until |T
| < εqtn .
Let the random variable (a1, . . . , at) and the simulator σ be the tuple (a(j)

1 , . . . , a(j)
t)

and σ j with probability proportional to the size of T j , i.e.,
|T j |
|T | . Then, by Lemma 3,

we obtain the desired result. ��

123

3634 Algorithmica (2023) 85:3602–3648

Corollary 1 Let q be a prime power, let n, t, s be positive integers and ε > 0 such that

n log q − (25t + 3) log q − s − 2 log t − 60 ≥ 16 log
1

ε′ .

Let m1, . . . ,mt ∈ Fq . Let s be uniform in Fn
q and let x1, . . . , xt be sampled uniformly

in F
n
q conditioned on the event that for all i ∈ [t], 〈xi , s〉 = mi . For any f : Ftn

q →
{0, 1}n log q+s , there exists a simulator Sim and random variables a1, . . . , at ∈ Fq

such that

s, f (x1, . . . , xt), a1, . . . , at

≈ε′ s, Sim

(

s, a1, . . . , at ,
t∑

i=1

aimi

)

, a1, . . . , at

where u1, . . . , ut are uniform and independent random variables in Fq , independent
of (a1, . . . , at).

Proof Applying Lemma 5 to Theorem 5, and conditioning on u1 = m1, . . . , ut = mt ,
we get that if

n log q − (9t + 3) log q − s − 2 log t − 28 ≥ 16 log
1

ε
, (8)

then

s, f (x1, . . . , xt), a1, . . . , at

≈ε′ s, Sim

(

s, a1, . . . , at ,
t∑

i=1

aimi

)

, a1, . . . , at ,

where ε′ = 4εqt , or in other words, ε = ε′
4qt . Substituting ε in Equation (8) gives the

desired result. ��

8 Rate-1 SSP OT fromDDH

In this section, we discuss the standard definition of rate-1 statistical sender-private
oblivious transfer (rate-1 SSP OT) and then go over our construction using algebraic
restriction codes. We start by providing the necessary cryptographic definitions.

8.1 Decisional Diffie–Hellman Assumption

These assumptions below are with regard to a group-generator scheme while most
protocols just consider the group. This however, is just to make the notation in the
protocol easier. Eachprotocol-participatingparty just chooses the groupG according to

123

Algorithmica (2023) 85:3602–3648 3635

the publicly known group-generator scheme G and security parameter λ and proceeds
as detailed in the protocol.

We recall the definition of the decisional Diffie–Hellman assumption [36] (DDH).

Definition 7 (DDH) Let G be a group-generator scheme, which on input 1λ out-
puts (G, p, g). The decisional Diffie–Hellman assumption holds for group-generator
scheme G if for all polynomial time adversaries A

∣
∣
∣Pr

[
A(g, ga, b, ab) = 1

] − Pr
[
A(g, ga, gb, gc) = 1

]∣
∣
∣

is negligible in λ for (G, p, g) ← G(1λ) and uniformly random a, b, c ∈ Zp

8.2 Public-Key Encryption Schemes

A public-key encryption scheme uses two keys, a public key pk and a secret key sk.
We use the public key to encrypt messages, the result of which is called ciphertext.
Without knowledge of the secret key, it is virtually impossible to calculate the message
from the ciphertext. The secret key, however, enables the holder to reliably retrieve
the message from the ciphertext.

Definition 8 (Public-Key Encryption) The following algorithms describe a public-key
encryption scheme:

KeyGen(1λ): The key-generation algorithm takes the security parameter λ as input
and outputs a key pair (pk, sk).
Enc(pk,m): The encryption algorithm takes a public key pk and a message m as
input and outputs a ciphertext c.
Dec(sk, c): The decryption algorithm takes a secret key sk and a ciphertext c as
input and outputs a message m. It rarely requires randomness.

In the rest of the document, every encryption scheme will be public key. Therefore
we will not mention it again.

Definition 9 (Correctness) An encryption scheme (KeyGen, Enc,Dec) is correct if for
all message m and security parameters λ

Pr
[
m = Dec(sk, Enc(pk,m))

∣
∣(pk, sk) ← KeyGen(1λ)

] = 1

The most popular notion of security for encryption schemes is IND-CPA security.

Definition 10 (IND-CPA Security) An encryption scheme (KeyGen, Enc,Dec) is ind-
cpa secure if for all adversary pairs (A1,A2)

Pr

⎡

⎢
⎢
⎣b = b′

∣
∣
∣
∣
∣
∣
∣
∣

(pk, sk) ← KeyGen(1λ)

(m0,m1, σ) ← A1(1λ,pk)
b ←$ {0, 1}
b′ ← A2(mb, σ)

⎤

⎥
⎥
⎦ − 1

2

is negligible in λ

123

3636 Algorithmica (2023) 85:3602–3648

The rate is trying to capture the size comparison between a ciphertext and its
corresponding plaintext.

Definition 11 (Rate) An encryption scheme (KeyGen, Enc,Dec) has rate ρ if there
exists a polynomial μ such that for all security parameters λ, possible outputs of
KeyGen(1λ) called (pk, sk), and messages m with |m| ≥ μ(λ)

|m|
|Enc(pk,m)| ≥ ρ(λ)

We call an encryption scheme high rate if it has a rate greater than 1/2 and we call
it rate-1 if for λ → ∞ the rate ρ(λ) approaches 1.

8.3 Homomorphic Encryption

In homomorphic encryption the decryption algorithm is a homomorphism. Certain
changes on a ciphertext change the underlying plaintext in a structured way.

Definition 12 (Homomorphic Encryption) These four algorithms describe a homo-
morphic encryption scheme:

KeyGen(1λ): The key-generation algorithm takes the security parameter λ as input
and outputs a key pair (pk, sk).
Enc(pk,m): The encryption algorithm takes a public key pk and a message m as
inputs and outputs a ciphertext c.
Eval(1λ,pk, f , c1, . . . , cn): The evaluation algorithm takes a security parameter
λ, a public key pk, a string representation of a function f and n where n is the
input size of f ciphertexts c1, . . . , cn as inputs and outputs a new ciphertext c.
Dec(sk, c): The decryption algorithm takes a secret key sk and a ciphertext c as
input and outputs a message m. It rarely requires randomness.

Definition 13 (Homomorphic Correctness) Let F be a set of functions and f be an
arbitrary element of F . An F-homomorphic encryption scheme (KeyGen, Enc, Eval,
Dec) is correct if (KeyGen, Enc,Dec) is a correct encryption scheme, and for all
messages m, security parameters λ, and (pk, sk) from the support of KeyGen(1λ)

Pr
[
f (m) = Dec(sk, Eval(1λ,pk, f , Enc(pk,m)))

] = 1

8.4 Oblivious Transfer

Two-round oblivious transfer is a protocol in which a receiver encodes a choice bit b
and transmits it to a sender. The sender then responds to that transmission using its
two messages m0 and m1. In the end the receiver learns mb, but not m1−b and the
sender learns nothing.

Definition 14 (Oblivious Transfer) A (string) 1-out-of-2 OT consists of three algo-
rithms: OT1, OT2, and OT3.

123

Algorithmica (2023) 85:3602–3648 3637

OT1(1λ, b): Takes as inputs the security parameterλ ∈ N and a choice bitb ∈ {0, 1}
to produce a request ot1 and a state st .
OT2(ot1, (m0,m1)): Uses the request ot1, and the two sender inputs m0,m1 ∈
{0, 1}∗ of same length to create a response ot2.
OT3(ot2, st): Calculates a result y from the state st and the response ot2.

We define correctness in the following.

Definition 15 (Correctness) An OT is correct if for all security parameters λ, bits
b ∈ {0, 1}, and sender inputs m0,m1 ∈ {0, 1}∗ the following holds:

Pr

⎡

⎣y = sb

∣
∣
∣
∣
∣
∣

ot1, st ← OT1(1λ, b)
ot2 ← OT2(ot1, (m0,m1))

y ← OT3(ot2, st)

⎤

⎦ = 1.

As standard for 2-round OT, we require that the bit of the receiver is hidden in an
indistinguishability sense.

Definition 16 (Receiver Security) An OT is receiver secure if for all security param-
eters λ and PPT adversaries A the following holds:

∣
∣Pr

[
A(ot1)|ot1, st ← OT1(1λ, 0)

] − Pr
[
A(ot1)|ot1, st ← OT1(1λ, 1)

]∣
∣

is negligible in λ.

We define (malicious) statistical sender privacy for 2-round OT.

Definition 17 (Statistical Sender Privacy) An OT is statistically sender private if the
exists a unbounded simulator Sim such that for all requests ot1 and sender inputs
m0,m1 ∈ {0, 1}∗ the following holds:

�(OT2(ot1, (m0,m1)); Sim f (1λ, ot1))

is negligible in λ with Sim having one-time access to an oracle f : b �→ m0 · (1 −
b) + m1 · b.

The (download) rate of an OT protocol captures how big the senders response is in
comparison to the size of a message m0.

Definition 18 (Rate) An OT (OT1,OT2,OT3) has rate ρ if there exists a polynomial
μ such that for all security parameters λ,

|m0|
|ot2| ≥ ρ(λ)

for all choice bits b, message lengths n > μ(λ), sender inputs m0,m1 ∈
{0, 1}n , receiver outputs (ot1, st) ← OT1(1λ, b) and sender outputs ot2 ←
OT2(ot1, (m0,m1))

123

3638 Algorithmica (2023) 85:3602–3648

8.5 Packed ElGamal

A big component of our OT construction is the packed ElGamal encryption scheme,
whichwe recall here for completeness.As discussed in the introduction, in theElGamal
encryption scheme [26] public keys are of the form g, h andmessagesm are encrypted
as gr , hr · m. In the packed ElGamal scheme, the same header gr is shared across
several payload slots hri · mi , effectively amortizing the cost of the header to encrypt
an entire vector m. Now let G be a cyclic group of prime order p, and let g be a
generator ofG. In our description we will provide a decryption algorithm which takes
as additional input a matrix M ∈ Z

m×n
p , which is applied to the secret key before

decryption. In this way, we achieve correctness for homomorphic operations across
slots.

KeyGen(1λ, n):

• Choose s
$←− Z

n
p uniformly at random.

• Set h = gs.
• Return secret key sk = s and public key pk = h.

Enc(pk,m ∈ {0, 1}n):
• Parse pk = h ∈ G

n .

• Choose r
$←− Zp uniformly at random.

• Return the ciphertext c = (gr ,hr · gm) ∈ G × G
n .

For a matrix X = (x1, . . . , xm) ∈ {0, 1}n×m , we overload encryption and denote

Enc(pk,X) = (Enc(pk, x1), . . . , Enc(pk, xm)).

Dec(sk,M, c):

• Parse sk = s.
• Compute s′ = Ms
• Parse c = (c ∈ G, e ∈ G

n).
• Return dlogg(e/c

s′).

Eval1(pk,C, a ∈ Z
m
p ,b ∈ Z

n
p)

• Parse pk = h
• Parse C = c1, . . . , cm .
• For all i ∈ [m] parse ci = (ci , ei).

• Choose r
$←− Zp uniformly at random.

• Set c = gr · ∏m
i=1 c

ai
i

• Set e = hr (
∏m

i=1 e
ai
i) · gb

• Return the ciphertext c = (c, e)

Eval2(pk, c,M ∈ Z
m×n
p)

• Parse M = (mi j)

123

Algorithmica (2023) 85:3602–3648 3639

• Parse c = (c, e) and e = (e1, . . . , en)
• For all i ∈ [m] compute di = ∏n

j=1 e
mi j
j

• Return the ciphertext c′ = (c,d)

For two ciphertexts c1 and c2 we overload Eval1 and denote by Eval1(pk, c1, c2,−)

the homomorphic computation of the difference of c1 and c2. Homomorphic correct-
ness of this scheme follows routinely. To analyze the rate of this scheme, note that
plaintexts m ∈ G

n consist of n group elements, whereas ciphertexts consist of n + 1
group elements, i.e. there is an additive overhead of 1 group element and the rate of
the scheme comes down to 1 − 1/n. Thus the rate of the scheme approaches 1 for a
growing n.

Lemma 14 The packed ElGamal encryption scheme as described above is IND-CPA
secure, given the DDH problem is hard for group G.

Proof IND-CPA security of the packedElGamal scheme follows tightly (in n) from the
decisional Diffie Hellman assumption in a routine way: A DDH instance (g, h, g′, h′)
can be rerandomized into a pair of vectors h and f , such that h is distributed uniformly
random inGn and the following holds for f . If (g′, h′) is of the form r ·(g, h), then f is of
the form r ·h, whereas if (g′, h′) is uniformly random inG2, then f is uniformly random
in G

n . Given such an instance (h, f), a reduction can set pk = h and c = f · (1,m).
If f is of the form f = r · h, then c is a correctly distributed ciphertext for the public
key pk and the messagem. On the other hand, if f is uniformly random, then c is also
uniformly random and independent ofm. It follows that an adversary with advantage
ε against the IND-CPA security of packed ElGamal can be used to distinguish DDH
with advantage ε. ��
Before presenting our construction we recall a useful pair of algorithms that allow us
to compress ciphertexts for the packed ElGamal encryption scheme.

Lemma 15 ([37])There exists a pair of (expected)PPTalgorithms (Shrink,ShrinkDec)
such that if (c, e) = Enc(pk,m) be a packedElGamal ciphertext encrypting amessage
m ∈ {0, 1}n.
• Shrink(c, e) → (c̃, K , b1, . . . , bn) ∈ G × {0, 1}λ+n.
• Pr

[
ShrinkDec(sk, Shrink(c, e)) = m

] = 1.

Sketch Let T be a polynomial in the security parameter and let PRF : {0, 1}λ ×
G → {0, 1}τ , where τ ≈ log(λ), be a pseudorandom function. On input a ciphertext
(c, (e1, . . . , en)), the compression algorithm Shrink samples the key K for the PRF
until the following two conditions are simultaneously satisfied: For all i ∈ [n] it holds
that

(1) PRF(K , ei/g) �= 0.
(2) There exists a δi ∈ [T − 1] such that PRF(K , ei · gδi) = 0.

The compressed ciphertext consists of (c, K , δ1 mod 2, . . . , δn mod 2) where δi is
the smallest integer that satisfies condition (2).

The compressed decryption algorithm ShrinkDec finds, for every i ∈ [n], the small-
est γi such that PRF(K , csi · gγi) = 0 by exhaustive search, where sk = (s1, . . . , sn).

123

3640 Algorithmica (2023) 85:3602–3648

Finally it outputs Mi = δi ⊕ LSB(γi), where LSB denotes the least significant bit of an
integer. Note that the scheme is correct with probability 1, since condition (1) ensures
that there is no ambiguity in the decoding of the bit Mi . By setting the parameters
appropriately, we can guarantee that K can always be found in polynomial time, except
with negligible probability. ��

We can straightforwardly modify the algorithm ShrinkDec in the same way as we
have modified the Dec algorithm above to support decryption of ciphertexts produced
by Eval2. Specifically, we modify it such that it takes as an additional input a matrix
M and transforms the secret key sk before decrypting its input ciphertext.

8.6 Construction

We will now provide our construction of rate-1 SSP OT from the packed ElGamal
scheme and an additional receiver-secure rate-1 OT. Specifically, let (OT1,OT2,OT3)
be a receiver-secure rate-1 OT protocol. We will also use the the packed ElGamal
encryption scheme with ciphertext compression discussed above. Finally, let AR =
(AR.Encode,AR.Eval,AR.Decode) be anAR-code with linear decoding, i.e. decoding
of a codeword y proceeds by computing Rsy for a matrix Rs ∈ Z

2n×m
p specified by a

seed s.
Our OT protocol (OT∗

1,OT
∗
2,OT

∗
3) is given as follows. In the following we assume

that the seed s is available to the receiver after the first message ot∗1 has been sent.
Note that since the seed can be reused in an arbitrary number of parallel executions
of the protocol, its size can be amortized and does therefore not affect the asymptotic
rate of the protocol.

OT∗
1(1

λ, b):

• Compute (ot1, stOT) ← OT1(1λ, b).
• Compute (pk, sk) ← KeyGen(1λ,m).
• Set A = b · I ∈ Z

m×m
p .

• Compute C = Enc(pk,A)

• Return ot∗1 = (ot1,pk,C) as the first message and set (stOT, sk) to be the secret
state.

OT∗
2(ot

∗
1 , (m0,m1)):

• Parse ot∗1 = (ot1,pk,C)

• Parse m0 ∈ {0, 1}n and m1 ∈ {0, 1}n .
• Sample two uniform vectors r0

$←− Z
n
p and r1

$←− Z
n
p.

• Compute x1 =
(
m1 − m0 + r0
m1 − m0 + r1

)

∈ Z
2n
p and x2 =

(
m0

m0 − r1

)

∈ Z
2n
p

• Compute (x̂1, x̂2) ← AR.Encode(s, x1, x2)
• Compute c = Eval1(pk,C, x̂1, x̂2)
• Compute c∗ = Eval2(pk, c,Rs)

• Compute c̃ = Shrink(pk, c∗)
• Parse c̃ as c̃ = (c̃, c̃0, c̃1).

123

Algorithmica (2023) 85:3602–3648 3641

• Compute ot2 ← OT2(ot1, (c̃0, c̃1)).
• Output ot∗2 ← (c̃, ot2)

OT∗
3(ot

∗
2 , st):

• Parse st as (stOT, sk) and ot∗2 as (c̃, ot2).
• Compute c̃′ = OT3(ot2, stOT)
• Return ShrinkDec(sk,Rs, (c̃, c̃′)).

Correctness follows routinely from the correctness of the underlying primitives. First
observe that in each of the two branches by homomorphic correctness of Eval1 and
Eval2 that c∗ encrypts

Rs(b · x̂1 + x̂2) = AR.Decode(s,AR.Eval(b,AR.Encode(s, x1, x2)))

= bx1 + x2.

Now observe that

ShrinkDec(sk,Rs, (c̃, c̃′))) = ShrinkDec(sk,Rs, (c̃, c̃b))

=
{

(m1 − m0 + r0) · 0 + m0 = m0 if b = 0

(m1 − m0 + r1) · 1 + m0 − r1 = m1 if b = 1

We proceed by showing the computational receiver privacy of the resulting OT
protocol.

Theorem 6 (Receiver Privacy) The scheme as described above is computationally
receiver private, given that (OT1,OT2,OT3) is a computationally receiver private OT
and that the packed ElGamal scheme is IND-CPA secure.

Proof The proof consists in observing that the following distributions

(OT1(1λ, 0), Enc(pk, 0 · I)) ≈ (OT1(1λ, 1), Enc(pk, 0 · I))
≈ (OT1(1λ, 1), Enc(pk, 1 · I))

are computationally indistinguishable by the receiver privacy of the OT and IND-CPA
security of the packed ElGamal scheme, respectively. ��

8.6.1 Instantiating the AR Code

Finally, we show that our scheme satisfies statistical sender privacy. In the certified
group setting, we can directly rely on the AR codes constructed in Sect. 6. In the
uncertified group setting, we routinely obtain the required codes by concatenating the
AR codes of Sect. 7 over an extension field of Zp with the AR codes of Sect. 6 via
Lemma 7.

123

3642 Algorithmica (2023) 85:3602–3648

Theorem 7 (Sender Privacy) The scheme as described above is statistically sender
private, given that the AR code AR restricts functions of the form h(x̂1, x̂2) =
Eval1(pk,C, x̂1, x̂2) (for maliciously chosen pk, C) to linear functions of the form
f (x̂1, x̂2) = ax̂1 + x̂2 or f (x̂1, x̂2) = x̂1.

Proof We will first provide the description of the (unbounded) simulator Sim. Sim
uses the extractor E and the simulator S of the AR code AR as a subroutine. Now fix a
maliciously chosen receiver message ot∗1 = (ot1,pk,C). On input ot∗1 , Sim proceeds
as follows. It first defines a function h(x̂1, x̂2) = Eval1(pk,C, x̂1, x̂2) and runs the
extractor E on input h, which outputs a function f and auxiliary information aux. The
simulator now distinguishes the following two cases.

1. The function f is of the form f (x̂1, x̂2) = x̂1
2. The function f is of the form f (x̂1, x̂2) = a · x̂1 + x̂2 for an a ∈ Zp.

In the first case, the simulator computes c by running S and on a uniformly sampled

r
$←− Z

2n
p . In the second case Sim proceeds as follows, where we distinguish 3 sub-

cases depending on the value of a ∈ Zp.

• a = 0: In this case, the simulator queries the OT oracle on 0 to receive m0, and

then computes c = S
(

aux,
(
m0
r′
1

))

for a uniformly random r′
1.

• a = 1: This case is similar as the previous one, except that the bit is flipped. More
precisely, the simulator queries the OT oracle on 1 and receivesm1, then computes

c = S
(

aux,
(

r′
0

m1

))

for a uniformly random r′
0.

• a /∈ {0, 1}: c is computed running S and on a uniformly sampled r
$←− Z

2n
p .

The remainder of the algorithm proceeds exactly as in the definition of OT∗
2. Note that

in any of the above cases, the simulator queries the OT oracle at most once. Thus, all
we need to argue is that the distribution of the simulated c is statistically close to the
real one.

Our analysis distinguishes the same cases as Sim, i.e. whether the extracted f is of
the form f (x̂1, x̂2) = x̂1 or f (x̂1, x̂2) = a · x̂1 + x̂2.

1. In the first case, when f is of the form f (x̂1, x̂2) = x̂1, observe that that x1 =(
m1 − m0 + r0
m1 − m0 + r1

)

= r is uniformly random and independent of m0,m1, as r0

and r1 are uniformly random. Consequently, it holds by the security of AR that

(s, c) = (s, h(x̂1, x̂2))

≈ (s,S(aux, f (x1, x2)))

≡ (s,S(aux, x1))

= (s,S(aux, r)),

as the information in OT∗
2 can be computed from s and c, we conclude that Sim

faithfully simulates the sender message ot∗2 .

123

Algorithmica (2023) 85:3602–3648 3643

2. We now turn to analyzing the second case, where f is of the form f (x̂1, x̂2) =
a · x̂1 + x̂2. In the first two sub-cases, it holds that a ∈ {0, 1}. To see why in these
sub-cases the output of the simulator is correctly distributed, first observe that for
a ∈ {0, 1} it holds that

f (x0, x1) = a ·
(
m1 − m0 + r0
m1 − m0 + r1

)

+
(

m0
m0 − r1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
m0

m0 − r1

)

if a = 0

(
m1 + r0

m1

)

if a = 1

Note that if a = 0, then r′
1 = m0 − r1 is distributed uniformly random. Likewise,

if a = 1 then r′
0 = m1 + r0 is distributed uniformly random. Consequently, the

value c computed by Sim has the correct distribution as it holds by the security of
AR that

(s, c) = (s, h(x̂1, x̂2))

≈ (s,S(aux, f (x1, x2))).

For the last sub-case (a /∈ {0, 1}) note that

f (x0, x1) = a ·
(
m1 − m0 + r0
m1 − m0 + r1

)

+
(

m0
m0 − r1

)

=
(
am1 + (1 − a)m0
am1 + (1 − a)m0

)

+
(

a · r0
(1 − a) · r1

)

.

Note that since a /∈ {0, 1}, the term r =
(

a · r0
(1 − a) · r1

)

is distributed uniformly

random. Consequently, it holds by the security of AR that

(s, c) = (s, h(x̂1, x̂2))

≈ (s,S(aux, f (x1, x2)))

= (s,S(aux, r)).

As above, we conclude that Sim faithfully simulates the sender message ot∗2 . This
concludes the proof.

��
8.6.2 Rate-1

Finally we argue that the scheme achieves rate-1. In the calculation we only consider
without loss of generality the size of the OT second message (i.e. the download rate),

123

3644 Algorithmica (2023) 85:3602–3648

since the size of thefirstmessage can always be amortized to increase the rate arbitrarily
[27]. By Lemma 15, we have that for b ∈ {0, 1} it holds that |Shrink(pk, c)| =
log(|G|) + λ + n = 2λ + n, which approaches n as n grows. Since the underlying OT
scheme has rate-1, then the size of ot2 asymptotically equals n.

9 Applications of Rate-1 SSP OT

In this section we show that our rate-1 SSP OT allows us to build PIR with server’s
statistical security and asymptotically-optimal communication. More generally, by
plugging in our rate-1 SSP OT into the construction of [24], we obtain homomorphic
encryption for branching programs, with (a) statistical branching-program privacy and
(b) semi-compactness: the size of a homomorphically-evaluated ciphertext grows only
with the depth, and not the size, of the branching program. For brevity, we will present
and analyze the protocol for PIR, and the analysis for branching programs will be
similar, referring the reader to [24].

Recall that PIR allows a client with an index i ∈ [K] to retrieve the i th ele-
ment in a database (m1, . . . ,mK), held by a server. The PIR protocol is given as
(PIR1, PIR2, PIR3), where PIR1 and PIR3 correspond to the two-phase algorithms of
the client, and PIR2 is run by the sever. We require computational client privacy:

for any two indices i1 and i2: pir1 ≈ pir2, where (pir1, ∗)
pick←− PIR1(1λ, i1) and

(pir2, ∗)
pick←− PIR1(1λ, i2). We require statistical security for the server: there exists

a (computationally-unbounded) extraction algorithm PSim such that for any pir1 and
anym = (m1, . . . ,mK), the distribution of (pir1, PIR2(pir1,m)) is statistically indis-
tinguishable from (pir1, Sim

O(pir1)), where Sim has one-time access to an oracle O,
which on an input index i returns mi .

In the following we let K = 2k . The following construction is from [24].

• PIR1(1λ, s ∈ [2k]): Parse s = s1 . . . sk . Return pir1 := (otr1, . . . ,otrk) and st :=
(stt1, . . . , sttk), where for i ∈ [K]: (otri , stti) pick←−OT1(1λ, si).

• PIR2(pir1, (m1, . . . ,mK)): Parse pir1 := (otr1, . . . , otrk). For i ∈ [2k], set
ots(0)i := mi . For w ∈ {1, . . . , k}:

1. For i ∈ [2k−w], let ots(w)
i

pick←−OT2
(
otrw,

(
ots(w−1)

2i−1 , ots(w−1)
2i

))

Return ots(k)1 .
• PIR3(st,pir2): Parse st := (stt1, . . . , sttk) and pir2 := ots(0). For i ∈ [k] let
ots(i) := OT1(sttk−i+1, ots(i−1)). Return ots(k).

Correctness and client’s security follow immediately. To establish statistical server’s
security we define the following computationally-unbounded simulation algorithm
PSim, built based on the OT’s simulation algorithm OSim.

• PSimO(otr1, . . . , otrk): For i ∈ [k] extract a bit bi from otri using the OT’s
simulation algorithm OSim (by observing the bit query that OSim(otri) makes).
Let s = bk · · · b1, and query O(s) to getm. Let ots(0)s = m, and for all i ∈ [K]\{s},

123

Algorithmica (2023) 85:3602–3648 3645

set ots(0)i to an arbitrary value. Continue the procedure of PIR2 described above
based on these values.

The proof of statistical security for PSim follows from that ofOSim using an induc-
tive argument. We omit the details.

9.1 Server’s communication complexity

For r = r(λ), if the server has K = 2k messages each of r bits, then the server’s
communication complexity is r + poly(k, λ) bits (where poly is a fixed polynomial),
achieving rate-1 for large enough r .

Author Contributions Everyone wrote Sects. 1–4. ND and GM wrote Sects. 5 and 6. DA and MO wrote
Sect. 7. ND, JD, MH, and GM wrote Sects. 8 and 9.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest DiveshAggarwal,NicoDöttling, JeskoDujmovic,GiulioMalavolta, andMaciejObrem-
ski have no conflict of interest to declare. Mohammad Hajiabadi recently coauthored papers with Rafail
Ostrovsky and is in the same institute as Joseph Cheriyan and Lap Chi Lau.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4), 20–32 (2018). https://
doi.org/10.1145/3178432

2. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18–22, 2013. Proceedings, Part II. Lecture Notes
in Computer Science, vol. 8043, pp. 239–257. Springer (2013). https://doi.org/10.1007/978-3-642-
40084-1_14

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys,
D.B. (ed.) Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31–June 03,
2014, pp. 774–783. ACM (2014). https://doi.org/10.1145/2591796.2591804

4. Dodis, Y.,Wichs, D.: Non-malleable extractors and symmetric key cryptography fromweak secrets. In:
Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31–June 2, 2009, pp. 601–610. ACM (2009). https://doi.org/
10.1145/1536414.1536496

5. Dodis, Y., Li, X.,Wooley, T.D., Zuckerman, D.: Privacy amplification and non-malleable extractors via
character sums. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22–25, 2011, pp. 668–677. IEEE Computer
Society (2011). https://doi.org/10.1109/FOCS.2011.67

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3178432
https://doi.org/10.1145/3178432
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1145/1536414.1536496
https://doi.org/10.1145/1536414.1536496
https://doi.org/10.1109/FOCS.2011.67

3646 Algorithmica (2023) 85:3602–3648

6. Li, X.: Non-malleable extractors, two-source extractors and privacy amplification. In: 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
October 20–23, 2012, pp. 688–697. IEEE Computer Society (2012). https://doi.org/10.1109/FOCS.
2012.26

7. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In:
Lindell, Y. (ed.) Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24–26, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8349,
pp. 440–464. Springer (2014). https://doi.org/10.1007/978-3-642-54242-8_19

8. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd Annual Sympo-
sium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5 November 1982, pp. 80–91.
IEEE Computer Society (1982). https://doi.org/10.1109/SFCS.1982.45

9. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.)
Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Application
of Cryptographic Techniques, Prague, Czech Republic, May 2–6, 1999, Proceeding. Lecture Notes
in Computer Science, vol. 1592, pp. 223–238. Springer (1999). https://doi.org/10.1007/3-540-48910-
X_16

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In:Mitzenmacher,M. (ed.) Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31–June 2, 2009, pp. 169–178. ACM (2009). https://doi.org/10.1145/1536414.1536440

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In:
Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22–25, 2011, pp. 97–106. IEEE Computer Society (2011). https://
doi.org/10.1109/FOCS.2011.12

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18–22, 2013. Proceedings, Part I. Lecture Notes in Computer Science, vol. 8042, pp. 75–92. Springer
(2013). https://doi.org/10.1007/978-3-642-40041-4_5

13. Vazirani, U.: Randomness, adversaries and computation. PhD thesis, EECS, UC Berkeley (1986)
14. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch., 187 (2005)
15. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Chaum, D.,

Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology: Proceedings of CRYPTO ’82, Santa
Barbara, California, USA, August 23–25, 1982, pp. 205–210. Plenum Press, New York (1982). https://
doi.org/10.1007/978-1-4757-0602-4_19

16. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium
on Foundations of Computer Science, Toronto, Canada, 27–29 October 1986, pp. 162–167. IEEE
Computer Society (1986). https://doi.org/10.1109/SFCS.1986.25

17. Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J. (ed.) Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, pp.
20–31. ACM (1988). https://doi.org/10.1145/62212.62215

18. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.) Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, January 7–9, 2001, Washington, DC, USA, pp.
448–457. ACM/SIAM (2001)

19. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann,
B. (ed.) Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory and
Application of Cryptographic Techniques, Innsbruck, Austria, May 6–10, 2001, Proceeding. Lecture
Notes in Computer Science, vol. 2045, pp. 119–135. Springer (2001). https://doi.org/10.1007/3-540-
44987-6_8

20. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical ZAP arguments. In:
Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–
14, 2020, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12107, pp. 642–667. Springer
(2020). https://doi.org/10.1007/978-3-030-45727-3_22

21. Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious transfer protocols. In:
Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–

123

https://doi.org/10.1109/FOCS.2012.26
https://doi.org/10.1109/FOCS.2012.26
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-1-4757-0602-4_19
https://doi.org/10.1007/978-1-4757-0602-4_19
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-030-45727-3_22

Algorithmica (2023) 85:3602–3648 3647

14, 2020, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12107, pp. 668–699. Springer
(2020). https://doi.org/10.1007/978-3-030-45727-3_23

22. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously circuit-private FHE. In:
Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17–21, 2014, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 8616, pp. 536–553. Springer (2014). https://doi.org/10.1007/978-3-662-
44371-2_30

23. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1),
1–32 (1994)

24. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) Theory
of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands,
February 21–24, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4392, pp. 575–594.
Springer (2007). https://doi.org/10.1007/978-3-540-70936-7_31

25. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private
information retrieval. In: 38th Annual Symposium on Foundations of Computer Science, FOCS ’97,
Miami Beach, Florida, USA, October 19–22, 1997, pp. 364–373. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646125

26. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. In:
Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara,
California, USA, August 19–22, 1984, Proceedings. Lecture Notes in Computer Science, vol. 196, pp.
10–18. Springer (1984). https://doi.org/10.1007/3-540-39568-7_2

27. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor hash functions and
their applications. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 11694, pp. 3–32. Springer (2019).
https://doi.org/10.1007/978-3-030-26954-8_1

28. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. J. Cryptol.
25(1), 158–193 (2012). https://doi.org/10.1007/s00145-010-9092-8

29. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A.,
Dziembowski, S. (eds.) Theory of Cryptography - 16th International Conference, TCC 2018, Panaji,
India, November 11–14, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11240,
pp. 370–390. Springer (2018). https://doi.org/10.1007/978-3-030-03810-6_14

30. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguisha-
bility and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T.
(eds.) Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China, December 3–7, 2017,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 10626, pp. 275–303. Springer (2017).
https://doi.org/10.1007/978-3-319-70700-6_10

31. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1 fully-
homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.) Theory of
Cryptography - 17th International Conference, TCC 2019, Nuremberg, Germany, December 1–5,
2019, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11892, pp. 407–437. Springer
(2019). https://doi.org/10.1007/978-3-030-36033-7_16

32. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz, D., Rosen, A. (eds.)
Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg, Germany, December
1–5, 2019, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11892, pp. 438–464. Springer
(2019). https://doi.org/10.1007/978-3-030-36033-7_17

33. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge
(2001)

34. Aggarwal, D., Obremski, M.: A constant rate non-malleable code in the split-state model. In: Irani,
S. (ed.) 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC,USA,November 16–19, 2020, pp. 1285–1294. IEEE (2020). https://doi.org/10.1109/FOCS46700.
2020.00122

35. Aggarwal, D., Chung, K., Lin, H., Vidick, T.: A quantum-proof non-malleable extractor - with appli-
cation to privacy amplification against active quantum adversaries. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings,

123

https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1109/FOCS46700.2020.00122
https://doi.org/10.1109/FOCS46700.2020.00122

3648 Algorithmica (2023) 85:3602–3648

Part II. Lecture Notes in Computer Science, vol. 11477, pp. 442–469. Springer (2019). https://doi.org/
10.1007/978-3-030-17656-3_16

36. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976). https://doi.org/10.1109/TIT.1976.1055638

37. Brakerski, Z., Branco, P., Döttling, N., Garg, S., Malavolta, G.: Constant ciphertext-rate non-
committing encryption from standard assumptions. In: Pass, R., Pietrzak, K. (eds.) Theory of
Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16–19,
2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12550, pp. 58–87. Springer (2020).
https://doi.org/10.1007/978-3-030-64375-1_3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-030-17656-3_16
https://doi.org/10.1007/978-3-030-17656-3_16
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-030-64375-1_3

	Algebraic Restriction Codes and Their Applications
	Abstract
	1 Introduction
	1.1 Our Results

	2 Technical Outline
	2.1 Warmup: Algebraic Restriction Codes for General Linear Functions
	2.2 Algebraic Restriction Codes for Bounded Output Functions
	2.3 From AR Codes to Efficient Oblivious Transfer
	2.3.1 Packed ElGamal
	2.3.2 Homomorphism and Ciphertext Compression
	2.3.3 Semi-Honest Rate-1 OT from Packed ElGamal
	2.3.4 Malicious Security via AR Codes
	2.3.5 Back to Rate-1
	2.3.6 Certified Versus Uncertified Groups

	2.4 Roadmap

	3 Related Work
	3.1 The Two Keys Approach DBLP:confspssodaspsNaorP01,DBLP:confspseurocryptspsAielloIR01,DBLP:journalsspsjocspsHaleviK12,DBLP:confspstccspsBrakerskiD18
	3.2 The Compactness Approach DBLP:confspsasiacryptspsBadrinarayananG17
	3.3 The Non Black-Box Approach DBLP:confspstccspsBrakerskiDGM19,DBLP:confspstccspsGentryH19

	4 Preliminaries
	4.1 Statistical Measures

	5 Algebraic Restriction Codes
	5.1 Concatenating AR Codes

	6 From Arbitrary Linear to Simple Linear Functions
	7 From Output-Bounded Functions to Linear Combinations
	7.1 A Conditional XOR Lemma
	7.2 Combinatorial Simulator

	8 Rate-1 SSP OT from DDH
	8.1 Decisional Diffie–Hellman Assumption
	8.2 Public-Key Encryption Schemes
	8.3 Homomorphic Encryption
	8.4 Oblivious Transfer
	8.5 Packed ElGamal
	8.6 Construction
	8.6.1 Instantiating the AR Code
	8.6.2 Rate-1

	9 Applications of Rate-1 SSP OT
	9.1 Server's communication complexity

	References

