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Abstract
We study the Non-preemptive Peak Demand Minimization (NPDM) problem, where
we are given a set of jobs, specified by their processing times and energy requirements.
The goal is to schedule all jobs within a fixed time period such that the peak load
(the maximum total energy requirement at any time) is minimized. This problem has
recently received significant attention due to its relevance in smart-grids. Theoretically,
the problem is related to the classical strip packing problem (SP). In SP, a given set of
axis-aligned rectangles must be packed into a fixed-width strip, such that the height of
the strip isminimized.NPDMcanbemodeled as strip packingwith slicing and stacking
constraint: each rectangle may be cut vertically into multiple slices and the slices may
be packed into the strip as individual pieces. The stacking constraint forbids solutions
where two slices of the same rectangle are intersected by the same vertical line. Non-
preemption enforces the slices to be placed in contiguous horizontal locations (but
may be placed at different vertical locations). We obtain a (5/3 + ε)-approximation
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algorithm for the problem. We also provide an asymptotic efficient polynomial-time
approximation scheme (AEPTAS) which generates a schedule for almost all jobs with
energy consumption (1+ε)OPT. The remaining jobs fit into a thin container of height
1. This AEPTAS is used as a subroutine to acquire the (5/3 + ε)-approximation
algorithm. The previous best result for NPDM was a 2.7-approximation based on
FFDH (Ranjan et al., in: 2015 IEEE symposium on computers and communication
(ISCC), pp 758–763, IEEE, 2015). One of our key ideas is providing several new lower
bounds on the optimal solution of a geometric packing, which could be useful in other
related problems. These lower bounds help us to obtain approximative solutions based
on Steinberg’s algorithm in many cases. In addition, we show how to split schedules
generated by the AEPTAS into few segments and to rearrange the corresponding jobs
to insert the thin container mentioned above, such that it does not exceed the bound
of (5/3 + ε)OPT.

Keywords Peak demand minimization · Scheduling · Approximation · Algorithms

1 Introduction

Recent years have seen a substantial increase in the demand of electricity, due to rapid
urbanization, economic growth, and newmodes of electrical energy consumption (e.g.,
electric cars). Traditionally, electricity generation, transmission, and distribution relied
on building infrastructure to support the peak load, when the demand for electricity
is maximal. However, the peak is rarely achieved, and thus, more demands can be
accommodated using the inherent flexibility of scheduling of certain jobs. For example,
the energy requirements for HVAC units, electric vehicles, washers and dryers, water
heaters, etc. can be met with a flexible scheduling of these appliances. Smart-grids
[1–3] are next-generation cyber-physical systems that couple digital communication
systems on top of the existing grid infrastructure for such efficient utilization of power,
e.g., by shifting users’ demand to off-peak hours in order to reduce peak load.

Future smart-grids are expected to obtain demand requirements for a time period
and schedule the jobs such that the peak demand is minimized. Recently, this problem
has received considerable attention [4–8]. Each job can also bemodeled as a rectangle,
with desired power demand as height and required running time as width. This gives a
geometric optimization problem where the goal is to pack the slices of the rectangles
into a strip of width as the time period. The goal is to minimize the maximum height of
the packing. There is another additional stacking constraint requiring that no vertical
line may intersect two slices from the same rectangle.

In this paper, we study this problem known as Non-preemptive Peak Demand
Minimization (NPDM)). Formally, we are given a set of jobs J . Each job j ∈ J
has a processing time p( j) ∈ N and an energy requirement e( j) ∈ N. Further-
more, we are given a deadline D ∈ N. All the jobs are available from the time 0
and have to be finished before the deadline D. A schedule σ of the jobs J assigns
each job a starting time σ( j) ∈ N such that it is finished before the deadline, i.e.,
c( j) := σ( j) + p( j) ≤ D. The total energy consumption at a time τ ∈ {0, . . . , D} is
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given by e(τ ) := ∑
j∈J ,σ ( j)≤τ<σ( j)+p( j) e( j). The objective is to minimize the peak

of energy consumption at any point in time, i.e., minimize Tσ := maxτ∈{0,...,D−1} e(τ ).
NPDM can be viewed as a variant of the strip packing problem, where we are

allowed to slice the rectangles vertically, and the slices must be packed in contiguous
horizontal positions (but may be placed at different vertical positions). In the classical
strip packing problem,we are given a set of rectangles aswell as a bounded-width strip,
and the objective is to find a non-overlapping, axis-aligned packing of all rectangles
into the strip such that the height of the packing is minimized. A simple reduction
from the partition problem shows a lower bound of 3/2 for the ratio of polynomial-
time approximation algorithms for the problem. In 1980, Baker et al. [9] first gave
a 3-approximation algorithm. Later Coffman et al. [10] introduced two simple shelf-
based algorithms: Next Fit Decreasing Height (NFDH), First Fit Decreasing Height
(FFDH), with approximation ratios as 3 and 2.7, respectively. Sleator [11] gave a
2.5-approximation. Thereafter, Steinberg [12] and Schiermeyer [13] independently
improved the approximation ratio to 2. Afterward, Harren and van Stee [14] obtained
a 1.936-approximation. The state-of-the-art approximation ratio is 5/3 + ε, due to
Harren et al. [15].

Alamdari et al. [4] studied a variant where the preemption of jobs is allowed,
also known as two-dimensional strip packing with slicing and stacking constraints
(2SP-SSC), or preemptive offline cost optimal scheduling problem (P-OCOSP) [16].
They showed this variant to be NP-hard and obtained an FPTAS. They also studied
several shelf-based algorithms and provide a practical polynomial time algorithm that
allows only one preemption per job. Ranjan et al. [7] have proposed a practical 4/3-
approximation algorithm for this problem.

For NPDM, Tang et al. [1] first proposed a 7-approximation algorithm. Yaw et
al. [17] showed that NPDM is NP-hard to approximate within a factor better than
3/2. They have given a 4-approximation for a special case where all jobs require the
same execution time. Ranjan et al. [6] have proposed a 3-approximation algorithm for
NPDM. They [16] also proposed an FFDH-based 2.7-approximation algorithm for a
mixed variant where some jobs can be preempted, and some can not be preempted.

1.1 Our Contributions

In this paper we obtain improved approximation algorithms for NPDM.Note that opti-
mal solutions of sliced strip packing/NPDM and strip packing can be quite different.
In fact, in [18], an example with a ratio of 5/4 is presented. Thus, the techniques from
strip packing do not always translate directly to our problem. We exploit the property
that, due to slicing, we can separately guess regions (profile) for packing of jobs with
large energy demand (tall jobs) and jobs with large time requirements (wide jobs). We
show that we can remove a small set of jobs with large energy demand so that we can
approximately guess the optimal profile of jobs with large processing time so that their
starting positions come from a set containing a constant number of values. This helps
us to show the existence of a structured solution that we can pack near-optimally using
linear programs. This shows the existence of an asymptotic efficient polynomial-time
approximation scheme (AEPTAS):
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Theorem 1 For any ε > 0, there is an algorithm that schedules all jobs such that the
peak load is bounded by (1+ ε)OPT+ emax, where emax denotes the maximal energy
demand among the given jobs. The time complexity of this algorithm is bounded by
O(n log(n)) + 1/ε1/ε

O(1/ε)
.

In fact, we show a slightly stronger result here, providing a schedule for almost all
jobs J \ C with peak energy demand bounded by (1 + O(ε))OPT plus a schedule
for the remaining jobs C with peak energy demand emax and schedule length εD.
Combining this algorithm with a repacking technique, or using Steinberg’s algorithm
[12] in some sub-cases, we obtain our main result:

Theorem 2 For any ε > 0, there is a polynomial-time (5/3+ ε)-approximation algo-
rithm for NPDM.

Previously, in strip packing (and related problems), the lower bound on the optimal
packing height is given based on the height of the tallest job or the total area of all
jobs [12, 13]. One of our main technical contributions is to show several additional
lower bounds on the optimal load. These bounds may be helpful in other related
geometric problems. In fact, these can be helpful to simplify some of the analyses of
previous algorithms. Using these lower bounds, we show, intuitively, that if there is
a large amount of energy-consuming jobs (or time-consuming jobs) we can obtain a
good packing using Steinberg’s algorithm. Otherwise, we start with the packing from
AEPTAS and modify it to obtain a packing within (5/3 + ε)-factor of the optimum.
This repacking utilizes novel insights about the structure of the packing that precedes
it, leading to a less granular approach when repacking.

Recently and independently , Gálvez et al. [19] presented similar results using a
different methodology.

1.2 RelatedWork

Strip packinghas also been studiedunder asymptotic approximation.The seminalwork
of Kenyon and Rémila [20] provided an APTAS with an additive term O(hmax/ε

2),
where hmax is the height of the tallest rectangle. The latter additive term was sub-
sequently improved to hmax by Jansen and Solis-Oba [21]. Pseudo-polynomial time
algorithms for strip packing have received recent attention [22–25]. Finally, Jansen
and Rau [26] gave an almost tight pseudo-polynomial time (5/4 + ε)-approximation
algorithm. Recently, Galvez et al. [27] gave a tight (3/2+ε)-approximation algorithm
for a special casewhen all rectangles are skewed (each has eitherwidth or height≤ δD,
where δ ∈ (0, 1] is a small constant).

A related problem is non-contiguous multiple organization packing [28], where the
width of each rectangle represents a demand for a number of concurrent processors.
This is similar to sliced strip packing. However, the slices need to be horizontally
aligned to satisfy concurrency. Several important scheduling problems are related, such
as multiple strip packing [26], malleable task scheduling [29], parallel task scheduling
[30], moldable task scheduling [31, 32], etc.

Several geometric packing problems are well-studied in combinatorial optimiza-
tion. In two-dimensional bin packing, we are given a set of rectangles, and the goal is
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to pack all rectangles into the minimum number of unit square bins. This well-studied
problem [33, 34] is known not to admit an APTAS [35] unless P=NP. The present best
approximation ratio is 1.406 [36]. Another related problem is the two-dimensional
geometric knapsack [37, 38], where each rectangle has an associated profit, and we
wish to pack a maximum profit subset of rectangles in a given square knapsack. The
present best approximation ratio for the problem is 1.89 [39]. These problems are
also studied under guillotine cuts [40–42], where all jobs can be cut out by a recur-
sive sequence of end-to-end cuts. There are several other important related problems,
such as maximum independent set of rectangles [43], unsplittable flow on a path [44],
storage allocation problem [45], etc. We refer the readers to [46] for a survey.

1.3 Notation

While this problem is, at its core, a scheduling problem, a visual representation greatly
improves the intuitive understanding of the underlying concepts utilized in the follow-
ing. As such, from here on out, we will use language reflective of the visualizations.
Particularly, as energy demand is represented by a job’s height, we will refer to it as
such. Similarly, the processing time is represented by the width of a job, and the total
work of a job can be seen as the area of the representative rectangle.

For an instance I = (J , D), we denote by OPT(I ) (or just OPT) the opti-
mal maximum height. For some set of jobs J we define the area as area(J ) =∑

i∈J w(i)h(i), the total width as w(J ) = ∑
i∈J w(i), as well as the total height

as h(J ) = ∑
i∈J h(i). We use the additional notation of JP(i) = {i ∈ J |P(i)}

as a restriction of J using the predicate P . E.g., we may express the height of jobs
of J which have a width of at least D/2 by h(Jw(i)≥D/2). Furthermore, given a set
of jobs J , we denote wmax(J ) := maxi∈J w(i) and hmax(J ) := maxi∈J h(i) and
write hmax and wmax if the set of jobs is clear from the context. We say a job i that is
placed at σ(i) overlaps any point in time τ if and only if σ(i) ≤ τ < σ(i) + w(i).
The set J (τ ) denotes the set of jobs that overlap the point in time τ . Additionally, we
introduce segments S of the schedule, which refers to time intervals, and containers
C which can be seen as sub schedules. The starting point of a time interval S will
be denoted by σ(S) and its endpoint as c(S). On the other hand, a container C has
a length (time), which is denoted as w(C), and a bound on the height h(C). If these
containers are scheduled, they get a starting point σ(C), which is added to the starting
point of any job scheduled in C .

1.4 Steinberg’s Algorithm

The following result from [12] will be a crucial subroutine in our algorithms.

Theorem 3 (Steinberg [12]) Steinberg’s algorithm packs a set of rectangular objects
R into a rectangular container of height a and width b in polynomial time, if and only
if the following inequalities hold:

hmax ≤ a, wmax ≤ b, 2
∑

r∈R
h(r)w(r) ≤ ab − (2hmax − a)+(2wmax − b)+, Steinberg′sCond.

123



3654 Algorithmica (2023) 85:3649–3679

Fig. 1 An overview of the steps of the (5/3 + ε)-approximation algorithm

where x+ = max{x, 0}, wmax is the maximal width of a rectangle, and hmax is the
maximal height of a rectangle, h(r) represents the height of a rectangle and w(r)
represents the width of a rectangle.

1.5 Overview of the (5/3+ ")-approximation

In the following, we present an overview of the steps of the (5/3+ ε)-approximation
algorithm, see Fig. 1. In the first step, we calculate a lower bound Tmin on OPT using
novel ideas, which can be found in Sect. 2. This lower bound guarantees that Tmin ≤
OPT ≤ 2Tmin.

If the jobs that are large in at least one of the two dimensions have a sufficiently
large total area (with regard to the lower bound Tmin), a (5/3 + ε)-approximation
can be achieved by placing these jobs in a structured manner and using Steinberg’s
algorithms to place the remaining jobs. We describe two of these cases in Sect. 3.

Otherwise, we know that the total area of these jobs is not too large. In this case,
we find a schedule σ1 using the algorithm from Theorem 19 that schedules almost
all the jobs resulting in a height of at most (1 + O(γ ))OPT. The remaining jobs are
contained in an extra schedule σ2 of length γ D and maximum height bounded by
Tmin. How to find these two schedules is described in Sect. 5. Note that we have to
choose γ ∈ Oε(1) small enough, in order to meet the requirements for the next step.

Given these schedules, we present a rescheduling argument where we rearrange
the schedule σ1 such that we can add the schedule σ2 while increasing the maximum
height by at most (2/3)OPT. This rescheduling argument is described in Sect. 4 in the
proof of Theorem 16.

2 Finding a Lower Bound on OPT

In this section, we first find a lower bound Tmin on the optimal schedule height and
then use Steinberg’s algorithm to handle some types of instances.
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There are three well-known lower bounds. First, the height of the tallest job
hmax =: T1. Second, the bound given by the total area of the jobs, i.e., OPT ≥
max{hmax, area(J )/D} =: T2. Another simple lower bound is the total height of jobs
wider than D/2 since they cannot be placed next to each other. We denote this lower
bound as T3 := h(Jw(i)>D/2). We name the combination of these straightforward
lower bounds Tsimple := max{T1, T2, T3}. In the following, we will present three more
complex lower bounds.

2.1 Fourth Bound

The bound described in this section depends on the combination of jobs with large
heights.

Lemma 4 It holds that w(Jh(i)>(1/3)OPT) + w(Jh(i)>(2/3)OPT) ≤ 2D and
w(Jh(i)>(1/2)OPT) ≤ D.

Proof Note that jobs with a height greater than (1/3)OPT cannot intersect the same
vertical line as jobs with a height greater than (2/3)OPT in an optimal schedule.
Furthermore, each vertical line through an optimal schedule can intersect at most two
jobs with a height greater than (1/3)OPT. Moreover, no vertical line can intersect two
jobs from the set Jh(i)>(1/2)OPT. The claim is a consequence. ��
Corollary 5 (Lower bound T4) The value T4 := max{Tsimple, T ′

4} is a lower bound on
OPT where T ′

4 is the smallest value such that w(Jh(i)>T ′
4/3

)+w(Jh(i)>(2/3)T ′
4
) ≤ 2D

and w(Jh(i)>T4/2) ≤ D.

Proof By Lemma 4, we know that w(Jh(i)>(1/3)OPT)+w(Jh(i)>(2/3)OPT) ≤ 2D, and
obviously we have w(Jh(i)>OPT/2) ≤ D. Therefore, the smallest value T ′

4 satisfying
both inequalities, i.e. w(Jh(i)>(1/3)T ′

4
) + w(Jh(i)>(2/3)T ′

4
) ≤ 2D and w(Jh(i)>T /2) ≤

D, has to be a lower bound on OPT. Since Tsimple and T ′
4 both are lower bounds on

OPT, we know that T4 is a lower bound as well. ��
Note that we can find T4 in O(n log n) with the following algorithm:

• Start with T4 = Tsimple.
• As long as w(Jh(i)≥(1/3)T4) + w(Jh(i)≥(2/3)T4) > 2D
or w(Jh(i)>T4/2) > D update T4 as follows:

• For � ∈ [0, 1], denote by h� the height of the smallest job in Jh(i)>�·T4 and
set T4 := min{3h1/3, (3/2)h2/3, 2h1/2}. This iteratively excludes one job from
one of the three sets.

As a consequence of this lower bound, we can link the total width of the jobs with
a height greater than (2/3)T4 to the total width of the jobs with a height between
(1/3)T4 and (2/3)T4. We express this connection in the following lemma:
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Fig. 2 An illustration of Lemma 7

Lemma 6 Let w ∈ [0, 1/2). Then

w(Jh(i)>(2/3)T4) > (1 − w)D ⇒ w(Jh(i)∈((1/3)T4,(2/3)T4]) ≤ 2wD.

Proof We know that w(Jh(i)>(1/3)T4) + w(Jh(i)>(2/3)T4) ≤ 2D. Since we have
Jh(i)>(2/3)T4 ⊆ Jh(i)>(1/3)T4 and w(Jh(i)>(2/3)T4) > (1 − w)D it holds that
w(Jh(i)∈((1/3)T4,(2/3)T4]) ≤ 2wD. ��

2.2 Fifth Bound

Next, we obtain a bound based on a set of jobs that do not overlap vertically in a given
optimal schedule (Fig. 2).

Lemma 7 Consider an optimal schedule and letJseq be a set of jobs such that no pair of
jobs i, i ′ ∈ Jseq overlaps vertically, i.e., σ(i)+w(i) ≤ σ(i ′) or σ(i ′)+w(i ′) ≤ σ(i).
Furthermore, defineJw := Jw(i)>(D−w(Jseq)/2)\Jseq. Then there exists a vertical line
through the schedule that intersects a job in Jseq and all the jobs in Jw.

Proof First note that (D − w(Jseq)/2) ≥ D/2. Consider the vertical strip between
w(Jseq)/2 and (D − w(Jseq)/2). Each job in Jw completely overlaps this strip.
Furthermore, either the strip itself contains a job in Jseq, in which case the claim is
trivially true, or on each position on both sides of the strip, there is a job from Jseq.
Assume the latter case. Since the jobs in Jw are strictly wider than (D − w(Jseq)/2),
there exists an σ > 0 such that the vertical line at (D − w(Jseq)/2) + σ as well is
overlapped by all the jobs in this set. Since this line also intersects a job from the set
Jseq, the claim follows. ��

Corollary 8 Let Jseq be a set of jobs such that w(Jseq) ≤ D and consider Jw :=
Jw(i)>D−w(Jseq)/2\Jseq. Furthermore, let j⊥ ∈ Jseq be the job with the smallest
height. Then it holds that min{h( j⊥) + h(Jw), 2h( j⊥)} ≤ OPT.
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Proof Consider an optimal solution. We have to consider two cases. In the first case,
two jobs from the set Jseq intersect the same vertical line. In this case, 2h( j⊥) is
obviously a lower bound on OPT.

On the other hand, if in any optimal schedule, there does not exist a pair of jobs
from Jseq that overlap the same vertical line, we know by Lemma 7 that there exists a
job in Jseq that overlaps with all the jobs in Jw and therefore OPT ≥ h( j⊥) + h(Jw)

in this case. ��

2.3 Lower Bound T5

From Corollary 8, we derive a lower bound on OPT. For a given k ∈ [n], we define
Jk to be the set of the k jobs with the greatest height in J and J ′

k to be the set of the
k jobs with the greatest height in J \ Jw(i)>D/2. Let ik and i ′k be the jobs with the
smallest height in Jk and J ′

k , respectively. We define

T5,a := max
k≤n

{min{h(ik) + h(Jw(i)>D−w(Jk )/2 \ Jk), 2h(ik)}|w(Jk) ≤ D},
T5,b := max

k≤n
{min{h(i ′k) + h(Jw(i)>D−w(J ′

k )/2
), 2h(i ′k)}|w(J ′

k) ≤ D},

and finally T5 = max{T5,a, T5,b}. Note that J ′
k and Jw(i)>D−w(J ′

k )/2
are disjoint,

since J ′
k contains only jobs with width at most D/2 and Jw(i)>D−w(J ′

k )/2
contains

only jobs with width larger than D/2, and hence, by Corollary 8, T5 is a lower bound
on OPT.

For this lower bound, we prove the following property.

Lemma 9 (Bounded height of wide jobs) Let T = max{Tsimple, T4, T5},w ∈ (0, 1/2)
and h ∈ (1/2, 1] as well as Jh := Jh(i)≥hT and Jwide := Jw(i)>(1/2+w/2)D\Jh. It
holds that

w(Jh) ≥ (1 − w)D ⇒ h(Jwide) ≤ (1 − h)T .

Proof Let j be a job in Jh . As such, it has a height of at least hT . Since T ≥ T4, it
holds that w(Jh) ≤ D. By construction of T5 for j , it holds that

h( j) + h(Jw(i)>D−w(Jh(i)≥h( j))/2 \ Jh(i)≥h( j)) ≤ T5.

Furthermore, note that Jh = Jh(i)≥h( j) for the job j with the smallest height in Jh .
Therefore, if w(Jh) ≥ (1 − w)D, it holds that

Jw(i)>D−(1−w)D/2 ⊆ Jw(i)>D−w(Jh)/2

and hence,

hT + h(Jwide) = hT + h(Jw(i)>D−(1−w)D/2 \ Jh)

≤ h( j) + h(Jw(i)>D−w(Jh)/2 \ Jh) ≤ T5 ≤ T
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which proves the claim. ��
Lemma 10 Let T = max{Tsimple, T4, T5}, w ∈ (1/2, 1] and h ∈ (1/2, 1] as well as
Jw := Jw(i)≥wD and Jh := Jh(i)>hT \Jw(i)>D/2. It holds that

h(Jw) > (1 − h)T ⇒ w(Jh) ≤ 2(1 − w)D.

Proof Let h(Jw) > (1 − h)T . Since for each job in Jh it holds that h(i) > T /2 ≥
T3,b/2, by definition of T3,b, for each j ∈ Jh it holds that

h( j) + h(Jw(i)>D−w(Jh(i)≥h( j))/2) ≤ T .

Therefore for the smallest job j ∈ Jh , it holds that

h( j) + h(Jw(i)>D−w(Jh)/2) ≤ T .

For contradiction assume that w(Jh) > 2(1 − w)D. Note that in this case D −
w(Jh)/2 < wD and hence,

h(Jw(i)>D−w(Jh)/2) ≥ h(JD) > (1 − h)T .

As a consequence,

h( j) + h(Jw(i)>D−w(Jh)/2) > hT + (1 − h)T = T ,

a contradiction. ��

2.4 Sixth Bound

In this section, we present our final lower bound on OPT.

Lemma 11 Consider an optimal schedule and let Jseq ⊆ J be a set of jobs such
that no pair of jobs j, j ′ ∈ Jseq overlaps vertically, i.e., σ( j) + w( j) ≤ σ( j ′) or
σ( j ′)+w( j ′) ≤ σ( j). Let JD ⊆ Jw( j)>(max{D−w(Jseq),D/2})\Jseq. Then, there exists
a vertical line through the schedule that intersects a job inJseq and a subsetJ ′

D ⊆ JD

with h(J ′
D) ≥ h(JD)/2.

Proof First, we consider the trivial cases. If a job from Jseq overlaps the vertical line
at D/2 the claim is trivially true, since all the jobs from JD overlap D/2. On the other
hand, if all the jobs in Jseq are left or right of D/2, it holds that w(Jseq) ≤ D/2 and
one of the jobs has a distance of at most D/2− w(Jseq) from D/2. This job has to be
overlapped by all the jobs from JD since they have a width larger than D − w(Jseq).

Otherwise, consider the vertical line L� through the right border of the rightmost
job from Jseq that is left of D/2 and the vertical line Lr through the left border of the
leftmost job from Jseq that is right of D/2. Note that L� and Lr have a distance of at
most (D − w(Jseq)). Consider the set JD,� ⊆ JD that is intersected by the vertical
line L�. Note that the remaining jobs in JD,r := JD\JD,� all overlap the vertical line
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Fig. 3 An illustration of Lemma 11

at L� + (D − w(Jseq)) ≥ Lr and hence Lr as well. Since JD,r ∪ JD,� = JD , one
of the two sets has a height of at least h(JD)/2. Finally, note that there exists a small
enough σ > 0 such that L� − σ and Lr + σ overlap the same set of wide jobs as L�

and Lr as well as the corresponding job in Jseq (Fig. 3). ��

Corollary 12 Let Jseq be a set of jobs such that w(Jseq) ≤ D and consider JD :=
Jw(i)>(max{D−w(Jseq),D/2})\Jseq. Furthermore, let j⊥ ∈ Jseq be the jobwith the small-
est height. Then it holds that min{h( j⊥) + h(JD)/2, 2h( j⊥)} ≤ OPT.

Proof Consider an optimal solution. We have to consider two cases. In the first case,
two jobs from the set Jseq intersect the same vertical line. In this case, 2h( j⊥) is
obviously a lower bound on OPT.

On the other hand, if there does not exist a pair of jobs from Jseq that overlap the
same vertical line in any optimal schedule, we know by Lemma 11 that there exists
a job in Jseq that overlaps with a set J ′

D ⊆ JD such that h(J ′
D) ≥ h(JD)/2 and

therefore we have OPT ≥ h( j⊥) + h(JD)/2 in this case. ��

2.5 Lower Bound T6

Define Jk as the set of the k jobs with largest height, JD,k :=
Jw(i)>(max{D−w(Jk ),D/2})\Jk . Let jk be the job with the smallest height in Jk , then
define

T6 := max{min{2h( jk), h( jk) + h(JD,k)/2}|k ∈ {1, . . . , n}, w(Jk) ≤ D}.

By Corollary 12, T6 is a lower bound for OPT.
Note that in the following, we will denote the largest lower bound on the optimum,

i.e., the minimum possible height of the schedule, as Tmin = max{Tsimple, T4, T5, T6}.
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Fig. 4 a One possible L-shaped schedule, where Jseq contains all the jobs with height larger than Tmin/2
andJD contains all the jobswithwidth larger than D/2. bA schedule in the case thatw(Jh(i)>(2/3)Tmin ) ≥
(1−w)D, the first Steinberg case. c A schedule in the case that h(Jw(i)>(3/4)D) ≥ (2/3)Tmin, the second
Steinberg case. Note that in this figure, we represent all jobs as rectangles since shifting them to the bottom
will not decrease the peak energy demand

3 Instances Solved with Steinberg’s Algorithm

In this section, we present two cases that can be solved by scheduling jobs that are
large in at least one of the two dimensions in a sorted manner while the other jobs are
scheduled using Steinberg’s algorithm.

The sorted part uses the following shape. Given two disjoint sets of jobs Jseq

and JD , we say they are placed L-shaped, if the jobs i ∈ JD are placed such that
σ(i) + w(i) = D, while the jobs in Jseq are sorted by height and placed left-aligned
tallest to the left, see Fig. 4a.

Lemma 13 (L-shaped schedule) Let Tmin = max{Tsimple, T4, T5, T6}. If we place
Jseq := Jh(i)>Tmin/2 and JD := Jw(i)>D/2\Jseq L-shaped, the schedule has a height
of at most Tmin + h(JD)/2 ≤ (3/2)OPT.

Proof Consider a vertical line L through the generated schedule. If L does not inter-
sect a job from Jseq, the intersected jobs have a height of at most h(JD) ≤ Tmin.
Otherwise, let iL ∈ Jseq and JW ,L ⊆ JD be the jobs intersected by L and
define Jseq,L := Jh(i)≥h(iL ). Note that by definition of the schedule, it holds that
JW ,L ⊆ Jw(i)>(max{D−w(Jseq,L ),D/2})\Jseq,L . Since h(iL) > T6/2, it holds that
T6 ≥ h(iL)+ h(JW ,L)/2, by definition of T6. As a consequence, h(iL)+ h(JW ,L) ≤
Tmin + h(JW ,L)/2 ≤ T + h(JD)/2 ≤ (3/2)OPT. ��
Theorem 14 (First Steinberg Case)

Let Tmin be the lower bound on OPT as defined above and w ≤ (3/4)ε.
If w(Jh( j)>(2/3)Tmin) ≥ (1 − w)D holds, there is a polynomial time algorithm to

schedule all jobs with a peak demand (maximum height) at most (5/3 + ε)Tmin.

Proof We place jobs that are very wide or very tall in an ordered fashion, while the
remaining jobs will be placed using Steinberg’s Algorithm, see Fig. 4b. We define
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JD := Jw( j)>(1/2+w)D\Jh( j)>Tmin/2 to be the set of jobs with large widths excluding
jobs with large heights. We place each job j ∈ JD such that σ( j) = D − w( j). All
the jobs in Jh( j)>Tmin/2 are sorted by height and placed left aligned, tallest first inside
the schedule. Let ρ := h(JD)/Tmin and let h(1−2w)D denote the height of the job in
Jh( j)>Tmin/2 at position (1−2w)D. Then h(1−2w)D ≥ (2/3)Tmin. By Lemma 9 and the
choice of Tmin, we know that h(1−2w)D+h(JD) ≤ Tmin ≤ OPT and hence ρ ≤ (1/3).
Let L be a vertical line through the schedule that is at or strictly left of (1/2 − w)D
and intersects a job from Jh( j)>Tmin/2 and all the jobs from JD . By Lemma 13, at
L and left of L , the maximum height of the schedule is bounded by (1 + ρ/2)Tmin.
On the other hand, right of L , the height of the schedule does not increase compared
to L . As a consequence, the maximum height in the current schedule is bounded by
(1 + ρ/2)Tmin ≤ (7/6)Tmin. Furthermore, we know that right of (1 − 2w)D, the
schedule has a maximum height of at most Tmin.

Consider the set of jobs Jh( j)∈[(1/3)T ,(1/2)Tmin]. By Lemma 6 we know that
w(Jh( j)∈[(1/3)Tmin,(1/2)Tmin]) ≤ 2w · D, since Jh( j)>(2/3)Tmin ≥ (1 − w)D. Now we
consider two cases.
Case A If ε ≤ ρ/2, we place all the jobs in JM := Jh( j)∈[(1/3)Tmin,(1/2)Tmin] right-
aligned next to each other inside the strip. Since they have a height of atmost (1/2)Tmin,
and right of (1 − 2w)D, the schedule has a maximum height of at most Tmin, the
maximum height of (5/3)Tmin is not exceeded after adding these jobs. Define λ :=
w(JM )/D. Now at each point on the horizontal axis between 0 and a := (1 − λ)D,
the schedule has a height of at most (1+ρ/2)Tmin, and therefore, we can use a height
of b := (2/3 − ρ/2 + ε)Tmin to place the remaining jobs. Let Jres denote the set of
residual jobs that still have to be placed. Note that each job in Jres has a height of at
most (1/3)Tmin and a width of at most (1/2 + w)D, and the total area of these jobs
can be bounded by

area(Jres) ≤ DTmin − (2/3)Tmin · (1 − w)D − ρTmin · (1/2 + w)D − (1/3)T · λD

= (1/3 + (2/3)w − ρ(1/2 + w) − λ/3)DTmin,

and hence 2area(Jres) ≤ (2/3+ (4/3)w − ρ(1+ 2w)− (2/3)λ)DTmin. On the other
hand, it holds that

ab − (2wmax − a)+(2hmax − b)+
= (2/3 − ρ/2 + ε)Tmin(1 − λ)D

− (2(1/2 + w)D − (1 − λ)D)+(2(1/3)Tmin − (2/3 − ρ/2 + ε)Tmin)+
= (2/3 − ρ/2 + ε − (2/3)λ + (ρ/2 − ε)λ − (2w + λ)+(ρ/2 − ε)+)DTmin

= (2/3 + ε(1 + 2w) − (1/2 + w)ρ − (2/3)λ)DTmin,

since ρ/2−ε ≥ 0. Hence Steinberg’s condition is fulfilled if (4/3)w−ρ(w+1/2) ≤
ε(1 + 2w), which is true since w ≤ (3/4)ε.
Case B On the other hand, if ρ/2 < ε, it holds that (2/3 + ε − ρ/2)/2 ≥ 1/3,
and we consider the set JM := Jh( j)∈[((2/3+ε−ρ/2)/2)Tmin,(1/2)Tmin] instead of the set
Jh( j)∈[(1/3)Tmin,(1/2)Tmin], and place it right-aligned. Again, we define λ := w(JM ).
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Now, each job in Jres has a height of at most (1/3 + ε/2 − ρ/4)Tmin and a width of
at most (1/2 + w)D. The total area of these jobs can be bounded by

area(Jres) ≤ DTmin − (2/3)Tmin · (1 − w)D − ρTmin · (1/2 + w)D

− (1/3 + ε/2 − ρ/4)Tmin · λD

= (1/3 + (2/3)w − ρ(1/2 + w) − λ(1/3 + ε/2 − ρ/4))DTmin,

and hence 2area(Jres) ≤ (2/3+ 4/3w − ρ(1+ 2w) − (2/3+ ε − ρ/2)λ)DTmin. On
the other hand, it holds that

ab − (2wmax − a)+(2hmax − b)+
= (2/3 − ρ/2 + ε)Tmin(1 − λ)D

− (2(1/2 + w)D − (1 − λ)D)+(2(1/3 + ε/2 − ρ/4)Tmin − (2/3 − ρ/2 + ε)Tmin)+
= (2/3 + ε − ρ/2 − (2/3 − ρ/2 + ε)λ)DTmin.

Hence, Steinberg’s condition is fulfilled if (4/3 − 2ρ)w − ρ/2 ≤ ε, which is true
since w ≤ (3/4)ε.

Therefore, in both cases, we use Steinberg’s algorithm to place the jobs Jres inside
a rectangular container C of height (2/3+ ε − ρ)Tmin and width (1− λ)D, which in
turn is positioned at σ(C) = 0. ��
Theorem 15 (Second Steinberg Case) Let Tmin be the lower bound on OPT defined
as above. If h(Jw(i)≥(3/4)D) > (2/3)Tmin, then there is a polynomial time algorithm
that schedules all the jobs inside the area [0, D] × [0, (5/3)Tmin].
Proof In the first step, we place all the jobs inJD :=Jw( j)>D/2 andJseq :=Jh( j)>T /2
\JD L-shaped. By Lemma 13 the resulting schedule has a maximum height of at most
(3/2)OPT. Let h(JD) := (2/3 + ρ)Tmin and w(Jseq) := λD. By Lemma 10, we
know that λD ≤ 2(D − (3/4)D) = D/2, since h(Jw( j)≥(3/4)D) > (2/3)Tmin.

The total area area(Jres) of the residual jobs is bounded by

area(Jres) ≤ DTmin − (3/4)D · (2/3)Tmin − (1/2)D · ρTmin − λD · Tmin)

= (1/2 − ρ/2 − λ/2)DTmin.

On the other hand, there is a rectangular area with width a := (1 − λ)D and
height b := ((5/3) − (2/3 + Tmin) = (1 − ρ)Tmin ≥ (1/2)T where we can place
the residual jobs. We will place the residual jobs into this area using Steinberg’s algo-
rithm. This is possible if Steinberg’s condition 2area(Jres) ≤ ab− (2 · wmax(Jres) −
a)+(2 · hmax(Jres) − b)+ is fulfilled, and each job fits inside the schedule area. Since
wmax(Jres) ≤ D/2 ≤ a and hmax(Jres) ≤ Tmin/2 < b, it holds that

ab − (2 · wmax(Jres) − a)+(2 · hmax(Jres) − b)+
= (1 − λ)D · (1 − ρ)Tmin − (D − (1 − λ)D)+(Tmin − (1 − ρ)Tmin)+
= (1 − λ − ρ)D · Tmin
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= 2(1/2 − ρ/2 − λ/2)DTmin ≥ 2area(Jres).

The condition is fulfilled, and we can use the free rectangular area to place the residual
jobs. ��

4 Rearranging a Schedule that Fits Almost all Jobs

In this section, we assume that we are given a schedule that fits almost all jobs into
a schedule of maximum height T ≤ (1 + ε)OPT. Left out of the schedule is a set of
jobs that has a very small total width, where each job can have a height up to OPT.
As such, this set of jobs can be fit into a strip of height OPT and width γ D for some
small γ ∈ (0, ε]. Later, we will see that such a schedule can be generated using the
algorithm from Theorem 19 in Sect. 5.

Since we aim to generate a schedule of maximum height (5/3 + ε)OPT, it does
not suffice to simply place the non-scheduled jobs atop the generated schedule, as this
would result in a maximum height of 2OPT. Instead, we must find some area in the
generated schedule, inside of which we can remove jobs such that a height of OPT/3
for a width of λD is empty, where λ ∈ [0, 1] is a small constant depending on ε (and
γ ). Once we have achieved this and placed the jobs removed by this procedure in a
way that does not intersect this strip, we can then place the strip of height OPT at
exactly that place, resulting in a schedule of maximum height (5/3 + ε)OPT.

If none of the previously mentioned cases (as in Theorems 14 and 15, that can be
solved using Steinberg’s algorithm) apply, then the following Theorem combined with
Theorem 19 proves Theorem 2.

Theorem 16 Let ε ∈ (0, 1/3], ε′ ≤ (3/5)ε and γ ≤ (3/40)ε. Furthermore, let I be an
instance with h(Jw( j)>(3/4)D) ≤ (2/3)Tmin and w(Jh( j)>(2/3)Tmin) ≤ (1− (3/4)ε)D
and a schedule σ with these properties:

• almost all jobs are scheduled with peak demand bounded by T ≤ (1 + ε′)OPT;
• the remaining jobs are scheduled inside a box Cγ of height T and width γ D.

There is an Algorithm that finds a restructured schedule that places all the jobs up to
a schedule with a maximum height of at most (5/3 + ε)OPT.

Proof From the schedule σ , we will generate a new schedule σ ′. Some jobs will be
shifted to new starting positions σ ′. Other jobs j (that are not explicitly shifted in this
proof) keep their original starting positions, i.e., σ ′( j) = σ( j). ��

4.1 Existence of a Suitable Job

If the schedule contains a job j with width w( j) ∈ [γ, (1− 2γ )D] and height h( j) ∈
[(1/3)T , (2/3)T ], we proceed as follows to make room forCγ by shifting job j : Since
w( j) ≤ (1−2γ )D it holds thatmax{σ( j), D−(σ ( j)+w( j))} ≥ γ D. Let us, w.l.o.g.,
assume that σ( j) ≤ D − (σ ( j) + w( j)), otherwise we mirror the schedule at D/2.
We shift the job j completely to the right (by at least γ D) such that it is positioned at
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Fig. 5 Splitting the given schedule into segments at time points τ1 = D
8 , τ2 = (15−24γ )D

64 , τ3 = (9+11γ )D
32 ,

τ4 = (3+2γ )D
8 and τ5 = D

2

σ ′( j) :=D − w( j). This increases the maximum height to at most (5/3)T . Now the
schedule between σ( j) and σ( j) + γ D has a height of at most (2/3)T . We place the
box Cγ at σ( j). Since the box has a height of at most T , the resulting schedule still
has a maximum height of at most (5/3)T ≤ (5/3 + ε)OPT.

4.2 No Suitable Job

If such a job does not exist, we search for segments that are not overlapped by jobs
with a height greater than (2/3)T . We split the schedule into segments at the time steps
(x-positions) τ1 = D

8 , τ2 = (15−24γ )D
64 , τ3 = (9+11γ )D

32 , τ4 = (3+2γ )D
8 and τ5 = D

2 as
well at τ10−i = D − τi for i ∈ {1, 2, 3, 4} and set τ0 = 0. We number the resulting
segments in increasing order from 0 to D. Note that segments Si and S11−i have
exactly the same with and would be at the same position when mirroring the schedule
at D/2, see Fig. 5. For k ∈ {1, . . . , 10}, we denote by σ(Sk) = τk−1) the start-time of
a segment, by c(Sk) = τk) the end-time of the segment and by w(Sk) = τk − τk−1)
the width of the segment Sk . Since w(Jh( j)>(2/3)T ) ≤ (1 − (3/4)ε)D, we know,
by the pigeonhole principle, that in one of these segments a total time of at least
(3/4)εD/10 ≥ (3/40)εD ≥ γ D is not overlapped by these jobs.

Let Sl,k1 be the earliest such strip, and Sr ,k2 the latest such that k1, k2 ∈ {1, . . . , 10}
represent the index of the strips S1, . . . , S10. Note that it might happen that Sl,k1 =
Sr ,k2 . From now on, we assume that σ(Sl,k1) ≤ D− c(Sr ,k2) and otherwise mirror the
schedule at D/2. As a consequence we now that k1 ∈ {1, . . . , 5}.

4.3 Modifying the Selected Strip

In the next step, we modify the start- and end-times of Sl,k1 such that it starts after the
completion of a job with height at least (2/3)T or at 0. We denote the shifted start
times as σ ′(·) and the shifted completion time as c′(·). If the start-time of Sl,k1 , i.e.
τk−1 intersects a job j with h( j) ≥ (2/3)T , we define σ ′(Sl,k1) := σ( j) + w( j) ≤
c(Sl,k1)− γ D. Otherwise if k1 �= 1, we find the last job j ending before σ(Sl,k1) with
h( j) ≥ (2/3)T and define σ ′(Sl,k1) := σ( j) + w( j) and shift the end-time of Sl,k1
by the same amount.

Note that σ ′(Sl,k1) ≥ σ(Sl,k1) − γ D: Since Sl,k1 is the first strip with at least
γ D time not occupied by jobs with a height greater than (2/3)T , the starting time
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Fig. 6 An illustration of the border shifting procedure. The original borders are indicated by τi−1 and τi .
As τi−1 is not intersected by a job with a height greater than (2/3)T , we shift σ(S′

k ) to an earlier point in
time such that the job with a height greater than (2/3)T , π1, ends at the exact same time. We then shift
c(S′

k ) by the same amount. The shifted c(S′
k ) may intersect a job with a height greater than (2/3)T , π2,

indicated by the dotted line, and in this case, we shift the border further such that c(S′
k ) = σ(π2) holds

of Sl,k1 is reduced by at most γ D, while the width of the segment is not increased.
The segment remains suitable because we only add width not utilized by jobs with a
height greater than (2/3)T , and therefore removing the same amount of width at the
end of the segment can not reduce the total width occupied by jobs with height less
than (2/3)T in the segment.

Finally, if the end-time of Sl,k1 intersects a job j that has a height greater than
(2/3)T , we reduce it to c′(Sl,k1) := σ( j) and call the modified segment S′

l,k1
. These

modifications never decrease the total width that is not overlapped by jobs with a
height greater than (2/3)T in Sl,k1 . We do the same but mirrored for Sr ,k2 resulting
in a modified segment S′

r ,k2
. For an illustration of this procedure, see Fig. 6. If D −

c(S′
r ,k2

) ≤ σ(S′
l,k1

), we mirror the schedule such that σ ′( j) = D − c( j). We denote
by S′

k the segment in {S′
l,k1

, S′
r ,k2

} that appears first in this new schedule, where k =
min{k1, k2} represents the original number of the chosen segment. As a consequence
of this mirroring if k ≥ 2, we ensured there exists a job j with h( j) > (2/3)T and
c(S′

k) ≤ σ( j) ≤ D − σ(S′
k). Additionally, we know about the start and endpoints of

this segment that τk−1 − γ D ≤ σ(S′
k) and w(S′

k) ≤ τk − τk−1.

4.4 Rearranging Jobs in the Selected Strip

We aim to remove jobs from S′
k , such that the maximum height reached inside S′

k is
bounded by (2/3)T . We categorize the jobs to be removed into three classes; first, the
set of jobs Jcont that are wholly contained in S′

k due to the earlier shifting and have a
height less than (2/3)T , second the set of jobs that have a height greater than (2/3)T ,
which must also be wholly contained in S′

k due to our border shifting, and finally the
set of jobs intersecting one of the time points σ(S′

k) or c(S
′
k).

First, we remove Jcont from the segment and schedule them inside a container that
has a height of at most (2/3)T and length at most 3w(S′

k).
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Lemma 17 The jobs Jcont can be scheduled inside a container Ccont of height (2/3)T
and width 3w(S′

k) ≤ D/2.

Proof First note that area(Jcont) ≤ w(S′
k)T , since themaximumheight inσ is bounded

byT .Weplace these jobs usingSteinberg’s algorithm.Recall that this procedure allows
us to place a set of rectanglesR into a container of size a · b as long as the following
conditions are met: wmax (J ) ≤ a, hmax(J ) ≤ b, 2 · area(J ) ≤ (ab − (2hmax(J ) −
T )+(2wmax(J ) − D)+). Setting our values for b = 3w(S′

k) and a = (2/3)T yields
the desired property. Clearly, no job wholly contained in a segment of width w(S′

k)

can have a width greater than w(S′
k). Furthermore, the maximum height of any job in

Jcont is (2/3)T . Finally, we have

2 · area(Jcont) ≤ 2w(S′
k) · T

≤ 3w(S′
k) · (2/3)T − (2w(S′

k) − 3w(S′
k))+ · (2(2/3)T − (2/3)T )+

= (ab − (2hmax(J ) − b)+(2wmax(J ) − a)+)

which proves the claim. ��
In the next step, we consider the jobs with heights greater than (2/3)T . By con-

struction of the strip, we know that the total width of jobs with heights greater than
(2/3)T is bounded by w(S′

k) − γ D. We remove all these jobs from the strip and
combine them with the extra container Cγ of height at most T and width γ D to a new
container called Ctall. It has a height of at most T and a width of at most w(S′

k).
After this step, the only jobs remaining inside the area of S′

k are the jobs that overlap
the borders of S′

k . If the maximum height in S′
k is lower than (2/3)T , we place the

container Ctall inside the strip S′
k as well as the container Ccont right of D/2 and are

done. Otherwise, we have to remove jobs that overlap the borders of the strip S′
k until

the maximum height in S′
k is bounded by (2/3)T . The jobs we choose to remove are

dependent on the position of the strip. The following lemma helps to see how these
jobs can be shifted without increasing the maximum height of the schedule too much.

Lemma 18 Consider a schedule σ with maximum height bounded by T and a time τ̃ ,
as well as a subset of jobs JMove ⊆ J (τ̃ ) with h(JMove) ≤ a · T for some a ∈ [0, 1].
Let τ be the smallest value σ( j) for j ∈ JMove. Consider the schedule σ ′, where all
the jobs in JMove are delayed such that they end at D, i. e., σ ′( j) = D − w( j) for all
JMove and σ ′( j) = σ( j) for all other jobs.

In the schedule σ ′ before D/2 + τ/2, the maximum height is bounded by T , while
after D/2 + τ/2, the maximum height is bounded by (1 + a)T .

Proof If the height of the schedule σ ′ is larger than T at a position τ ′, it has to be
because one of the jobs in JMove overlaps it. Hence, that maximum height is bounded
by (1+a)T , since we shifted jobs with total height bounded by aT . Let j be one of the
shifted jobs. If σ ′( j) > D/2+τ/2, the height of the schedule before D/2+τ/2 cannot
be influenced by this job. Therefore, assume that D − w( j) = σ ′( j) ≤ D/2 + τ/2.
As a consequence, w( j) ≥ D/2 − τ/2. Since σ( j) ≤ τ it holds that σ( j) + w( j) ≥
D/2 + τ/2. Thus before time D/2 + τ/2, the job j overlaps its previous positions
and cannot increase the maximum height above T . ��

123



Algorithmica (2023) 85:3649–3679 3667

Fig. 7 Illustration of the steps in the proof of Theorem 16. Note that the set JMove is delayed such that the
jobs end at D. The containers Ctall and Ccont are placed such that they do not intersect. For b and c, the
jobs jv are placed in the same manner, and the job jr is denoted

We choose which of the overlapping jobs to shift depending on if k = 1 or k �= 1.
Remember that none of the borders of S′

k overlap a job that has a height greater than
(2/3)T , and assume, for the following, that there is a point inside S′

k where the total
height of overlapping jobs is larger than (2/3)T .

Case 1: k = 1
Consider the time τ = c(S′

1) ≤ D/8 and the set of jobs J (τ ) that are intersected
by this line. We know that the total height of jobs with a width greater than (3/4)D is
bounded by (2/3)T . Let JMove be the set of jobs generated as follows: Greedily take
the jobs with the greatest height from J (τ ) \ Jw( j)>(3/4)D , until either all the jobs
from J (τ )\Jw( j)>(3/4)D are contained in JMove or h(JMove) ∈ [(1/3)T , (2/3)T ]. In
this process, we never exceed (2/3)T since, if there is a job with a height greater than
(1/3)T in J (τ )\Jw( j)>(3/4)D , we choose it first and immediately stop. We delay the
jobs in JMove to new starting positions σ ′ such that for each job j ∈ JMove we have
that c′( j) := σ ′( j) + w( j) = D. Note that σ ′( j) ≥ (1/4)D for each j ∈ JMove and
therefore no longer overlaps c(S′

1). Furthermore, we know by Lemma 18 that before
D/2, the maximum height is bounded by T , while after D/2, the maximum height
is bounded by (5/3)T . Furthermore, the maximum height inside S′

1 is bounded by
(2/3)T .

Since S′
1 has a widthof at most D/8, we know by Lemma 17 that Jcont can be

placed inside a container Ccont with height at most (2/3)T and width bounded by
3D/8. Therefore, we can schedule this container at D/8 and know that it ends before
D/2. Finally, we schedule the container Ctall at σ ′(Ctall) = 0. The peak height of the
resulting schedule is bounded by (5/3)T . See Fig. 7a for the repacking procedure.

Case 2: k �= 1 In this case, the borders of the considered strip can be overlapped
from both sides. Furthermore, we know that the left border of S′

k is to the right of
D/8 − γ D ≥ γ D.

Consider the largest total height of jobs that are intersected by any vertical line
through S′

k and denote this height as TS′
k
. Since there is a job jl with height greater

than (2/3)T with σ( jl) + w( jl) = σ(S′
k), we know that the total height of jobs

intersecting σ(S′
k) can be at most (1/3)T . Next, consider the closest job jr that starts

after c(S′
k) and has a height greater than (2/3)T . By the choice of S′

k , we know that

123



3668 Algorithmica (2023) 85:3649–3679

such a job must exist and that σ( jr ) ≤ D−σ(S′
k), by the choice of S

′
k out of S

′
k1,l

and
S′
k2,r

. Furthermore, we know that the total height of jobs intersecting the vertical line
at σ( jr ) is bounded by (1/3)T .

Hence, the jobs that overlap the vertical line at σ( jr ) and the jobs that overlap the
vertical line at σ(S′

k) add a total height of at most (2/3)T to TS′
k
. Let us now consider

the jobs JM that overlap the time c(S′
k) but neither the time σ(S′

k) nor the time σ( jr ).
Each of them has a width of at most D − σ(S′

k) − σ( jr ) ≤ D − 2σ(S′
k). Hence when

delaying their starting points such that σ ′( j) = D − w( j), they no longer overlap the
time c(S′

k) since w(S′
k) ≤ σ(S′

k) for each k ∈ {2, 3, 4, 5}.
We greedily take jobs from JM that have the earliest starting point until we have

all jobs from JM or we have a total height of at least (1/3)T . If the total height of the
chosen jobs is larger than (2/3)T , the last job jv has a height of at least (1/3)T . Since
it has a width less than (1− 2γ )D, it has to have a width of less than γ D. Otherwise,
the job would have a width that allows us to shift only this job and make room for the
strip Cγ . We remove this job and place it later, while we shift all the others to new
positions σ ′ such that σ ′( j) = D − w( j) for each of the taken jobs j . We call the set
of shifted jobs JMove.

Furthermore, since JMove has a total height of at most (2/3)T and a starting point
right of σ(S′

k), we know by Lemma 18 that the peak height right of D/2 + σ(S′
k)/2

is bounded by (5/3)T while left of D/2 + σ(S′
k)/2 it is bounded by T .

Let σ( jl) be the starting time of the last taken job. Before σ( jl) (in S′
k) there is

no longer a job from JM , and, hence inside in the strip S′
i that is left of σ( jl), the

maximum height is bounded by (2/3)T . On the other hand, after σ( jl) (in S′
k), we

either have removed jobs with total height at least (1/3)T , or all the jobs fromJM and
hence the schedule there can have a total height of at most (2/3)T as well. Therefore,
we can place the container Ctall inside S′

k without increasing the total height above
(5/3)T .

The container Ccont and the job jv remain to be placed. For k ∈ {2, 3}, we set Ccont
at σ ′(Ccont) = c(S′

k) and the job σ ′( jv) = 0, while for k ∈ {4, 5}, we set σ ′(Ccont) = 0
and σ ′( jv) = c(S′

k). We will now see, for each segment, that the maximum height of
(5/3)T is not exceeded by this new schedule.

First note that w( jv) ≤ γ D ≤ D/8 − γ D and hence does not intersect S′
2, when

scheduled at σ ′( jv) = 0. Similarly, it is more narrow than S′
5 and σ(S′

5)/2, and hence
fits right of S′

4 and S′
5 without increasing the schedule more than (5/3)T .

Let us now check the conditions for Ccont: For k ∈ {2, 3}, we have to ensure that

c(S′
k) + w(Ccont)/2 ≤ D/2 + σ(S′

k),

while for k ∈ {4, 5} we have to prove that

w(Ccont) ≤ σ(S′
k).

We start with k = 2: It holds that

w(S′
2) ≤ (15 − 24γ )D

64
− D

8
= (7 − 24γ )D

64
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and hence w(Ccont) ≤ 3( (7−24γ )D
64 ). Therefore,

c(S′
2) + w(Ccont) ≤ (15−24γ )D

64 + 3
(

(7−24γ )D
64

)
≤ D

2 + D/8−γ D
2

≤ D
2 + σ(S′

2)

2 .

Furthermore for k = 3 we have

w(S′
3) ≤ (9 + 14γ )D

32
− (15 − 24γ )D

64
= (

3

64
+ 52γ

32
)D

and hence w(Ccont) ≤ 3( 3
64 + 52γ

32 )D. Therefore,

c(S′
3) + w(Ccont) ≤ (9 + 14γ )D

32
+ 3(

3

64
+ 52γ

32
)D = (27 + 184γ )D

64
,

while D/2 + σ(S′
3)/2 ≥ D/2 + (

(15−24γ )
64 − γ )D/2 = ( 79

128 − 11
8 γ )D. As a conse-

quence, c(S′
3) + w(Ccont) ≤ D/2 + σ(S′

3)/2, since γ ≤ 1/40 ≤ 25/392.

Concerning k = 4, we have w(S′
4) ≤ (3+2γ )D

8 − (9+14γ )D
32 = (3−6γ )D

32 . Hence,

w(Ccont) ≤ 3

(
(3 − 6γ )D

32

)

= (9 + 14γ )D

32
− γ D ≤ σ(S′

4).

Finally for k = 5, it holds that w(S′
5) ≤ D

2 − (3+2γ )D
8 = (1+2γ )D

8 . Therefore,

w(Ccont) ≤ 3 · (1 + 2γ )D

8
= (3 + 6γ )D

8
= (1 + 2γ )D

8
− γ D ≤ σ(S′

5).

For a visual representation of this repacking procedure, see Fig. 7. In all the cases,
the generated schedule has a height of at most (5/3)T ≤ (5/3)(1+ ε′)OPT ≤ (5/3+
ε)OPT. ��

5 AEPTAS for NPDM

In this section, we will prove the following theorem.

Theorem 19 Let ε > 0. There is an algorithm that places almost all jobs such that
the maximum height is bounded by T ′ := (1+O(ε))OPT. For the remaining jobs, we
can choose one of the following containers for them to be placed in: C1 with width εD
and height T ′ or a container C2 with width D and height hmax. The time complexity
of this algorithm is bounded by O(n log(n)/ε) + 1/ε1/ε

O(1/ε)
.

The statement, in fact, gives two variants of the algorithm. The first variant, where
all remaining jobs are placed in C1 is used in our 5/3 + ε approximation algorithm,
where the second variant with all remaining jobs in C2 can be used to obtain the AEP-
TAS by setting σ(C2) = 0. The described algorithm follows the dual-approximation
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Fig. 8 Partition of the jobs.
Each job is represented by a dot
in this plane. The horizontal
coordinate represents its width,
while the vertical coordinate
represents its height

framework. We describe an algorithm that, given a bound on the schedule maxi-
mum height T , computes a schedule with maximum height (1 + O(ε))T ′ + hmax,
or decides correctly that there is no schedule with a maximum height at most T ′.
This algorithm can then be called in binary search fashion with values T between
T ′ = max{T1, T2, T3, T4} and max{2area(J )/D, 2hmax}, using only multiples of
εT ′.

Note that if hmax ≤ O(ε3T ′), we can use the algorithm in [47] to find an (1 +
ε)OPT + O(log(1/ε)/ε · ε3T ′) = (1 + O(ε))OPT approximation. Hence, we can
assume that hmax > O(ε3T ′).

5.1 Classification of Jobs

Given two values δ and μ with μ < δ, we partition the jobs into five sets: large,
horizontal, vertical, small, and medium-sized jobs.

• Jlarge := {i ∈ J |h(i) ≥ δT ′, w(i) > δD}
• Jhor := {i ∈ J |h(i) < μT ′, w(i) > δD}
• Jver := {i ∈ J |h(i) ≥ δT ′, w(i) < μD}
• Jsmall := {i ∈ J |h(i) < μT ′, w(i) < μD}
• Jmedium := J \ (Jlarge ∪ Jhor ∪ Jver ∪ Jsmall)

Lemma 20 In O(n + 1/ε2) operations it is possible to find values ≥ εO(1/ε2) for δ

and μ such that area(Jmedium) ≤ (ε2/4)DT and μ ≤ cε5δ for any given constant c.

Proof Consider the sequence ρ0 := ε5/4, ρi+1 := cρiε3. Due to the pigeonhole
principle, there exists an i ∈ {0, . . . , 8/ε2} such that when defining δ := ρi and
μ := ρi+1, the total area of the medium-sized jobs is bounded by (ε2/4)DT , because
each job appears only in two possible sets of medium jobs. We have δ ≥ μ ≥ εO(1/ε2)

(Fig. 8). ��
Lemma 21 [48]Wecan round the heights h(i)of the vertical and large jobs tomultiples
kiεδT with ki ∈ {1/ε, . . . , 1/εδ} such that the number of different demands is bounded
by O(1/ε2 log(1/δ)). This rounding increases the optimal height by at most 2εT .
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Fig. 9 In blue, we see the profile of horizontal and large items. This profile is rounded to multiples of
εT (red). In segments where the profile jumps more than εT , we remove all vertical items (dark gray) and
round the profile up to T (Color figure online)

This can be done via a standard combination of arithmetic and geometric rounding
[48]. In the following, we will dismiss the medium jobs from the schedule.

5.2 Profile for Vertical Jobs

In the following, we will slice some vertical jobs into separated vertical pieces while
repacking and structuring the schedule. Note that we allow this slicing since we only
need a structural argument that all vertical jobs can be placed (as vertical slices) in
the packing. Later, we will use an LP formulation to place vertical jobs. This will fix
some of the sliced jobs, but still, leave us with a few jobs which are placed as vertical
fractions. These fractionally placed jobs will contribute to the extra box mentioned in
Theorem 19.

Given an optimal schedule, we partition the schedule into 1/γ segments of width
γ D, for a constant γ ∈ Oε(1). Given a schedule of jobs J , we define profile of J
to be {(x, y)|y = ∑

j∈J |σ( j)≤x≤σ( j)+w( j) h( j), 0 ≤ x ≤ D}. Height profile of jobs
J at time t is EJ (t) := ∑

j∈J |σ( j)≤t≤σ( j)+w( j) h( j). You can imagine such a profile
as the total height produced by placing the jobs from the set at their starting times
in the schedule. Now consider the profile of large and horizontal jobs; see Fig. 9. Let
J̃ := Jlarge ∪ Jhor . Next, we search for the segments where the maximal height of
the profile of large and horizontal jobs and the minimal height of this profile differs
more than εT , i.e., if in segment S := (ta, tb), |maxt∈S E J̃ (t) − mint∈S E J̃ (t)| ≥ εT ,
then we remove all vertical and small jobs from these segments fractionally, i.e., we
vertically slice jobs, which are cut by the borders of the segment.

Claim 1 Let Jrem be the set of removed vertical and small jobs. Then area(Jrem) is
bounded by O(γ /εδ) · D · T .
Proof Note that the height of the profile of horizontal or large jobs only changes, when
horizontal or large jobs end or start. The large and horizontal jobs have a total height
of at most T /δ since they have a width of at least δD, and the total area of the schedule
is bounded by T · D. Hence there can be at most 2(T /δ)/εT = O(1/εδ) segments,
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where the height of the profile changes more than εT . As a result, the total area of the
removed vertical jobs can be bounded by O(1/εδ) · (γ D · T ). ��
Claim 2 (Size of γ ) In the case of container C1, we can choose γ ∈ O(εδλ) such that
we can schedule the removed vertical jobs fractionally inside a container C1,1/4 of
widthw(C1)/4 and height h(C1). Otherwise, we can choose γ ∈ O(ε4δ) such that we
can schedule the removed vertical jobs fractionally inside a container C2,1/4 of width
w(C2)/4 and height h(C2).

Proof Let k ∈ {1, 2} depending on the chosen container. First we place all the jobs
Jrem,tall , i.e., jobs in Jrem with height greater than h(Ck,1/4)/2 next to each other.
The total width of these jobs is bounded by 2 · area(Jrem,tall)/h(Ck,1/4). Next, we
place the residual jobs Jrem,res := Jrem\Jrem,tall , which have a height of at most
h(Ck,1/4)/2. We take slices of width 1 of the jobs and place them on top of each
other until the height h(Ck,1/4)/2 is reached. Since each job has a height of at most
h(Ck,1/4)/2, the height h(Ck,1/4) is not exceeded. The total width of this schedule is
bounded by

2area(Jrem,res)/h(Ck,1/4) + 1 ≤ O(γ /(εδ) · D · T )/h(Ck,1/4).

Hence, for C1,1/4 the total width is bounded byO(γ /(εδ) · D · T )/T = O(γ /(εδ))D.
Therefore , when choosing γ ∈ O(λεδ) for a suitable constant, the total width of
this schedule is bounded by w(C1)/4. Otherwise, the total width for container C2,1/4
is bounded by O((γ /(εδ) · D · T )/ε3T ) = O(γ /ε4δ)D. Thus, when choosing γ ∈
O(ε4δ) for a suitable constant, the total width of this schedule is bounded byw(C2)/4.

��

5.3 Algorithm to Place theVertical, Small, andMedium Jobs

In the algorithm, we first round the heights of the vertical jobs to at most O(1/ε2 ·
log(1/δ)) = (1/ε)O(1) sizes using Lemma 21 (geometric rounding).

Afterward, we guess the height reserved for the vertical and small jobs rounding up
to thenextmultiple of εT for eachof the1/γ segments, adding atmost 2εT to the height
of the schedule. There are at most O((1/ε)1/γ ) possible guesses. Furthermore, we
introduce one segment
 of height �h(Ck)/(εT )�·εT and widthw(Ck)/4 (k ∈ {1, 2})
for the set of removed vertical jobs. Let Sver be the set of all introduced segments, and
for each s ∈ Sver let hs,ver be the height reserved for vertical and small jobs. Note
that for each s ∈ Sver there exists an i ∈ {0, . . . , 1/ε + 3} such that hs,ver = iεT .
Furthermore, let Sver ,h be the set of segments that have exactly height h and let
w(Sver ,eh) be their total width.

To place the vertical jobs into the segments Sver , we use a configuration LP. Let
C = {aη : η|η ∈ {h( j)| j ∈ Jver }} be a configuration for vertical jobs, where
aη denotes the multiplicity with which the height η is contained in C . We denote by
h(C) := ∑

η∈{h( j)| j∈Jver } aη ·η the total height ofC , and by Ch the set of configurations
with height at most h. Furthermore, for a given configuration C we denote by aη(C)

the number of jobs contained inC that have a height of η. Since each vertical job has a
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height of at least δT , there are at most (1/ε)O(1/δ) different configurations. Consider
the following linear program:

∑

C∈CiεT
xC,i = w(Sver ,iεT ) ∀i ∈ {1, . . . , 1/ε + 3} (1)

∑

s∈S

∑

C∈Chs,ver
aη(C)xC,s =

∑

j∈Jver ,h( j)=η

w( j) ∀η ∈ {h( j)| j ∈ Jver } (2)

xC,i ≥ 0 ∀C ∈ C, i ∈ {1, . . . , 1/ε} (3)

The variable xC,i represents the width of configuration C inside segments s ∈ Sver

with reserved height hs,ver = iεT . The first equation handles configurations inside
segments with a certain height capacity. It ensures that the total width of these config-
urations does not exceed the total width of the segments. The second equation ensures
that the total width of jobs with a certain height is covered by the configurations. Doing
so for all heights ensures every job is fully scheduled. A basic solution has at most
(1/ε + |{h( j)| j ∈ Jver }| + 1) = (1/ε)3 nonzero components.

We can solve the above linear program by guessing the set of nonzero components
and then solving the resulting LP in ((1/ε)O(1/δ))(1/ε)

3
time.

To place the vertical jobs,wefirst fill themgreedily inside the configurations (slicing
when the corresponding configuration slot is full) and afterward place the configura-
tions inside the schedule, slicing the jobs at the segment borders. For each nonzero
component, we have one configuration that contains at most 2/δ fractionally placed
vertical jobs on top of each other, which have a total height of at most 2T ′. Addi-
tionally, for each segment, we have the same amount of fractional jobs. Hence the
total area of fractionally placed jobs can be bounded by μD · 2T · ((1/ε)3 + 1/γ ). If
we choose C1 this can be bounded by O(μ/(λεδ))DT ≤ λDT /8, since μ = cεδλ2

and otherwise by ∈ O(μD · T /(ε5δ)) ≤ DT /8, since μ = cε5δ for a suitable small
constant c. We remove the fractionally placed jobs J f rac.

Next, we place the small jobs inside the empty area that can appear above each
configuration for vertical jobs. Note that there are at most ((1/ε)O(1) + 1/γ ) config-
urations, and the free area inside these configurations has at least the size of the total
area of the small jobs. As a consequence, we have at most 2/γ rectangular areas to
place the small jobs, which have a total area, which is at least the size of the small
jobs. We use the NFDH algorithm to place these jobs inside the boxes until no other
job fits inside.

Assume we could not place all the small jobs inside these boxes. When considering
the free area in each box, there are three parts that contribute to it. First, each box can
have a strip of free area later on in the schedule, which has a width of at most μD. The
total free area contributed by this strip is bounded by (2/γ )μD · 2T . Second, each
box can have a strip of free area of height at most μT on the top, because otherwise,
another line of jobs would have fit inside this box. Since there are no boxes on top of
each other, we can bound the total free amount of work, which is a result of this strip,
by μT · D. Finally, there can be free area between the shelves of the jobs generated
by the NFDH algorithm. This total free area is bounded by the height of the tallest job
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times the width of the widest box, i.e. μT · γ D. Hence the total free area inside the
boxes is bounded by 5μD · T · γ + D · μT . Since γ ∈ O(1/ε5δ) and we have chosen
μ ≤ cδε6 for a suitable small constant c ∈ Q, the total area of the residual small jobs
Jsmall,res , which could not be placed is bounded by εT D.

We place the residual small jobs Jsmall,res on top of the schedule using NFDH.
This adds a height of at most 2εT to the schedule. Next, we place the medium jobs.We
schedule all the medium jobs that have a width larger than w(Ck)/4 with Steinberg’s
algorithm inside a box of height at most O(ε)T and width D. This is possible since
they have a width in (εD, D] and therefore, each has a height of at most O(ε)T
because their total area is bounded by (ε2/4)DT . The residual jobs (that might have a
width larger than εT ) are placed inside the first half of the container using Steinberg’s
algorithm. The latter half of the container is filled with the extra box for vertical jobs
defined for the LP and the fractionally scheduled jobs. The extra box has a width of
at most w(Ck)/4. Since the fractionally placed vertical jobs J f rac have an area of at
most h(Ck) · w(Ck)/8 and each has a width of at most μD < w(Ck)/8, we can use
Steinberg’s algorithm to place them inside the last quarter of the container Ck .

5.4 Placement of Horizontal Jobs

In this section, we first reduce the number of possible starting points for horizontal
jobs and then use a linear program to place the jobs in the schedule.

First step: use geometric grouping to reduce the number of widths of horizontal
jobs. At a loss of at most 2εT in the approximation ratio, we can reduce the number
of widths of horizontal jobs to O(log(1/δ)/ε) using geometric grouping (see [49,
Theorem 2] by Karmarkar and Karp).

These rounded jobs can be placed fractionally instead of the original jobs and an
extra box of height at most O(ε)T . In this fractional packing, the horizontal jobs are
sliced vertically, i.e., different fractions of a job might have different starting points,
but a fraction that is started, will not be interrupted and have the same height during
its procession. We denote the rounded width of a job j as w′( j).

In the next step, we will reduce the number of different starting points of the large
and fractionally placed horizontal jobswithout exceeding the given profile. Remember,
we know the profile of large and horizontal jobs with precision εT for the segments
of width γ D.

Claim 3 Without loss in the approximation ratio, we can reduce the number of different
starting points of rounded horizontal and large jobs to (1/ε)(1/ε)

O(1/ε)
.

Proof Consider the large and horizontal jobs starting in the first segment. Since this
segment has a width of γ D ≤ δD, there can be no job ending in this segment. Hence
this segment is maximally filled at the point γ D. We can shift the starting point of each
job in this segment to 0, and we will not change the maximal height of this segment.

Now consider a job i ∈ Jhor ∪Jlarge starting in the second segment. If there is no
horizontal or large job ending before the start of i , we can shift the starting point of i
to γ D without changing the maximal filling height in this segment. However, if there
is a job j ∈ Jhor ∪ Jlarge ending before i in this segment, we can not shift this job
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Fig. 10 An illustration of the reduction of used starting points for horizontal jobs. The right side shows
the shifted version. The vertical lines represent the starting points after the shift. They are selected from the
latest starting point within each segment of height εh2,3. The white area represents the cleared space from
this procedure, while the removed jobs are shown as hatched below the schedule

to γ D since then i and j overlap, which they did not before. This could change the
maximal height of the profile in this segment. Nevertheless, if j is the last job ending
before i , we can shift i to the left, such that i starts at the endpoint of j .

We iterate this shifting with all segments and all jobs in Jhor ∪Jlarge. As a result,
all jobs start either at a multiple of γ D, or they start at an endpoint of another job in
Jhor ∪ Jlarge. Therefore, we can describe the set of possible starting points for jobs
in Jhor ∪ Jlarge as

Shor ,large

:=
⎧
⎨

⎩
lγ D +

1/δ∑

j=1

w(i j )|l ∈ {0, 1, . . . , 1/γ }, i j ∈ Jhor ∪ Jlarge∀ j ∈ {1, . . . , 1/δw}
⎫
⎬

⎭
.

It holds that
∣
∣Shor ,large

∣
∣ ≤ (1/γ ) · (log(1/δ)/ε)1/δ = (1/ε)(1/ε)

O(1/ε)
. ��

Claim 4 At a loss of at most O(εT ) in the approximation ratio, we can reduce the
number of used starting points for rounded horizontal jobs to O(1/εδ).

We partition the set of horizontal jobs by their width intoO(log(1/δ)) sets J l
hor :=

{i ∈ Jhor |D/2l < w(i) ≤ D/2l−1}. For each of these sets, we will reduce the number
of starting positions to 2l/ε2.We partition the schedule into 2l segments ofwidth D/2l .
Each job from the setJ l

hor has a width greater than D/2l , and hence it starts in another
segment as it ends.We consider for each segment all the horizontal jobs of the setJ l

hor
ending in this segment and sort them by increasing starting position. Let hl,i be the
height of the stack of jobs inJ l

hor ending in the i-th segment.We partition the stack into
1/ε layers of height εhl,i and slice the horizontal jobs overlapping the layer borders.
We remove all the jobs in the bottommost layer and shift the jobs from the layers
above to the left, such that they start at the latest original starting position from the
layer below. We repeat this procedure for each segment; see Fig. 10 for an illustration.
By this shift, we reduce the total number of starting positions from jobs from the set
J l
hor to 2

l/ε. The total height of the jobs we removed is bounded by εh(J l
hor ). Since

these jobs have a width of at most D/2l−1, we can schedule 2l−1 of these jobs after one
another (horizontally), without violating the deadline. Hence, when scheduling these
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jobs fractionally, we add at most εh(J l
hor )/2

l−1 to the schedule. Note that since all the

jobs in setJ l
hor have a width of at least D/2l , it holds that

∑�log(1/δ)�
l=1 h(J l

hor )/2
l ≤ T

and, hence, we add at most
∑�log(1/δ)�

l=1 εh(J l
hor )/2

l−1 ≤ 2εT to the height of the
schedule, when scheduling the removed horizontal jobs.

The total number of starting positions is bounded by
∑�log(1/δ)�

l=1 2l/ε =
(2�log(1/δ)�+1 − 1)/ε ∈ O(1/δwε). ��

5.4.1 Algorithm to Place Horizontal and Large Jobs

To place the jobs in Jhor ∪ Jlarge, we first guess the starting positions of the large

jobs Jlarge in O(
∣
∣Shor ,large

∣
∣|Jlarge|) = (1/ε)(1/ε)

O(1/ε)
. Note that this guess affects

the height that is left for horizontal jobs. Next, we guess which O(1/εδ) starting
points in Shor ,large will be used after the shifting due to Claim 4. There are at most
∣
∣Shor ,large

∣
∣O(1/εδ) = (1/ε)(1/ε)

O(1/ε)
possible guesses total. We call the set of guessed

starting points S̄hor ,large. For each starting point in S̄hor ,large, we calculate the residual
total height that is left after the guess for the large jobs. For a given s ∈ S̄hor ,large let
hs,hor be this residual total height.

Consider the following linear program for horizontal jobs:

∑
ρ:=w′( j)
j∈Jhor

∑
s′∈S̄hor ,large
s′≤s<s′+ρ

xρ,s′ ≤ hs,hor ∀s ∈ S̄hor ,large
∑

s∈Shor ,large xρ,s = ∑
j∈Jhor

w′( j)=ρ

h( j) ∀ρ ∈ {w′( j)| j ∈ Jhor }
xρ,s ≥ 0 ∀s ∈ S̄hor ,large, ρ ∈ {w′( j)| j ∈ Jhor }

The variable xρ,s denotes the total height of jobs with rounded width ρ starting at s.
The first equation ensures that the height capacity at a starting time s is not exceeded
by the jobs starting at or overlapping s. The second equation ensures that the total
height requirement of jobs with rounded width ρ,

∑
j∈Jhor

w′( j)=ρ

h( j), is covered by the

total height of jobs with this width started in the schedule
∑

s∈Shor ,large xρ,s .

A basic solution to this linear program has at most
∣
∣S̄hor ,large

∣
∣+|Jhor | = O(1/εδ)

nonzero components. We can guess the nonzero components in at most (
∣
∣S̄hor ,large

∣
∣ ·

∣
∣J̄hor

∣
∣)

∣
∣S̄hor ,large

∣
∣+

∣
∣
∣J̄hor

∣
∣
∣ = (1/ε)(1/ε)

O(1/ε)
guesses. Furthermore, we can guess their

value with precision μT in at most (1/μ)

∣
∣S̄hor ,large

∣
∣+

∣
∣
∣J̄hor

∣
∣
∣ = (1/ε)(1/ε)

O(1/ε)
guesses.

Scheduling all the horizontal jobs integral and the error due to the precision add atmost
2μT ·(∣∣S̄hor ,large

∣
∣+∣

∣J̄hor
∣
∣) to the peak height. Note that 2μT ·(∣∣S̄hor ,large

∣
∣+∣

∣J̄hor
∣
∣) ≤

O(ε)T ′ since μ ≤ O(ε2δ).
After this step, we have either scheduled all given jobs or have decided that it is not

possible for the given guess of T and the profile. If it is not possible for any profile,
we have to increase T . If we have found a schedule, we reduce the value of T . Each
of the steps has increased the maximum by at most O(ε)T above T . Besides the job
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classification and rounding, each time of each step of the algorithm is bounded by
(1/ε)1/ε

O(1/ε)
. Therefore, the described algorithm fulfills the claims of Theorem 19.

6 Conclusion

In this paper, we presented an AEPTASwith additive term hmax as well as a (5/3+ε)-
approximation for Non-preemptive Peak Demand Minimization (NPDM). Since the
lower bound for approximation algorithms for this problem is known to be 3/2, this
leaves a small gap between the lower bound and the approximation guarantee. Closing
this gap is an interesting open question for further research, especially since, for the
related strip packing problem, the same gap is yet to be resolved.
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