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Abstract

A palindromic substring T [i..j] of a string T is said to be a shortest unique palindromic
substring (SUPS) in T for an interval [p, q] if T [i..j] is a shortest palindromic substring such
that T [i..j] occurs only once in T , and [i, j] contains [p, q]. The SUPS problem is, given a string
T of length n, to construct a data structure that can compute all the SUPSs for any given
query interval. It is known that any SUPS query can be answered in O(α) time after O(n)-time
preprocessing, where α is the number of SUPSs to output [Inoue et al., 2018]. In this paper,
we first show that α is at most 4, and the upper bound is tight. We also show that the total
sum of lengths of minimal unique palindromic substrings of string T , which is strongly related
to SUPSs, is O(n). Then, we present the first O(n)-bits data structures that can answer any
SUPS query in constant time. Also, we present an algorithm to solve the SUPS problem for a
sliding window that can answer any query in O(log logW ) time and update data structures in
amortized O(log σ + log logW ) time, where W is the size of the window, and σ is the alphabet
size. Furthermore, we consider the SUPS problem in the after-edit model and present an efficient
algorithm. Namely, we present an algorithm that uses O(n) time for preprocessing and answers
any k SUPS queries in O(log n log log n + k log log n) time after single character substitution.
Finally, as a by-product, we propose a fully-dynamic data structure for range minimum queries
(RmQs) with a constraint where the width of each query range is limited to poly-logarithmic.
The constrained RmQ data structure can answer such a query in constant time and support a
single-element edit operation in amortized constant time.

1 Introduction
A substring T [i..j] of a string T is said to be a shortest unique palindromic substring (in short,
SUPS ) for an interval [p, q] if T [i..j] is the shortest substring such that T [i..j] is a palindrome,
T [i..j] occurs only once in T , and the occurrence contains [p, q], i.e., [p, q] ⊆ [i, j]. The notion of
SUPS was introduced by Inoue et al. [22] in 2018, motivated by bioinformatics: for example, in
DNA/RNA sequences, the presence of unique palindromic sequences can affect the immunostim-
ulatory activities of oligonucleotides [25, 37]. Given a string T of length n, the SUPS problem is
to construct a data structure that can compute all SUPSs for any given query interval. We call
this general problem the interval SUPS problem because queries are intervals. When a query
interval is restricted to a single position (i.e., p = q), the SUPS problem is called the point SUPS
problem. The (interval) SUPS problem was formalized by Inoue et al. [22], and they showed that
all SUPSs for a query interval can be enumerated in O(α) time after O(n)-time preprocessing,
where α is the number of SUPSs to output. Watanabe et al. [36] considered the SUPS problem

1

ar
X

iv
:2

20
4.

07
32

7v
2 

 [
cs

.D
S]

  2
9 

A
ug

 2
02

3



on run-length encoded strings to reduce the space usage. They proposed an O(r)-space data
structure that can enumerate all SUPSs for a query interval in O(

√
log r/ log log r + α) time

where r is the size of the run-length encoded string, which satisfies r ≤ n.
Both of the above results are for a static string. It is a natural question whether we can

compute SUPSs efficiently in a dynamic string. In fact, since DNA sequences contain errors and
change dynamically, it is worthwhile to consider them in a dynamic string setting. However,
there is no research for solving the SUPS problem on a dynamic string to the best of our
knowledge. Thus, in this paper, as a first step to designing dynamic algorithms, we consider the
problem on two semi-dynamic models: the sliding-window model and the after-edit model. The
sliding-window model aims to compute some objects (e.g., data structure, compressed string,
statistics, and so on) w.r.t. the window sliding over the input string left to right. The after-edit
model aims to compute some objects w.r.t. the string after applying an edit operation to the
input string. Edit operations are given as queries, and they are discarded after processing the
query. As related work, the set of minimal unique palindromic substrings (MUPSs) can be
maintained efficiently in the sliding-window model [30]. Also, the set of MUPSs can be updated
efficiently in the after-edit model [16]. Since MUPSs are strongly related to SUPSs, we utilize
the above known results for MUPSs as black boxes.

Contributions of this paper are summarized as follows:

Section 4: Combinatorial properties on SUPSs and MUPSs.

• We show that the number α of SUPSs for any single interval is at most four, and the
upper bound is tight even for binary strings,

• We show that the sum of lengths of MUPSs of a string of length n is O(n).

Section 5: Compact SUPS data structures for static strings.

• We propose a compact data structure of size 3n+2m+ o(n) bits that can answer any
interval SUPS query in constant time where n is the length of the input string and
m is the number of MUPSs of the input string.

• We propose a compact data structure of size 3n+m+ o(n) bits that can answer any
point SUPS query in constant time.

Section 6: Algorithms for SUPS problem for semi-dynamic strings.

• We propose a data structure of size O(W ) for the sliding-window SUPS problem
that supports SUPS query in O(log logW ) time and each window-shift in amortized
O(log σ + log logW ) time where W is the size of the window and σ is the alphabet
size.

• We propose a data structure of size O(n) for the after-substitution SUPS problem
that can answer any after-substitution-SUPS query in amortized O(log n log log n)
time after some character in the input string is substituted with another character.

Furthermore, as a by-product, we propose a fully-dynamic data structure for the range minimum
query (RmQ) in which the width of each query range is in O(polylog(n)). The data structure can
answer such a query in constant time and update in (amortized) constant time for any single-
element edit operation. Note that, for the original RmQ without any additional constraint, it is
known that we need Ω(log n/ log log n) time for answering a query when O(polylog(n)) updating
time is allowed [2].

Related Work. A typical application to the sliding-window model is string compression
such as LZ77 [38] and PPM [11]. The sliding-window LZ77 compression is based on the sliding-
window suffix tree [13, 26, 33, 31]. Also, the sliding-window suffix tree can be applied to compute
minimal absent words [12] and minimal unique substrings [29], which are significant concepts
for bioinformatics, in the sliding-window model. Recently, the sliding-window palindromic tree
was proposed, and it can be applied to compute MUPSs in the sliding-window model [30].

The after-edit model was formalized by Amir et al. [5] in 2017. They tackled the problem of
computing the longest common substring for two strings in the after-edit model, and proposed
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an algorithm running in poly-logarithmic time. Afterward, Abedin et al. [1] improved the
complexities. Also, the problems of computing the longest Lyndon substring [34], the longest
palindrome [17], and the set of MUPSs [16] were considered in the after-edit model.

As for more general settings, Amir et al. [6] proposed a fully-dynamic algorithm for com-
puting the longest common substrings for two dynamic strings. They also developed a general
(probabilistic) scheme for dynamic problems on strings and applied it to the computation of
the longest Lyndon substring and the longest palindrome in a dynamic string. Besides that,
there are several studies for dynamic settings (e.g., [19, 4, 9]). In particular, a fully-dynamic
and deterministic algorithm for computing the longest palindrome was shown in [3].

Paper Organization. The rest of this paper is organized as follows: In Section 2, we
give basic notations and algorithmic tools. In Section 3, we review a known static SUPS data
structure proposed by Inoue at al. [22], which is the basis of most of our methods. In Section 4,
we investigate combinatorial properties on SUPSs and MUPSs. We show the tight bounds on
the maximum number of SUPSs for an interval and an upper bound of the total sum of the
lengths of MUPSs. Further, we propose a simple algorithm for point SUPS queries based on
the combinatorial results. In Section 5, we propose the first compact data structures that can
answer any SUPS query in output-sensitive time. In Section 6, we consider how to update SUPS
data structures in semi-dynamic settings and propose efficient algorithms. Finally, in Section 7,
we conclude our paper and discuss future work.

2 Preliminaries

2.1 Strings
Let Σ be an alphabet. An element of Σ is called a character. An element of Σ∗ is called a string.
The length of a string T is denoted by |T |. The empty string ε is the string of length 0. For
each i with 1 ≤ i ≤ |T |, we denote by T [i] the i-th character of T . If T = xyz, then x, y, and
z are called a prefix, substring, and suffix of T , respectively. For each i, j with 1 ≤ i ≤ j ≤ |T |,
we denote by T [i..j] the substring of T starting at position i and ending at position j. For
convenience, let T [i′..j′] = ε for any i′, j′ with i′ > j′. We say that string w is unique in T if w
occurs only once in T . For convenience, we define that the empty string ε is not unique in any
string. For a non-empty string T and a positive integer p with p ≤ |T |, the integer p is a period
of T if T [i] = T [i+ p] holds for every i with 1 ≤ i ≤ |T | − p. We also say that T has a period p
if p is a period of T . For convenience, the empty string ε is defined to have period 0.

Let TR denote the reversal of a string T , i.e., T [i] = TR[n− i+1] for every i with 1 ≤ i ≤ n.
A string P is called a palindrome if P = PR holds. A palindrome P is called an even-palindrome
(resp., odd-palindrome) if |P | is even (resp., odd). The length-⌈|P |/2⌉ prefix (resp., suffix) of a
palindrome P is called the left arm (resp., right arm) of P . Let w = T [i..j] be a palindromic
substring of T . The center of w is (i + j)/2 and is denoted by center(w). For a non-negative
integer ℓ, x = T [i − ℓ..j + ℓ] is said to be an expansion of w if 1 ≤ i − ℓ ≤ j + ℓ ≤ n and x is
a palindrome. Also, T [i+ ℓ..j − ℓ] is said to be a contraction of w. Further, if i = 1, j = n, or
T [i− 1] ̸= T [j + 1], then w is said to be a maximal palindrome.

A palindromic substring u = T [i..j] of a string T is said to be a minimal unique palindromic
substring (MUPS) in T if u is unique in T and T [i+1..j− 1] is not unique in T . A palindromic
substring v = T [i..j] of a string T is said to be a shortest unique palindromic substring (SUPS)
for an interval [p, q] in T if v is unique in T , the occurrence contains interval [p, q], and any shorter
palindromic substring of T that contains [p, q] is not unique in T . We denote by SUPST ([p, q])
the set of SUPSs for [p, q]. Note that all palindromes in SUPST ([p, q]) have equal lengths. See
also Fig. 1 for examples. The interval SUPS problem is, given a string T for preprocessing
and an interval [p, q] as a query, to compute SUPST ([p, q]). We sometimes simply refer to the
interval SUPS problem as the SUPS problem. When every query interval is restricted to a single
position (i.e., p = q), the SUPS problem is called the point SUPS problem.
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1 2 3 4 5 6 7 8 9 10 11 12 13

b a b b b a b b a b a b bT =

MUPSs of T

𝖲𝖴𝖯𝖲T([5,6])

Figure 1: MUPSs of string T = babbbabbababb are bbb, bbabb, abba, and aba. SUPSs for interval
[5, 6] in T are T [2..6] = abbba and T [4..8] = bbabb. The first SUPS T [2..6] is an expansion of MUPS
T [3..5] = bbb, and the second SUPS T [4..8] itself is a MUPS.

In what follows, we fix a string T of arbitrary length n > 0 over an integer alphabet of size
σ = O(poly(n)). Also, our computational model is a standard word RAM model of word size
Ω(log n).

2.2 Periodicity of Palindromic Suffixes
In this subsection, we recall some properties regarding the periodicity of palindromic suffixes of
T [1..i] that we use. Let Si = {w1, . . . , wg} be the set of lengths of palindromic suffixes of T [1..i],
where g is the number of palindromic suffixes of T [1..i] and wk−1 < wk for 2 ≤ k ≤ g. Let dk
be the progression difference for wk, i.e., dk = wk − wk−1 for 2 ≤ k ≤ g. For convenience, let
d1 = 0.

Then, the following results are known:

Lemma 1 ([7, 18, 28]).

(A) For any 1 ≤ k < g, dk+1 ≥ dk.

(B) For any 1 < k < g, if dk+1 ̸= dk, then dk+1 ≥ dk + dk−1.

(C) Si can be represented by O(log i) arithmetic progressions, where each arithmetic progres-
sion is a tuple ⟨s, d, f⟩ representing the sequence s, s + d, . . . , s + (f − 1)d of lengths of f
palindromic suffixes with common difference d.

(D) The common difference d is the smallest period of all palindromic suffixes of T [1..i] whose
length belongs to the arithmetic progression ⟨s, d, f⟩.

Lemma 2 ([28]). For any ⟨s, d, f⟩ from the representation of palindromic suffixes of T [1..i],
there exist palindromes u, v and a non-negative integer q, such that (uv)f+q−1u (resp. (uv)qu)
is the longest (resp. shortest) palindromic suffix represented by ⟨s, d, f⟩ with |uv| = d.

For a position i, divide the set of palindromic suffixes of T [1..i] into groups G1, G2, . . . , Gπ

w.r.t. their smallest periods in increasing order. For each Gr = ⟨sr, dr, fr⟩ with 1 ≤ r ≤ π, let
ur and vr be the corresponding variables used in Lemma 2.

Let lcp(x, y) for strings x and y denote the length of the longest common prefix of x and y.
Also, let αr = lcp((T [1..i−sr])

R, T [i+1..n]) and βr = lcp((T [1..i−sr−(fr−1)dr])
R, T [i+1..n])

if fr ≥ 2. Namely, sr+2αr (resp. sr+(fr−1)dr+2βr) is the length of the maximal expansion of
the shortest (resp. longest) palindrome of ⟨sr, dr, fr⟩. See also Figure 2 for a concrete example
of Gr.

If fr = 1, i.e., if Gr is a singleton, let βr be the length of the maximal expansion of the
palindrome. In addition, if r ≥ 2, let αr = βr−1. Note that G1 = {ε} is a singleton, i.e.,
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𝑢! 𝑣! 𝑢!

dcbabbabbabbabbabbabbd

𝐺!

β!

α!

𝑑!

𝑖

Figure 2: Example for a group Gr, with string dcbabbabbabbabbabbabbd. Here palindromic
suffixes (abb)ja with 1 ≤ j ≤ 4 ending at i belong to Gr = ⟨4, 3, 4⟩. Also, ur = a, vr = bb, αr = 5,
and βr = 1 hold. Note that this Gr is of type 2.

f1 = 1. For convenience, let α1 = 0. Each group Gr is said to be of type 1 (resp. type 2 ) if
αr < dr (resp. αr ≥ dr). Let k be the largest index of groups such that Gk is of type 2. Since
α1 = d1 = 0 always holds, G1 is of type 2 and k is well-defined. In the proof of Claim (1) and
(2) of [17], the following statements are also proven:

Corollary 1. The following two statements hold:

(A) Any expansion of a palindrome Q in group Gr for every r with 1 ≤ r ≤ k − 1 except for
ukvkuk and uk cannot be longer than |Q|+ 2dk.

(B) For every r with k+1 ≤ r ≤ π− 2 and every palindrome P in group Gr, the length of any
expansion of P is at most |P |+ 2βr < |P |+ 2dr+1.

From Corollary 1, the following lemmas can be obtained.

Lemma 3. Any expansion of a palindrome Q in group Gr for every r with 1 ≤ r ≤ k−1 except
for ukvkuk and uk cannot be unique in T .

Proof. Since Gk is of type 2, the length of the maximal expansion of sk is |sk|+2αk ≥ |sk|+2dk.
From statement (A) of Corollary 1, any expansion of a palindrome Q, whose center is differ
from the center of sk, is contained by the maximal expansion of sk. Namely, any expansion of
Q occurs at least twice in sk.

Lemma 4. For every r with k + 1 ≤ r ≤ π − 2 and every palindrome P in group Gr, any
expansion of P is not longer than sr+2, that is, the length of the shortest palindrome in Gr+2.

Proof. From the formula of statement (B) of Corollary 1 and the definition of the progression
differences dr+1 and dr+2, |P | + 2βr < |P | + 2dr+1 < |P | + dr+1 + dr+2 ≤ sr+1 + dr+2 ≤ sr+2

holds.

2.3 Tools
Longest Common Extension. A longest common extension (in short, LCE) query on
string T is, given two integers i, j with 1 ≤ i, j ≤ n, to compute the length of the longest
common prefix (LCP) of two suffixes T [i..n] and T [j..n]. It is known (e.g., [21]) that any LCE
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query can be answered in constant time using the suffix tree of T$ enhanced with a lowest
common ancestor data structure, where $ is a special character that is not in Σ. Once we build
an LCE data structure on string T#TR$, we can answer any LCE query in any direction on
T in constant time, where # ̸∈ Σ is another special character. Namely, we can compute in
constant time the length of (1) the LCP length of any two suffixes of T , (2) the LCP length of
the reverses of any two prefixes of T , and (3) the LCP length of any suffix of T and the reverse
of any prefix of T . We call such a data structure a bidirectional LCE data structure.

RmQ, Predecessor and Successor. A range minimum query (RmQ) on integer array
A is, given two indices i, j on A with i ≤ j, to compute an arbitrary index k such that A[k] is
the minimum value from A[i..j].

A predecessor (resp., successor) query on non-decreasing integer array B is, given an integer
x, to compute the maximum (resp., minimum) value that is smaller (resp., greater) than x. We
use the famous van Emde Boas tree data structure [35] to answer predecessor/successor queries.
Namely, we can answer a query and update the data structure in O(log logU) time on a dynamic
array, where U is the universe size. Also, the space complexity is O(U). Throughout this paper,
we will only apply this result to the case of U = n.

2.4 Our Problems
This paper handles SUPS problems under two variants of semi-dynamic models: the sliding-
window model and the after-edit model. The sliding-window SUPS problem is to support any
sequence of queries that consists of the following:

• pushback(c): append a character c to the right end of the string.

• pop(): remove the first character from the string.

• sups([p, q]): output all SUPSs of the string for an interval [p, q].

The after-substitution SUPS problem on a string T is, given a substitution operation and a
sequence of intervals, to compute SUPSs of T ′ for each interval where T ′ is the string after
applying the substitution to the original string T . Note that each substitution is discarded after
the corresponding SUPS queries are answered.

From the point of view of how the string changes, there are differences between the above
two problems. On the one hand, in the sliding-window SUPS problem, the string can be changed
dynamically under the constraints of positions to be edited. On the other hand, in the after-
substitution SUPS problem, any position of the string can be changed, however, the string
returns to the original one after the SUPS queries are answered.

3 Inoue et al.’s Static SUPS Data Structure
The SUPS data structure proposed in [22] consists of the following:

• the set of MUPSs of T ,

• the set of maximal palindromes of T
(or a bidirectional LCE data structure on T , instead),

• a successor data structure on the starting positions of MUPSs,

• a predecessor data structure on the ending positions of MUPSs, and

• an RmQ data structure on the array MUPSlen of lengths of MUPSs sorted by their starting
positions1.

1Since MUPSs cannot be nested [22], they are also sorted by their ending positions.
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p q

Ml

Mr

(1)

(3)

(2)

Figure 3: Illustration for candidates for SUPSs for interval [p, q]. Solid arrows represent MUPSs,
and dashed arrows represent expansions of MUPSs. Note that dashed arrows may not be palin-
dromes in general.

Given a query interval [p, q], we can compute all SUPSs for [p, q] as follows: First, we
determine whether the interval [p, q] covers some MUPS or not by querying the predecessor of
q on the ending positions of MUPSs and the successor of p on the starting positions of MUPSs.
If [p, q] covers only one MUPS, the shortest expansion of the MUPS that covers [p, q] is the
only SUPS for [p, q] if such a palindrome exists, and there are no SUPSs for [p, q] otherwise. If
[p, q] covers more than one MUPS, then there are no SUPSs for [p, q] since any SUPS covers
exactly one MUPS [22]. Otherwise, i.e., if [p, q] covers no MUPSs, all SUPSs are categorized
into following three types (see also Fig. 3):

(1) an expansion of the rightmost MUPS Ml which ends before q,

(2) a MUPS which covers [p, q], or

(3) an expansion of the leftmost MUPS Mr which begins after p.

We call Ml and Mr the left-neighbor MUPS and the right-neighbor MUPS of the interval
[p, q], respectively. We can find Ml by querying the predecessor of q. Also, we can determine
whether there is an expansion of Ml, which covers [p, q] by looking at the maximal palindrome
centered at cl = center(Ml). Precisely, if the maximal palindrome centered at cl covers [p, q],
its shortest contraction covering [p, q] is the only candidate of type (1). Otherwise, there is no
SUPS of type (1). We emphasize that we can also compute the maximal palindrome centered
at cl by querying bidirectional LCE once, without the precomputed maximal palindromes. The
candidate of type (3) can be treated similarly. Finally, all SUPSs of type (2) can be computed
by querying RmQ recursively on the array MUPSlen. Let [bi, ei], . . . , [bj , ej ] ∈ MUPS(T ) be all
MUPSs covering [p, q]. Recall that such range [i, j] of MUPSs can be detected by querying
predecessor and successor (see above). We query the RmQ on MUPSlen for the range [i, j], and
obtain the index k that is the answer of the RmQ. Namely, [bk, ek] is a shortest one within
[bi, ei], . . . , [bj , ej ]. Then, we further query the RmQ on MUPSlen for the ranges [i, k − 1] and
[k + 1, j], and repeat it recursively while obtained MUPS is a SUPS for [p, q]. The above
operations can be done in time linear in the number of SUPSs to output by using linear size
data structures of predecessor, successor, and RmQ.

4 Combinatorial Properties on SUPSs

4.1 Tight Bounds on Maximum Number of SUPSs for Single Query
In this subsection, we prove the following theorem:

Theorem 1. For any interval [p, q] over T , the inequality |SUPST ([p, q])| ≤ 4 holds. Also, this
upper bound is tight even for binary strings.
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d1

d2

cx cy

x

y

cz

z

U

V

W

Figure 4: Illustration for three overlapped palindromes x, y, and z.

To begin with, we prove Lemma 5. Roughly speaking, Lemma 5 states that a periodic
structure occurs when two palindromes overlap enough. Essentially, Lemma 5 has been proven
in Lemma 3.3 of [7]. However, we restate the proposition in a form that is convenient for us and
show it for completeness.

Lemma 5. Let x = T [i..i+ ℓ− 1] and y = T [j..j + ℓ− 1] be palindromic substrings of length ℓ
of string T with i < j. If x and y overlap, then z = T [i..j + ℓ− 1] has period 2d where d is the
distance between their center positions.

Proof. Firstly, d = (2j+ℓ−1)/2− (2i+ℓ−1)/2 = j− i holds. Let z = rst where r = T [i..j−1],
s = T [j..i + ℓ − 1], and t = T [i + ℓ..j]. Since x and y are palindromes, sR is a prefix of
x and a suffix of y. Namely, sR is both a prefix and a suffix of z, and thus, z has period
|z| − |sR| = (j − i+ ℓ)− (i− j + ℓ) = 2(j − i) = 2d.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let us focus on the SUPSs whose center is at most p. We assume we
have at least three such SUPSs for a single query interval [p, q] and show that this leads to a
contradiction. Let ℓ be the length of the SUPSs. Let x, y, and z be the SUPSs from left to
right, and let cx, cy, and cz be their center positions (see also Fig. 4). Further let d1 = cy − cx
and d2 = cz − cy. Since the center positions of the three SUPSs are at most p, and they
cover the position p, they overlap at least ℓ/2 each other. Namely, d1 ≤ ℓ/2, d2 ≤ ℓ/2, and
d1 + d2 ≤ ℓ/2 hold. Next, let U = T [⌈cx − ℓ/2⌉..⌊cy + ℓ/2⌋], V = T [⌈cy − ℓ/2⌉..⌊cz + ℓ/2⌋], and
W = T [⌈cx − ℓ/2⌉..⌊cz + ℓ/2⌋]. By Lemma 5, U has period 2d1 and V has period 2d2. Thus, y
has periods both 2d1 and 2d2. Also, since 2d1 +2d2 ≤ ℓ holds, y has a period g = gcd(2d1, 2d2)
by the periodicity lemma [14] where gcd(a, b) denotes the greatest common divisor of a and b.
Then W also has period g since g < |y| = ℓ and g divides both period 2d1 of U and period 2d2
of V . Furthermore, since g ≤ min(2d1, 2d2) ≤ d1 + d2 and d1 + d2 + ℓ = |W |, the inequality
g + ℓ ≤ |W | holds, and thus, x = W [1..ℓ] = W [g + 1..g + ℓ] holds by the periodicity. This
contradicts the uniqueness of x.

We have shown that the maximum number of SUPSs whose center is at most p, is two.
Symmetrically, the maximum number of SUPSs whose center is at least p is also two. Thus, the
maximum number of SUPSs for a single query interval is four.

Finally, we show that the upper bound is tight. Let us consider the following string S ∈
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{a, b}∗ of length 87:

S =aababaaababaaababaaabaaabaaabaaabaaa \\ length 36
+ ababaaababaaababa \\ length 17
+ baaababaaababaaab \\ length 17
+ baaabaaabaaabaaab \\ length 17.

The operator + denotes the concatenation of strings. For this string and query interval [18, 18]
(highlighted in blue in the figure), SUPSS([18, 18]) = {[1, 19], [4, 22], [16, 34], [18, 36]} holds. Note
that palindromes S[2..18], S[5..21], and S[17..33], which are shorter than 19 and cover the
interval [18, 18], are not unique since each of them has another occurrence in the artificial
gadgets concatenated by + operators. Also, it can be easily checked that all palindromes of
length at most 18 that cover the interval [18, 18] are not unique.

The above example having four SUPSs is of length 87, and the length of each SUPS is 19.
The smallest period of the former two SUPSs is 6, and that of the latter two SUPSs is 4. We
do not know if the example is the shortest one.

4.2 Sum of Lengths of All MUPSs
In this subsection, we show an upper bound of the total sum of the lengths of MUPSs in a string
T . It was shown that the number of MUPSs stabbed by a single position is O(log|T |) in [16].
This immediately implies that the sum of the lengths of MUPSs of a string T is O(|T | log|T |).
Here, we improve the upper bound as follows:

Theorem 2. The total sum of the lengths of MUPSs of a string T is O(|T |).

In order to show Theorem 2, we first analyze the sum of the lengths of MUPSs covering
a single position. Let p be an arbitrary position in a string T . Also, let LMUPST (p) be the
set of MUPSs that cover p and whose centers are at most p. Namely, LMUPST (p) = {[s, t] ∈
MUPS(T ) | s ≤ p ≤ t and (s+ t)/2 ≤ p}. We show the following lemma:

Lemma 6. For any position p in a string T ,∑
[s,t]∈LMUPST (p)

(t− s+ 1) ∈ O(Lp)

holds where Lp is the maximum length of MUPSs covering position p.

Proof. Each MUPS in LMUPST (p) is an expansion of some palindromic suffix of T [1..p]. For a
set G of palindromic suffixes of T [1..p] and a MUPS µ of T , we say that µ is obtained from G
if µ is an expansion of some palindrome in G. Here we use some notations used in Section 2.2.
Namely, G1, G2, . . . , Gπ are the groups of palindromic suffixes of T [1..p]. Also, k is the largest
index of groups such that Gk is of type 2. Since no MUPS can be obtained from

⋃
i∈[1,k−1] Gi \

{uk, ukvkuk} by Lemma 3, we only consider the set
⋃

j∈[k+1,π] Gj∪Gk∪{uk, ukvkuk}. If there are
no MUPSs obtained from

⋃
j∈[k+1,π] Gj , the number of MUPSs obtained from

⋃
j∈[k+1,π] Gj ∪

Gk ∪ {uk, ukvkuk} is O(1) and the lemma holds. Thus, in the following, we consider the case
that there exists some MUPSs obtained from

⋃
j∈[k+1,π] Gj .

Now, let G̃ = G̃1, . . . , G̃ℓ be the subsequence of the sequence Gk+1, . . . , Gπ such that for
each G̃i ∈ G̃, there exists a MUPS obtained from G̃i. Further let s̃i be the shortest palindrome
in G̃i, and let d̃i be the smallest period for G̃i. Then, by Lemma 4, for every i with 1 ≤ i ≤
ℓ − 2, any MUPS obtained from group G̃i is not longer than s̃i+2. Since there are at most
two MUPSs obtained from a single group [16], the sum of lengths of MUPSs obtained from
G̃1 ∪ . . . ∪ G̃ℓ−2 is bounded by 2s̃3 + 2s̃4 + · · · + 2s̃ℓ. In general, s̃r < 2d̃r holds from the
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T

ML

MS

e′ b′ 

Figure 5: Illustration for the proof of Theorem 2. There are three MUPSs in ML and six MUPSs
in MS . Also, there are four MUPSs that cover the ending position e′ of MUPS [b′, e′] ∈ ML.
Since [b′, e′] is a longest one among them, the sum of their lengths is bounded by O(e′ − b′ + 1) by
Corollary 2.

periodicity. Thus, 2s̃3 + 2s̃4 + · · · + 2s̃ℓ < 4
∑ℓ

r=3 d̃r ∈ O(d̃ℓ) since d̃r+2 ≥ d̃r+1 + d̃r holds
for any 3 ≤ r ≤ ℓ − 2 by Lemma 1. Let L′

p be the maximum length of MUPSs obtained from
H = {uk, ukvkuk} ∪ Gk ∪ G̃ℓ−1 ∪ G̃ℓ. Then, the sum of lengths of MUPSs obtained from H is
O(L′

p). Therefore, the total sum of the lengths of MUPSs in LMUPST (p) is in O(d̃ℓ+L′
p) ⊆ O(Lp)

since d̃ℓ ≤ s̃ℓ ≤ L′
p ≤ Lp.

By symmetry, Lemma 6 immediately leads to the next Corollary 2.

Corollary 2. For any position p in a string T , the sum of the lengths of MUPSs covering
position p is O(Lp) where Lp is the maximum length of MUPSs covering position p.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We divide the set of MUPSs into two sets. First, let ML and MS be
the empty sets initially. We then perform the following operations for each MUPS of T in
descending order of their lengths (the order of two elements of the same length is arbitrary):
If [b, e] ∈ MUPS(T ) does not share the same position for any [b′, e′] ∈ ML, then update ML =
ML ∪ {[b, e]}. Otherwise, add [b, e] to MS . Then,

∑
[b,e]∈ML (e− b+ 1) ≤ |T | holds since all

elements in ML do not overlap each other. Also, any MUPS [b, e] ∈ MS contains some position
p such that b′ ≤ p ≤ e′ with [b′, e′] ∈ ML. Moreover, since MUPSs cannot be nested, each
MUPS in MS contains either or both of the ending position of MUPS [b′i, e

′
i] ∈ ML and the

beginning position of MUPS [b′i+1, e
′
i+1] ∈ ML for some i. By Corollary 2, the sum of the

length of MUPSs covering position b′i or e′i is O(e′i − b′i + 1). Therefore,
∑

[b,e]∈MS (e− b+ 1) ∈
O(

∑
[b′,e′]∈ML (e′ − b′ + 1)) ⊆ O(|T |) holds (see also Figure 5). This completes the proof.

Using Theorem 2, we design a simple algorithm for computing all point SUPSs. As in Inoue
et al.’s method described in Section 3, we use the MUPSs and maximal palindromes to compute
point SUPSs. However, we can avoid using an RmQ data structure.

Proposition 1. Given the set of MUPSs of a string T of length n and the set of maximal
palindromes of T one can compute all point SUPSs for all positions in O(n) time without using
RmQs.

Proof. First, for each position, we record the shortest MUPS(s) covering the position. If there
are no such MUPSs for a position, we record ∞ for the position. This can be done in O(n)
time by scanning all MUPSs naively since Theorem 2 holds. Next, for each position p, compare
the three following values and find the shortest one(s): (1) the shortest expansion of the left-
neighbor MUPS of p, (2) the recorded value (i.e., the length of the shortest MUPS covering p),
and (3) the shortest expansion of the right-neighbor MUPS of p. Note that (1) and (3) may not
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exist. This can be done in a total of linear time by using an O(n)-space and O(1)-query time
predecessor/successor data structure.

5 Compact SUPS Data Structures
In this section, we propose space-efficient SUPS data structures. To our knowledge, the only
SUPS data structure that can be sublinear size, i.e., o(n log n) bits, is that of Watanabe et
al. [36]. Watanabe et al. [36] proposed a SUPS data structure of size O(r log n) bits where r ≤ n
is the size of the run-length encoded string. Their data structure will be small when the input
string is highly compressible with run-length encoding. On the other hand, O(r log n) bits can
be large as much as O(n log n) bits in the worst case. In this section, we propose O(n)-bits
data structures which can answer SUPS queries in optimal time. Namely, our data structure
is always space-efficient regardless of the compression scheme or characteristic structures of the
input string. In the rest of this paper, let m be the number of MUPSs of string T . The sizes of
our data structures are 3n+ 2m+ o(n) bits for interval SUPS queries, and 3n+m′ + o(n) bits
for point SUPS queries where m′ ≤ m is the number of meaningful MUPSs that we will define
later.

5.1 Data Structures for Interval SUPS Queries
First, we show a compact representation of the data structure of Inoue et al. Our data structure
consists of compact representations of (1) the set of MUPSs, (2) the set M of maximal palin-
dromes each of which is an expansion of some MUPS, and (3) an RmQ data structure over the
sequence of the lengths of MUPSs.

(1) We represent the set of MUPSs as two length-n bit-arrays B and E that indicate the
beginning and the ending positions of MUPSs. Namely, B[i] = 1 iff some MUPS begins
at i, and E[j] = 1 iff some MUPS ends at j for each 1 ≤ i, j ≤ n. Since MUPSs cannot
be nested, the number of the set-bits in B is exactly m, and in E as well (see Fig. 6 for
examples).

(2) We represent M as the length-n bit-array L that indicates the beginning positions of
maximal palindromes in M. Namely, L[i] = 1 iff some palindrome in M begins at i for
each 1 ≤ i ≤ n. Since all palindromes in M are unique by the definition, they cannot be
nested, and thus, the number of the set-bits in L is exactly m. Namely, the i-th set-bit in
L corresponds to the i-th MUPS. Note that, for any k, we can restore the ending position
of the k-th palindrome in M from three arrays B, E, and L, that is, b+ e− ℓ where b, e,
and ℓ are the positions of the k-th set-bits in B, E, and L, respectively.

(3) We build the succinct RmQ data structure of [15] on the sequence of the lengths of MUPSs.
The size of the data structure is 2m+ o(m) bits.

Also, we enhance three bit-arrays B, E, and L with rank/select dictionaries. Then, we can
completely simulate the algorithm of Inoue et al., i.e., any SUPS query can be answered in
constant time. This data structure requires 3n+ 2m+ o(n) bits of space.

The construction time is linear: All the maximal palindromes in T and all the MUPSs of
T can be computed in O(n) time [27, 22], and hence, three bit-arrays B, E, and L can be
computed in O(n) time. Also, the rank/select dictionaries and the succinct RmQ data structure
for a bit-array of length n can be constructed in O(n) time [23, 10, 15].

To summarize, we obtain the next theorem:

Theorem 3. There is a data structure of size 3n+2m+o(n) that can answer any interval SUPS
query in O(1) time where m is the number of MUPSs of T . Also, given T , we can construct the
data structure in O(n) time.
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1 2 3 4 5 6 7 8 9 10 11 12 13

b a b b b a b b a b a b bT =

MUPSs of T

0 0 1 1 0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1 1 0 1 0 0

1 0 0 1 1 0 1 0 0 0 0 0 0

B =

L =

E =

Figure 6: Three arrays B, E, and L for string T = babbbabbababb. The first two arrays B and
E indicate the beginning and ending positions of MUPSs of T . The third array L indicates the
beginning positions of the maximal expansions of MUPSs of T . For instance, L[1] = 1 holds since
T [1..7] = babbbab is the maximal palindrome centered at position 4, which is the center of MUPS
T [3..5].

5.2 Data Structures for Point SUPS Queries
As for the point SUPS queries, we can further reduce the space usage with a new algorithm
specialized to point queries. Firstly, we define a new2 notion for MUPSs.

Definition 1. A MUPS is said to be meaningful if there is a SUPS which is an expansion
of the respective MUPS for some position. MUPSs which are not meaningful are said to be
meaningless.

For example, in Fig. 6, MUPS T [4..8] = bbabb of length 5 is meaningless since the lengths
of SUPSs for positions 4 and 5 are 3 < 5 and the lengths of SUPSs for positions 6, 7, and 8 are
4 < 5. Given the set of MUPSs, we can compute the set of meaningful MUPSs in O(n) time by
computing all SUPSs for all positions (e.g., Proposition 1) and removing MUPSs unused.

Let MLen = (x1, . . . , xm′) be the sequence of the lengths of meaningful MUPSs sorted in
increasing order on their starting positions. Also, let MLenp ⊆ MLen be the sequence of the
lengths of meaningful MUPSs stabbed by a position p. The next lemma states that MLenp has
a sort of monotonicity.

Lemma 7. There are no three elements xi, xj, and xk in MLenp such that i < j < k and
xi < xj > xk.

Proof. Assume on the contrary that there exist xi, xj , and xk satisfying the conditions above.
Let si, sj , and sk be the starting positions of the MUPSs, respectively. Since MUPSs cannot be
nested and three the MUPSs cover the same position p, every position inside the second MUPS
is covered by the first MUPS or the third MUPS. Namely, si < sj , sj + xj − 1 < sk + xk − 1,
and sk ≤ p ≤ si + xi − 1 hold (see Fig. 7). For each position q ∈ [1, si], there is no expansion
of the second MUPS T [sj ..sj + xj − 1] starting at q because if such a palindrome exists, it
contradicts the uniqueness of the first MUPS T [si..si+xi− 1]. Symmetrically, for each position
q′ ∈ [sk + xk − 1, n], there is no expansion of the second MUPS T [sj ..sj + xj − 1] ending at
q′. Finally, for each position q′′ ∈ [si + 1, sk + xk − 2], any palindrome covering both q′′ and
[sj , sj + xj − 1] cannot be a SUPS for q′′ since the second MUPS is longer than another MUPS
covering q′′. Thus, the second MUPS is meaningless, a contradiction.

From this lemma, MLenp can be regarded as a concatenation of a (possibly empty) non-
increasing sequence and a non-decreasing sequence. Thus, if we find the leftmost value xt such

2This is inspired by a similar notion defined for minimal unique substrings in [32].
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psi sj sk
si + xi − 1

sj + xj − 1
sk + xk − 1

Figure 7: Illustration for a contradiction in the proof of Lemma 7. The second MUPS which is the
longest among three MUPSs cannot be a meaningful MUPS.

that xt > xt−1, then xt−1 is the smallest in MLenp and xt′ is not for each t′ ≥ t. Also, from the
monotonicity of MLenp before xt, we can find MUPSs of length equal to xt−1 by (backward)
linear search starting at xt on MLenp. In order to find such xt, we precompute the bit-array inc
of length |MLen| such that inc[0] = 0, and inc[i] = 1 iff xi > xi−1. Also, we enhance the array
inc with rank/select dictionaries so that we can answer any successor query on inc in constant
time.

Our data structure includes the bit-arrays B, E, and L as in the previous subsection. On
the other hand, instead of an RmQ data structure of size 2m+ o(m) bits, we use bit-array inc
of length m′ and rank/select dictionaries of size o(m′) where m′ = |MLen| ≤ m.

Our algorithm is almost the same as Inoue et al.’s one except that we use the bit-array
inc instead of an RmQ data structure. Given a query position p, we first compute the left-
neighbor and right-neighbor MUPSs and check whether their expansion can cover p or not.
Simultaneously, we obtain the range of meaningful MUPSs stabbed by p. Let i (resp., j) be
the index of the leftmost (resp., rightmost) meaningful MUPS stabbed by p. We then find
the position k of the leftmost set-bit in inc[i + 1..j]. If such a set-bit does not exist (i.e.,
inc[i + 1..j] = 0), let k = j + 1 for convenience. By the definition of inc and k, the prefix
(xi, . . . , xk−1) of MLenp is non-increasing. Especially, if k = j + 1, then MLenp = (xi, . . . , xj)
is non-increasing, and hence, xj is the smallest within MLenp. Since there are at most four
SUPSs (Theorem 1), it suffices to compare xj+1−t for t = 1, 2, 3, 4. If k ≤ j, then the suffix
(xk, . . . , xj) of MLenp is non-decreasing by Lemma 7. In this case, xk−1 is the smallest since
xk−1 < xk. Again, since there are at most four SUPSs (Theorem 1), it suffices to compare xk−t

for t = 1, 2, 3, 4. Therefore, we can find all MUPSs that are candidates for SUPSs for p without
using any RmQ data structure.

All the above operations can be performed in constant time by using rank/select dictionary
on inc, B, E, and L. We obtain the next theorem:

Theorem 4. There is a data structure of size 3n+m′ + o(n) that can answer any point SUPS
query in O(1) time where m′ is the number of meaningful MUPSs of T . Also, given T , we can
construct the data structure in O(n) time.

6 Semi-dynamic SUPS Data Structures
In this section, we introduce SUPS data structures under two semi-dynamic models: the sliding-
window model and the after-edit model. Our results are based on the static method proposed
by Inoue et al. [22], which we reviewed in Section 3.
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6.1 Sliding-window Data Structures
We make some modifications to the static data structures from Section 3 to answer any SUPS
queries for a sliding window.

It is shown in [30] that the number of changes of MUPSs is constant when we append a
character or delete the first character, and we can detect the changes in amortized O(log σ) time.
Further, predecessor and successor data structures on the MUPSs can be updated dynamically
in O(log log n) time using van Emde Boas trees [35].

For a dynamic RmQ data structure, we can use the one proposed by Brodal et al. [8].
However, if we directly apply their data structure to our problem, the updating time is in
Ω(log n/ log log n), and it becomes a bottleneck. In order to avoid such a situation, we use
another dynamic data structure with some constraints which suffices for our problem.

As in the algorithm described in Section 3, we will use RmQ on the sequence of the lengths
of MUPSs. The width of a query range of RmQ is bounded by the number of MUPSs covering
query interval [p, q] (see also Fig. 3). It is known that the number of MUPSs covering any
interval is O(log n) [16], hence the width of a query range of RmQ is also O(log n). We call the
range minimum query such that the width of any query is constrained in O(polylog(n)) LogRmQ.
Later, we show the following lemma:

Lemma 8. There exists a linear size data structure for a dynamic array A that supports any
LogRmQ on A in constant time. We can maintain the data structure in constant time when
an element of A is substituted by another value. Also, we can maintain the data structure in
amortized constant time when some element is inserted to (or deleted from) A.

Finally, we show that the set of maximal palindromes for a sliding window can be maintained
efficiently. We generalize Manacher’s algorithm [27] to the sliding-window model.

6.1.1 Manacher’s Algorithm for Sliding Window.

Manacher’s algorithm is an online algorithm that computes the set of maximal palindromes in
a string. In this subsection, we apply Manacher’s algorithm to the sliding-window model. The
problem was solved in [20], however, we will describe a sliding-window algorithm for complete-
ness.

Important invariants of Manacher’s algorithm before reading the i-th character are (1) we
know the center position c of the longest palindromic suffix of T [1..i − 1], and (2) we know all
the maximal palindromes, each of whose center is at most c. Note that for the SUPS query, we
are interested in maximal palindromes, which are unique in the string. Since any palindrome
whose center is greater than c is not unique, the second invariant is sufficient for our purpose.

When a character is appended to the current window, we update the set of maximal palin-
dromes in the online manner of the original Manacher’s algorithm. When the first character
of the window is deleted, we do not need to do anything if the window T [b..e] itself is not a
palindrome. Instead, when we refer to the arm-length of the maximal palindrome centered at
a specified position, we need to consider that the left-end of the palindrome may exceed the
left-end of the window. Namely, if the stored arm-length for center x is ℓx, the actual arm-length
is min{ℓx, ⌈x− b⌉}.

If the window T [b..e] itself is a palindrome, we need to update the longest palindromic
suffix to keep the first invariant. This can be done in amortized O(1) time as in Manacher’s
algorithm. More precisely, for every (half) integers j = 0.5, 1, 1.5 . . ., the arm-length of the
maximal palindrome of center b+e

2 + j is equal to that of center b+e
2 − j. Thus, we copy them

for incremental j’s until we find a palindromic suffix of T [b+1..e]. Then, we set c to the center
position of the suffix palindrome we found. Since the sequence of center positions of the longest
palindromic suffixes of the windows is non-decreasing while running the algorithm, the total
processing time is O(n).

Therefore, we obtain the following:
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Theorem 5. There exists a data structure of size O(W ) for the sliding-window SUPS problem
that supports sups([p, q]) in O(log logW ) time and pushback(c) and pop() in amortized O(log σ+
log logW ) time, where W is the size of the window.

6.2 After-edit Data Structure
In this subsection, we design a SUPS data structure for the after-edit model. Basically, the
idea is the same as the previous one. The only difference is that we do not maintain maximal
palindromes in the after-substitution SUPS problem. Instead, we use a bidirectional LCE on
the original string T .

Theorem 6. There exists a data structure of size O(n) for the after-substitution SUPS problem
that can be updated in amortized O(log σ+(log log n)2+d log log n) time for a single substitution
and can answer any subsequent SUPS queries in O(k log log n) time, where d is the number of
changes of MUPSs when the substitution is applied to T , and k is the number of the SUPS
queries after the substitution. Also, given a string T , the data structure can be constructed in
O(n) time.

Proof. Given a substitution operation, we can detect all the changes of MUPSs in O(log σ +
(log log n)2 + d) time [16]. Then, the set of MUPSs can be updated in O(d) time, the prede-
cessor/successor data structures can be updated in O(d log log n) time, and the LogRmQ data
structure can be updated in amortized O(d) time by Lemma 8. Finally, we can compute the
maximal palindromes in T ′ that are expansions of the left-neighbor and the right-neighbor
MUPSs by answering a constant number of bidirectional LCE queries on T while skipping the
edited position (so-called kangaroo jumps). Also, it is known that the set of MUPSs of T , the
predecessor/successor data structures, and the LCE data structure can be computed in O(n)
time. Further, the LogRmQ data structure can be computed in O(n) time by Lemma 8.

6.3 Dynamic LogRmQ
In this subsection, we give a proof of Lemma 8. We assume that the width of the query range
is constrained in O(logc n) for a fixed constant c. We first consider dividing the input array A
into blocks of size logc n. We call each of the blocks large block. Then, we build a linear size
dynamic RmQ data structure on each large block. Given a query range of width O(logc n), we
get range minima from a constant number of large blocks and then naively compare them.

We update the RmQ data structure on the large block containing the edited position when
the input array A is edited. If the size of a large block becomes far from logc n by insertions or
deletions, then we split a block or merge continuous blocks to keep the size in Θ(logc n). For
example, we split a block into two blocks when the block size exceeds 2 logc n and merge two
adjacent blocks when the block size falls below 1

2 log
c n. If each large block can be updated in

amortized constant time, the whole data structure can also be updated in amortized constant
time. In the next subsection, we consider how to treat a large block.

Recursive Structure of Large Block. In order to update large blocks efficiently, we
apply the path minima data structure proposed by Brodal et al. [8]. They treated the problem
of path minima queries on a tree, a generalization of range minimum queries on an array.

First, we divide a large block B of length Θ(logc n) into small blocks each of length L =
Θ(logε n) where ε < 1 is an arbitrary small constant.

Let B1 be the array of length Θ(logc−ε n) that stores the minima of small blocks on B. A
query on large block B can be reduced to at most two queries on small blocks and at most
one query on B1 (see Fig. 8). Similarly, for every i ≥ 2, we divide Bi−1 into small blocks of
the fixed-length L and let Bi be the array of size Θ(logc−iε n) that stores the minima of small
blocks on Bi−1. A query on Bi can be reduced to at most two queries on small blocks and at
most one query on Bi+1 at the next level. We recursively apply such division until the size of
Bi becomes a constant. The recursion depth is O(c/ε), i.e., a constant. Notice that recursion
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Figure 8: Illustration for dividing a large block B into small blocks. Query [s, t] on B can be
reduced to queries inside the fourth and the seventh small blocks, and query [5, 6] on B1.

occurs at most once at each level. Thus, if we answer RmQ inside a small block in constant
time, then the total query time is also a constant.

We answer a query on each small block by using a lookup-table, where the index is a pair of
a small block and a query range, and the value is the answer (the position of a minimum). Since
RmQ returns the position corresponding to a range minimum, we can convert each small block
to a sequence of its local ranks. Then, the number of possible variants of such small blocks is at
most O((logε n)log

ε n) ⊂ o(n). Also, the total variations with all possible query intervals are still
O((logε n)2) ⊂ o(n), i.e., the number of elements in the lookup-table is O((logε n)log

ε n+2) ⊂
o(n). Furthermore, a small block (i.e., an element in the lookup-table) can be represented in
o(log n) bits: the length, the pointers to each element, and the local ranks. Thus, table lookup
can be done in constant time. Namely, the time complexity of an RmQ on a small block is
constant. For substitutions (resp., insertions and deletions), updating small blocks can be done
in worst-case (resp., amortized) constant time by combining another lookup-table and Q-heap
(cf. [8]). Therefore, we have proven Lemma 8.

7 Conclusions and Discussions
In this paper, we studied SUPS problems of static and non-static strings. Firstly, we showed
combinatorial properties on the problems; the tight upper bound on the maximum number of
SUPSs for a single interval, and the sum of lengths of MUPSs of a string is linear to the length
of the string. Secondly, we improved Inoue et al.’s time-optimal algorithm on space usage,
i.e., we designed a compact data structure of size 3n + 2m + o(n) bits that can answer any
interval SUPS query in constant time where n is the length of the input string and m is the
number of MUPSs of the input string. Also, we proposed a new method specialized for the
point SUPS problem, and based on the method, we designed a more space-efficient compact
data structure of size 3n + m′ + o(n) bits that can answer any point SUPS query in constant
time where m′ is the number of meaningful MUPSs of the input string. Finally, we considered
SUPS problems in two semi-dynamic models. We proposed a data structure of size O(W ) for
the sliding-window SUPS problem that supports any SUPS query and window-shift operation
in Õ(1) time where W is the size of the window. Further, we propose a data structure of size
O(n) for the after-substitution SUPS problem that can answer any SUPS query after a single
character substitution in amortized Õ(1) time. As a by-product, we proposed a fully-dynamic
data structure for the range minimum queries in which the width of each query range is in Õ(1).

Designing an efficient SUPS algorithm for a fully dynamic setting is future work. All the
known algorithms for SUPS queries for static/non-static strings basically precompute the set
of MUPSs of the input string. If we try to extend such algorithms to a fully-dynamic one,
maintaining the set of MUPSs may be a bottleneck. To the best of our knowledge, there is
no study that deals with unique substrings in a dynamic string while maintaining palindromic
structures in a fully dynamic string has been studied in some literature [3, 6]. In general,
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occurrences of substrings can change dramatically when a string is edited. The algorithm of [16]
can capture the changes of MUPSs for a single edit after linear-time preprocessing, however,
it cannot be applied directly to multiple edits. Another possible way is to compute SUPSs for
a query interval without using MUPSs, namely, to determine the uniqueness of palindromes
covering the query interval in a dynamic string. For an implementation of this idea, a dynamic
suffix array proposed by Kempa and Kociumaka [24] might be useful.
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