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Abstract

A class of optimal three-weight [¢¥ — 1,k + 1,¢*"'(q — 1) — 1] cyclic codes over
IF,, with k > 2, achieving the Griesmer bound, was presented by Heng and Yue (IEEE
Trans Inf Theory 62(8):4501-4513,2016. https://doi.org/10.1109/TIT.2016.2550029).
In this paper we study some of the subfield codes of this class of optimal cyclic codes
when k = 2. The weight distributions of the subfield codes are settled. It turns out
that some of these codes are optimal and others have the best known parameters. The
duals of the subfield codes are also investigated and found to be almost optimal with
respect to the sphere-packing bound. In addition, the covering structure for the studied
subfield codes is determined. Some of these codes are found to have the important
property that any nonzero codeword is minimal, which is a desirable property that
is useful in the design of a secret sharing scheme based on a linear code. Moreover,
a specific example of a secret sharing scheme based on one of these subfield codes
is given. Finally, a class of optimal two-weight linear codes over IF,, achieving the
Griesmer bound, whose duals are almost optimal with respect to the sphere-packing
bound is presented. Through a different approach, this class of optimal two-weight
linear codes was reported very recently by Heng (IEEE Trans Inf Theory 69(2):978-
994, 2023. https://doi.org/10.1109/T1T.2022.3203380). Furthermore, it is shown that
these optimal codes can be used to construct strongly regular graphs.

A short version of this paper appeared in the Proceedings of LATIN 2022 [1].
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1 Introduction

Let IF, be the finite field with g elements. An [n, [, d] linear code, C, over IF, is an
[-dimensional subspace of IFZ with minimum Hamming distance d. It is called cyclic
if (co, c1, ..., cp—1) € C implies (c,—1, co, - - ., cu—2) € C. Further, the linear code C
is called optimal if there is no [n, [, d’] code with d’ > d, and almost optimal if there
is an optimal [n, [, d + 1] code [1].

Recently, a class of optimal three-weight [¢% — 1,k 4+ 1, g1 (g — 1) — 1] cyclic
codes over IF, achieving the Griesmer bound was presented in [2], which generalizes a
resultin [3] from k = 2 to arbitrary positive integer k > 2. Further, the gg-ary subfield
codes of two families of g-ary optimal linear codes were studied in [4], with g being a
power of a prime such that g is in turn a power of gq (that is, IF 4 is a proper subfield of
IF,). Also, some basic results on subfield codes were derived and the subfield codes of
ovoid codes were determined in [5]. In addition, the subfield codes of several families
of linear codes were obtained in [6], and the subfield codes of hyperoval and conic
codes were studied in [7]. The basic idea in these last four references is to consider
the subfield code of an optimal, or almost optimal, linear code over IF, and expect the
subfield code over IF, to have also good parameters. In all cases, subfield codes with
very attractive parameters were found.

Thus, the first objective of this paper is to study the go-ary subfield codes for a
subclass of the optimal three-weight cyclic codes reported in [2] and determine their
weight distributions. It turns out that the studied subfield codes also have three nonzero
weights, which is of interest as linear codes with few weights have a wide range of
applications in many research fields such as authentication codes [8], secret sharing
schemes [9—13], association schemes [14], strongly walk-regular graphs [15, 16], and
design of frequency hopping sequences [17]. As we will see, some of the subfield codes
are optimal and others have the best known parameters. The duals of the subfield codes
are also investigated and found to be almost optimal with respect to the sphere-packing
bound.

The second objective is to determine the covering structure for the studied subfield
codes. By means of the Ashikhmin—Barg Lemma (see [18]) we show that some of
these codes have the important property that all their nonzero codewords are minimal,
which is a desirable property that is useful in the design of a secret sharing scheme
based on a linear code. Moreover, a specific example of a secret sharing scheme based
on one of these subfield codes is given.

Finally, the third objective is to present a class of optimal two-weight linear codes
over IF,, achieving the Griesmer bound, whose duals are almost optimal with respect
to the sphere-packing bound. This class of codes is obtained by extending some of
the optimal three-weight cyclic codes reported in [2]. It is important to highlight that,
by means of a different approach, this class of optimal two-weight linear codes was
also obtained very recently in [19, Theorem 6.3]. Furthermore, it is shown that these
optimal codes can be used to construct strongly regular graphs.
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This work is organized as follows: In Sect. 2, we fix some notation and recall some
definitions and some known results to be used in subsequent sections. Section3 is
devoted to presenting preliminary results. In Sect.4 we determine the subfield codes
of a subclass of already known optimal three-weight cyclic codes. In Sect.5, we
investigate the covering structure for the studied subfield codes and present a specific
example of a secret sharing scheme based on one of these codes. In Sect. 6, a class of
optimal two-weight linear codes over any finite field whose duals are almost optimal
is presented. Moreover, it is shown that these codes can be used to construct strongly
regular graphs. Finally, Sect.7 is devoted to conclusions.

2 Notation, Definitions and Known Results

Unless otherwise specified, throughout this work we will use the following:
Notation. Let go = p’, where 7 is a positive integer and p is a prime number. For an
integer r > 1 we are going to fix ¢ = g{; = p'". For an integer k > 1, let IF « be the
finite extension of degree k of the finite field IF, and let y be a primitive element of
IF . Let F be a finite field of characteristic p and E a finite extension of F. Then we
will denote by “Trg,r" the trace mapping from E to F, while “Tr" will denote the
absolute trace mapping from E to the prime field IF,.

The weight enumerator of a linear code C of length n is definedas 1 + Ajz+--- +
Anz", while the sequence {1, Ay, ..., A,} is called its weight distribution, where A;
(1 < i < n) denotes the number of codewords in C with Hamming weight i. If
{1l <i <n:A; #0} = M, then C is called an M-weight code.

Let C be a linear code of length n over IF,. The dual code, C+, of C is the linear
code defined by

Cr={velF):(v.c)=0, forallc e C}

where (-,-) denotes the standard inner product in the vector space IFy . It is known that

if C is an [n, ] linear code, then Ctisan [n, n — [] linear code. Moreover, the linear
code C is said to be projective if the minimum Hamming distance of C* is at least
3. Now, denote by the sequence {1, AL, A,f} the weight distribution of the dual
code C* and fix m = n(g — 1). Then, the first four Pless power moments (see [20, pp.
259-260]) for C are:

n

ZAi =q -1,

i=1

n
Y iAi=q'"'m— AD),
i=1

n
Y %A =q'PImm+ 1) — Qom + 1) — @) Ay + 2451,
i=1
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n

DA =g mm(m +3) = g +2) = Gm(m — g +3) + 4% — 6q + 6)Af

i=1

+6(m — g +2)Ay — 6A7). 1)

The Pless power moments relate the weight distribution of a linear code to that of
its dual code. In this paper we use these identities to determine, given the weight
distribution of a linear code, the minimum Hamming distance of its dual code.

When constructing an [n, [, d] code over IF,, from an economical point of view, it
is desirable that its length n be minimal for given values of /, d and ¢. A lower bound

for the length 7 in terms of these values is as follows (see for example [20, Theorem
2.7.4,p. 81]):

Theorem 1 (Griesmer bound) Let C be an [n, [, d] linear code over IF,. Then

where [x7 denotes the smallest integer greater than or equal to x.
Another well-known bound for linear codes was given in [21, Theorem 6, p. 19].

Theorem 2 (Sphere-packing bound) An [n, [, d] linear code over IF, must satisfy

2
q' Z(q—l)‘(l.) <q"
i=0

where | x| denotes the largest integer less than or equal to x.

The sphere-packing bound is useful, for example, to find out if a code with certain
parameters exists. In the present work we use it to determine the maximum value that
the minimum Hamming distance of a code can take given its length and dimension.

The canonical additive character of IF, is defined as follows

x(x) = ATVEITE /P forall x € IF,.

Let a € IF;. The orthogonality relation for the canonical additive character x of IF,
is given by (see for example [22, Chapter 5]):

q ifa=0,
> xlax) =

xeF, 0 otherwise.

This property plays an important role in numerous applications of finite fields. Among
them, this property is useful for determining the Hamming weight of a given vector
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over a finite field; for example, if w(-) stands for the usual Hamming weight function
andif v = (ag,ay,...,a,_1) € IFZ, then

n—1
w(v) =n— éZ > x@ix). 6

i=0 xeF,

We now recall the class of optimal three-weight cyclic codes for which we are
interested in obtaining their subfield and extended codes.

Theorem 3 [2, Theorem 11] Let e; and e be positive integers and let C(y k e, .e,) be
the cyclic code of length g* — 1 over IF, given by

Clgkeren) = {e(a,b) :a € Fy,b € Fi} (3)

where

gk =2

koyp oo .
c(a,b) = <ayqq—lelj +T1'1Fqk/1Fq (byey))
Jj=0

Ifgcd(qqk%ll, e2) = land ged(g — 1,key — e3) = 1, then C(y k e,,ey) IS an optimal

three-weight [¢F — 1,k + 1, ¢* (g — 1) — 1] cyclic code, achieving the Griesmer
bound, with weight enumerator

T4+ = D" =22 DT @F =T g - @)

In addition, if ¢ > 2, its dual code is a [¢¥ — 1, g* — k — 2, 3] cyclic code.

Remark 1 In [23, Theorem 1] it was shown that the integers e and e; in the previous
theorem can be any integers.

Let C be an [n, [] linear code over IF, . The following describes a way to construct a
new [n, {’] linear code, C40), over IF,, (see [5]). Let G be a generator matrix of C. Take
abasis of IF; = IF,r over IF;, and represent each entry of G as an r x 1 column vector
of IF;, with respect to this basis. Replace each entry of G with the corresponding r x 1
column vector of ]F(’IO. With this method, G is modified into an /7 x n matrix over IF,

generating a new linear code, €0 over IF,, of length n, called subfield code. It is
known that the subfield code C(40 is independent of both the choice of the basis of
IF, over IF,, and the choice of the generator matrix G of C (see [5, Theorems 2.1 and
2.6]). Also, it is clear that the dimension !’ of C\90) satisfies I’ < Ir.

Remark 2 We recall that the subfield subcode of a linear code, C, over IF, is the subset
of codewords in C whose components are all in IF,, (see for example [20, p. 116]). In
consequence, observe that a subfield code and a subfield subcode are different codes
in general. In addition, note that the subfield codes defined here are also different from
the subfield codes in [24, Subsection 4.1] defined as one-weight irreducible cyclic
codes (see Proposition 4.1 therein).
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For what follows, we are interested in obtaining the weight distributions for the
subfield codes of a subclass of the optimal three-weight cyclic codes in Theorem 3.
To that end, the following is a useful result that will allow us to represent the go-ary
subfield code, C190), of a g-ary linear code, C, in terms of the trace function.

Lemma 1 [5, Theorem 2.5] Let C be an [n,l] linear code over F,. Let G =

[gijli<i<i,i<j<n be a generator matrix of C. Then, the trace representation of the
subfield code C'1) is given by

! !
Ca) .= { (Trqu/Jqu (Zaigil) RN by ) o (ngm)) tap,...,a € ]Fq] .
i=1 i=1

3 Preliminary Results

Throughout this and the next section we are interested in obtaining the weight distri-
butions for the subfield codes of a subclass of the optimal cyclic codes in Theorem 3

when k = 2. Thus, for these two sections we fix k = 2. That is, % =gqg+1and

(v)=F,.
q
Note that if C(4 2,¢,,¢,) 18 an optimal cyclic code in Theorem 3 then, in accordance
with Lemma 1, its subfield code, C((ZO; e1.ey) 18 given by (recall that g = qp):

), = {c(a, b)®) :q e Py be ]qu} (5)
where
- o q2—2
c(a, b)(qo) — (Trqu/IFqO (ay(qﬂ)cu) +Tf]Fq2/]qu (byqj))j:o ) (6)

Remark 3 Like C(y 2 ¢1.ey)s C((Z(,)g,el,ez) is also a cyclic code of length ¢ — 1. Fur-

thermore, if h,(x) € IFy[x] is the minimal polynomial of y~¢ (see [21, Ch. 4])
and if d is the smallest positive integer such that aqg = a (mod ¢> — 1), then
observe that deg(h,(x)) = d. Therefore, h(y11)e;(X) # hey(X), hgy1ye; (X)he, (X)

is the parity-check polynomial of Cfg?ﬁ,el,ez) (see [21, Ch. 7]), and if [’ is its dimen-
sion, then I’ = d| + d,, where d; and d are the smallest positive integers such that
(g + 1)e1qg’1 = (g + ey (mod ¢>— 1) and ezqu = e, (mod ¢* — 1), respectively

(see [22, Part (v) of Theorem 3.33]).

In order to obtain the weight distributions of the subfield codes of the form

C(QO)

(@.2.1,e2)> WE will need the following preliminary result.
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Lemma?2 Let x and x' be the canonical additive characters of F, and IF2, respec-
tively. For a € Fy and b € FF 2, consider the exponential sum

Z@,by:= Y > xax®hy ().

N % sk
y eIFq0 xe]qu

Then
(go— (g —1) ifa=b=0,
—(qo — D(gp+ 1) ifa #0andb =0,
—(go—1 ifa=0andb # 0,
Z(a.b) = (-1 ¥ # "

~(g0 — (g} + 1) if (@, b) # (0,0) and Try x,, (25-) =0,

pa+1

qo(qg_l —D+1 if(a,b) #(0,0) and Trg, r,, (=) # 0.

Proof Clearly, Z(0,0) = (qo — 1)(¢3" — 1). Ifa # 0 and b = 0, then

Z@0)= Y > xGax®™y=(@+1 Y Y x(ax)

velF;, xeF, yelg, xelg
=(@+1 Y, (=D=—(@g+D(go—1=—(g0— Dig5+D-
yelFg,

Further, if a = 0 and b # 0,

ZO,b)y= Y > xbx)= Y (=1)=—(g— D).

* * *
ye]FqO xe]Fq2 ye]qu

Now, let ¢ be the canonical additive character of IF;, and suppose that (a, b) # (0, 0).
By the transitivity and linearity of the trace function, we have

Z@h =3 3 ¢ (T m, (ax7)) 0 (yTre ,, 60)

) % *
yelFy, xe]qu

Z Z ® (y (Tr]Fq/]qu (axq+1 -{-TI‘]qu/]Fq (bx))))

sk *
ye]FqO xequz

= 3 oo (ome (o () o)

s sk *
yelFy, xe]qu
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where the last equality holds because TI']qu /F, (bx) = bx+b7x7. Let B = IF,> \{%}.

b4
a

be’ b
Z(a,b) = Z Zgﬁ y | Tre, /F,, | @ wq—a—q w—i—b(w—;) .
ye]Fgo weB

Howeyver, b‘f2 = b and a? = a. Thus, since B = ]qu \ {%},

Thus, after applying the variable substitution x > w — Z-, we obtain

+1
Z(a,b) = Z Z 1) (y (Tr[[:q/]l:qo (aw‘”'1 — ﬂ)))

a
ye]Fgo weB
bq+1
== > O+ ), go(—yTrqu/E,o (T))
ye]FZO ye]F:;U
3 oo ()
welF
q
patl
— _ _ _ Z q+1
=—(@@-D+ Y w( yTr]Fq/Fq()( y )) > x(yaw )

N *
)E]qu we]qu

where x is the canonical additive character of IF, (note that witl e IF,). But, since
a,y # 0, we have

Z X (yawq+1> =1+ Z X (yaqu)

welF » we]F;2
=1l+(@+1) Y x(aw)=—q.

*
weIFq

Therefore, finally, we obtain

bt
Z(a,b) =—(go—1) —¢q Z 2 (_yTr]Fq/]qu <T))

*
ye]FqO

. +1
= —(q0 — 1)(6]6 +1D 11C’I‘r]Fq/Iqu (bqa ) =0,
90(61671 — 1)+ 1 otherwise.
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4 The Subfield Codes of a Subclass of Optimal Cyclic Codes

By means of the following result we now determine the subfield codes, along with
their weight distributions, for a subclass of the optimal three-weight cyclic codes in
Theorem 3.

Theorem 4 Letr > 1, e; and e be positive integers and let C((Zoz) e1.62) be the subfield

code of length qgr — 1, over Iy, given by (5). Assume that ged(g® — 1,e2) = 1 and
gcd(g — 1, 2e; — ex) = 1. Then the following assertions hold true:

(A) If (g — DI(go — Dey, then C((Zog e1.e2) is an optimal three-weight cyclic code of
length qg’ — 1 and dimension 2r + 1, over IFy,, that belongs to the class of optimal
three-weight cyclic codes in Theorem 3 (therein k = 2r and q = qo).

(B) Let T be an integer such that Te; = 1 (mod q2 —D.If(g—1 1 (go — Dey

andZe; =1 (mod g — 1), then C((Zoz) e1.62) is a three-weight cyclic code of length

qgr — 1 and dimension 3r, over IF,,, whose weight enumerator is

— r—=lg r+l_ r_ 2r—1 _
1445 (@3 = D(go — Dz @07 47D 4 (" — 1z @b
r—1 r
+a57 (qh — D(gh — qo + 1z @0=Di@+D, ©)

In addition, Af‘ = A2l =0, and

(@5 = 3q5t" + a2 +3qf — 6q0 + 6)(g3" — Digo — 1)

Ay =
6
That is, the dual code, C(q(’)L fC(qO) isal 2 a2 3 3
(g,2.e1,e2) (g.2.e1.€2) 90 » 4o ,

cyclic code which is almost optzmal with respect to the sphere-packing bound.

Proof First of all, since gcd(qqz%]l, e) < gcd(q2 —1,e2) = 1 and ged(g — 1, 2e; —
e2) = 1, observe that C¢ 2 ¢, ¢,) indeed belongs to the class of optimal three-weight
cyclic codes in Theorem 3 (therein k = 2).

Part (A): Let ¢] = M Clearly (¢ + De1 = L=1¢]. Let higp1ye, (x) =

271 ¢

h 2 (x), hey(x) € IFy [x] be the minimal polynomials of y -1 ‘I and yTe,

g-—1
q0— 1€l
respcctlvcly Hence, in accordance with Remark 3, note that deg(h(41)e, (x)) = 1,

because q = —1e| (mod g% — 1). Also, as (y) = (y =) = F, =T,
0
deg(he, (x)) = 2r. In consequence, C((Zoé e1.e2) has dimension 2r + 1. In fact, since
2r 1
yathe = W e IF} , note that the code C((ZO; e1.¢y) 18 given by the set (see (5))

2

(g+Derj i\\?
{(V 1TV TR, /R, (@) + TrE 5 /R, (bym» .

i—o :ae]Fq,bE]Fq2}

@ Springer



3982 Algorithmica (2023) 85:3973-3995

2r qor -2

(/0 "1 . .
= <a0y T el + Tr 2r/]Fz10 (byeﬂ)) tap € IFy,, b € ]Fqgr . (8
j=0

Clearly (g0 — 1)|(q0 1), for every non-negative integer / (that is, q(l) =1 (mod go —

1)). Thus, since Z" =q, ! +q672 +---+qo+1,(q — 1)|(Z(2:: —r). Therefore,
ase| = (qgﬁandq 1= qo 1(q() 1), we have

ged(qo — 1, 2re} — ez) = ged(qo — 1, 2re) e))

r

= god(qo — 1,200
q0

- /
— )

=gcd(go — 1,2e1 —ep) <gcd(g — 1,2¢1 —ex) = 1.

That is gcd (go—1, Zre’1 —ep) = 1. Moreover, since gcd(q2 —1,er) = 1, wealsohave

ged (% o= I

that ngog e1.62) is an optimal three-weight cyclic code of length qé’ — 1 and dimension

2r + 1 that belongs to such a theorem. In fact, from (8) and (3), note that

e2) = 1. This means, in consequence and in agreement with Theorem 3,

(g0)
C(q 2.e1,e2) — C(Qolr,e/p@)’
(go=De
where e1 %,
Part (B): Note that, by Remark 3, C(;Ioz) e1.er) 18 CyClic. Now, let71g 4 1y (X), hey () €

IF,,[x] be as before. Since (g — 1) 1 (go — 1)ey, observe that r is the smallest positive
integer such that (g + l)e1gy = (g + Deigy = (¢ + 1)er (mod q — 1). Thus,

deg(h(g+1ye, (x)) = r, and since deg(h,, (x)) = 2r, the dimension of C(goé e1.62)

Let ¢, x and x’ be the canonical additive characters of IF,,, IF, and IF,>, respec-

tively. Leta € IF,, b € Iqu, and c(a, b)) ¢ C((Zf)iehez). Hence, from (6) and by

the orthogonality relation for the character ¢ (see (2)), the Hamming weight of the
codeword ¢(a, b)), w(c(a, b)99)), is equal to

is 3r.

q -1 —-— Z Z ( (Tl"}[:q/}[:qo (aw(q+1)e‘) +TI’]Fq2/]FqO (bwez))>

) €lFy, we]F

=¢ —1-— Z > xaw TN (ybw?)

9 5, wer,

_ (g0 — D" =1 Z S xaw Ve (youw).

0 ) eIF* we]F*
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But Ze; = 1 (mod g> — 1) and Ze; = 1 (mod ¢ — 1). Thus, after applying the
variable substitution w — xZ, we get

Y Y xGaw et ghwy = 3" x(ax @Iy (yoxTe)

* * *
yelF; we]qu yelFy xe]qu

q0
= > Y x(ax“tV)x (ybx)

elF* ]F*
yelFg, xeF,
= Z(a,b)

where Z(a, b) is as in Lemma 2. In fact, due to this lemma, we have

0 ifa=b=0,
a7 (qo—1)(gh+1) ifa#0andb =0,
w(c(a, b)) = % (g -1 ifa=0andb # 0,

"l(qo—l)(q5+1> if (a, b) # (0, 0) and T, /F (b"

a0

(qr+1 qo — 1) if (a,b) # (0,0) and Trg, /F,, ( a ) # 0,

Rl
N—
|
N

which is in accordance with (7). Now observe that

bq+l
AQ6_I(40—1)(46+1) =t{a € IFZ} + #{(a, b) € ]FZ X ]FZZ : Tr]Fq/]qu (—a ) =0}
=<q—1)+<q—1)(q+1><1—1>
=q5 (g} —1>(q0—qo+1>

(90)

Similarly, the frequencies of the other weights of C( 4.2.¢1.¢2)

can be computed and we

omit the details here. Then the weight enumerator of C((ZO; e1.e2) follows.
Finally, note that AL = 0, since otherwise C((ZO% e1.e2) would be the null code {0}.

Thus, a direct application of the last two identities in (1) shows that A+ = 0 and
that the value of A3L is the announced one. Lastly, by the sphere packlng bound (see
Theorem 2), it is not difficult to verify that for a code of length q — 1 and dimension

‘10 — 3r — 1, its minimum Hamming distance can be at most 4. Therefore, the code

C(ZOSLH ) is almost optimal since its minimum Hamming distance is 3. O
Example 1 The following are some examples of Theorem 4.

(a) Let (go,r,e1,e2) = (3,2,4,1). Then ¢ = 9 and clearly (g — 1)|(go — De;.
Thus, owing to Part (A) of Theorem 4, the subfield code C((;,)z,4,1) =C@3.4.1,1 1s
an optimal three-weight cyclic code of length 80 and dimension 5, over IF3, whose
weight enumerator is

1 4+ 16073 + 80z7* 4 22%0.
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(b) Let (go,r,e1,e2) = (2,2,1,1). Then ¢ = 4,7 = 1, and clearly (¢ — 1) ¢t
(go — D)ej. Thus, owing to Part (B) of Theorem 4, the subfield code C((i)ll, 1 isa
binary three-weight [15, 6, 6] cyclic code with weight enumerator

14+ 302° + 1528 + 18710

while its dual code is an almost optimal [15, 9, 3] cyclic code with respect to the
sphere-packing bound, with A = A2L =0 and A3L =5.

(c) Let (go,7,e1,e2) = (3,2,1,1). Theng = 9,7 = 1, and clearly (g — 1) 1
(go — 1)eq. Thus, owing to Part (B) of Theorem 4, the subfield code C((g,)z,m) isa
three-weight [80, 6, 51] cyclic code over IF3 with weight enumerator

1 +4807°" 4+ 807°* + 1687%°

while its dual code is an almost optimal [80, 74, 3] cyclic code with respect to the
sphere-packing bound, with A = Aj‘ =0and Aﬁ- = 640.

(d) Let (g0, 7, e1,e2) = (2,4,2,2). Then g = 16 and Z = 128. Clearly (¢ — 1) ¢t
(go — 1)e; and Ze; = 1 (mod g — 1). Thus, owing to Part (B) of Theorem 4, the
subfield code C(7; , , 5 is a binary three-weight [255, 12, 120] cyclic code with
weight enumerator

1 4 20407'20 + 2557128 1 18007!3¢

while its dual code is an almost optimal [255, 243, 3] cyclic code with respect to
the sphere-packing bound, with A1 = A2L =0 and A3L = 595.

Remark 4 According to the code tables at [25], note that the [15, 6, 6] code in (b) is
optimal, while the [80, 6, 51] code in (c) and its dual code are optimal. Finally, the
[255, 12, 120] code in (d) has the best known parameters.

By fixing k = 2, it is important to observe that the condition on the integer e; is more
restrictive in Theorem 4 (ged(g? — 1, e2) = 1) than in Theorem 3 (ged(q + 1, €3) =
1). This implies, of course, that Theorem 4 can only determine the subfield codes
for a subclass of the optimal three-weight cyclic codes in Theorem 3. Specifically,
this means that there are optimal three-weight cyclic codes in Theorem 3, whose
subfield codes cannot be described through Theorem 4. For example, with the help of
a computer, it is not difficult to verify that the subfield code C((i)Z 1.3) is a four-weight

binary cyclic code with weight enumerator 1 4 25z° + 30z 4 37! + 5z!2 (for this
example note that gcd(g+1, e2) = 1,but ged(g>—1, e3) # 1). This subfield code, like

the subfield code in (b) Example 1, is optimal. However, unlike the dual of C((i)z,l 1y

the dual of C((i)Z.l 3) is a binary optimal cyclic code with parameters [15, 9, 4]. This
example let us know that, beyond Theorem 4, there are still other optimal three-weight
cyclic codes whose subfield codes have good parameters.
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5 The Covering Structure of the Subfield Codes

For any ¢ = (co, ¢1,...,Cn-1) € ]FZO, the support of ¢ is defined by the set {i : 0 <
i <n—1,c¢; # 0}. Furthermore, for any two vectors ¢, ¢’ € ]FZO, ¢ is said to cover ¢’ if
the support of ¢ contains that of ¢’. A nonzero codeword is called a minimal codeword
if it covers only its multiples in a linear code. The set of all minimal codewords in a
linear code is called the covering structure of the code.

Determining the covering structure of a linear code is in general a difficult but at
the same time interesting problem as it is closely related to the construction of secret
sharing schemes (see for example [9-13]). In this section we determine the covering
structure of the subfield codes in Theorem 4. As we will see, some of these codes
have the important property that any nonzero codeword is minimal. These codes are
suitable for constructing secret sharing schemes with nice access structures. Moreover,
we present a specific example of a secret sharing scheme based on one of these subfield
codes.

There are several ways to construct secret sharing schemes by using linear codes.
One of them was proposed by Massey in [11, 12] and is presented below (see [10,
13]).

Let C be an [n, [] linear code over IFy,. In the secret sharing scheme based on a
linear code C, the secret s is an element of IF,, which is called the secret space. There
isadealer Ppand n — 1 parties Py, P,, ..., P,_1 involved in the secret sharing scheme,
the dealer being a trusted person. Let Gt = (gé, gll, e, gj_l) be a generator matrix

of the dual code, C*, of C such that gl.J- is the i-th column vector of G- and gl.J- #0
for0 <i < n— 1. Then, the secret sharing scheme based on C is described as follows:

Step 1) In order to compute the shares with respect to a secret s, the dealer Py chooses
randomly a vector u = (ug, Uy, ..., Up—1—1) € ]FZO_I such that s = ug(J)-.
There are altogether g, =1 such vectors u € ]FZO_ L

Step 2) The dealer Py treats # as an information vector and computes the correspond-
ing codeword ¢ = uGt = (to, t1,...,ty—1) In C~+. Then he sends 7; to party
P; as the share foreveryi (1 <i <n —1).

Step 3) The secret s is recovered as follows: since fp = u gé = s, a set of shares
{ti;, ti,, ..., t;,} can determine the secret s iff g(J)- is a linear combination of
{gfl-,gilz,...,git},wherel <ii<ibhb<---<ip<n-—1.

Clearly, if a group of participants D can recover the secret by combining their shares,

then any group of participants containing D can also recover the secret. The set

{i1, 02, ..., 1y} is said to be a minimal access set if it can recover the secret s but

none of its proper subsets can do so. The access structure of the secret sharing scheme

refers to the set of all minimal access sets.
For a linear code C, the following lemma from [11] presents a one-to-one corre-
spondence between the set of minimal access sets of the secret sharing scheme based

on C and the set of minimal codewords in C whose first coordinate is 1.

Lemma3 Let C be an [n, ] linear code over IFy,. Then, the set {i1, iz, ..., in} S
{1,2,...,n—1}withi] <iy < --- < iy is aminimal access set in the secret sharing
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scheme based on C iff there is a minimal codeword ¢ = {cg, c1, ..., cy—1} in C such
that the support of ¢ is {0, i1, i2,...,in} and co = 1.

If ¢ is a nonzero codeword whose first coordinate is 1 and the support of the
codeword c is {0, i1, ip,...,ip}suchthat 1 <i; <ip < -+ <i, <n—1, wecall
the set {i1, iz, ..., i} the access support of the codeword c.

From the discussion above, determining the access structure of the secret sharing
scheme based on a linear code C is equivalent to determining the set of access supports
of the minimal codewords in C whose first coordinate is 1. Thus, in the following we
determine the covering structure of the subfield codes in Theorem 4. To that end, the
next results found in [18] will be useful.

Lemma4 Let C be a linear code over IF;, with minimum Hamming distance d. Then,

every codeword whose weight is less than or equal to "qg—ﬁq“ must be a minimal

codeword.

The following lemma states that if the weights of a linear code are close enough to
each other, then all nonzero codewords of the code are minimal.

Lemma5 (Ashikhmin—-Barg Lemma) Let C be an [n, ] linear code over Iy, and let
Wiin and Wax be the minimum and maximum nonzero weights of C, respectively. If

Wmin qo—1
_— >
Wmax q0

then all nonzero codewords of C are minimal.

We remark that the condition in the previous lemma is only a sufficient condition.
There are codes such that all their nonzero codewords are minimal without satisfying
this condition (see for example [13]).

Now, we are able to give the covering structure of the subfield codes in Theorem 4:

Theorem 5 Assume the same notation as in Theorem 4. Then the covering structure
of a subfield code of the form C((qO) is as follows:

q.2.e1,€2)
(a IfC EZ(’% er.e2) belongs to Part (A) of Theorem 4, then all its nonzero codewords with
weight qg’ — 1 are not minimal, while the other nonzero codewords are minimal.
b) If C((;IO;_ e1.e2) belongs to Part (B) of Theorem 4, then all its nonzero codewords are
minimal.

Proof Part (a): Clearly, all nonzero codewords with weight qgr — 1 are not minimal

as the length of C((;m; e1.62) is qgr — 1 (see Theorem 4). Now, since 2r > 2, it is not

difficult to verify that

2r+1 2r
_ q —q5 —2q0+1
a g -1 = 0 :
qo—1
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Thus, since qé’_l(qo -D-1< qozr_l(qo — 1), it follows from Lemma 4 that the

assertion in Part (a) holds.

Part (b): Let Wiy, and Wyax be as in Lemma 5. Thus, by (7), Wiin = q(r)*] (qSJrl —
qp — 1) and Wiy = qsfl(qo — 1)(ggy + 1). The result now follows directly from
Lemma 5. o

Linear codes whose nonzero codewords are all minimal are suitable for constructing
secret sharing schemes with nice access structures as described in the following:

Proposition 1 [13, Proposition 2] Let C be an [n, ] linear code over ¥y, and let
G = (80,815 8n_1) be a generator matrix of C such that g; is the i-th column
vector of G and g; # 0 for 0 <i < n — 1. If each nonzero codeword of C is minimal,
then the access structure of the secret sharing scheme based on C is composed of
q(l)_1 minimal access sets, which is equal to the set of access supports of the nonzero
codewords in C with first coordinate 1. In addition, we have the following:

(a) If g; is a scalar multiple of g9, 1 < i < n—1, then participant P; must be in every
minimal access set. Such a participant is called a dictatorial participant.

(b) If g; is not a scalar multiple of gy, 1 <i < n — 1, then participant P; must be in
(g0 — l)qé_2 out of q(l)_l minimal access sets.

We end this section by presenting a specific example of a secret sharing scheme
based on one of the subfield codes in Theorem 4.

Example 2 Let (qo,r,e1,e2) = (2,2,1,1). Then ¢ = 4 and by (b) Example 1 we
know that the subfield code C ((4%,)2 n is abinary three-weight [15, 6, 6] cyclic code with

weight enumerator 1430z°+15z8+18210. We take IF ¢ = IF5(y) with y*+y+1 = 0.
With this choice, and by using the notation in Remark 3, h5(x) = x4+ x+1and
hi(x) = x* + x3 + 1 (see [21, p. 99]). Therefore, (x5 — 1)/hs5(x)h1(x) = x° +
X0+ +x*+x+1and hs()h (x) = x0 + x3 + x2 + x + 1 are the generator
and parity-check polynomials of C ((4%,)2, 1.1y respectively. In consequence, the generator

matrices, G and G, for C((i)z 1) and its dual are:

(000000001001 1117]
000000010011110
011001110010000 000000100111100
000001001111000
001100111001000 1
G= ., Gt=/000010011110000
000110011100100
000100111100000
000011001110010
000001100111001 001001111000000
010011110000000
[100111100000000 |

110011100100000

Thus, in the secret sharing scheme based on C((i)z 11y 14 participants and a dealer
are involved. Owing to Lemma 3, Part (b) of Theorem 5, and Proposition 1, there are
altogether q(l)_1 = 25 = 32 minimal access sets:

(4,5,6,7,8,9, 11,12, 13} {1,2,3,4,6,7, 8, 10, 14} {1, 4, 10, 11, 14} {2, 5,7, 8, 13}
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{2,3,4,6,10, 11,12, 13,14} {1,2,3,7,10, 11,13} {5, 7.9, 12, 14} {6, 7, 10, 11, 12}
{1,2,4,5,6,8,12,13, 14} {1,2.4,8,9, 10, 11,12, 13} {1, 2,5, 11, 12} {1, 4,5, 6, 9}
{1,3,4,5,7,11,12,13, 14} {1,3,4,6,7,9, 10, 12,13} {2, 4, 7,9, 10} {1, 6, 8, 10, 13}
{1,3,7,8,9,10, 11,12, 14} {1, 2,3, 5,6,7,9, 13, 14} {2, 3. 8, 10, 12} {3, 9, 10, 13, 14}
{2,3,5.6,8,9, 11,12, 14} {2,6,7,8,9, 10, 11, 13, 14} {3, 4,5, 8, 14} {3, 5,6, 11, 13}
{1,2,3,4,5,7,8,9, 11} {1,3,5,6,7,8,12} {3,4,6,8,9, 10, 11} {2.4,5,6,7, 11, 14}
{4,7,8,10,12, 13, 14} {1,2,6,9, 10, 12, 14} {1,5,8,9, 11, 13, 14} {2, 3,4, 5,9, 12, 13} .

Moreover, in accordance with Part (b) of Proposition 1, note that any participant P;
(1 <i < 14) appears in (g9 — l)qé_2 = 16 out of q(l)_1 = 32 minimal access sets.
In order to appreciate the use of the previous minimal access sets, suppose that we
wish to “split" a 4-bit secret, s, into 4-bit shares for fourteen parties Py, P, ..., Pla.
Following [11], s € GF(2*) = Fi¢ := {0,1,2,...,9,a,b,c,d, e, f} and suppose
s = b = [1011]. The dealer randomly chooses four codewords ¢1, €2, €3 and ¢4, in
the dual code of Céi)zy 1.1y with the condition that each bit in the secret s matches the
first component of one of these four codewords. Suppose that the dealer’s choice is:

c¢; = [100101110111111],
¢ = [000000000000000],
¢z = [100010111101011],
¢4 = [110100100100010].

By means of these codewords the dealer now proceeds to generate the 4-bit shares for
the fourteen parties:

1 0 0 1 0 1 1 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 1 1 1 0 1 0 1 1
1 1 0 1 0 0 1 0 0 1 0 0 0 1 0
e
b 1 0 9 2 8 b a 2 b 8 a 8 b a
N N S 2 A
s Pp P, Py P4 Ps Ps P Pg Py Pio P P2 P13 P

In this way, the share for party P; is 1, the share for party P, is 0, and so on. Finally, note
that any of the above minimal access sets can recover the secrets = b. For example, by
using the shares for the minimal access set {1,4,5,6,9},weget 1 +2+8+b+b = b.

6 A Class of Optimal Two-Weight Linear Codes

Let C be an [n, [, d] linear code over IF, . The extended code, 5 of C is the linear code
defined by (see for example [20, p. 14])

-~

C:= {(cl,...,cn+1)€]FZ+l:(cl,...,cn)eCwithcl+-~-+cn+cn+1 =0}.
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It is known that C is an [n+1,1, 2] code, where d=dord + 1. Let C be the dual
code of C and let ;fl and Xf‘, with 1 < i < n + 1, denote the number of codewords
with Hamming weight i in C and C- L, respectively.

Through the following result we present a class of optimal two-weight linear codes
over any finite field whose duals are almost optimal.

Theorem 6 Let é\(q,kyelygz) be the extended code of the cyclic code C(g ke, ,ey) in The-
orem 3. If ey = 0 (see Remark 1), then the extended code Cy k0,e,) Is an optimal
two-weight [qk, k+1, qk_l(q — D] linear code over ¥, achieving the Griesmer
bound, with weight enumerator

k—1 k
1+q(q" =Dz @D (g — 127
In addition, Xf- = A} =0, and

~ — (g -1 2
A3_q(61 )(q6 ) — )

. =5 . . . . -l .
Therefore, if ¢ > 2, then C(y ,0,¢,) is projective and its dual code, C(q,k,O,ez)’ isa

[qk, qk — k — 1, 3] linear code which is almost optimal with respect to the sphere-
packing bound.

Proof Recall that each codeword of the cyclic code Cy k,0,¢,) is of the form

cla,b) = (a +Trw ., (beZ)) . witha € F, and b € Fu.

xelF*
qk

For each codeword c(a, b) inCiy k,0,e,)> let¢(a, b) denote the corresponding extended
codeword in C(q ,0,e2)-

In the following we determine the parameters and welght enumerator of C(q k,0,e2)-
By definition, the extended code C(q k,0,e,) has length g — 141 = ¢* and has the
same dimension as C(4 x,0,¢,)- Further, in [2, Theorems 7 and 11] it is shown that the
Hamming weight of a codeword in Cy «,0,¢,) is given by

0 ifa=b=0,

gk —1 ifa #0and b =0,

g“ g —1) ifa=0andb #0,
q*"'(g — 1) = 1if (a,b) # (0,0).

w(c(a, b)) =

Thus, in order to obtain the weight enumerator for é\(q’k,o,ez) we will compute the sum
of coordinates of a codeword c(a, b) in each of the above cases. First, note that

Z a= (qk —1)a=—-a (mod gq).

xelF*
e
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Also, since gcd(qqk%ll, ey) = land ged(g —1, e2) = 1, we have that gcd(qk —1,e) =
1. Hence,

ZTI]FA/IFq bx ZTr]Fk/n:q(bx)—qk IZX—O

xelF*, xelF*, erF*
q q

Therefore,
0 ifa=b=0,

—a ifa#0andb =0,
2 (“+Tr'Fqk/IFq (bxez)): 0 ifa=0andb #0,

xelF, —a if (a, b) # (0,0).
Consequently,
0 ifa =b=0,
CTROES ST Sy
g g — 1) if (a,b) # (0,0).

Moreover, since Aqk,l = (g — 1) (see (4)), we conclude that qu = (g — 1). Also,
as Agi-1(y—1y = (¢F = 1) and A jio1,_y)_ = (¢* — D(g — 1), we have

Agrgen =@ =D+ @ = Dg -1 =q" —D.

This completes the proof of the parameters and weight enumerator of the code

Cig.k.0.e2)-
Now, observe that

k=1, _ k=1, _ k=1, _
{q (c{) 1)"‘ +[q (4 1)-‘ +...+[‘1 (ci 1)"‘
q q q

=@ "D+ ="+ @ -D+1=4"

which implies that é\(q, k,0,e,) 1s optimal as it achieves the Griesmer bound (see Theorem
D).

In addition, a direct application of the last three identities in (1) shows that AL
AL 0 and that the value of A% is the announced one. Clearly, if ¢ > 2, then
A3 # 0 and C(q,k,(),ez) is a projective code. Finally, by the sphere-packing bound, it
is not difficult to verify that for a code of length ¢g¥ and dimension gk —k — 1, its
minimum Hamming distance can be at most 4. Therefore, the code C é’ £.0.¢2) is almost
optimal. O

Remark 5 A class of optimal projective two-weight linear codes with the same param-
eters and weight distribution as the codes in Theorem 6 was recently presented in [19,
Theorem 6.3]. However, unlike what was done here, this class of codes is obtained by
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considering a particular type of almost difference sets. Moreover, at the end of [19,
Section VI] the author correctly asserts that the extended code of any cyclic code in
Theorem 3 has parameters [¢*, k + 1, ¢*"'(¢ — 1) — 1] and three nonzero weights.
These three-weight codes are not optimal. However, by allowing e; = 0 in Theorem
3, Theorem 6 shows us that the extended code obtained is a two-weight linear code
which results to be optimal.

Example 3 The following are some examples of the previous theorem.

(a) Let (g, k, e2) = (3,2, 1). Thus, owing to Theorem 6, the extended code é\(m’o’l)
is an optimal two-weight [9, 3, 6] linear code over IF3 with weight enumerator

1+ 2470 +27°

on the other hand, its dual code is an almost optlmal [9, 6, 3] linear code with
respect to the sphere-packing bound, with AL = Aé‘ = 0 and Aé‘ =24

(b) Let (g, k, ex) = (4,2, 8). Thus, owing to Theorem 6, the extended code C(4 2,0,8)
is an optimal two-weight [16, 3, 12] linear code over IF4 with weight enumerator

1+ 60z'? 4 321°

on the other hand, its dual code is an almost optimal [16, 13, 3] linear code with
respect to the sphere-packing bound, with Al = ;4} = 0and A} = 240.

(c) Let(q, k, e2) = (5, 3,9). Thus, owing to Theorem 6, the extended code 5(5,3,0,9) is
an optimal two-weight [125, 4, 100] linear code over IF5 with weight enumerator

1+620Z100+4Z125

on the other hand, its dual code is an almost 0pt1ma1 [125, 121, 3] linear code with
respect to the sphere-packing bound, with Al = Aj- = 0and Aﬁ- = 31000.

(d) Let(q, k, e2) = (3,5,7). Thus, owing to Theorem 6, the extended code C(3 5,0,7) 18
an optimal two-weight [243, 6, 162] linear code over IF3 with weight enumerator

1 4 7267162 4 277243

on the other hand, its dual code is an almost Eptimgl [243, 237, §J linear code with
respect to the sphere-packing bound, with A = A2L = 0 and Aé‘ = 19602.

Remark 6 According to the code tables at [25], all the dual codes in the previous
example are optimal.

It is well known that projective two-weight linear codes are closely related to finite
projective spaces and strongly regular graphs. What is remarkable is that results from
one area can immediately be translated into the other two (see [16]). In the following
we use the projective two-weight linear codes in Theorem 6 in order to determine the
strongly regular graphs associated to them.
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A graph is a set V of vertices provided with a symmetric relation ~ on V called
adjacency, such thatno v € V is adjacent to itself. A pair of adjacent vertices vy, vy €
V form an edge and, under these conditions, v is said to be a neighbor of v, and vice
versa.

Let N, K, A and p be integers. A graph with N vertices is said to be strongly
regular with parameters (N, K, A, ) if it is regular of degree K (that is, each vertex
has exactly K neighbors), and any two distinct vertices have A common neighbors if
they are adjacent and u common neighbors if they are nonadjacent.

Calderbank and Kantor [16] proposed a way to construct strongly regular graphs
using projective two-weight linear codes. Let w; and w, be the weights of a g-ary
projective two-weight linear code C of length n and dimension / with generator matrix
G. To C we associate a graph as follows. Take as vertices the elements of the vector
space IF. | where two different vertices vy and vy are adjacent iff v; — v> is a multiple
of a column in G. The graph obtained in this way is strongly regular [16, Theorems
3.1 and 3.2] with the following parameters [16, Corollary 3.7]:

2
q "Wiw2
g

N=g¢' K=n(g-1), p=
A =K2+3K —qg(wi +w2) — Kq(Wi + W) + ¢*wiwa.

As a direct consequence of the above, we have the following:

Theorem 7 Assume the same notation as in Theorem 6. If g > 2, then the extended
code C(y k0,e,) generates a strongly regular graph with parameters (g1, g (g —

D), ¢*(q —2),q*(q — D).

We end this section by presenting an example of the construction of a strongly
regular graph from one of the extended codes in Theorem 6.

Q(ample 4 Let(q, k, e2) = (3, 2, 1). By (a) Example 3 we know that the extended code
C@3,2,0,1) is a projective two-weight [9, 3, 6] linear code over IF3. Owing to Theorem 7,
the code (/3\(3‘2,0, 1) generates a strongly regular graph with parameters (27, 18, 9, 18).
In order to construct this graph we need a generator matrix for é\(3,2’0’ 1y-Since C3,2,0,1)
is cyclic, it is not difficult to verify (see for example [21, Ch. 7, Sec. 3]) that a generator
matrix for this code is given by

21220100
G=102122010
00212201

Moreover, it is known that a generator matrix for 5(3,2,0,1) can be derived from any
generator matrix of C3 20,1y by adding an extra column such that the sum of the
elements of each row equals 0. Therefore,

212201001
G=|021220101 )
002122011
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Fig. 1 The (27, 18, 9, 18) strongly regular graph obtained from the extended code ()3\(3,2’0’1). The vertices
012 and 221 are adjacent or neighbors because 2(012 —221) = 212 appears in the third column of the matrix
G in (9). On the contrary, the vertices 012 and 000 are nonadjacent because the difference 012 — 000 = 012
does not appear as a multiple of a column in such a matrix

is a generator matrix for (’3\(3,2,0,1).

Following the method described above, the vertices of the graph are the 27 vectors
of IF% = {000, 001, 002, ..., 222}. Furtllgr, two different vertices are adjacent iff their
difference is a multiple of a column in G. Figure 1 shows the strongly regular graph
obtained in this way from the extended code 6'\(3,2,0)1). The graph was plotted using
Maple 17.

7 Conclusions
In this paper we studied the gg-ary subfield codes of a subclass of optimal three-weight

cyclic codes of length g> — 1 and dimension 3 that belongs to the class of codes in
Theorem 3. We proved that some of these subfield codes are optimal three-weight
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cyclic codes of length g> — 1 and dimension 2r 4 1 (where ¢ = q;,) that belong, again,
to the class of optimal three-weight cyclic codes in Theorem 3 (Part (A) of Theorem
4). For the other subfield codes studied here we showed that they are three-weight
cyclic codes of length q2 — 1 whose dimension is now 3r (Part (B) of Theorem 4).
For the latter subfield codes, we also determined the minimum Hamming distance
for their duals, and with this, we concluded that these duals are almost optimal with
respect to the sphere-packing bound. Furthermore, it was shown that some subfield
codes in Part (B) of Theorem 4 are optimal and others have the best known parameters
according to the code tables at [25] (Example 1 and Remark 4). However, as pointed
out at the end of Sect. 4, there is evidence of the existence of other subfield codes with
good parameters. Therefore, as further work, it would be interesting to study those
other subfield codes.

In adittion, as an application of linear codes with few weights, the covering structure
of the subfield codes in Theorem 4 was determined (Theorem 5) and used to present
a specific example of a secret sharing scheme based on one of these subfield codes at
the end of Sect. 5 (Example 2).

Finally, by extending some of the optimal three-weight cyclic codes in Theorem 3,
a class of optimal two-weight linear codes over IF,, achieving the Griesmer bound,
whose duals are almost optimal with respect to the sphere-packing bound was pre-
sented (Theorem 6). Through the analysis of several examples it is suggested that
such duals are optimal (Example 3 and Remark 6). We also used the extended codes
in Theorem 6 to construct strongly regular graphs (Theorem 7 and Example 4). It is
important to note that the parameters and weight distribution of the codes in Theorem
6 are the same as those of a class of codes in Example SU1 in [16] (therein/ = k + 1
and ¢t = k). Also, as pointed out in Remark 35, they are the same for the class of codes
in [19, Theorem 6.3]. Thus, as future work, it would be interesting to show if these
codes are equivalent to each other.
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