Algorithmica (2024) 86:334-366
https://doi.org/10.1007/500453-023-01176-2

n

Check for
updates

Computing Generalized Convolutions Faster Than Brute
Force

Baris Can Esmer'® - Ariel Kulik' - Daniel Marx' @ - Philipp Schepper’
Karol Wegrzycki?

Received: 13 January 2023 / Accepted: 20 September 2023 / Published online: 6 October 2023
© The Author(s) 2023

Abstract

In this paper, we consider a general notion of convolution. Let D be a finite domain
and let D" be the set of n-length vectors (tuples) of D. Let f: D x D — D be a
function and let & y be a coordinate-wise application of f. The f-CONVOLUTION of
two functions g, h: D" — {—M, ..., M}is

(g®f h)(v):= E g(vg) - h(vp)
Vg, vpeD"
S.L V=V, D vy

for every v € D". This problem generalizes many fundamental convolutions such
as Subset Convolution, XOR Product, Covering Product or Packing Product, etc. For
arbitrary function f and domain D we can compute f-CONVOLUTION via brute-force
enumeration in (9(|D|2" - polylog(M)) time. Our main result is an improvement over
this naive algorithm. We show that f-CONVOLUTION can be computed exactly in
O((c - |DI*)" - polylog(M)) for constant c:=3/4 when D has even cardinality. Our
main observation is that a cyclic partition of a function f: D x D — D canbe used to
speed up the computation of f-CONVOLUTION, and we show that an appropriate cyclic

B Barig Can Esmer
baris-can.esmer @cispa.de

Ariel Kulik
ariel.kulik @cispa.de

Daniel Marx
marx @cispa.de

Philipp Schepper
philipp.schepper@cispa.de

Karol Wegrzycki
wegrzycki@cs.uni-saarland.de

CISPA Helmholtz Center for Information Security, Saarbriicken, Germany

Max Planck Institute for Informatics, Saarland University, Saarbriicken, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01176-2&domain=pdf
https://orcid.org/0000-0001-5694-1465
https://orcid.org/0000-0002-5686-8314
https://orcid.org/0000-0002-5810-7949
https://orcid.org/0000-0001-9746-5733

Algorithmica (2024) 86:334-366 335

partition exists for every f. Furthermore, we demonstrate that a single entry of the
f-CONVOLUTION can be computed more efficiently. In this variant, we are given two
functions g, h: D" — {—M, ..., M} alongside with a vector v € D" and the task of
the f-QUERY problem is to compute integer (g ® h)(v). This is a generalization of the
well-known Orthogonal Vectors problem. We show that f-QUERY can be computed
in (9(|D|%” - polylog(M)) time, where @ € [2,2.372) is the exponent of currently
fastest matrix multiplication algorithm.

Keywords Generalized Convolution - Fast Fourier Transform - Fast Subset
Convolution - Orthogonal Vectors

Mathematics Subject Classification Theory of computation - Parameterized
complexity and exact algorithms - Theory of computation - Algorithm design
techniques

1 Introduction

Convolutions occur naturally in many algorithmic applications, especially in the exact
and parameterized algorithms. The most prominent example is a subset convolution
procedure [22, 37], for which an efficient O(2" - polylog(M)) time algorithm for subset
convolution dates back to Yates [40] but in the context of exact algorithms it was first
used by Bjorklund et al. [6]." Researchers considered a plethora of other variants of
convolutions, such as: Cover Product, XOR Product, Packing Product, Generalized
Subset Convolution, Discriminantal Subset Convolution, Trimmed Subset Convolu-
tion or Lattice-based Convolution [6-8, 10, 11, 20, 24, 35]. These subroutines are
crucial ingredients in the design of efficient algorithms for many exact and param-
eterized algorithms such as Hamiltonian Cycle, Feedback Vertex Set, Steiner Tree,
Connected Vertex Cover, Chromatic Number, Max k-Cut or Bin Packing [5, 10, 19,
28, 39, 41]. These convolutions are especially useful for dynamic programming algo-
rithms on tree decompositions and occur naturally during join operations (e.g., [19,
34, 35]). Usually, in the process of algorithm design, the researcher needs to design
a different type of convolution from scratch to solve each of these problems. Often
this is a highly technical and laborious task. Ideally, we would like to have a single
tool that can be used as a blackbox in all of these cases. This motivates the following
ambitious goal in this paper:

[Goal: Unify convolution procedures under one general umbrella. J

Towards this goal, we consider the problem of computing f-Generalized Convolution
(f-CoNVOLUTION) introduced by van Rooij [34]. Let D be a finite domain and let D"
be the n length vectors (tuples) of D. Let f: D x D — D be an arbitrary function
and let @7 be a coordinate-wise application of the function f 2 For two functions

1 We use (5()() = x-polylog(x) notation to hide polylogarithmic factors. We assume that M is the maximum
absolute value of the integers on the input.

2 We provide a formal definition of @ s in Sect. 2.

@ Springer

336 Algorithmica (2024) 86:334-366

g, h: D" — Z the f-CONVOLUTION, denoted by (g ® ¢ h): D" — Z, is defined for
allv e D" as

(g®f h)(v):= E g(vg) - h(vp).
Vg,V €D"
S.LV=VDrVj

Here we consider the standard Z(+, -) ring. Through the paper we assume that M is
the absolute value of the maximum integer given on the input.

In the f-CONVOLUTION problem the functions g, h: D" — {—M,..., M} are
given as an input and the output is the function (g ® s h). Note, that the input and output
of the f-CONVOLUTION problem consist of 3 - | D|" integers. Hence it is conceivable
that f-CONVOLUTION could be solved in O(|D|" - polylog(M)). Such a result for
arbitrary f would be a real breakthrough in how we design parameterized algorithms.
So far, however, researchers have fogused on characterizing functions f for which
f-CONVOLUTION can be solved in O(|D|" - polylog(M)) time. In [34] van Rooij
considered specific instances of this setting, where for some constant r € N the
function f is defined as either (i) standard addition: f(x, y):=x + y, or (ii) addition
with a maximum: f(x, y):=min(x + y,r — 1), or (iii) addition modulo r, or (iv)
maximum: f(x, y):=max(x, y). Van Rooij [34] showed that for these special cases
the f-CONVOLUTION can be solved in O(]D|" - polylog(M)) time. His results allow
the function f to differ between coordinates. A recent result regarding generalized
Discrete Fourier Transform [32] can be used in conjunction with Yates’s algorithm
[40] to compute f-CONVOLUTION in O(| D|*"/ 2 -polylog(M)) time when f is a finite-
group operation and w is the exponent of the currently fastest matrix-multiplication
algorithms.? To the best of our knowledge these are the most general settings where
convolution has been considered so far.

Nevertheless, for an arbitrary function f, to the best of our knowledge the state-of-
the-art for f-CONVOLUTION is a straightforward quadratic time enumeration.

Question 1: Is the naive (~9(|D|2" - polylog(M)) algorithm for f-CONVOLUTION
optimal?

Similar questions were studied from the point of view of the Fine-Grained Complexity.
In that setting the focus is on convolutions with sparse representations, where the
input size is only the size of the support of the functions g and 4. It is conjectured
that even subquadratic algorithms are highly unlikely for these representations [18,
25]. However, these lower bounds do not answer Question 1, because they are highly
dependent on the sparsity of the input.

1.1 Our Results

We provide a positive answer to Question 1 and show an exponential improvement (in
n) over a naive O(|D|?" - polylog(M)) algorithm for every function f.

3 This observation was brought to our attention by Nederlof [27].

@ Springer

Algorithmica (2024) 86:334-366 337

a,b,c,d 0 1
alald|b]|d

blelal|ld|b 0 1
clb|bla]|c 1 1 2
dld|c|cla 2 2 0

Fig. 1 Left figure illustrates exemplar function f: D x D — D over domain D:={a, b, ¢, d}. We high-
lighted a cyclic partition with red, blue, yellow and blue colors. Each color represents a different minor of
f. On the right figure we demonstrate that the red-highlighted minor can be represented as addition modulo
3 (after relabeling @ — 0, b — 1 and ¢ +— 2). Hence the red minor has cost 3. The reader can further
verify that green and blue minors have cost 2 and yellow minor has cost 1, hence the cost of that particular
partition is 3 4+ 2 4+ 2 4+ 1 = 8 (Color figure online)

Theorem 1.1 (Generalized Convolution) Let D be a finite set and f: D x D —
D. There is an algorithm for f-CONVOLUTION with the following running time
O((3-1D1?)" - polylog(M)) when | D\ is even, or ((3 - D> + 1 - |D|)") when | D
is odd.

Observe that the running time obtained by Theorem 1.1 improves upon the brute-force
for every | D| > 2. Our technique works in a more general setting when g: L" — Z
andh: R" — Z and f: L x R — T for arbitrary domains L, R and T (see Sect.2
for the exact running time dependence).

Our Technique: Cyclic Partition Now, we briefly sketch the idea behind the proof of
Theorem 1.1. We say that a function is k-cyclic if it can be represented as an addition
modulo k (after relabeling the entries of the domain and image). These functions are
songehow simple, because as observed in [33, 34] f-CONVOLUTION can be computed
in O(k" - polylog(M)) time if f is k-cyclic. In a nutshell, our idea is to partition the
function f: D x D — D into cyclic functions and compute the convolution on these
parts independently.

More formally, a cyclic minor of the function f: D x D — D is a (combinatorial)
rectangle A x B with A, B € D and a number k € N such that f restricted to A, B is
a k-cyclic function. The cost of the cyclic minor (A, B, k) is cost(A, B):=k. A cyclic
partitionisaset {(A1, B1, k1), ..., (Am, Bm, kin)} of cyclic minors such that for every
(a,b) € D x D there exists a unique i € [m] with (a,b) € A; x B;. The cost of
the cyclic partition P = {(A1, B1, k1), ..., (Am, Bm, km)} is cost(P):= Zl’.":l k;. See
Fig. 1 for an example of a cyclic partition.

Our first technical contribution is an algorithm to compute f-CONVOLUTION when
the cost of a cyclic partition is small.

Lemma 1.2 (Algorithm for f-CONVOLUTION) Let D be an arbitrary finite set, f: D X
D — D and let P be the cyclic partition of f. Then there exists an algorithm which
given g, h: D" — Z computes (g ® ¢ h) in O((cost(P)" 4 | D|") - polylog(M)) time.

The idea behind the proof of Lemma 1.2 is as follows. Based on the partition P, for
any pair of vectors u, w € D", we can define a type p € [m]” such that (u;, w;) €

@ Springer

338 Algorithmica (2024) 86:334-366

Ap, X Bp, for every i € [n]. Our main idea is to go over each type p and compute
the sum in the definition of f-CONVOLUTION only for pairs (v, v;) that have type p.
In order to do this, first we select the vectors v, and v, that are compatible with this
type p. For instance, consider the example in Fig. . Whenever p; refers to, say, the
red-colored minor, then we consider v, only if its i-th coordinate is in {b, ¢, d} and
consider v, only if its i-th coordinate is in {b, d}. After computing all these vectors
v and vy, we can transform them according to the cyclic minor at each coordinate.
Continuing our example, as the red-colored minor is 3-cyclic, we can represent the
i-th coordinate of v, and v as {0, 1, 2} and then the problem reduces to addition
modulo 3 at that coordinate. Therefore, using the algorithm of van Rooij [34] for
cyclic convolution we can handle all pairs of type p in O(([T;_, kp,) - polylog(M))
time. As we go over all m" types p the sum of m”" terms is

> (l_[km) = (é ki)n — cost(P)".

pelm]" \i=1

Hence, the overall running time is (~9(cost(73)” - polylog(M)). This running time
evaluation ignores the generation of the vectors given as input for the cyclic convolution
algorithm. The efficient computation of these vectors is nontrivial and requires further
techniques that we explain in Sect. 3.

It remains to provide the low-cost cyclic partition of an arbitrary function f.

Lemma 1.3 For any finite set D and any function f: D x D — D there is a cyclic
partition P of f such that cost(P) < %|D|2 when |D| is even, or cost(P) < %|D|2 +
1D\ when |D| is odd.

For the sake of presentation let us assume that | D| is even. In order to show Lemma 1.3,
we partition D into pairs Ay, ..., Ay where k:=|D|/2 and consider the restrictions
of fto Aj x D one by one. Intuitively, we partition the D x D table describing f
into pairs of rows and give a bound on the cost of each pair. This partition allows us
to encode f on A; x D as a directed graph G with |D| edges and | D| vertices. We
observe that directed cycles and directed paths can be represented as cyclic minors.
Our goal is to partition graph G into such subgraphs in a way that the total cost of the
resulting cyclic partition is small. Following this argument, the proof of Lemma 1.3
becomes a graph-theoretic analysis. The proof of Lemma 1.3 is included in Sect. 4.
We also give an example which suggests that the constant % in Lemma 1.3 cannot be
improved further while using the partition of D into arbitrary pairs (see Lemma 4.16).

Our method applies for more general functions f: L x R — T, where domains
L, R, T can be different and have arbitrary cardinality. We note that a weaker variant
of Lemma 1.3 in which the guarantee is cost(Py) < %|D|2 is easier to attain (see
Sect.4).

Efficient Algorithm for Convolution Query Our next contribution is an efficient
algorithm to query a single value of f-CONVOLUTION. In the f-QUERY problem,
the input is g, h: D" — Z and a single vector v € D". The task is to compute a

@ Springer

Algorithmica (2024) 86:334-366 339

value (g ® ¢ h)(v). Observe that this task generalizes4 the fundamental problem of
Orthogonal Vectors. We show that computing f-QUERY is much faster than computing
the full output of f-CONVOLUTION.

Theorem 1.4 (Convolution Query) For any finite set D and function f: D x D — D
there is a O(|D|®™/? . polylog(M)) time algorithm for the f-QUERY problem.

Here 5(m“’ - polylog(M)) is the time needed to multiply two m X m integer matrices
with values in {—M, ..., M} and currently w € [2,2.372) [2, 21]. Note, that under
the assumption that two matrices can be multiplied in the linear in the input time
(i.e., @ = 2) then Theorem 1.4 runs in the nearly-optimal O(|D|" - polylog(M))
time. Theorem 1.4 is significantly faster than Theorem 1.1, which can be used

to solve f-QUERY in time (5((% . |D|2)n -polylog(M)) when |D]| is even, or

O ((;L ID?+ - D))" ~polylog(M)) when |D| is odd. This holds true even if we
plug-in the naive algorithm for matrix multiplication (i.e., @ = 3). The proof of Theo-
rem 1.4 is inspired by an interpretation of the f-QUERY problem as counting length-4
cycles in a graph.

1.2 Related Work

Arguably, the problem of computing the Discrete Fourier Transform (DFT) is the
prime example of convolution-type problems in computer science. Cooley and Tukey
[17] proposed the fast algorithm to compute DFT. Later, Beth [4] and Clausen [16]
initiated the study of generalized DFTs whose goal has been to obtain a fast algorithm
for DFT where the underlying group is arbitrary. After a long line of works (see [31]
for the survey), the currently best algorithm for generalized DFT concerning group G
runs in O(|G|®/?*€) operations for every € > 0 [32].

A similar technique to ours was introduced by Bjorklund et al. [9]. The paper gave a
characterization of lattices that admit a fast zeta transform and a fast Mobius transform.

From the lower-bounds perspective to the best of our knowledge only a naive
Q(|D|") lower bound is known for f-CONVOLUTION (as this is the output size).
We note that known lower bounds for different convolution-type problems, such as
(min, +)-convolution [18, 25], (min, max)-convolution [13], min-witness convolution
[26], convolution-3SUM [14] or even skew-convolution [12] cannot be easily adapted
to f-CONVOLUTION as the hardness of these problems comes primarily from the ring
operations.

The Orthogonal Vectors problem is related to the f-QUERY problem. In the Orthog-
onal Vectors problem we are given two sets of n vectors A, B C {0, 1}d and the task
isto decide if there is a paira € A, b € B suchthata-b = 0. In [38] it was shown that
there is no algorithm with a running time of n>~¢ - 2@ for the Orthogonal Vectors
problem for any € > 0, assuming SETH [36]. The currently best algorithm for Orthog-
onal Vectors runs in time n2~1/000g(d)/logm) 1 15], O(n - 2°?) for some constant
¢ < 0.5[30],or O(|J Al + || B]) [7] (where || F| is the total number of vectors whose
support is a subset of the support of input vectors).

4 1tis a special case with D = {0, 1}, v=0"and f(x,y) =x -y

@ Springer

340 Algorithmica (2024) 86:334-366

1.3 Organization

In Sect.2 we provide the formal definitions of the problems alongside the general
statements of our results. In Sect.3 we give an algorithm for f-CONVOLUTION that
uses a given cyclic partition. In Sect. 4 we show that for every function f: Dx D — D
there exists a cyclic partition of low cost. Finally, in Sect.5 we give an algorithm for
f-QUERY and prove Theorem 1.4. In Sect. 6 we conclude the paper and discuss future
work.

2 Preliminaries

Throughout the paper, we use Iverson bracket notation, where for the logic expression
P, the value of [P] is 1 when P is true and O otherwise. For n € N we use [n] to
denote {1, ..., n}. Through the paper we denote vectors in bold, for example, q € zk
denotes a k-dimensional vector of integers. We use subscripts to denote the entries of
the vectors, e.g., q:=(qq, . . ., qk)-

Let L, R and T be arbitrary sets and let f: L x R — T be an arbitrary function.
We extend the definition of such an arbitrary function f to vectors as follows. For two
vectors u € L" and w € R" we define

udrw=(f(ar, wy),..., f(u,, wy)).

In this paper, we consider the f-CONVOLUTION problem with a more general domain
and image. We define it formally as follows:

Definition 2.1 (f-Convolution) Let L, R and T be arbitrary setsandlet f: LXR — T
be an arbitrary function. The f-CONVOLUTION of two functions g: L" — Z and
h: R" — Z, where n € N, is the function (g ® s h): T" — Z defined by

@®rHv:= Y [v=usw] g hw

uel”, weR"
foreveryve T".

As before the operations are taken in the standard Z(+, -) ring and M is the maxi-
mum absolute value of the integers given on the input.
Now, we formally define the input and output to the f-CONVOLUTION problem.

Definition 2.2 (f-CONVOLUTION PROBLEM (f-CONVOLUTION)) Let L, R and T
be arbitrary finite sets and let f: L x R — T be an arbitrary function. The f-
CONVOLUTION PROBLEM is the following.

Input: Two functions g: R" — {—M,...,M}and h: L" — {—-M, ..., M}.

Task: Compute g ®y h.

Our main result stated in the most general form is the following.

@ Springer

Algorithmica (2024) 86:334-366 341

Theorem 2.3 Let f: Lx R — T suchthat L, R and T are finite. There is an algorithm
for the f-CONVOLUTION problem with O(c" - polylog(M)) time, where

L (|R| n @) if IL| is even
| \2—1 . <|R| + @) + |R| otherwise.

ci=

Theorem 1.1 is a corollary of Theorem 2.3 by setting L = R =T = D.

The proof of Theorem 2.3 utilizes the notion of cyclic partition. For any k € N,
let Zy ={0,1,...,k — 1}. We say a function f: A x B — C is k-cyclic if,up to a
relabeling of the sets A, B and C, it is an addition modulo k. Formally, f: AxB — C
is k-cyclic if there are 64 : A — Zy,0p: B — Zi, and o¢: Zy — C such that

Vac A, beB: f(a,b)=oc(oala)+og) modk).

We refer to the functions o4, op and o¢ as the relabeling functions of f. For example,
a constant function f : A x B — {0} defined by f(a,b) =0 forall (a,b) € A x B
is 1-cyclic.

The restrictionof f: LxR — TtoA C Land B C Risthefunctiong: AxB —
T defined by g(a,b) = f(a,b) foralla € Aand b € B. We say (A, B, k) is a cyclic
minor of f: L x R — T if the restriction of f to A and B is a k-cyclic function.

A cyclic partitionof f: Lx R — T isasetof minors P = {(A1, By, k1), ..., (Am,
By, kp)} such that (A;, B;, k;) is a cyclic minor of f and for every (a,b) € L x R
there is aunique 1 < i < m such that (a, b) € A; x B;. The cost of the cyclic partition
is cost(P) = > /", ki.

Theorem 2.3 follows from the following lemmas.

Lemma 3.1 (Algorithm for Generalized Convolution) Let L, R and T be finite sets.
Also, let f: L x R — T be a function and let P be a cyclic partition of f. Then

there is an g’)((cost(’P)” + |LI" + |R|" + |T|") - polylog(M)) time algorithm for
f-CONVOLUTION.

Lemma4.1 Let f: L x R — T where L, R and T are finite sets. Then there is a
cyclic partition P of f such that cost(P) < |LT| - (|R| + @) when |L| is even, and
cost(P) < |R| + L1 (IR| + L) when |L| is odd.

The proof of Lemma 3.1 is included in Sect. 3 and proof of Lemma 4.1 is included
in Sect. 4. The proof of Lemma 3.1 uses an algorithm for CYCLIC CONVOLUTION.

Definition 2.4 (CycLIC CONVOLUTION)Letk € Nandr € N".Also, letg,h: Z - N
be two functions where Z = Zy, x -+ X Zy,. The CYCLIC CONVOLUTION of g and
h is the function (g © h) : Z — N defined by

k
CEONIIIES Z (H[[ui +w; =v; mod r,-ﬂ) -g(u) - h(w)

u,weZ \i=l1

forevery v € Z.

@ Springer

342 Algorithmica (2024) 86:334-366

For any K € N we define the K-CYCLIC CONVOLUTION PROBLEM in which we
restrict the entries of the vector r in Definition 2.4 to be in K.

Definition 2.5 (K-CycCLIC CONVOLUTION PROBLEM) Forany K C N the K-CYCLIC
CONVOLUTION PROBLEM is defined as follows.

Input: Integers k, M € N, a vector r € N such that r; € K forevery j € [k] and
two functions g, h: Z — {—M, ..., M} where Z = Zy, X -+ X L.

Task: Compute the CYCLIC CONVOLUTION g @ h: Z — Z.

Van Rooij [33] claimed that the N-CycLIC CONVOLUTION PROBLEM can be solved
in O ((]_[f: 1 ri) - polylog(M)) time. However, for his algorithm to work it must be
given an appropriate large prime p and several primitives roots of unity in F,,. We
are unaware of a method which deterministically finds such a prime and roots while
retaining the running time. To overcome this obstacle we present an algorithm for the
K-CycLic CONVOLUTION PROBLEM when K C N is a fixed finite set. Our solution
uses multiple smaller primes and the Chinese Reminder Theorem. We include the
details in Appendix A.

Theorem 2.6 (K-CyCLIC CONVOLUTION) For any finite set K C N, there is an
O ((]‘[f: L Ti) - polylog(M)) algorithm for the K -CYCLIC CONVOLUTION PROBLEM.

3 Generalized Convolution

In this section we prove Lemma 3.1.

Lemma 3.1 (Algorithm for Generalized Convolution) Let L, R and T be finite sets.
Also, let f: L x R — T be a function and let P be a cyclic partition of f. Then
there is an O((cost(P)* + |L|* 4+ |R|" + |T|") - polylog(M)) time algorithm for
f-CONVOLUTION.

Throughout the section we fix L, R and T, and f: L x R — T to be
as in the statement of Lemma 3.1. Additionally, fix a cyclic partition P =
{(A1, B1, k1), ..., (Am, B, k;y)}. Furthermore, let 04 ;, op,; and oc,; be the rela-
beling functions of the cyclic minor (A;, B;, k;) for every i € [m]. We assume the
labeling functions are also fixed throughout this section.

In order to describe our algorithm for Lemma 3.1, we first need to establish several
technical definitions.

Definition 3.2 (Type) The type of two vectorsu € L" and w € R" is the unique vector
p € [m]" for whichu; € Ap andw; € B, foralli € [n].

Observe that the type of two vectors is well defined as P is a cyclic partition. For any
type p € {1, ..., m}" we define

Ly=Ap X ---xXAp, Rp=Bp x---XBp, ZI,:=ka1 X oo X kan

@ Springer

Algorithmica (2024) 86:334-366 343

to be vector domains restricted to type p. For any type p we introduce relabeling
functions on its restricted domains. The relabeling functions of p are the functions
GII;: L, — Zp,a Ry — Zp,anda Zp — T" defined as follows:

o b (V)= (0ap, (V1) ... 0Ap,(Vn)) Vv eLp,
o V):=(08.p,(V1).....08.p, (V1)) Vv € Rp,
o (@):=(0c.p, Q). ..., 0C p,(@n)) vq € Z,.

Our algorithm heavily depends on constructing the following projections.
Definition 3.3 (Projection of function) The projection of a function g: L" — 7 with

respect to the type p € [m]", is the function g,: Z, — Z defined as

gp(@:= Y _ [ohw) =q] g for every q € Z,.

uel,

Similarly, the projection hp: Z, — Z of a function h: R" — Z with respect to
the type p € [m]" is defined as

hp(q):= Z [[ag(w) =q] - h(w) for every q € Z,.

WER)p

The projections are useful due to the following connection with g ® 7 A.

Lemma3.4 Letg: L" — Zand h: R" — Z, then for every v € T" it holds that:

(c@rh)m= > > lop@=v]-(gp0hp) (@,

pelm]* qeZ,
where gp © hyp is the cyclic convolution of gp and h p.

We give the proof of Lemma 3.4 in Sect. 3.1. It should be noted that the naive compu-
tation of the projection functions of g and & with respect to all types p is significantly
slower than the running time stated in Lemma 3.1. To adhere to the stated running
time we use a dynamic programming procedure for the computations, as stated in the
following lemma.

Lemma 3.5 There exists an algorithm which given a functiong: L — {—M, ..., M}
returns the set of its projections, {gp | p € [m]"}, in time ((cost(P)" + [L|")).

Remark 3.6 Analogously, we can also construct every projection of a function
h: R* - {—M, ..., M} in O ((cost(P)" 4+ |R|") - polylog(M)) time.

The proof of Lemma 3.5 in given in Sect. 3.1.
Our algorithm for f-CONVOLUTION (see Algorithm 1 for the pseudocode) is a direct
implication of Lemmas 3.4 and 3.5. First, the algorithm computes the projections of g

@ Springer

344 Algorithmica (2024) 86:334-366

Algorithm 1: Cyclic Partition Algorithm for the f-CONVOLUTION problem

Setting: Finite sets L, Rand T, f: L x R — T and a cyclic partition P of f, of size m.
Input: g: L" — {—-M, ..., MY, h: R" - {—M, ..., M}

1 Construct the projections of g and h w.r.t p, for all p € [m]"* > Lemma 3.5
2 Forevery p € [m]" compute cp = gp O hp > Cyclic convolutions (Definition
2.4)

3 Definer: T" — Z by

rv) = Z Z cp(@ forallve T".
pelm}? qeZp st a;(q):v

4 return r

and h with respect to every type p. Subsequently, the cyclic convolution of g, and £,
is computed efficiently as described in Theorem 2.6. Finally, the values of (g ® ¢ h)
are reconstructed by the formula in Lemma 3.4.

Proof of Lemma 3.1 Observe that Algorithm 1 returns r: 7" — Z such that for every
v € T" it holds that

=Y Y @@= > Y lop@=v] (2 0hp)(@=(s®sh) W,

pelml® qezZ, PElm]" qeZ,
s.t. a;(q):v

where the last equality is by Lemma 3.4. Thus, the algorithm returns (g ®s h) as
required. It therefore remains to bound the running time of the algorithm.

By Lemma 3.5, Line 1 of Algorithm 1 runs in time O((cost(P)" + |L|" + |R|") -
polylog(M)). Define K = {k | (A, B,k) € P} = {k1,...,ky} be different costs
of cyclic minors in P. By Theorom 2.6, for any type p € [m]" the computation of
gp ©hpinLine 2 is an instance of K-CYCLIC CONVOLUTION PROBLEM which can be
solved in time O((]_[l 1 kp,) - polylog(M)). Thus the overall running time of Line 2

is O ((Zpe[’n]n [Tz kp) - polylog(M)).
Finally, observe that the construction of r in Line 3 can be implemented by ini-
tializing r to be zeros and iteratively adding the value of c,(q) to r(opT (q)) for every

p € [m]" and q € Z,. The required running time is thus (5(|T|" - polylog(M)) for

the initialization and O (3 ey 1Z51) - polylog()) = ((X ey [Ti=1 k)
for the addition operations. Thus, the overall running time of Line 3 is

O |T|" + Z Hk - polylog(M)
pelm]* i=1

Combining the above, with 3~ , (s [T kp, = (X0, ki)n = (cost(P))" means
that the running time of Algorithm 1 is

O ((ITI" + |RI" 4 |L|" + cost(P)") - polylog(M))

@ Springer

Algorithmica (2024) 86:334-366 345

This concludes the proof of Lemma 3.1. O

3.1 Properties of Projections

In this section we provide the proofs for Lemmas 3.4 and 3.5. The proof of Lemma
3.4 uses the following definitions of coordinate-wise addition with respect to a type

p.
Definition 3.7 (Coordinate-wise addition modulo for type) For any p € [m]" we
define a coordinate-wise addition modulo as

q+pr:i=((q+r modkp),...,(q,+r, modky,)) foreveryq,re Zp.

Proof of Lemma 3.4 By Definition 2.1 it holds that:

(g@rh)m= Y [v=ue;w] g -hw). (3.1)

uelL”” weR"

Recall that the type of every two vectors (u, w) € L" x R" is unique and [m]"
contains all possible types and hence, we can rewrite (3.1) as

@®rmM =Y > gw-hw-[v=us,w] (3.2)

pE[m]* ueLy,weR)

By the properties of the relabeling functions, we get

Y swohw [v=0) (e +,ofw)]

pE[m]* uel,,weR)

= > > > gw-hw-[v=0b@] [q=05w) +, 08 w)]

pelm]" qeZy uel ,,weRy

=> > Yo g hw -[q=0h@) +, 08w,

pelm]” qeZyp uel, weR,
s.t. aT(q) v

Observe that we can partition Lp (respectively Rj) by considering the inverse
images of r € Zp under o' (respectively 0), i.e. Lp = ez (U € Lp | 05(m) =
r}. Hence, for every p € [m]" and q € Z,, it holds that

Yo g -hw) - [q=oh@) +,08w)]

uely,,veRyp

Yo Y g hw - [g=r+ps]-[r=0bw]-[s=opw]

r.s€Z, uel, weR,

@ Springer

346 Algorithmica (2024) 86:334-366

dla=r+psl| D r=ob@]-g |- | Y [s=o5kw]-hw

r.se€Z, uel, WERp
Y la=r+ps]-gp@) - hps)
r.se€Z,
= (gp © hp)(@). (3.3)

By plugging (3.3) into (3.2) we get

(s@rh)m= > > (pOhy@

pelm]? qeZy
s.t. GT(q) A

3 S leh@=v](sp ©1p) (@.

pelm)' qeZp
as required. O

Proof of Lemma 3.5 The idea is to use a dynamic programming algorithm loosely
inspired by Yates’s algorithm [40].

Define X = {(p.q) | p € m]*, q € Zp, x -+ x Zp,} forevery € € {0, ..., n}.
We use X to define a dynamic programming table DP®): X© x "=t — 7 for
every £ € {0, ...n} by:

DPO((pyr. .. PO, (@1 QO ltett, - ta]
¢
= (l_[[[api(ti) = qi]]) gt).
ticAp, \i=l
tgéApe
The tables DP® DPM | . DP™ are computed consecutively where the com-

putation of DP® relies on the values of DP“~D for any £ € [n]. Observe that
gp(q) = DP(”)[(pl, .oy P (1, ..., qn)]le] for every p and q, which means that
computing DP™ s equivalent to computing the projection functions g, of g for every
type p.5

It holds that DP©[¢, ¢][t] = g(t). Hence, DP© can be trivially computed in |L|"
time. We use the following straightforward recurrence to compute DP():

DPOL(py, ..., po) (@1, - - q)]teq, -]
> lopt) =ac] -OP“"PL(py, s pem) @i Qe Dl -],

tzeAI,e

(3.4)

5 We use ¢ to denote the vector of length 0.

@ Springer

Algorithmica (2024) 86:334-366 347

A dynamic programming algorithm which computes DP™ can be easily derived
from (3.4) and the formula for DP?. The total number of states in the dynamic
programming table DP® s

> (kpycoekp) | ILT =R+ k) LT = cost(P) - L
pelm]®

This is bounded by cost(P)" + |L|" for every £ € [n]. To transition between states we
spend polynomial time per entry because we assume that |L| = O(1). Hence, we can
compute g, for every p in O((cost(P)" + |L|") - polylog(M)) time. O

4 The Existence of a Low-Cost Cyclic Partition
In this section we prove Lemma 4.1.

Lemma4.1 Let f: L x R — T where L, R and T are finite sets. Then there is a
cyclic partition P of f such that cost(P) < % - (|R| + @) when |L| is even, and

cost(P) < |R| + L= (IR| + L1y when |L| is odd.

We first consider the special case when |L| = 2. Later we reduce the general case
to this scenario and use the result as a black-box.

As a warm-up we construct a cyclic partition of cost at most %|D|2 assuming that
L = R =T = D andthat |D| is even. For this, we first partition D into pairs dl(i), dg)
where i € [|D]/2] and show for each such pair that f restricted to {d (i), déi)} and D
has a cyclic partition of cost at most %|D|. The union of these cyclic partitions forms
a cyclic partition of f with cost at most % . ZT|D| = %|D|2.

To construct the cyclic partition for a fixed i € [|D]|/2], we find a maximal number
r of pairwise disjoint pairs ¢\’ e/’ € D such that [{ £ (d\”, e\”)) | a, b € {1,2}}] <3
foreach j € [r],i.e.foreach j atleast one of the four values f(dl(i), eij)), f(d(i), eéj)),
f (déi), e(j)), f (dg) , eé‘j)) repeats. With this assumption, f restricted to {d(i) , dg)}
and {egj), eéj)} is either a cyclic minor of cost at most 3 or can be decomposed into
3 trivial cyclic minors of the total cost at most 3. We claim that r > |D|/4. Indeed,
assume that there are fewer than | D|/4 such pairs, i.e. r < |D|/4. Let D denote the
|D|—2-r > | D|/2 remaining values in D. As the set { f(d\”,d) | d € D, a € {1, 2}}
can only contain at most | D| values, we can find another pair egrﬂ), egH) with the
above constraints. Note that f restricted to {dl(i), déi)} and D can be decomposed into
at most 2| D| trivial minors. Hence, the cyclic partition for f restricted to {d fi), dg)}
and D has cost at most

3r+2-|5|<3-@+2-@
! 2

=<

|D|.

EEN RN

@ Springer

348 Algorithmica (2024) 86:334-366

4.1 Special Case: |L| = 2

In this section, we prove the following lemma that is a special case of Lemma 4.1.

Lemmad4.2 If f: L x R — T with |L| = 2, then there is a cyclic partition P of f
such that cost(P) < |R| + |T|/2.

To construct the cyclic partition we proceed as follows. First, we define, for a
function f, the representation graph G y. Next, we show that if this graph has a special
structure, which we later call nice, then we can easily find a cyclic partition for the
function f. Afterwards we decompose (the edges of) an arbitrary representation graph
G into nice structures and then combine the cyclic partitions coming from these parts
to a cyclic partition for the original function f.

Definition 4.3 (Graph Representation) Let f: L x R — T be such that |L| = 2 with
L = {£g, ¢1}.

We say afunctionAy: R — T x T withAy: r = (f(£o, 1), f(£1,7))is the edge
mapping of f. We say that a directed graph G y (which might have self-loops) with
vertex set V(G r):=T and edge set E(Gy):={Ay(r) | r € R} is the representation
graph of f.

We say that the representation graph G ¢ is nice if G is a directed cycle or a
directed path (potentially with a single edge).

As a next step we define the restriction of a function based on a subgraph of the
corresponding representation graph.

Definition 4.4 (Restriction of f)Let f: L x R — T be a function such that |L| = 2

and let G ; be the representation graph of f. Let E’ € E(G s) be a given subset of
edges inducing the subgraph G’ of G ;.

Based on E’ (and thus, G’) we define a new function f’ in the following and say
that f’ is the function represented by G' or E’.

With T":=V(G’) and R":={r € R | A¢(r) € E'}, we define f': L x R’ — T’ as
the restriction of f such that the representation graph of f’ is G’. Formally, we set
f'l,r):=fU,r)yforall£ € Landr € R’.

A decomposition of a directed graph G is a family JF of edge-disjoint subgraphs of
G, such that each edge belongs to exactly one subgraph in F. The following observation
follows directly from the previous definition.

Observation 4.5 Let {G1, ..., G} be a decomposition of the graph G y into k sub-
graphs, let f; be the function represented by G;, and let P; be a cyclic partition of
fi

Then P = Uie[k] ‘P; is a cyclic partition of f with cost cost(P) = Zie[k] cost(P;).

Cyclic Partitions Using Nice Representation Graphs As a next step, we show that
functions admit cyclic partitions if the representation graph is nice. We extend these
results to functions with arbitrary representation graphs by decomposing these graphs
into nice subgraphs. Finally, we combine these results to obtain a cyclic partition for
the original function f (Fig. 2).

@ Springer

Algorithmica (2024) 86:334-366 349

/@ m@\

AN

T1

@‘\-/@

O @==0==0=—=0

V

T2 T3 T4 s Te 7 T8 T9 T10 11 T12

Eo a

b c c d| d| e e g h i

b

a|ld]|b|d]|el| f|c|f h 1 J

Fig.2 Example of the construction of a representation graph from the function f to obtain a cyclic partition.
We put an edge between vertices u and v if there is an r; withu = f(£g, rj) andv = f(£1, r;). We highlight
an example decomposition of the edges into a cycle with 4 vertices (highlighted red) and three paths with
5, 2 and 4 vertices (highlighted blue, yellow and green respectively). The cost of this cyclic partition is
4454244 = 15 (Color figure online)

Lemma4.6 Let f: L x R — T be a function such that Gy is nice. Then f has a
cyclic partition of cost at most |T| = |V (G r)|.

Proof By definition, a nice graph is either a cycle or a path. We handle each case
separately in the following. Let L = {£g, £1}.

Gyrisacycle.

G 7 is a path.

We first define the relabeling functions of f to show that f is |T|-
cyclic. For the elements in L, let op: L — Zp with op(¢;) = i.
To define o and o7, fix an arbitrary tp € T. Let 11, ..., tj7| be the
elements in T with #7| = fo such that, for all j € Zr|, there is some
rj € RwithAy(rj) = (¢}, tj11). ® Note that these r; exist since G 7 isa
cycle. Using this notation, we define o7 : Zj7| — T witho7(j) =¢;,
for all j € Zr|. For the elements in R we define og: R — Zg| with
or(r) = j whenever A ¢(r) = (¢;, tj+1) for some j. Itis easy to check
that f can be seen as addition modulo |T'|. Indeed, leti € {0, 1} and
r € Rwith A ¢(r) = (¢j,tj4+1). Then we get

or(op ;) +or(r) mod |T|) = o7 (i + j mod |T])
=titjmod T = fWi,7rj) = f(&,71).

Thus, f is |T|-cyclic and {(L, R, |T|)} is a cyclic partition of f.

Similarly to the previous case, f can be represented as addition mod-
ulo |T'|. The proof is essentially identical to the cyclic case and we
include it for completeness. Let o7 : L — Zj with o (¢;) = i. Let
fo, ..., fj7|—1 be the elements of T such that, for all j € Zr|_1, there
exist r; € R with A¢(rj) = (¢j,1j41). Since G is a path, such
rj’s must exist. We let o7 (j) = t; for every j € Zr|. We define

6 Note that there might be multiple r € R with Ap(ry=(@j,tj41)-

@ Springer

350 Algorithmica (2024) 86:334-366

or: R — Zg| with og(r) = j whenever Ay(r) = (¢j,tj41) for
some j. Now, we verify that f can be interpreted as addition modulo
|T|. Consider i € {0, 1} and r € R with A s(r) = (¢, tj41) for some
J € Zj|-1. Observe that j < |T| — 1, hence ;4| mod || = tj+1-
Therefore, we get

or(oL(¢;) + or(r) mod |T|) = or(i + j mod |T|)
= li+jmod [T)) = fUi,rj) = f&,r).

Hence, f is |T|-cyclic with cyclic partition {(L, R, |T|)}.

O

In the next step, we decompose arbitrary graphs into nice subgraphs. To present
our decomposition we need to introduce the following notation related to the degree
of vertices.

Definition 4.7 (Sources, Sinks and Middle Vertices) Let G = (V, E) be a directed

graph. We denote by indeg(v) the in-degree of v, i.e., the number of edges terminating

at v, and by outdeg(v) the out-degree of v, i.e., the number of edges starting at v.
We partition V into the three sets Vi (G), Vinid (G), and Vg (G) defined as follows:

— Set Vsc(G) contains all source vertices of G, that is, vertices with no incoming
edges (i.e., indeg(v) = 0). This includes all isolated vertices.

— Set Vinig(G) contains all middle vertices of G, that is vertices with incoming and
outgoing edges (i.e., indeg(v), outdeg(v) > 1).

— Set Vsnk(G) contains the (remaining) sink vertices of G, that is, vertices with
incoming but no outgoing edges (i.e., indeg(v) > 1 and outdeg(v) = 0).

We additionally introduce the notion of deficiency which we use in the following
proofs.

Definition 4.8 (Deficiency) Let G = (V, E) be a directed graph. For all v € V, we
denote by defi(v):= max{outdeg(v) — indeg(v), 0} the deficiency of v.
We define Defi(G):=), .y defi(v) as the toral deficiency of the graph G.

We omit the graph G from the notation if it is clear from the context.
We use the deficiency to decompose the acyclic graphs into paths.

Lemma 4.9 Every directed graph G can be decomposed into Defi(G) paths and an
arbitrary number of cycles.

Proof We construct the decomposition F of G as follows. In the first phase, we exhaus-
tively find a directed cycle C in G. We add cycle C to the decomposition F and remove
the edges of C from G. We continue the above procedure until graph G becomes
acyclic. Next, in the second phase we exhaustively find a directed maximum length
path P (note that P may be a single edge). We add P to the decomposition F and
remove the edges of P from G. We repeat the second phase until the graph G becomes
edgeless.

@ Springer

Algorithmica (2024) 86:334-366 351

This concludes the construction of decomposition F. For correctness observe that
the above procedure always terminates because in each step we decrease the number
of edges of G. Moreover, at the end of the above procedure F is a decomposition of
G that consists only of paths and cycles.

We are left to show that the number of paths in F is exactly Defi(G). Note that
deleting a cycle in G does not change the value of Defi(G), hence the first phase of
the procedure does not influence Defi(G) and we can assume that G is acyclic.

Next, we show that deleting a maximum length path from an acyclic graph decre-
ments its deficiency by exactly 1. This then conclude the proof, because in the second
phase of the procedure the deficiency of G decreases from Defi(G) down to 0, which
means that exactly Defi(G) maximum length paths were added to F.

Let P be a maximum length, directed path in the acyclic graph G. Let s, t € V(G)
be the starting and terminating vertices of path P. Path P must start at a vertex
with a positive deficiency, because otherwise P could have been extended at the start
which would contradict the fact that P is of maximum length. Similarly, since P is of
maximum length it must terminate in a sink vertex. Hence defi(s) > 0 and defi(¢) = 0.
Moreover, every vertex v € P\{s, t} has exactly one incoming and one outgoing edge
in P. Therefore, in the graph G \ P the contribution to the total deficiency decreased
only in the vertex s and only by 1. This means that Defi(G) = Defi(G\ P) + 1 which
concludes the proof. O

Now we combine Lemmas 4.6 and 4.9 to show Lemma 4.10.

Lemma4.10 Let f: L x R — T be a function with |L| = 2 and let Gy be the
representation graph of f. Then, there exists a cyclic partition P for f with cost(P) <
|E(G r)| + Defi(G).

Proof First, use Lemma 4.9 to decompose the graph into cycles and Defi(G) paths.
Then, for each of these paths and cycles, use Lemma 4.6 to obtain the cyclic minor.
By Observation 4.5, these minors form a cyclic partition for the function represented
by G y. Let P be the resulting cyclic partition.

It remains to analyze the cost of the cyclic partition P. By construction, each cyclic
minor in P corresponds to a path or a cycle (possibly of length 1). By Lemma 4.6 the
cost of a path or a cycle is the number of vertices it contains. Thus, for a path, the
cost is equal to the number of edges plus one, and for a cycle the cost is equal to the
number of edges. Hence, the cost of P is bounded by the number of edges of G plus
the number of paths in the decomposition. The latter is precisely Defi(G r) by Lemma
4.9. O

Cyclic Partitions Using a Direct Construction In the following, we use a different
method to construct a cyclic partition of the function f. Instead of decomposing the
graph into nice subgraphs, we directly construct a partition and bound its cost.

Lemma4.11 Let f: L x R — T be a function with |L| = 2 and let Gy be the
representation graph of f. Then, there is a cyclic partition P of f with cost(P) <
V(G)+ [Vimid(G).

@ Springer

352 Algorithmica (2024) 86:334-366

Proof For each £ € L, we use a single cyclic minor. Let L = {{g, £1}. Fori € {0, 1}
define T; = {f(¢;,r) | r € R} and k; = |T;|. Then, P:={(¢;, R, k;) | i € {0, 1}}is
the cyclic partition of f.

To see that ({¢;}, R, k;) is a cyclic minor for i € {0, 1}, assume w.l.o.g. that T; =
{0,1,...,k; — 1} and define o7, (¢;) = 0, or(r) = f(¢;,r), and o7 (t) = ¢t. Thus, P
is a cyclic partition of f of cost kg + k1 = |Tp| + |T1].

Observe that |To| = [Vsrc (G f)| + | Vimid (G r)| as every ¢t € T has an outgoing edge
in Gy, and |T1| = |Vsnk (G £)| + | Vimid (G f)| as every ¢ € Tp has an incoming edge in
G y. Hence,

cost(P) = |Tol + |11
= |Vsrc(Gf)| + |Vmid(Gf)| + |Vsnk(Gf)| + |Vmid(Gf)|
=[V(G)+ Vmid(G p)l
which finishes the proof. O

Bounding the Cost of Cyclic Partitions Now, we combine the results from Lemmas
4.10 and 4.11,. We first show how the number of edges relates to the total deficiency
of a graph and the number of middle vertices.

Lemma 4.12 For every directed graph G it holds that | Vi (G)| +Defi(G) < |E(G)).

Proof Let m be the number of edges of G and let e, ...,e;, € E(G) be some
arbitrarily fixed order of its edges. For every i € {0, ..., m} let G; be the graph with
vertices V (G) and edges E(G;) = {ey, ..., e;}. Hence Gy is an independent set of
V(G)and G, = G.

Foreveryi € {0, ..., m}let LHS(G;):=|Vniq(Gi)| + Defi(G;) be the quantity we
need to bound. We show that

LHS(G;) — LHS(G;-1) < 1 foreveryi € [m] “.1)
which then concludes the proof because
m
[Vinid (G)| + Defi(G) = LHS(G) = Z (LHS(G;) — LHS(Gi-1)) =m = |E(G)].
i=1

From now, we focus on the proof of Eq.4.1. Forevery v € V(G) andi € {0, ..., m},
let defi; (v) be the deficiency of vertex v in graph G;. Next, for every v € V(G) and
i € [m], we define

A;(v):=defi; (v) — defi;_1 (v) + [V € Vimid(Gi) \ Vmid(Gi-1)]

Consider a step i € [m]. Let ¢; = (s, t) be an ith edge that starts at a vertex s and
terminates at a vertex t. It holds that

[Vinid(Gi)| + Defi(Gi) = |Vinid(Gi—1)| + Defi(Gi—1) + Ai(s) + A; (1).

@ Springer

Algorithmica (2024) 86:334-366 353

Therefore LHS(G;) — LHS(G;_1) = A;(s) + A;(¢) and to establish Eq.4.1 it is
enough to show that A;(s) < 1 and A; () <0.

Claim 4.13 Tt holds that A; (s) < 1.

Proof We consider two cases depending on whether # became a middle vertex. If it
happened that s € Viig(Gi)\Vmid(Gi—1), then s € Vi (G;—1) which means that s
has more incoming than outgoing edges in G;_1. Hence defi;_1(s) = defi;(s) = 0
and we conclude that A;(s) = 1.

Otherwise s ¢ Vimid(Gi)\ Vmid(Gi—1).Because the edge e; starts at s, the deficiency
of s can increase by at most 1. Hence, by (defi; (s) — defi;_1 (s)) < 1 we conclude that
Ai(s) < 1. O

Finally, we consider the end vertex ¢ of the edge e;.

Claim 4.14 It holds that A;(¢) < 0.

Proof We again distinguish two cases depending on whether ¢ became a middle
vertex. If t € Vipyig(Gi) \ Vimid(Gi-1), then t € Vg(Gi—1) and moreover, ¢ has
no incoming edges and the positive number of outgoing edges in G;_1. Therefore
defi; (t) = defi;_; () — 1 which means that A;(t) < 0.

It remains to analyse the case when t ¢ Viig(G;)\ Vmid(Gi—1). Since the edge e;
ends at ¢, the deficiency of ¢ cannot increase and defi; (v) < defi;_1(v). This means
that A;(r) <O0. O

By Claims 4.13 and 4.14, it follows that A;(s) + A;(¢#) < 1. This establishes Eq.4.1
and concludes the proof. O
Now we are ready to combine Lemmas 4.10 and 4.11, and prove Lemma 4.2.

Proof of Lemma 4.2 As before, we denote by G ; the representation graph of f.Let V
and E be the set of vertices and edges of graph G .

Let P; be the cyclic partition of f from Lemma 4.10 with cost at most |E| 4
Defi(G r) and let P, be the cyclic partition of f from Lemma 4.11 with cost at most
VI Vinid(G).

We define P as the minimum cost partition among P; and P,. This implies that

cost(P1) + cost(P»)
2
- E| + V] + [Vnid(G £)| + Defi(G ¢)
=< > .

cost(P) < min{cost(Py), cost(P)} <

Next, we use the inequality | Vipiq (G)| +Defi(G r) < |E| from Lemma 4.12, and get

VI
cost(P) < |E| + >
Since |E| < |R| and |V| = |T| this concludes the proof. O

@ Springer

354 Algorithmica (2024) 86:334-366

4.2 General Case: Proof of Lemma 4.1

Now we have everything ready to prove the main result of this section.

Proof of Lemma 4.1 We first handle the case when |L| is even. We partition L into
A = |L|/2 sets Ly, ..., L, consisting of exactly two elements. We use Lemma 4.2
to find a cyclic partition P; for each f;: L; x R — T. By definition of the cyclic
partition, P = |, ey Pi is a cyclic partition for f, hence it remains to analyze the
cost of P.

Observe that for each G; we have that |V;| < |T| and |E;| < |R|. By the definition
of the cost of the cyclic partition, we immediately get that

A
T
cost(P) < Zl:cost(P,-) <A- <|R| + =)
1=

If | L] is odd, then we remove one element £ from L and let Lo = {£}. There is a trivial
cyclic partition Py for fo: Lo x R — T of cost at most |R|. Then we use the above
procedure to find a cyclic partition P’ for the restriction of f to L\{¢} and R. Hence,
setting P = Py U P’ gives a cyclic partition for f with cost

cost(P) < cost(Py) + cost(P) < |R| + L%J <|R| + L?) '

Remark 4.15 1f |L| and |R| are both even, one can easily achieve a cost of

min (£ |R|+m K |L|+m =|L|'|R|+m-min(|L|,|R|)
2 2)2 2 2 4

by swapping the role of L and R and considering the function f’: R x L — T with
f'r,8) = f,r)forall £ € L andr € R.

4.3 Tight Example: Lower Bound on Lemma 4.2

To complement the previous results, we show that Lemma 4.2 is tight. That is, there is
afunction f: L x R — T with |L| = 2 such that no cyclic partition P of f has smaller
cost, i.e., cost(P) < |R| 4 |T|/2. In particular, this demonstrates that to improve the
constant ¢:=3/4 in Theorem 1.1 new ideas are needed.

Lemma 4.16 There exist sets L, R, and T with |L| = 2 and a function f: LXR — T
such that, every cyclic partition P of f has cost(P) > |R| + |T|/2.

Proof Define L = {£g, 1}, R = {r1,r2,r3,r4},and T = {a, b, c,d}. Let f be the
function as defined in Fig. 3. Note that we need to show that every cyclic partition of
f has cost at least 6.

@ Springer

Algorithmica (2024) 86:334-366 355

nnn o 0N
©

bo | a b c a @

b | b c| d|d \@/

Fig.3 The definition of the function f used by Lemma 4.16, which shows that the bound from Lemma 4.2
is tight. The representation graph of f is depicted on the right. We highlight the cyclic partition returned
by Lemma 4.16. The red path contains 4 vertices and the blue path contains 2 vertices. Hence, the cost of
that cyclic partition is 6. Lemma 4.16 shows that this is the best possible (Color figure online)

Let Pbe acyclic partition of f. We first claim that the cyclic partition P of f contains
a single cyclic minor, i.e., P = {(L, R, k)} for some integer k. For contradictions
sake, we analyse every other remaining structure of P and argue that in each case
cost(P) > 6 = |R|+|T|/2.

— Every cyclic minor in P is of the form ({{;}, B, k) (i.e., uses only values from a
single row). Then, cost(P) > 6 as each row has 3 distinct values.

— There is a cyclic minor ({£o, £1}, {r;}, k) in P. Since each column contains two
distinct elements, It must hold that £ > 2. Furthermore, the cyclic minors which
cover the remainder of the graph must have a total cost of 4 (or more) as all values
in T appear in the remainder of the graph. Hence cost(P) > 6.

— There is a cyclic minor ({€o, £1}, {r;, rj/}, k) in P. Since each pair of two columns
contains (at least) three values, it must hold that k > 3. There are at least 3 distinct
values in the remainder of the graph, hence, the cost of the remaining minors in P
is at least 3. Thus cost(P) > 6.

— There is a cyclic minor ({£o, £1}, R \ {r;}, k) in P. It holds that k > 4 as every
three columns include all values in 7. In each case, there are two different values
in the remaining column. Hence, the cost of the remaining minors is at least 2.
Therefore cost(P) > 6.

With this, we know that P contains only the single cyclic minor (L, R, k).Letor, og
and o7 be the relabelling functions of (L, R, k). From the definition of the relabeling
functions, we get that F:={o7(¢;) + or(r;) mod k | i € {0, 1}and j € {1,2,3}}
contains at least four elements.

We claim that (o7, (€g) +0og(r4) mod k) ¢ F.For the sake of contradiction assume
otherwise. Then, by the definition of o7, it musthold that oz (€g)+0or (r1) =k o1 (£o)+
oRr(ra). As this implies og(r1) = og(rs), we get

b= f(y,r) =or(or(£1) +or(r1) mod k)
=or(or({1) +or(r4) mod k) = f(£y,r4) =d,

which is a contradiction.
Similarly, we get that (o7 (¢1) + og(r4) mod k) ¢ F. Again assuming otherwise,
we have that og (r3) = og(r4) which then implies

c = f(lo,r3) =or(or () + or(r3) mod k)

@ Springer

356 Algorithmica (2024) 86:334-366

=or(oL(lo) + or(r4) mod k) = f(£o,rs) = a,

which is a contradiction.
Since, F U {oy (€y) + or(r4) mod k, o7 (£1) +or(rs) mod k} C Zj, contains at
least six distinct elements, we get k > 6 and therefore, cost(P) > 6. O

5 Querying a Generalized Convolution

In this section, we prove Theorem 1.4. The main idea is to represent the f-QUERY
problem as a matrix multiplication problem, inspired by a graph interpretation of
f-QUERY.

Let D be an arbitrary set and f: D x D — D. We assume D and f are fixed
throughout this section. Let g, h: D" — {—M, ..., M} and v € D" be a f-QUERY
instance. We use a||b to denote the concatenation of a € D™ and b € DX. That is
(ag,...,ay)||(by,...,by) = (a1, ...,a,, b1, ..., br). If we assume that n is even,
then, for a vector v e D", let vthigh) y(dow) ¢ pn/Z pe the unique vectors such that
y (high) ||V(10W) =vV. Ingeed, to achieve this assumption let n be odd, fix an arbitrary
d € D, and define g, h: D' (—M,...,M}asg(ui, ... uyp) = [u, =d] -
guy,...uy) and A(uy, ... uyy1) = Uy = d]L~ h(up,...u,) forallu € D" 1t
can be easily verified thatLg ®fh)(v) = (g ® ¢ h)(v|[(f(d,d))). Thus, we can solve
the f-QUERY instance g, h and v||(f(d, d)) and obtain the correct result.

We first provide the intuition behind the algorithm and then formally present the

algorithm and show correctness.
Intuition We define a directed multigraph G where the vertices are partitioned into four
layers Lhigh) 1 dow) Row) "and RMigh) Each of these sets consists of | D|"/2 vertices
representing every vector in D"/2. For ease of notation, we use the vectors to denote
the associated vertices; furthermore, the intuition assumes g and 4 are non-negative.
The multigraph G contains the following edges:

g(w||x) parallel edges from w € D"/? in Ltigh) to x € D"/2 in LUoW),

— One edge fromx € D2 in LU toy € D"/? in R if and only if x D y =
(low)

vioW),

h(z|y) parallel edges from y EID”/2 inRI" toz € D’l/z in R(igh)

One edge from z € D"/? in RMg o w € D/? in LMigD) if and only if w @ fzZ=
(high) ‘

v .

In the formal proof, we denote the adjacency matrix between LMeM and L1°W) by W,
between LU°%) apd R{IoW) by X, between RUoW) and R (high) by Y, and between R (high)
and L®eM by 7. See Fig. 4 for an example of this construction.

Let w,X,y,z € D"/? be vertices in (high) p dow) Rdow) 4nq Righ) Tt can be
observed that if (w||x) @ ¢ (y[lz) # v, then G does not contain any cycle of the form
W — X — y — Z — was one of the edges (X, y) or (z, w) is not present in the graph.
Conversely, if (w||x) @ ¢ (y[|z) = v, then one can verify that there are g(w||x) - h(z||y)
cycles of the formw — x — y — z — w. We therefore expect that (g ® ¢ h)(v)
is the number of cycles in G that start at some w € D"/2 in L®igh) have length four,
and end at the same vertex w in L€D again,

@ Springer

Algorithmica (2024) 86:334-366 357

Fig.4 Construction of the L(high)
directed multigraph G. Each

vertex in a layer corresponds to

the vector in D"/2. We

highlighted 4 vectors

W,X,Y,Z € D"/2 eachina

different layer. Note that the

number of 4 cycles that go g(w(x) h(zlly)
through all four w, X, y, z is edges edges
equal to g(w||x) - h(z|y). The
total number of directed 4-cycles
in this graph corresponds to the
value (g ® ¢ h)(v) and

tr((W-X-Y-2)

WSOz = v/(high)

R (high)

L(IOW) R(low)

Formal Proof We use the notation Matz(D"/? x D"/?) to refer to a | D|"/% x |D|"/?
matrix of integers where we use the values in D"/? as indices. The transition matrices
of g, h and v are the matrices W, X, Y, Z € Matz(D"/? x D"/?) defined by

Wy, x:=g(W|x) vw,x € D"/?
Xxy=[x®sy = vlV] vx,y € D"/?

Yy z:=h(z|ly) Vy,z € D"/?
Zywi=[w @z =v"eN] vz, w € D"?

Recall that the frace tr(A) of a matrix A € Matgz(m x m) is defined as
tr(A):=3"7" | A;,;. The next lemma formalizes the correctness of this construction.

Lemma5.1 Let n € N be an even number, g, h: D" — Z and v € D". Also, let
W, X,Y,Ze MatZ(D”/2 X D”/z) be the transition matrices of g, h and v. Then,

g®rm)(V)=t(W-X-Y-Z).

Proof For any w,y € D"/? it holds that,

W Xwy= Y Wax-Xxy= > [x&ry=vI"] gwlx). (.1

xeD"/2 xeDn/2

Similarly, for any y, w € D"/ 2 it holds that,

Y- Zyw= Y, Yoo Zow=) [Wo&;2=v""] 0@ly. (2

zeD"/? zeD"/2?
Therefore, for any w € D2,

(W‘X‘Y‘Z)w,w - Z (W‘X)w,y'(Y‘Z)y,w
yeD"/2

@ Springer

358 Algorithmica (2024) 86:334-366

=2 (3 xesy=vo] ~g<w||x)) (Y Iweyz=v0iE] ~h<z||y))

yEDn/Z xeDn/2 zeD"/2

= Y [xery=v""] [wa,z=v""T]. ow|x) - |y
X,y,ze D"/2

= Y [wix ey @ly) = v v g(wlx) - hizlly),
X,y,ze D"/2

where the second equality follows by (5.1) and (5.2). Thus,

w(W-X - Y -2)= Y (W-X-Y Zyw

weD"/2

= > > [wlix ey @ly) =v] - gwlx) - hzly)

weD"/2 x,y,ze D"/?

= > [uedrt=v]-g-h®)

u,te D"
=(g®r h)(v).

Now we have everything ready to give the algorithm for f-QUERY.

Proof of Theorem 1.4 The algorithm for solving f-QUERY works in two steps:

1. Compute the transition matrices W, X, Y, and Z of g, h and v as described above.
2. Compute and return tr(W - X - Y - Z).

By Lemma 5.1 this algorithm returns (g ® ¢ /) (v). Computing the transition matrices
in Step 1. requires O(]D|" - polylog(M)) time. Observe the maximal absolute values
of an entry in the transition matrices is M. The computation of W - X -Y - Z in Step 2.
requires three matrix multiplications of |D|"/? x | D|"/? matrices, which can be done
in O((|D|M*)e . polylog(M)) time. Thus, the overall running time of the algorithm is
O(| D[/ - polylog(M)). O

6 Conclusion and Future Work

In this paper, we studied the f-CONVOLUTION problem and demonstrated that the
naive brute-force algorithm can be improved for every f: D x D — D. We achieve
that by introducing a cyclic partition of a function and showing that there always
exists a cyclic partition of bounded cost. We give an O((c|D|*)" - polylog(M)) time
algorithm that computes f-CONVOLUTION for c¢:=3/4 when |D| is even.

The cyclic partition is a very general tool and potentially it can be used to achieve
greater improvements for certain functions f. For example, in multiple applications
(e.g., [19, 23, 29, 34]) the function f has a cyclic partition with a single cyclic minor.
Nevertheless, in our proof we only use cyclic minors where one domain is of size is

@ Springer

Algorithmica (2024) 86:334-366 359

(@)

albla al|l bl c alb
blecl|e blal| b b|d]|d

Fig. 5 Here are three concrete examples of functions f for which we expect that the running times for
f-CONVOLUTION should be 0(3” polylog(M)), 0(3" - polylog(M)) and 0(4" polylog(M)). However,
the best cyclic partitions for this functions have costs 4, 4 and 5 (the partitions are highlighted appropriately).
This implies that the best running time, which may be attained using our techniques are O(4" - polylog(M)),
O™ - polylog(M)) and O(5" - polylog(M)) (Color figure online)

at most 2. We suspect that larger minors have to be considered to obtain better results.
Indeed, the lower bound from Lemma 4.16 implies that our technique of considering
two arbitrary rows together cannot give a faster algorithm than @((3 /4 - |DIP)" -
polylog(M)) in general. An improved algorithm would have to select these rows very
carefully or consider three or more rows at the same time.

We leave several open problems. Our algorithm offers an exponential (in n)
improvement over a naive algorithm for domains D of constant size. Can we hope for
an 5(|D|(2_€)” - polylog(M)) time algorithm for f-CONVOLUTION for some € > 0?
We are not aware of any lower bounds, so in principle even an O(|D|" - polylog(M))
time algorithm is plausible.

__ Ideally, we would expect that the f-CONVOLUTION problem can be solved in
O((JLI" + |R|" + |T|") - polylog(M)) for any function f: L x R — T.InFig.5 we
include three examples of functions that are especially difficult for our methods.

Finally, we gave an (~9(| D|®"/2.polylog(M)) time algorithm for f-QUERY problem.
For w = 2 this algorithm runs in almosL linear-time, however for the current bound
w < 2.372 our algorithm runs in time O(|D|" 1" . polylog(M)). Can f-QUERY be
solved in O(|D|" - polylog(M)) time without assuming w = 2?

Acknowledgements We would like to thank Karl Bringmann and Jesper Nederlof for useful discussions.
Barig Can Esmer and Philipp Schepper are part of Saarbriicken Graduate School of Computer Science,
Germany.

Funding Open Access funding enabled and organized by Projekt DEAL. Research supported by the Euro-
pean Research Council (ERC) consolidator Grant No. 725978 SYSTEMATICGRAPH and the project
TIPEA (Grant No. 850979).

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of
this article.

OpenAccess This articleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

@ Springer

360 Algorithmica (2024) 86:334-366

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proof of Theorem 2.6

In this section we prove Theorem 2.6. We crucially rely on the following result by van
Rooij [33].

Theorem A.1 ([33, Lemma 3]) There is an algorithm which given k € N, r € NK
a prime p, an rj-th primitive root of unity w; for every j € [k] and two functions
8, h: Zy X+ - XLy, — Zcomputesthe cyclic convolution of g and h modulo p (that is,
return a function ¢ such that ¢ (q) = (g©h)(v) mod p foreveryv € Zy, x ---xZy,)
in O(Rlog(R)) arithmetic operations where R =]_[l;zl rj.

Ideally, we would like to use the algorithm from Theorem A.1 with a sufficiently
large prime p such that the values of g ® & could be recovered from the values of
g © h modulo p. Finding such a prime p along with the required roots of unity is,
however, a non trivial task which we do not know how to perform deterministically
while retaining the running time at O (R - polylog(M)). The basic idea behind our
approach is to compute g © h modulo p; for a sufficiently large number of distinct
small primes p; using Theorem A.1. If [[; p; is sufficiently large, then the values of
g O h can be uniquely recovered using the Chinese Remainder Theorem.

Theorem A.2 (Chinese Remainder Theorem) Let py, ..., py denote a sequence of
integers that are pairwise coprime and define P:=]_L.E[m] pi- Also let 0 < a; < p;
for alli € [m]. Then there is a unique number 0 < s < P such that

s =a; mod p;

foralli € [m]. Moreover, there is an algorithm that, given p1, ..., pmanday, . .., ay,
computes the number s in time O((log P)?).

To find the small primes for the application of the Chinese Remainder Theorem, we
additionally use density properties of primes in arithmetic progression. Given g € N,
we say p € Nis a g-prime if p is a prime number and p = 1 mod g. We use
prime, (i) to denote the i-th g-prime. That is, prime, (i) is a g-prime such that the
number of g-primes smaller than prime, (i) is exactly i — 1. Also, forany B, g € N,
we define

m
prime_bound, (B):=min {m € N | Hprimeq(i) > B

i=1

to be the minimal number m such that the product of the first m g-primes is at least
B. We use the following upper bound on prime_bound.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2024) 86:334-366 361

LemmaA.3 Let B, g € Nbeintegers suchthat B,q > 3andm = prime_boundq(B).
Then m < In(B) + 1 and primeq (m) < max { exp (8 N ln3(q)) , exp(q), 2q -
In(B)}.

In the proof of Lemma A.3 we use a known result for the density of primes in arithmetic
progressions taken from [3]. For any x, g € N, define 6(x, ¢) to be the sum of In(p)
for all g-primes p such that p < x. Formally, we define

0(x,q):= Z[[primeq (i) < x] - In (prime, (1)) .

i=1

With this definition, we can now state the result about the density of primes in arithmetic
progressions.

Lemma A.4 ([3, Corollary 1.8]) Let g and x be integers with q > 3 and x > exp(8 -
Ja - In3 g). Then,

X
0(x,q) > ——
&)= 05 T 160 Inx

where @ is Euler’s totient function.
Now we have everything ready to prove Lemma A.3.

Proof of Lemma A.3 We first prove the bound for m. By the definition of m as m =
prime_bound, (B), we get]—[:.":711 prime, (i) < B. As In(prime, (i)) > 1 for every i,
we have

m—1 m—1
m—1<) In(prime,(i)) =In (]‘[primeq(i)> < In(B)

i=1 i=1

which implies m < In(B) + 1.
Now we prove the bound for prime, (m). For this we set

X = max {exp (8 “Jq - ln3(q)) , exp(q), 2q - ln(B)} .
By Lemma A.4, we get

X
o(q) 160 Inx

(50 ~ 7w0-7s)
= X _—
¢(q) 160 -Inx

and, using ¢(¢) < g and In(x) > ¢, we have

1 1
0 s > — —
(.9 zx (g 160-q>

0(x,q) =

@ Springer

362 Algorithmica (2024) 86:334-366

X

v

1
2.q
In B.

v

(A1)

Let £ = max{j | prime,(j) < x} be the index of the largest g-prime which is not
greater than x. Then,

L V4
]_[prime, (i) = exp (Z In(prime,, (i)))

i=1 i=l1

= exp (Z[[primeq (i) < x]- ln(primeq(i))>

i=1

=exp(0(x,q)) = B,

where the inequality follows from (A.1). By the definition of prime_boundq, we get
m = prime_bound, (B) < {. Hence, prime,(m) < prime,(¢) < x which finishes
the proof. O

In the remainder we give the O ((H{‘C:l r;) - polylog(M)) algorithm for the K-
CycLic CONVOLUTION PROBLEM.

Proof of Theorem 2.6 Fix a finite set K = {ci,...,c¢} € N which is considered as
a constant throughout this proof. Let integers k, M € N, integer vector r € K* and
functions g, h: Z — {—M, ..., M} where Z = Zy, x --- X Zy, be an input for the
K-CycLIiIC CONVOLUTION PROBLEM.

For every t € [{], let D, be the prime factors of ¢;. We define R =]_[1;=1 r;

and observe that for any v € Z it holds that |(g ® h)(V)| < R - M 2. Further define
B:=3-R-M?andq = [[.cxc =]_[f:l c¢;. Assume without loss of generality that
g > 3 and note that ¢ depends only on the fixed finite set K and therefore, can be
viewed as a constant.

With this notation we can formally state the algorithm.

1. Iterate over the numbers of the form g - a + 1 fora € {1, 2, ...} and test for each
one if it is prime. The process continues until the product of the g-primes exceeds
B. Denote these numbers by pi, ..., pnm-

2. Forevery i € [m] and t € [£], iterate over all elements x € [F,, and test whether
x¢ =1 mod p; and x/¢ £ 1 mod p; for every d € D;. If so, then set x as the
¢;-th root of unity in I ,.

3. Foralli € [m], use Theorem A.l with the prime p; and appropriate roots of unity
to compute the function f): Z — 7Z p; defined by

FOw):=(g©h)(v) mod p; VveZ.
4. Define P = []i., pi, we define a function fp: Z — Zp as follows. For each

v € Z, use the Chinese Remainder Theorem (cf. Theorem A.2) to compute the
value 0 < fp(v) < P such that fp(v) = f@(v) mod p; foralli € [m].

@ Springer

Algorithmica (2024) 86:334-366 363

5. Finally, compute the function f: Z — Z using the formula

) = fr(v) ?ffP(V) <
fr(v) =P if fp(v) >

|~ o~

for all v € Z and return f.

Before we move to proving the correctness, we first argue that the algorithm is well-
defined. From the definition, the first step computes the first m = prime_bound, (B)
g-primes such that p; = prime, (1), ..., p, = prime, (m). It remains to show that,
for every i € [m] and ¢t € [£], the ¢;-th primitive root of unity in IF, exists. Indeed,
since ¢; divides p; — 1 (which is in turn true as p; = 1 mod ¢ and ¢; divides q),
such a root of unity exists. Moreover, as D; contains all prime factors of ¢;, one can
easily show that it actually suffices to consider only values of the form x“/¢ for every
d € D; to correctly decide if x is a primitive c;-th root of unity in IF ,,. The application
of Theorem A.1 in the second step is possible asr; € K = {c1, ..., c¢} for every
J € [n] and the roots of unity are computed by the second step.
Now we argue about the correctness of the algorithm.

Claim A.5 Forall v € Z, we have f(v) = (g © h)(V).

Proof As the algorithm is well defined, the third step computes, the convolution of g
and & modulo p; for every i € [m].

Now fix some v € Z. We define b(v) = (h © g)(v) mod P and observe 0 <
b(v) < P.Moreover, for every i € [m] it holds that

b(v) mod p; = ((h©g)(V) mod P) mod p; = (hOg)¥) mod pi = fW).
Since Theorem A.2 also guarantees the resulting number to be unique, it follows that
fp(v) = b(v) which implies fp(v) = (g ©® h)(v) mod P.

Now we focus on the last step. By the definition of m = prime_bound, (B), it
holdsthat P =[], pi > B=3-R-M 2. Consider the following cases.

— Incase (g © h)(v) > 0 we have
, B
(gONWV)<R-M <5§P.

This implies that fp(v) = (g ©h)(v) mod P = (g O h)(v) < % Thus, f(v) =
fp(v) = (g O h)(¥).
— Incase (g ® h)(v) < 0 it holds that
(§O M) = —R-M> > —P.

This now implies that

fP(V)=(g®h)(V)+P2P—R-M2>g.

@ Springer

364 Algorithmica (2024) 86:334-366

Hence, f(v) = fp(v) = P=(gOh))+ P —P =(gOh)(V).
Hence, f(v) = (g © h)(v) for all v € Z, which concludes the proof. O

From Claim A.5 we know that the algorithm is correct and the function f returned
by the algorithm is indeed (g O &). It only remains to analyze the running time of the
procedure.

Claim A.6 The procedure terminates in time O (R - polylog(M)).

Proof We consider each step on its own.

1. Since prime testing can be done in polynomial time (in the representation size of
the number), we can find the sequence py, ..., p; in time O(p,, - polylog p,).
By Lemma A 4, and since ¢ is a constant, it follows that

Pm < max Hexp (8 -Jq - ln3(q)> , exp(q), 2q - ln(B)}
= O(In(B)) = O(log(R - M))

and m < In(B) + 1 = In(3RM?) + 1. Hence, the running time of this step is
O(pm - polylog p) = O(polylog(R - M)).

2. For each i € [m] and t € [€], in Step 2. of the algorithm we iterate over p;
values and check |Dy| values. Since D; are the prime factors of ¢; (and hence
| D;| is a constant), this takes time O(p; polylog p;) which can be bounded by
O(polylog(R - M)). Since m < log(3- R - M?) + 1 and ¢ is a constant, the overall
running time of the step is O(polylog(R - M)).

3. By Theorem A.1, the number of arithmetic operations required to compute f @) is
O(R -log(R)). Since each arithmetic operation is performed in ¥, , the total time
spent to compute f@ is

O(R - log(R) - Iog(pi) = O(R - 1og(R) - log* (log(R - M)))
= O(R - polylog(R - M)),

where the first equality holds because p; < p,, = O(log(R - M)). Finally, as
m = O(log(R - M)), the overall computation time of this step is m - O(R -
polylog(R - M) = O(R - polylog(R - M)).

4. As we iterate over all R values from Z and by Theorem A .2, this computation can
be done in time O(R - (log P)?). Since log P <m- p, < O(polylog(R - M)) the
overall running time of this step is O(R - polylog(R - M)).

5. As we again iterate over all elements from Z, the computation time of this step is
O(R -polylog P) = O(R -polylog(R - M)) where we use P = O(polylog(R - M)).

As the running time of each step is at most O (R - polylog(M)), the overall running
time of the algorithm is O (R - polylog(M)). O

The proof now follows by Claim A.5 and A.6. O

@ Springer

Algorithmica (2024) 86:334-366 365

References

10.

11.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

. Abboud, A., Williams, R.R., Yu, H.: More applications of the polynomial method to algorithm design.

In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pp. 218-230. SIAM (2015)

. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Marx D (ed.)

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Con-
ference, January 10-13, 2021. SIAM, pp. 522-539 (2021)

. Bennett, M.A., Martin, G., O’Bryant, K., Rechnitzer, A.: Explicit bounds for primes in arithmetic

progressions. Ill. J. Math. 62(1-4), 427-532 (2018)

. Beth, T.: Verfahren der schnellen Fourier-Transformation: die allgemeine diskrete Fourier-

Transformation—ihre algebraische Beschreibung, Komplexitit und Implementierung, vol. 61. Teubner
(1984)

. Bjorklund, A., Husfeldt, T.: The parity of directed Hamiltonian cycles. In: 54th Annual IEEE Sympo-

sium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pp. 727-735. IEEE Computer Society (2013)

. Bjorklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Mobius: fast subset convolution.

In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13, 2007, pp. 67-74. ACM (2007)

. Bjorklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings in halves. In: Fiat A,

Sanders P (eds.) Algorithms—ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pp. 578-586.
Springer (2009)

. Bjorklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Covering and packing in linear space. Inf. Process.

Lett. 111(21-22), 1033-1036 (2011)

. Bjorklund, A., Husfeldt, T., Kaski, P., Koivisto, M., Nederlof, J., Parviainen, P.: Fast zeta transforms

for lattices with few irreducibles. ACM Trans. Algorithms 12(1), 4:1-4:19 (2016)

Bjorklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion—exclusion. SIAM J. Comput.
39(2), 546-563 (2009)

Brand, C.: Discriminantal subset convolution: Refining exterior-algebraic methods for parameterized
algorithms. J. Comput. Syst. Sci. 129, 62-71 (2022)

. Bringmann, K., Fischer, N., Hermelin, D., Shabtay, D., Wellnitz, P.: Faster minimization of tardy

processing time on a single machine. Algorithmica 84(5), 1341-1356 (2022)

Bringmann, K., Kiinnemann, M., Wegrzycki, K.: Approximating APSP without scaling: equivalence
of approximate min-plus and exact min-max. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pp. 943-954 (2019)

Chan, T.M., He, Q.: Reducing 3SUM to convolution-3SUM. In: Farach-Colton, M., Ggrtz, L.L. (eds.)
3rd Symposium on Simplicity in Algorithms, SOSA 2020, Salt Lake City, UT, USA, January 67,
2020, pp. 1-7. SIAM (2020)

Chan, T.M., Williams, R.R.: Deterministic APSP, Orthogonal Vectors, and more: quickly derandom-
izing Razborov—Smolensky. ACM Trans. Algorithms 17(1), 2:1-2:14 (2021)

Clausen, M.: Fast generalized Fourier transforms. Theor. Comput. Sci. 67(1), 55-63 (1989)

Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math.
Comput. 19(90), 297-301 (1965)

Cygan, M., Mucha, M., Wegrzycki, K., Wiodarczyk, M.: On problems equivalent to (min, +)-
convolution. ACM Trans. Algorithms 15(1), 14:1-14:25 (2019)

Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving
connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms
18(2), 17:1-17:31 (2022)

Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput. Sci. 411(40-42), 3701—
3713 (2010)

Duan, R., Wu, H., Zhou, R.: Faster Matrix Multiplication via Asymmetric Hashing. CoRR
arXiv:2210.10173 (2022)

Hall, P.: A contribution to the theory of groups of prime-power order. Proc. Lond. Math. Soc. 2(1),
29-95 (1934)

Hegerfeld, F., Kratsch, S.: Solving connectivity problems parameterized by treedepth in single-
exponential time and polynomial space. In: Paul, C., Blédser, M. (eds.) 37th International Symposium

@ Springer

http://arxiv.org/abs/2210.10173

366

Algorithmica (2024) 86:334-366

24.

25.

26.

27.
28.

29.

30.

31.

32.

34.

35.

36.

37.
38.

39.
40.

41.

on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France,
volume 154 of LIPIcs, pp. 29:1-29:16. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2020)
Hegerfeld, F., Kratsch, S.: Tight algorithms for connectivity problems parameterized by clique-width.
In: Proceedings of ESA (2023) (to appear)

Kiinnemann, M., Paturi, R., Schneider, S.: On the fine-grained complexity of one-dimensional dynamic
programming. In: Chatzigiannakis, 1., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Collo-
quium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pp. 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2017)
Lincoln, A., Polak, A., Williams, V.V.: Monochromatic triangles, intermediate matrix products, and
convolutions. In: Vidick, T. (ed.) 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12—14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pp. 53:1-53:18. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2020)

Nederlof, J.: Personal communication (2022)

Nederlof, J., Pawlewicz, J., Swennenhuis, C.M.F., Wegrzycki, K.: A faster exponential time algorithm
for bin packing with a constant number of bins via additive combinatorics. In: Marx, D. (ed.) Proceed-
ings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10-13, 2021, pp. 1682-1701. SIAM (2021)

Nederlof, J., Pilipczuk, M., Swennenhuis, C.M.F., Wegrzycki, K.: Hamiltonian cycle parameterized
by treedepth in single exponential time and polynomial space. In: Adler, I., Miiller, H. (eds) Graph-
Theoretic Concepts in Computer Science—46th International Workshop, WG 2020, Leeds, UK, June
24-26, 2020, Revised Selected Papers, volume 12301 of Lecture Notes in Computer Science, pp.
27-39. Springer (2020)

Nederlof, J., Wegrzycki, K.: Improving Schroeppel and Shamir’s algorithm for subset sum via Orthog-
onal Vectors. In: Khuller, S., Williams, V.V. (eds.) STOC *21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pp. 1670-1683. ACM (2021)
Rockmore, D.N.: Recent progress and applications in group FFTs. In: Byrnes, J. (ed.) Computational
noncommutative algebra and applications, pp. 227-254. Springer, Berlin (2004)

Umans, C.: Fast generalized DFTs for all finite groups. In: Zuckerman, D. (ed.) 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November
9-12, 2019, pp. 793-805. IEEE Computer Society (2019)

. van Rooij, J.M.M.: Fast algorithms for join operations on tree decompositions. In: Fomin, F.V., Kratsch,

S., van Leeuwen, E.J. (eds.) Treewidth, Kernels, and Algorithms—Essays Dedicated to Hans L. Bod-
laender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science,
pp. 262-297. Springer (2020)

van Rooij, JM.M.: A generic convolution algorithm for join operations on tree decompositions. In:
Santhanam, R., Musatov, D. (eds.) Computer Science—Theory and Applications—16th International
Computer Science Symposium in Russia, CSR 2021, Sochi, Russia, June 28-July 2,2021, Proceedings,
volume 12730 of Lecture Notes in Computer Science, pp. 435-459. Springer (2021)

van Rooij, JJM.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree decompositions
using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.) Algorithms—ESA 2009, 17th
Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume
5757 of Lecture Notes in Computer Science, pp. 566-577. Springer (2009)

Vassilevska-Williams, V.: On some fine-grained questions in algorithms and complexity. In: Proceed-
ings of the International Congress of Mathematicians (ICM 2018), pp. 3447-34 (2018)

Weisner, L.: Abstract theory of inversion of finite series. Trans. Am. Math. Soc. 38(3), 474484 (1935)
Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput.
Sci. 348(2-3), 357-365 (2005)

Wiodarczyk, M.: Clifford algebras meet tree decompositions. Algorithmica 81(2), 497-518 (2019)
Yates, F.: The design and analysis of factorial experiments. Imperial Bureau of Soil Science. Technical
Communication (1937)

Zamir, O.: Breaking the 2" barrier for 5-coloring and 6-coloring. In: Bansal, N., Merelli, E., Worrell,
J. (eds.) 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021,
July 1216, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pp. 113:1-113:20.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Computing Generalized Convolutions Faster Than Brute Force
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Generalized Convolution
	3.1 Properties of Projections

	4 The Existence of a Low-Cost Cyclic Partition
	4.1 Special Case: |L| = 2
	4.2 General Case: Proof of Lemma 4.1
	4.3 Tight Example: Lower Bound on Lemma 4.2

	5 Querying a Generalized Convolution
	6 Conclusion and Future Work
	Acknowledgements
	A Proof of Theorem 2.6
	References

