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Abstract
For a set Q of points in the plane and a real number δ ≥ 0, let Gδ(Q) be the graph
defined on Q by connecting each pair of points at distance at most δ.We consider the
connectivity of Gδ(Q) in the best scenario when the location of a few of the points is
uncertain, but we know for each uncertain point a line segment that contains it. More
precisely, we consider the following optimization problem: given a set P of n − k
points in the plane and a set S of k line segments in the plane, find the minimum
δ ≥ 0 with the property that we can select one point ps ∈ s for each segment s ∈ S
and the corresponding graph Gδ(P ∪ {ps | s ∈ S}) is connected. It is known that the
problem is NP-hard. We provide an algorithm to exactly compute an optimal solution
inO( f (k)n log n) time, for a computable function f (·). This implies that the problem
is FPT when parameterized by k. The best previous algorithm usesO((k!)kkk+1 ·n2k)
time and computes the solution up to fixed precision.

Keywords Computational geometry · Uncertainty · Geometric optimization · Fixed
parameter tractability · Parametric search

1 Introduction

For a setQ of points in the plane and a real value δ ≥ 0, let Gδ(Q) be the graph with
vertex set Q and edges connecting each pair of points p, q at Euclidean distance at
most δ. Connectivity of the graph Gδ(Q) is one of the basic properties associated to
the point set Q. For example, if the points represent devices that can communicate
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and δ is the broadcasting range of each device, then the connectivity ofGδ(Q) reflects
whether all the devices form a connected network and they can exchange information,
possibly through intermediary devices.

In this work we consider the problem of finding the smallest δ such that Gδ(Q) is
connected, when some of the points fromQ are to be chosen from prescribed regions.
More precisely, we consider the following optimization problem.

Connectivity
Given a set U = {U1, . . . ,Uk} of regions in the plane and a set P =
{pk+1, pk+2, . . . , pn} of points in the plane, find

δ∗ = min δ

s.t. pi ∈ Ui , for i = 1, . . . , k

Gδ({p1, . . . , pn}) is connected.

In this work we will provide efficient algorithms for theConnectivity problemwhen
the regions are line segments and k is small. See Fig. 1 for an example.

There are other ways to characterize the connectivity of the graph Gδ(Q). Let
D(p, r) denote the closed disk of radius r centered at p. Then, the graph Gδ(Q) is
connected if and only if

⋃
p∈Q D(p, δ/2) is a connected set. Another characterization

is provided by the Euclidean Minimum Bottleneck Spanning Tree of Q, denoted by
MBST(Q), a spanning tree ofQwhere the length of the longest edge, called bottleneck
edge, is minimized; a formal definition is given below. The graphGδ(Q) is connected
if and only if MBST(Q) uses only edges of length at most δ.

It follows that the problem Connectivity is equivalent to the following problems:

• Choose a point pi per region Ui , where i = 1, . . . , k, in such a way that⋃
i=1,...,n D(pi , r) is connected and r is the smallest possible; here the minimum

r is δ∗
2 .• Choose a point pi per regionUi , where i = 1, . . . , k, in such away that theMBST

on points p1, p2, . . . , pn has shortest bottleneck edge.

Fig. 1 Example of the instances we consider, where the regions are line segments. Left: input data with two
segments. Center and right: two possible choices of points (p1, p2) ∈ U1 ×U2 and the resulting graph Gδ

for the minimum δ that makes Gδ connected. The edges of length δ are marked in dashed red; δ is different
in each case
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1.1 RelatedWork

The problem we consider, Connectivity, was introduced by Chambers et al. [9]
under the name ofBest-Case Connectivity with Uncertainty. In this setting each region
Ui is the uncertainty region for the point pi . They also considered the worst-case
connectivity scenario, where one seeks for the minimum δ such thatGδ({p1, . . . , pn})
is connected for all choices pi ∈ Ui , where i = 1, . . . , k. Thus, while in the best case
wewant to select points to achieve connectivity, in the worst case wewant to guarantee
connectivity for all possible choices.

Chambers et al. [9] showed that Connectivity is NP-hard even in the very
restricted case when the uncertainty regions are vertical line segments of unit length
or when the uncertainty regions are axis-parallel unit squares. For the case when the
regions are line segments, they provide an algorithm that in O((k!)kkk+1 · (n + k)2k)
time computes an optimal solution up to fixed precision. The precision appears because
of rounding the intermediary computations.

The case when the uncertainty regions are the whole plane, thus U1 = · · · =
Uk = R

2 has been studied earlier under names like bottleneck Steiner tree problem or
bottleneck k-Steiner tree problem.The results bySarrafzadeh andWong [24] imply that
the problem isNP-hard.Ganley andSalowe [13] provided an approximation algorithm;
they also considered the rectilinear metric. Wang and Li [29] provided approximation
algorithms, while Wang and Du [28] provided inapproximability results, assuming
P�=NP. Bae et al. [3] showed that the case of k = 1 can be solved exactly inO(n log n)

time, and the case k = 2 can be solved in O(n2) time. Bae et al. [2] showed that
the problem can be solved in f (k) · (nk + n log n) time, for some function f (·).
This last paper provides algorithms for the L1 and L∞ metrics with a better running
time, f (k) · (n log2 n). Very recently, Bandyapadhyay et al. [4] have shown that the
problem can be solved in f (k) · nO(1) time for some function f (·), which means that
the bottleneck k-Steiner tree problem in the plane is fixed-parameter tractable with
respect to k. The techniques can also be used in other L p metrics.

Instead of minimizing the longest edge of the spanning tree (bottleneck version),
one could minimize the total length of the tree. In the k-Steiner tree problem, we are
given a set P of points, and we want compute a shortest Steiner tree for P with at
most k Steiner points. This is similar to the Connectivity problem because we can
take U1 = · · · = Uk = R

2, but the optimization criteria is the sum of the lengths of
the edges. The 1-Steiner tree problem was solved in O(n2) time with the algorithm
of Georgakopoulos and Papadimitriou [14]. Brazil et al. [7] solved the k-Steiner tree
problem inO(n2k) time. Their technique can be adapted to the problemConnectivity
and, assuming that the uncertainty regions are convex of constant description size, the
problem reduces to O(n2k) instances of quasiconvex programming [12], each with
O(k) variables and constraints.

Closer to our setting is the work of Bose et al. [6], who considered the version of
the k-Steiner tree problemwhere the points have to lie on given lines, and showed how
to solve it in O(nk + n log n) time. Like the work of Brazil et al. [7], their technique
can be adapted to the problem Connectivity with uncertain segment regions. With
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this, the Connectivity problem with uncertain segments reduces toO(nk) instances
of quasiconvex programming [12], each with O(k) variables and constraints.

The problem Connectivity is an instance of the paradigm of computing optimal
geometric structures for points sets with uncertainty or imprecision: each point is
specified by a region in which the point may lie. In this setting, we can model that the
position of some points is certain by taking the region to be a single point. Usually one
considers themaximumand theminimumvalue that canbe attained for somegeometric
structure, such as the diameter, the area of the convex hull, or the minimum-area
rectangle that contains the points. This trend was started by Löffler and van Kreveld;
see for example [18, 19, 27] for some of the earlier works in this paradigm.

1.2 Our Results

We consider the Connectivity problem when each of the regions are line segments.
To emphasize this, we use S instead of U and si instead of Ui .

First, we consider the decision version of the problem: Given a set S = {s1, . . . , sk}
of k segments in the plane, a setP = {pk+1, pk+2, . . . , pn} of n−k points in the plane,
and a value δ ≥ 0, decide whether there exist points pi ∈ Si for i = 1, . . . , k such that
Gδ({p1, . . . , pn}) is connected. We call this version of the problem DConnectivity.

Our first main result is showing that DConnectivity for segments can be solved
using f (k)n log n operations, for some computable function f (·). In fact, after a
preprocessing of the instance takingO(k2n log n) time, we can solveDConnectivity
for any δ ≥ 0 using f (k)n operations. For this we use the following main ideas:

• Instead of searching for connectivity, we search for a MBST.
• It suffices to restrict our attention to MBST of maximum degree 5.
• TheMBSTwill have atmostO(k) edges that are not part of theminimum spanning
tree of P .

• We can iterate over all the possible combinatorial ways how the uncertain points
interact with the rest of the instance. Such interaction is encoded by a so-called
topology tree with O(k) nodes, and there are kO(k) different options.

• For each topology tree τ , we can employ a bottom-up dynamic programming
across τ to describe all the possible placements of points on the segment that are
compatible with the subtree.

Our strongest result is showing that Connectivity for segments can be solved
using f (k)n log n operations, for some other computable function f (·). For this we
use parametric search [20, 21], a generic tool to transform an algorithm for the decision
version of the problem into an algorithm for the optimization problem. We provide a
careful description of the challenges that appear when using parametric search in our
setting. While we can use Cole’s technique [10] in one of the steps, we provide an
alternative that is simpler, self-contained and uses properties of the problem. Even-
tually, we manage to solve the optimization problem without increasing in the time
complexity of the algorithm the dependency on n; the dependency on k increases
slightly.

Our result shows that Connectivity for line segments is fixed-parameter tractable
when parameterized by the number k of segments. The running time of our algorithms
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are a large improvement over the best previous time bound ofO(n2k) by Chambers et
al. [9] and the bound ofO(nk + n log n) that could be obtained adapting the approach
of Bose et al. [6].

Compared to the work of Chambers et al. [9], we note that they did not consider the
decision problem, but instead guessed a critical path that defines the optimal value.
Then they show that there areO(n2k) critical paths. Compared to the work of Bose et
al. [6] and Brazil et al. [7], we first note that they are minimizing the sum of the length
of the edges. Optimizing the sum is usually harder than optimizing the bottleneck
value. Also, considering the decision problem is often useful for the bottleneck version
because it reduces the number of combinatorial options to consider, but this benefit is
rarely present when minimizing the sum. To be more precise, in the decision version
of our bottleneck problem, to extend a partial solution we only need to know whether
it can be connected to a connected subgraph, but we do not care to which vertex of the
connected subgraph we are connecting. In contrast, when minimizing the sum of the
lengths one has to carry the information of whom do you connect to and how much it
costs. This means that we have to carry a description of the cost function, which has
a larger combinatorial description complexity.

When k = O(1), our algorithms take O(n log n) time, which is asymptotically
optimal: since finding a maximum-gap in a set of n unsorted numbers has a lower
bound of �(n log n) in the algebraic decision tree model, the problem of finding a
MBST also takes �(n log n), even without uncertainty regions.

In our problem, we have to be careful about the computability of the numbers
appearing through the computation. It is easy to note that we get a cascading effect of
square roots. A straightforward approach is to round the numbers that appear through
the computation to a certain precision and bound the propagation of the errors. This
is easy and practical, but then we do not get exact results.

The numbers computed through our algorithm have algebraic degree over the input
numbers that depends on k, and thus can be manipulated exactly if we assume that the
input numbers are rational or of bounded algebraic degree. The actual running time
to manipulate these numbers exactly depends on k and the assumptions on the input
numbers, and this is hidden in the function f (·). Below we provide background on
algebraic numbers and computation trees, the tool we use to manipulate numbers. Our
running times are stated assuming exact computation.

To summarize, there are two sources that make the dependency on k at least expo-
nential: the number of topology trees considered in the algorithm is kO(k), and we are
manipulating �(n) numbers of algebraic degree at least 2�(k).
Organization The rest of the paper is organized as follows. In Sect. 2 we explain the
notation and some of the concepts used in the paper. We also provide some basic
geometric observations. In Sect. 3 we provide a careful description of geometric oper-
ations that will be used in the algorithm.We pay attention to the details to carry out the
algebraic degree of the operations. In Sect. 4 we provide the algorithm for the decision
problem. In Sect. 5 we analyze a function that will appear when analyzing parametric
search; we need to bound the algebraic degree of certain equations that appear in the
algorithm. In Sect. 6 we provide the optimization algorithm using the paradigm of
parametric search. We conclude in Sect. 7.

123



Algorithmica (2024) 86:1512–1544 1517

2 Notation, Numbers and Preliminary Results

2.1 Notation

For each positive integer n, we use [n] = {1, . . . , n}. For each set A and t ∈ N, we
use

(A
t

)
to denote the set of all subsets of A with t elements.

All graphs in this paper will be undirected. Hence, each graph will be given as an
ordered pair G = (V , E), where V is the set of its vertices and E ⊆ (V

2

)
is the set

of its edges. We also write V (G) and E(G) for the sets of vertices and edges of G,
respectively. We use the notation uv for the edge with vertices u and v. The graph G is
edge-weighted, if it is accompanied by a weight function w : E → R≥0. The weight
of an edge-weighted subgraph H , denoted w(H), is the sum of weights of all of its
edges.

If Q is a set of points in the plane, then we denote by KQ the complete graph on
verticesQ. Such a graph is naturally accompanied by a weight function on edges that
wecall edge length. In this setting, the edge lengthof the edgeuv,whereu, v ∈ Q, is the
Euclidean distance between u and v, denoted by d(u, v).We alsowrite |uv| = d(u, v).

Let G = (V , E) be an edge-weighted graph. If T is a spanning tree of G, a
bottleneck edge of T is an edge in T with largest weight. We call T a minimum
bottleneck spanning tree orMBST of G, if its bottleneck edge has the smallest weight
among all bottleneck edges of spanning trees of G. A minimum spanning tree orMST
of G is a spanning tree of G that has minimum weight, over all spanning trees of G.

We will not distinguish between points and their position vectors. For two sets A
and B in the plane, their Minkowski sum is A ⊕ B = {a + b | a ∈ A, b ∈ B}.
Recall that D(p, r) is the closed disk with center p and radius r . Then A⊕ D(0, r) is
precisely the set of points at distance at most r from some point of A. We call this set
the r -neighborhood of A. Any segment in this paper will be a line segment. A segment
between two points a and b will be denoted as ab. For a point a, we will use ||a|| to
denote the distance from a to the origin.

2.2 Representation of Numbers and Algebraic Operations

Each number that will be computed through our algorithm will be obtained from pre-
vious numbers by either one of the usual arithmetic operations (addition, subtraction,
multiplication or division), by computing a square root or by solving a polynomial
equation of degree at most 2O(k). Each number that is computed inside the algorithm
has its computation tree. This is a rooted tree that has the just described operations as
internal vertices and input values as leaves. Each vertex in the tree represents a number
that is computed by the operation described in this vertex applied to its descendants.
See Fig. 2, left, for an example.

Computer algebra provides tools tomanipulate and compare these numbers exactly;
see for example [5, Section 10.4] or [30]. Exact computation is a paradigm promoted
within Computational Geometry [8, 16, 17, 26].

We will show that the depth of computation trees for numbers inside our algorithms
will depend only on k. It follows that in our algorithms the time complexity of each of
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Fig. 2 Left: Example of computation tree for (1+√
3)(

√
5−2). Right: Example of a directed acyclic graph

for computing (1 + √
3)(

√
3 − 2)

the numerical operationswill always be a function only of k, independent of n. To avoid
a cumbersome description,wewill assume in the description that themanipulation
of numbers takes O(1) time. Let us note here that our algorithms will not compute
numbers directly by their computation trees, rather by related rooted directed acyclic
graphs which are essentially computation trees, but with joint nodes that produce the
same number using the same operations. This is a known concept, used for example
in [22]. To give an example, if we consider a slightly modified example from Fig. 2,
left, that computes (1+√

3)(
√
3−2), we see that we do not need a node for number 5

and that we only need to compute
√
3 once, hence we need 2 fewer nodes. See Fig. 2,

right. Note that such a transformation does not change the depth of the computation.
The following discussion is about bounding the algebraic degree of the numbers

appearing in the algorithm and it is aimed to readers familiar with algebraic compu-
tations. In our final results we do not talk explicitly about the algebraic degree of the
numbers and it suffices to know that the problem of performing � algebraic operations
on at most � numbers is decidable for any �.

A possible way to represent such a number α is as a univariate polynomial P(x)
with integer coefficients together with an isolating interval I ; this is an interval with
the property that α is the unique root of P(x) inside I . The minimum degree of the
polynomial representing α is the algebraic degree of α (over the integers).

It is known that if α and β �= 0 are numbers of algebraic degree k, then α ± β,
α · β, α/β and

√
α have algebraic degree at most k2. Moreover, if α is the root of a

polynomial of degree d with coefficients of algebraic degree k, then α has algebraic
degree O(dkd). To see this, we first construct a common field extension for all the
coefficients, which will have degree O(kd), and then use the relation of the degree
between towers of field extensions.

In our decision algorithm, the numbers used in our computations have a computation
tree of depthO(k) on the input numbers, with internal nodes containing only arithmetic
operations and square roots. Therefore, we employ numbers of algebraic degree 2O(k).
For the optimization problem, at the leaves of the computation tree of some numbers
we will also have a root of a polynomial of degree 2O(k). For a computation tree, it is
always the same root of a polynomial that is being used. Therefore, for the computation,
it suffices to work with an extension field of all the input numbers, which has degree
2O(k) because there is a single number of algebraic degree 2O(k). Therefore, also in
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the optimization problem, the numbers involved in the computation have algebraic
degree 2O(k).

2.3 Properties of MinimumTrees

In this section we present some well known claims that will be used later. The first
property is a standard consequence of Kruskal’s algorithm to compute the MST.

Claim 1 In any edge-weighted connected graph, all MSTs have the same weight of the
bottleneck edge which is the same as the weight of a bottleneck edge in any MBST. In
particular, each MST is also a MBST.

The following result is also well known; see for example [23].

Claim 2 For each non-empty set Q of points in the plane, there exists a MST and a
MBST of the complete graph KQ with maximum degree at most 5.

3 Geometric Computations

In this section we describe representations of geometric objects that we will use and
we present some basic geometric computations that will be needed in the algorithms.

Each line segment s is determined by a quadruple (ps, es, as, bs), where ps is an
arbitrary point on the line supporting s, es is a unit direction vector of s, and real
numbers as ≤ bs determine the endpoints of s, which are ps + ases and ps + bses .
When as = bs , the segment degenerates to a single point; we keep calling it a segment
to avoid case distinction. We will write s = (ps, es, as, bs). We could easily allow
for non-unit vectors es , but then some of the equations below become a bit more
cumbersome. We will use such representations of line segments because we will often
consider their subsegments, hence ps and es will remain constant and only as and bs
will change.

A segmentation on a line L denotes a union of pairwise-disjoint line segments on
L . Some of the segments may be a single point. If the line is given by a position vector
of some point p on the line and a unit direction vector e, then we will represent a
segmentation of this line with N disjoint subsegments and points as a (2N + 2)-tuple

X = (p, e, a1, b1, a2, b2, . . . , aN , bN ),

where ai ≤ bi , for each i ∈ [N ], and bi < ai+1, for each i ∈ [N − 1]. For each
i ∈ [N ], the line segment (p, e, ai , bi ) is part of the segmentation X . We call N the
size of the segmentation X . See Fig. 3 for an example.
I) Intersection of two lines Suppose we are given two lines L1 ≡ p1 + t1e1 and
L2 ≡ p2 + t2e2, where p1 and p2 are points on the first and second line, respectively,
e1 and e2 are their unit direction vectors, respectively, and t1, t2 ∈ R are parameters.
We would like to compute L1 ∩ L2.

If the lines are parallel, which is equivalent to e1 = ±e2, then we have two options.
If the system of two linear equations in one unknown p2 = p1+te1 has some solution,
then the lines are equal and L1 ∩ L2 = L1. Otherwise, L1 ∩ L2 = ∅.
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Fig. 3 A segmentation of size 3 where the second segment degenerates to a point

If the lines are not parallel, then the system of two linear equations with two
unknowns p1 + t1e1 = p2 + t2e2 has a unique solution (t∗1 , t∗2 ). In this case L1 ∩ L2
contains exactly one point, namely p1 + t∗1 e1 = p2 + t∗2 e2.

In all cases, we can compute L1 ∩ L2 with O(1) arithmetic operations.

II) Intersection of a circle with a line Suppose we are given a circle (curve) C with
center at c and radius δ > 0, and a line L ≡ p + te, where p is a point on the line,
e is its unit direction vector and t ∈ R is a parameter. We would like to compute the
intersection C ∩ L .

This means that we need to solve the equation ||p+ te−c|| = δ,which is quadratic
in the unknown t ∈ R. This is equivalent to solving

||p + te − c||2 = δ2,

which can be rewritten as

t2 + 2te · (p − c) + ||p − c||2 − δ2 = 0.

Let 	 = 4 (e · (p − c))2 − 4||p − c||2 + 4δ2 be the discriminant of this equation
in t . We consider the following 3 cases.

(i) 	 < 0. In this case, C ∩ L = ∅.
(ii) 	 = 0. In this case, there is one solution of our quadratic equation, which is

t0 = e · (c − p). Hence, C ∩ L = {p + t0e}. The line L is tangent to C .
(iii) 	 > 0. In this case, there are two solutions of our quadratic equation, which are

t1 = e · (c − p) − 1

2

√
	, t2 = e · (c − p) + 1

2

√
	,

hence C ∩ L = {p + t1e, p + t2e}.
III) Intersection of a disk with a line segment Suppose we are given a disk D with
center at c and radius δ > 0, and a line segment s = (ps, es, as, bs). We would like
to compute the intersection D ∩ s.

First we compute the intersection between the boundary C of D and the line L that
contains s, as described in II).

(i) If C ∩ L = ∅, then D ∩ s = ∅.
(ii) If L is tangent to C at the point ps + t0es , for some t0, then we verify whether

t0 is between as and bs . In this case D ∩ s contains exactly the point ps + t0es ,
otherwise D ∩ s = ∅.
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Fig. 4 Example of Voronoi diagram on a segment s defined by points. For each Voronoi cell we mark its
closest site

(iii) If L intersects C in two points ps + t1es and ps + t2es , where t1 < t2, this means
that D∩ L is the line segment s′ = (ps, es, t1, t2). Hence, D∩ s = s′ ∩ s and can
be computed withO(1) additional comparisons between the values t1, t2, as, bs .

Note that to compute D ∩ s all arithmetic computations were performed when com-
puting C ∩ L . The rest of the operations are only O(1) comparisons.

IV) Intersection of two segmentations of a line Suppose we have segmentations X1
and X2 on some line of sizes N1 and N2, respectively. We would like to compute the
segmentation X1 ∩ X2. The segmentation X1 ∩ X2 has size at most N1 + N2 because
the points of the segmentation X1∩X2 are points of X1 or X2.Moreover, because each
segmentation already has its segments and points ordered, we can compute X1 ∩ X2
withO(N1 + N2) comparisons. The idea is similar to the merging of two sorted lists.
For example, we can use 3 pointers, one for X1, one for X2 and one for the merged
list, that are traversed simultaneously once and, for each two consecutive points in the
merged list, we verify whether the corresponding line segment is a subset of X1 ∩ X2
or not in O(1) time.

V)Computing aVoronoi diagram on a line segment for some set of points Suppose
we are given a set Q = {q1, q2, . . . , qN } of N points in the plane and a line segment
s = (ps, es, as, bs).Wewould like to compute theVoronoi diagramon the line segment
s for points inQ. See Fig. 4. For our purpose we can say that such a Voronoi diagram
is a sequence of pairs (q ′

1, J1), (q
′
2, J2), . . . , (q

′
N ′ , JN ′) with the following properties:

• For each i ∈ [N ′], the point q ′
i belongs to Q and Ji is a segment contained in s,

• For each i ∈ [N ′] and for each point p in Ji , the smallest distance from p to any
point in Q is d(p, q ′

i ),• The union of the segments J1, . . . , JN ′ is the segment s,
• For each i ∈ [N ′ − 1], Ji and Ji+1 have exactly a boundary point in common,
• For each distinct and non-consecutive i, j ∈ [N ′], the segments Ji and J j are
disjoint, and

• For each q ∈ Q there is at most one i ∈ [N ′] with q ′
i = q.

It is well known that this can be done inO(N log N ) time by computing the Voronoi
diagramofQ inR2 and intersecting it with the segment s. See for example the textbook
by de Berg et al. [11, Chapters 7 and 2].
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Because we are only interested in the segment s, this can be done also easily
using a simple divide-and-conquer approach, as follows. When Q contains a sin-
gle point, its Voronoi diagram is the whole segment s. When Q has at least two
points, we split Q arbitrarily into two sets, Q1 and Q2, of roughly the same size,
and recursively compute the Voronoi diagram on s for Q1 and for Q2. We get
those two Voronoi diagrams as sequences (q ′

1, J
′
1), (q

′
2, J

′
2), . . . , (q

′
N ′ , J ′

N ′) for Q1
and (q ′′

1 , J ′′
1 ), (q ′′

2 , J ′′
2 ), . . . , (q ′′

N ′′ , J ′′
N ′′) for Q2. To merge them, we first compute all

the non-empty intervals J ′
i ∩ J ′′

j for i ∈ [N ′] and j ∈ [N ′′]. This takes O(N ′ + N ′′)
time because the two sequences are sorted along s. We also obtain the output sorted
along s. We know that, for each such non-empty J ′

i ∩ J ′′
j , the closest point of Q is

either q ′
i or q

′′
j . For each such non-empty J ′

i ∩ J ′′
j , we compute the intersection pi, j of

the bisector for q ′
i and q

′′
j with the line supporting s. If the intersection point pi, j lies

on J ′
i ∩ J ′′

j , we split J
′
i ∩ J ′′

j into two intervals at pi, j . We have obtained a sequence of
intervals along s with the property that each point in an interval has the same closest
point ofQ. With a final walk along the intervals, we merge adjacent intervals with the
same closest point in Q into a single interval. This merging step takes O(N ′ + N ′′)
time.

If T (N ) denotes the running time of the divide-and-conquer algorithm for N
points, we have the recurrence T (N ) = O(N ) + T (|Q1|) + T (|Q2|), with base
case T (1) = O(1). Because |Q1| and |Q2| are approximately N/2, this solves to
T (N ) = O(N log N ).

Each number computed in the procedure is obtained from the input data by O(1)
additions, subtractions, multiplications and divisions. This is because each value is
obtained by computing the intersection of a bisector of two points of Q with the line
supporting s.

VI) Intersection of a union of disks with a line segment, equipped with a
Voronoi diagram Suppose we are given N disks D(q1, δ), D(q2, δ), . . . , D(qN , δ)

with radius δ > 0, a line segment s = (ps, es, as, bs) and a Voronoi diagram
(q ′

1, J1), (q
′
2, J2), . . . , (q

′
N ′ , JN ′) on s for the points q1, q2, . . . , qN . We would like

to compute the intersection

X = ( ⋃

j∈[N ]
D(q j , δ)

) ∩ s.

Although we do not need the Voronoi diagram to compute X , we will use it to compute
it in a linear number of steps. We first observe that (see Fig. 5)

X =
⋃

j∈[N ′]

(
D(q ′

j , δ) ∩ J j
)
.

This implies that X can be computed in time O(N ) by applying N ′ times the proce-
dure in III) and then joining each two consecutive line segments D(q ′

j , δ) ∩ J j and
D(q ′

j+1, δ) ∩ J j+1, if they have a common endpoint J j ∩ J j+1. Note that the output
is a segmentation contained in s.
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Fig. 5 Computing the intersection of a segment and the union of congruent disks using the Voronoi diagram
of the centers

Fig. 6 Top: an example showing the input in VII). Bottom: the curves γi and their intersection with the
segment s

VII) Intersection of a δ-neighborhood of a segmentation with a line segment Sup-
pose we are given some δ > 0, a line segmentation X = (pX , eX , a1, b1, . . . , aN , bN )

and a line segment s = (ps, es, as, bs). We would like to compute the intersection
X ′ = (X ⊕ D(0, δ)) ∩ s between s and the δ-neighborhood of X . This is a segmen-
tation in the line supporting the segment s. See the top of Fig. 6.

For each j ∈ [N ], let σ j be the j-th segment of the segmentation X ; thus σ j =
(pX , eX , a j , b j ). For each j ∈ [N ], let γ j be the boundary of σ j ⊕ D(0, δ); see the
bottom of Fig. 6. The boundary of γ j consists of two semicircles of radius δ, one
centered at pX + a j eX and another centered at pX + b j eX , and two copies of the
segment σ j translated perpendicularly to σ j by δ, one in each direction.

For each j ∈ [N ], we compute the (possibly empty, possibly degenerate) segment
η j = (

σ j ⊕ D(0, δ)
) ∩ s. See the top of Fig. 7. To do this we compute γ j ∩ s using I)

and II) for the lines and circles supporting pieces of γ j and, for each intersection
point we find, we test whether it indeed belongs to γ j . We also test whether the
endpoints of s belong to σ j ⊕ D(0, δ), as the segment s may start inside multiple
regions σ j ⊕ D(0, δ). This takes O(N ) time and each number we computed requires
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Fig. 7 Top: an example showing η j and η j+1. Note that η j+2 is not shown, but it would overlap with
η j+1. Bottom: example showing that s may not enter γ j , γ j+1, γ j+2 in that order

O(1) arithmetic operations, square roots, and comparisons. (The explicit computation
of η j may require the square root.) Each such non-empty segment η j is represented
as η j = (ps, es, a′

j , b
′
j ), using the same point ps and direction unit vector es for all

j ∈ [N ].
If we found no intersections,meaning that η j = ∅ for all j ∈ [N ], we return X ′ = ∅.

Otherwise, the segments η1, . . . , ηN may overlap andwe have tomerge them.Wemust
be careful because the line segment s does not need to enter the regions γ j , γ j+1 and
γ j+2, for some j ∈ [N − 2] in this order. See for example the bottom of Fig. 7.
However, we can be sure about two things:

• If ηi �= ∅ and η j �= ∅ for some 1 ≤ i < j ≤ N , then ηk �= ∅ for all k ∈
{i, i + 1, . . . , j}.

• If ηi ∩ η j �= ∅ for some 1 ≤ i < j ≤ N , then ηi ∩ ηk �= ∅ for all k ∈
{i, i + 1, . . . , j}.
This means that we can merge the segments η1, . . . , ηN by considering only seg-

ments with adjacent indices. One way to do it is to compute

m = min{ j ∈ [N ] | η j �= ∅} and M = max{ j ∈ [N ] | η j �= ∅},

and make a linked list with the collinear segments

ηm = (ps, es, a
′
m, b′

m), . . . , ηM = (ps, es, a
′
M , b′

M ),

in that order. Walking along the list, whenever two consecutive segments η =
(ps, es, a, b) andη′ = (ps, es, a′, b′) in the list intersect,which canbe checkedby sort-
ing numbers a, a′, b and b′, we merge them into the single segment η′′, which replaces
η and η′ in the list. If the final list is η̃1 = (ps, es, ã1, b̃1), . . . , η̃ j = (ps, es, ãN ′ , b̃N ′),
we then have

(X ⊕ D(0, δ)) ∩ Ls = (ps, es, ã1, b̃1, . . . , ãN ′ , b̃N ′).
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The whole computation takes O(N ) time and each number in the output is obtained
from the input data by performing O(1) arithmetic operations and square roots.

4 Solving the Decision Version

In this section we show how to solve the decision of the problem, DConnectivity,
when the uncertain regions are segments. Let us recall the problem. Given a set S =
{s1, . . . , sk} of k segments in the plane, a set P = {pk+1, pk+2, . . . , pn} of n − k
points in the plane, and a value δ ≥ 0, decide whether there exist points pi ∈ si for
i = 1, . . . , k such that Gδ({p1, . . . , pn}) is connected. Denoting by δ∗ the optimal
value in the optimization problem, we want to decide whether δ ≥ δ∗.

We will consider the case δ = 0 separately. Then we will present an algorithm that
solves DConnectivity for δ > 0 in 4 parts, which are in bold in the next sentence.
DStep 1 will be executed first, followed byDStep 2. Then we will use a DLoop inside
of which DStep 3 will be performed kO(k) times. The letter D in DStep and DLoop
specifies that the steps are of the algorithm for the decision variant.

Case δ = 0 Solving the problem DConnectivity for δ = 0 is equivalent to deciding
whether all line segments from S have a common point which is the same as each
point in P . This can clearly be done in time O(n). For the rest of the description, we
assume δ > 0.

DStep 1. We compute a MST T for points in P . It is well known that the tree T can
be computed inO(n log n) time [25]. The most usual way is noting that a MST of any
Delaunay triangulation of the point set P is a MST for P [11, Exercise 9.11].

We remove all edges from T that are longer than δ. Let the remaining connected
components of the tree T be C = {C1,C2, . . . ,C�}. Note that we removed exactly
� − 1 edges. If � > 4k + 1, return FALSE. We first show that this decision based on
� > 4k + 1 is correct.

Lemma 3 Any two points in P from distinct components C1,C2, . . . ,C� are more
than δ apart.

Proof If the lemma was false, then there would exist points pa, pb ∈ P such that
d(pa, pb) ≤ δ and pa ∈ Ca′ , pb ∈ Cb′ , where a′ �= b′. Clearly, the edge pa pb is not
part of the tree T . If we add it to the tree, we get a cycle that connects the points pa
and pb either via the edge pa pb or via a path that contains an edge e that was longer
than δ, because the components Ca′ and Cb′ are distinct. It follows that if we add the
edge pa pb and remove the edge e from T , we get a spanning tree on points P with
weight less than the weight of T , which is a contradiction. Hence, the lemma must be
true. ��
Lemma 4 If � > 4k + 1, then δ < δ∗.

Proof We show the contrapositive statement. Hence, we assume δ ≥ δ∗. Let pi ∈ si ,
for i ∈ [k], be such points that any MBST on points p1, p2, . . . , pn has a bottleneck
edge of length δ∗. Such points exist by definition of δ∗. By Claim 1, any MST on
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s1 s2 s3

C3
C1

C2
C4

s1 s2 s3

C3
C1

C2
C4

Fig. 8 Two examples of topology trees. The left example has one significant topology subtree (a concept
we will introduce later), while the right one has two significant topology subtrees, one spanned by the nodes
{s1, s2,C1,C2,C3} and one spanned by {s3,C3,C4}

these points also has a bottleneck edge of length δ∗. Let T ′ be a MST tree on points
p1, p2, . . . , pn with the degree of each vertex at most 5. Such a tree exists by Claim 2.
Hence, there are at most 5k neighbors of points p1, p2, . . . , pk . By Lemma 3, any two
points from distinct componentsC1,C2, . . . ,C� are not connected directly with edges
of T ′, hence for each component there is an edge in T ′ from a point in this component to
a point in {p1, p2, . . . , pk}. Let E1 be the set of edges in T ′ that have exactly one vertex
in {p1, p2, . . . , pk} and let E2 be the set of edges in T ′ that have both vertices from the
set {p1, p2, . . . , pk}. We have |E1|+2|E2| ≤ 5k. Because there are no edges between
components Ci and C j , for i �= j , we have |E1| + |E2| ≥ k + � − 1. This is because
using edges from E1∪E2 we have to connect at least k+� distinct “clusters” of points:
each point in {p1, p2, . . . , pk} is one “cluster” and each component C1,C2, . . . ,C�

contributes at least one cluster. This implies k + � − 1 ≤ 5k, which gives � ≤ 4k + 1.
��

DStep 2. For each component Ci ∈ C and for each line segment s j ∈ S, we compute
the Voronoi diagram on s j of the points inCi . This can be done withO(kn log n) steps
as explained in V).

DLoop.We treat each line segment from S and each component from C as an abstract
node and we iterate over all possible trees on these k + � nodes such that

a) each node from S has degree at most 5 and
b) no two nodes from C are adjacent.

We call each such a tree a topology tree, because it describes a potential way to connect
the components in C via points from the line segments in S. See Fig. 8 for an example.
Note that we are reserving the term node for each connected component of C and each
segment of S. In this way we distinguish nodes from a topology tree from vertices of
other graphs.

We say that a topology tree τ is δ-realizable, if there exist points p j ∈ s j , for each
j ∈ [k], such that

(a) for each edge si s j in τ , where si , s j ∈ S, it holds d(pi , p j ) ≤ δ, and
(b) for each edgeCis j in τ , whereCi ∈ C and s j ∈ S, there exists a point p ∈ Ci such

that d(p, p j ) ≤ δ. (Note that we may use different points p ∈ Ci for different
edges Cis j , Cis′

j of τ .)

Lemma 5 There exists a δ-realizable topology tree if and only if δ ≥ δ∗.
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Proof Let τ be a δ-realizable topology tree. Let us fix points p j ∈ s j , for each j ∈ [k],
such that

(a) for each edge si s j in τ , where si , s j ∈ S, it holds d(pi , p j ) ≤ δ and
(b) for each edge Cis j in τ , where Ci ∈ C and s j ∈ S, there exists a point p ∈ Ci

such that d(p, p j ) ≤ δ.

Let G = Gδ({p1, p2, . . . pn}). We will prove that G is connected, which by definition
of δ∗ implies δ ≥ δ∗. Note that any two vertices in the same component C of C are
connected in G. Indeed, since there exists a path connecting two vertices of C in the
MST T that uses only edges of length at most δ, such a path is also present in G.

Consider two arbitrary points pi and p j , where i, j ∈ [n]. Let vi be the node of τ

that contains pi ; it may be that vi = C for some C ∈ C or that vi = s for some s ∈ S.
Similarly, let v j be the node of τ that contains p j . If vi = v j and vi is a segment of S,
then pi = p j and they are connected inG. If vi = v j and vi is a connected component
C ∈ C, then they are also connected in G.

It remains to handle the case when vi �= v j . Because τ is a tree, then there exist
nodes u1, u2, . . . , um of τ such that u1u2 · · · um is a path in τ with u1 = vi and
um = v j We will construct a corresponding walk in G that connects pi and p j by
transforming the path u1u2u3 · · · um in the following way.

1. If u1 = si ∈ S, then we replace u1 by pi . Otherwise u1 = C for some C ∈ C.
From the definition of τ it follows that the node u2 = sy for some segment sy ∈ S,
and there exists a point p from C such that d(p, py) ≤ δ. We replace the node u1
with a path from pi to p in C .

2. If um = s j ∈ S, then we replace um by p j . Otherwise um = C for some C ∈ C.
From the definition of τ it follows that the node um−1 = sy for some segment
sy ∈ S, and there exists a point p from C such that d(p, py) ≤ δ. We replace the
node um with a path from p to p j in C .

3. For each vertex ux ∈ {u2, . . . , um−1} from C, we know from the definition of τ

that ux−1 = sy ∈ S and ux+1 = sz ∈ S, for some y, z ∈ [k]. By definition of τ

there exist points qx and q ′
x from the component ux ∈ C such that d(qx , py) ≤ δ

and d(q ′
x , pz) ≤ δ. We replace ux with a path from qx to q ′

x in the component ux .
4. For each vertex sx ∈ {u2, u3, . . . , um−1} from S, we replace sx with the corre-

sponding point px ∈ sx .

It is clear that we transformed the path u1u2u3 · · · um in τ into a walk in the graph G
from pi to p j . Hence, G is connected, which implies δ ≥ δ∗.

For the other direction, assume δ ≥ δ∗. Let points pi ∈ si , for each i ∈ [k], be such
that any MBST on points p1, p2, . . . , pn has a bottleneck edge of length δ∗. Let T ′
be a MBST of the complete graph K{p1,...,pn} such that each vertex of T ′ has degree
at most 5. Such a tree T ′ exists by Claim 2. Because of Lemma 3 and because δ ≥ δ∗,
there is no edge in T ′ between points from distinct components from C. Let  be a
graph with k + � nodes C ∪ S and the following edges:

• si s j , whenever pi p j is an edge in T ′,
• siC j , whenever there exists a point p in C j such that pi p is an edge in T ′.

Such a graph  is not necessarily a tree, however we claim that it is connected.
This follows from the fact that any path in T ′ can be mapped into a walk in  by
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replacing each vertex from a component Ci with the component Ci , each vertex from
a line segment s j with the line segment s j , and then deleting the potential consecutive
repetitions of vertices of . Because the tree T ′ has maximum degree 5, it follows by
definition of edges of  that the degree of each node si ∈ S of  has degree at most
5. Let τ be any spanning tree of . It is clear that τ is a δ-realizable topology tree. ��

Recall that Lemma 4 states that, in case δ ≥ δ∗, it holds that � ≤ 4k + 1.

Lemma 6 If � ≤ 4k + 1, then there are at most (O(k))5k topology trees and they can
be generated in (O(k))5k time.

Proof Using Cayley’s formula for the number of spanning trees of a labeled complete
graph, we get that that the number of topology trees is at most (k + �)k+�−2 ≤
(5k + 1)5k−1. To construct a topology tree, it is enough to determine the neighbors
of each node from S. Because each node from S has degree at most 5 in a topology
tree, we can use brute force to generate all topology trees on k + � ≤ 5k + 1 nodes in
(O(k))5k time. ��

Note that, even with more careful estimates, we could not get a bound below kO(k)

because there are at least k!
2 = k�(k) ways to construct a path of length k out of

elements of S.
DStep 3. Given a topology tree τ , in this step we will verify whether it is δ-realizable.
Therefore, because of Lemma 6, we will execute this step kO(k) times. For the discus-
sion, we consider a fixed topology tree τ .

We observe that if a node C from C is a separating vertex of τ , which is equivalent
to saying that C has degree at least 2 in τ , then we can treat each part of the tree τ

that is “separated” by C independently. This motivates the following definition of a
significant topology subtree of τ .

If we remove the nodes C from τ , we get a forest. To each tree τ ′ in this forest, we
add all nodes from C that are adjacent in τ to some vertex in τ ′, with the corresponding
edges. The resulting tree is a significant topology subtree of τ . See Fig. 8. Let us state
a few observations about significant topology subtrees that can be checked easily.

(a) Each significant topology subtree of τ is an induced subtree of τ .
(b) Each node from C that is part of a significant topology subtree τ ′ of τ , has degree

exactly 1 in τ ′. If there is another vertex of degree 1 in τ ′, it must have degree 1
in τ as well.

(c) Each significant topology subtree has maximum degree at most 5.
(d) The union of all significant topology subtrees of τ is the whole τ .
(e) An intersection of any two significant topology subtrees of τ is either empty or a

graph with one node from C.
(f) Each node from S belongs to exactly one significant topology subtree of τ .
(g) There are at most k significant topology subtrees of τ .

The definition of δ-realizability can now be naturally extended to significant topol-
ogy subtrees.We say that a significant topology subtree τ ′ is δ-realizable, if there exist
points p j ∈ s j , for each vertex s j ∈ S from τ ′, such that

(a) for each edge si s j in τ ′, where si , s j ∈ S, it holds d(pi , p j ) ≤ δ, and
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(b) for each edge Cis j in τ ′, where Ci ∈ C and s j ∈ S, there exists a point p ∈ Ci

such that d(p, p j ) ≤ δ.

Lemma 7 The topology tree τ is δ-realizable if and only if all of its significant topology
subtrees are δ-realizable.

Proof If the topology tree τ is δ-realizable, it is clear that each of the significant
topology subtrees of τ is also δ-realizable. To prove the opposite direction, assume
that all of significant topology subtrees of τ are δ-realizable. For each significant
topology subtree τ ′ of τ , we can choose points p j ∈ s j in each node s j ∈ S of τ ′,
such that

(a) for each edge si s j in τ ′, where si , s j ∈ S, it holds d(pi , p j ) ≤ δ, and
(b) for each edge Cis j in τ ′, where Ci ∈ C and s j ∈ S, there exists a point p ∈ Ci

such that d(p, p j ) ≤ δ.

This way we uniquely defined points p j ∈ s j , for each j ∈ [k]. This is because, for
each s j ∈ S, there exists exactly one significant topology subtree τ ′ of τ that has s j
as node. It is clear that such a choice of points p j ∈ s j , over all j ∈ [k], shows that
the topology tree τ is δ-realizable. ��

We just showed that, to describe DStep 3, it is enough to describe how to verify
whether a given significant topology subtree τ ′ of τ is δ-realizable. To describe the
latter, we restrict our attention to a fixed significant topology subtree τ ′. Let the set of
nodes of τ ′ be V ′ ⊆ S ∪ C. We denote S ′ = S ∩ V ′ and C′ = C ∩ V ′. Therefore V ′ is
the disjoint union of S ′ and C′. By definition of τ ′, we know that S ′ is not empty. Let
us choose a root sr ∈ S ′ for τ ′. For each segment si ∈ S ′, let τ ′(si ) be the subtree of
τ ′ rooted at si . In particular τ ′(sr ) = τ ′.

Next, we will use dynamic programming bottom-up along τ ′ to compute the pos-
sible locations of points pi ∈ si on line segments si ∈ S ′ that can yield δ-realizability
for the subtree of τ ′ rooted at si . More exactly, for each si ∈ S ′, we define

Xi = {pi ∈ si | we can select one point q� ∈ C�, for each node C� ∈ C ∩ V (τ ′(si )),
and one point p j ∈ s j , for each node s j ∈ S ∩ V (τ ′(si )) with j �= i,

such that for each edge s�s j of τ ′(si )we have d(p�, p j ) ≤ δ

and for each edge s jC� of τ ′(si )we have d(p j , q�) ≤ δ}.

We begin with leaves of τ ′. If we have a leaf si from S ′, we then have Xi = si . For
internal nodes of τ ′, we have the following recursive property.

Lemma 8 Let si be an internal node in τ ′ from S ′. Reindexing the nodes, if needed,
let us assume that the children of si in τ ′ are s1, . . . , st and C1, . . . ,Cu. Then

Xi =
t⋂

�=1

(
X� ⊕ D(0, δ)

) u⋂

�=1

(
C� ⊕ D(0, δ)

) ⋂
si .
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Proof Consider any point pi in Xi . From the definition of Xi this means that we can
select one point q� ∈ C�, for each node C� ∈ C ∩ V (τ ′(si )) and one point p j ∈ s j for
each node s j ∈ S ∩ V (τ ′(si )) with j �= i such that

• For each edge s j s� of τ ′(si ) we have d(p j , p�) ≤ δ, and
• For each edge s jC� of τ ′(si ) we have d(p j , q�) ≤ δ.

Looking at the edges connecting si to its children, we obtain

• for each � ∈ [t] we have d(pi , p�) ≤ δ, and
• for each � ∈ [u] we have d(pi , q�) ≤ δ.

Moreover, because the definition of Xi includes a condition for the whole subtree
τ ′(si ) and, for each child s� of si , we have τ ′(s�) ⊂ τ ′(si ), we have
• for each � ∈ [t], the point p� belongs to X�.

We conclude that the point pi belongs to
⋂t

j=1

(
X j ⊕ D(0, δ)

)
. Because for each

� ∈ [u]wealsohaveq� ∈ C�,we also conclude that pi belongs to
⋂u

�=1

(
C�⊕D(0, δ)

)
.

This finishes the proof that Xi is included in the right hand side.
To see the other inclusion, consider one point pi on the right hand side of the

equality we want to prove. We then have:

• pi ∈ si ;
• for each � ∈ [t], the point pi belongs to X� ⊕ D(0, δ);
• for each � ∈ [u], the point pi belongs to C� ⊕ D(0, δ).

We can rewrite these properties as

• pi ∈ si ;
• for each � ∈ [t], there is some point p� ∈ X� such that d(pi , p�) ≤ δ;
• for each � ∈ [u], there is some point q� ∈ C� such that d(pi , q�) ≤ δ.

For each � ∈ [t], the property that p� ∈ X� implies that we can find points in all the
nodes in τ ′(s�) satisfying the definition for X�. Since the subtrees τ ′(s1), . . . , τ ′(st )
are disjoint, the selection of points for those subtrees are for different nodes, and thus
they do not interact. The points pi , p1, . . . , pt , q1, . . . , qu and the ones selected for
the condition of X1, . . . , Xt certify that pi ∈ Xi because each edge of τ ′(si ) appears
in one of the conditions. ��

All geometrical computations needed to compute Xi are described in Sect. 3. We
can compute Xi with t operations

(
X� ⊕ D(0, δ)

)∩ si , described in VII), u operations(
C� ⊕ D(0, δ)

) ∩ si described in VI), and t + u − 1 intersections of segmentations
described in IV). For each � ∈ [u], the size of the segmentation

(
C� ⊕ D(0, δ)

) ∩ si
is at most |C�|, and using induction on the structure of τ ′ (the base of the induction
are the leaves), we can see that each point from P contributes at most one segment to
Xi . Using that τ ′ has at most k leaves from S, we see that the size of Xi is at most
|P|+ |S| = n. Finally, note that t +u ≤ 5 because τ ′ has maximum degree at most 5.
Assuming that X� is already available for each child s� ∈ S ′ of si (thus for all � ∈ [t]),
and assuming that the Voronoi diagrams on si for C� are available for each � ∈ [u],
we can compute Xi in O(n) time. Recall that the Voronoi diagrams inside si for each
C� were computed in DStep 2, and thus are available.
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The significant topology subtree τ ′ is δ-realizable if and only if Xr is not empty.
We can compute the sets Xi for all si ∈ S ′ bottom-up. At each node of τ ′ from S ′ we
spend O(n) time.

We have to repeat the test for each significant topology subtree. Recall that, by
Lemma 7, a topology tree is δ-realizable if and only if all its significant topology
subtrees are δ-realizable. Since each node of S appears exactly in one significant
topology subtree, for each s j ∈ S we compute the corresponding set X j exactly once.
It follows that we spend O(kn) time for a topology tree. We summarize.

Lemma 9 Assume we have already performed DStep 1 and DStep 2. For any given
topology tree τ , we can decide whether τ is δ-realizable performingO(kn) operations.
Here, an operation may include manipulating a number that has a computation tree of
depthO(k)whose internal nodes are additions, subtractions,multiplications, divisions
or square root computations and whose leaves contain input numbers (including δ).

Proof Correctness and the bound on the number of operations follows from the dis-
cussion. It only remains to show the property about the computation tree of numbers.
Each component of a segmentation Xi that corresponds to a node v in some rooted
topological subtree τ ′ of τ is computed with O(1) operations from input numbers or
components of the segmentations that correspond to the children of v in τ ′. Since each
significant topology tree τ ′ has depth at most k + 1, the claim follows. (Note that the
numbers may participate in many more comparisons.) ��

In DLoop, we try each topology tree τ and perform DStep 3 for τ . If for some
topology tree we find that it is δ-realizable, we return TRUE. If the loop finishes
without finding any δ-realizable topology tree, we return FALSE.

Because of our future use in the optimization version of the problem, we decouple
the running time of DStep 1 and DStep 2.

Theorem 10 Assume that we have an instance for Connectivitywith k line segments
and n − k points (δ is not part of the input). After a preprocessing of O(k2n log n)

time, for any given δ, we can solve the decision version DConnectivity performing
kO(k)n operations. Here, an operation may include manipulating a number that has
a computation tree of depth O(k) whose internal nodes are additions, subtractions,
multiplications, divisions or square root computations and whose leaves contain input
numbers (including δ).

Proof We have shown that DStep 3 requires linear number of steps in n and that the
number of repetitions of DLoop depends only on k. Hence, to prove the theorem, we
need to reduce the log n factor from DStep 1 and DStep 2 with preprocessing.

The main part of DStep 1 is computing a MST on n − k points, which takes
O(n log n) time and is independent of δ. Hence, it can be done with preprocessing.
The rest of DStep 1 (ie. defining the clusters C) can be implemented in timeO(k) for
any δ.

For DStep 2, we observe that δ can be classified into O(k) different intervals of
values that will give the same clusters C and for which DStep 2 is the same. More
precisely, let e1, . . . , e4k+1 be 4k + 1 longest edges in the MST T for P , obtained
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after preprocessing for DStep 1 described above, sorted such that |e1| ≥ |e2| ≥ . . . ≥
|e4k+1|. For each i ∈ [4k] and each δ in the interval (|ei |, |ei+1|]wewill have the same
family C of i+1 connected componenents, namely those in the graph T −{e1, . . . , ei }.
For each δ ≥ |e1|, we have a single component in C. For each δ < |e4k+1|, we know
that δ < δ∗ because of Lemma 4. Therefore, we can consider the O(k) different
connected components that appear in the graphs T0 = T and Ti = Ti−1 − ei , where
i ∈ [4k]. For each such connected componentC and each segment s ∈ S, we compute
the Voronoi diagram on s of the points ofC usingDStep 2. In total we computeO(k2)
Voronoi diagrams, and each of them takes O(n log n) time. This can all be done with
preprocessing, hence DStep 2 can be implemented in time O(1) for any δ.

The depths of the computation trees of numbers used in DStep 1 and DStep 2 are
O(1).

Consider now that we are given a value δ after the just described preprocessing. If
δ < |e4k+1|, we return FALSE. Otherwise, DStep 1 and DStep 2 now require only
O(k) time. We perform DLoop iterating over all topology trees. The correctness is
proven with Lemma 5 and Lemma 9.

By Lemma 6, DStep 3 is repeated kO(k) times, and each such iteration performs
O(kn) operations because of Lemma 9. In total we perform kO(k)n operations. Num-
bers in each iteration of DLoop are computed independently of the numbers computed
in another iteration, and therefore we can use the bound on the depth of computation
trees of Lemma 9 for each of them. ��
Corollary 11 The decision problem DConnectivity for k line segments and n − k
points can be solved performing kO(k)n log n operations. Here, an operation may
include a number that has a computation tree of depthO(k)whose internal nodes that
are additions, subtractions, multiplications, divisions or square root computations and
whose leaves contain input numbers (including the input value δ).

5 Introducing h-square Root Functions

When using parametric search, wewill need to trace the boundary of the segmentations
Xi (δ) as a function of δ. In this section we introduce and discuss the properties of the
functions that will appear.

For any natural1 number h, we define h-square root functions recursively. A 0-
square root function is any linear function. For h ≥ 1, an h-square root function is any
function of the form f (x) = a1g(x)+a2+a3

√±x2 + a4g(x)2 + a5g(x) + a6, where
a1, a2, a3, a4, a5, a6 ∈ R, and g(x) is a (h − 1)-square root function. The domain of
an h-square root function is all such x ∈ R for which all the square roots that appear
inside them have non-negative arguments. Note that an h-square root function is also
an h′-square root function for all h′ ≥ h becausewemay take a1 = 1 and a2 = a3 = 0.

The following lemma presents the setting where we will meet the h-square root
functions. Note that this setting can occur in computations in II), that is, when com-
puting the intersection of a circle with a line.

1 We define that 0 is a natural number.
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Lemma 12 Let q, e and f be vectors in R
2, ||e|| = || f || = 1 and let g(x) be an

(h − 1)-square root function, for some h ∈ Z
+. Then any continuous function t(x)

that solves the equation

||q + t(x)e − g(x) f ||2 = x2

is an h-square root function.

Proof The equation ||q + t(x)e − g(x) f ||2 = x2 is equivalent to

t(x)2 + [
2(q − g(x) f ) · e]t(x) + ||q − g(x) f ||2 − x2 = 0.

The discriminant of this quadratic equation in t(x) is

	(x) = 4((q − g(x) f ) · e)2 − 4(||q − g(x) f ||2 − x2)

= 4
(
(q · e)2 − 2(q · e)( f · e)g(x) + (e · f )2g(x)2

− ||q||2 + 2(q · f )g(x) − g(x)2 + x2
)

= 4
(
x2 + [

(e · f )2 − 1
]
g(x)2 + [

2(q · e)( f · e)
+ 2(q · f )]g(x) + [

(q · e)2 − ||q||2]
)
.

If we denote 	̃(x) = 1
4	(x), we have, for all x in the domain of g for which	(x) ≥ 0,

t1(x) = e · (g(x) f − q) −
√

	̃(x) = [
e · f

]
g(x) − [

e · q] −
√

	̃(x),

t2(x) = e · (g(x) f − q) +
√

	̃(x) = [
e · f

]
g(x) − [

e · q] +
√

	̃(x),

which are both h-square root functions. ��
The next lemma will help us solve equations with h-square root functions.

Lemma 13 Let f (x) and g(x) be h-square root functions for h ∈ N. Then all of the
solutions of f (x) = g(x) are also roots of a polynomial of degree at most 4h in x. The
coefficients of this polynomial can be computed from parameters in f and g in 2O(h)

steps by using only multiplications, additions and subtractions.

Proof Let fh(x) = f (x) be an h-square root function obtained from an (h − 1)-
square root function fh−1(x), whichwas obtained from an (h−2)-square root function
fh−2(x), …, which was obtained from a 0-square root function f0(x). In a similar
way we define the functions gh(x), gh−1(x), . . . , g0(x).

Wewill transform the equation fh(x) = gh(x) into the desired polynomial equation
by squaring it at most 2h times, each time also rearranging the terms a bit and using
the replacement rule

√
u2 = u multiple times. These transformations may introduce

additional solutions, but we keep all the original solutions.
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We show by induction on i that, for each i = 0, . . . , h, there is a polynomial
Pi (X ,Yi , Zi ) of degree 4i such that the solutions of Pi (x, fh−i (x), gh−i (x)) = 0
include the solutions of f (x) = g(x). For the base case, i = 0, it is obvi-
ous that the polynomial P0(X ,Yi , Zi ) = Zi − Yi satisfies the condition because
P0(x, fh(x), gh(x)) = 0 is equivalent to fh(x) − gh(x) = 0.

Assume that we have the polynomial Pi (X ,Yi , Zi ) for some i . We show how to
compute Pi+1(X ,Yi+1, Zi+1). The polynomial Pi can be written as

Pi (X ,Yi , Zi ) =
∑

α + β + γ ≤ 4i
α, β, γ ∈ N

cα,β,γ XαY β
i Zγ

i ,

for some coefficients cα,β,γ ∈ R, and we have Pi (x, fh−i (x), gh−i (x)) = 0. We
substitute in the latter equation fh−i (x) and gh−i (x)by their definition using fh−i−1(x)
and gh−i−1(x), respectively. More precisely, and to shorten the expressions, we have
for some a1, . . . , a6, b1, . . . , b6 ∈ R,

A1(x) = a1 fh−i−1(x) + a2

A2(x) = ±x2 + a4 fh−i−1(x)
2 + a5 fh−i−1(x) + a6

fh−i (x) = A1(x) + a3
√
A2(x)

B1(x) = b1gh−i−1(x) + b2

B2(x) = x2 + b4gh−i−1(x)
2 + b5gh−i−1(x) + b6

gh−i (x) = B1(x) + b3
√
B2(x).

We thus get the equation

0 =
∑

α + β + γ ≤ 4i

α, β, γ ∈ N

cα,β,γ xα
(
A1(x) + a3

√
A2(x)

)β(
B1(x) + b3

√
B2(x)

)γ

.

We expand the terms (A1(x) + a3
√
A2(x))β and (B1(x) + b3

√
B2(x))γ using the

binomial theorem and, in the resulting equation, we replace

• each term (
√
A2(x))β

′
with even β ′ by A2(x)β

′/2;
• each term (

√
A2(x))β

′
with odd β ′ by A2(x)(β

′−1)/2√A2(x);
• each term (

√
B2(x))γ

′
with even γ ′ by A2(x)γ

′/2;
• each term (

√
B2(x))γ

′
with odd γ ′ by A2(x)(γ

′−1)/2√B2(x).

We group the terms with a factor
√
A2(x) or

√
B2(x) remaining. For some polynomial

Q1(X ,Y , Z) of degree at most 4i , polynomials Q2(X ,Y , Z) and Q3(X ,Y , Z) of
degree at most 4i − 1 and polynomial Q4(X ,Y , Z) of degree at most 4i − 2 we get
an equation
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0 = Q1(x, fh−i−1(x), gh−i−1(x))+
Q2(x, fh−i−1(x), gh−i−1(x))(

√
A2(x))+

Q3(x, fh−i−1(x), gh−i−1(x))(
√
B2(x))+

Q4(x, fh−i−1(x), gh−i−1(x))(
√
A2(x)

√
B2(x)).

We pass the terms with
√
A2(x) to one side and all the other terms to the other side.

We square the equation, expand each side, replace each (
√
A2(x))2 with A2(x), and

replace each (
√
B2(x))2 with B2(x). We are left with an equation where some terms

include the factor
√
B2(x); all the other terms are polynomial in x , fh−i−1(x) and

gh−i−1(x). We collect on one side the terms with
√
B2(x), square both sides of the

equation, and replace each (
√
B2(x))2 with B2(x). We are left with an equation that

is polynomial in x , fh−i−1(x) and gh−i−1(x); this equation defines the polynomial
Pi+1(X ,Yi+1, Zi+1). Since we have done reorganizations and have squared both sides
of the equation twice, the degree of the polynomial Pi+1 is at most 4 times the degree
of Pi . Therefore Pi+1 has degree at most 4i+1.

For i = h, we obtain a polynomial Ph(X ,Yh, Zh) of degree at most 4h such that
the solutions to Ph(x, f0(x), g0(x)) = 0 contains the solutions for f (x) = g(x). Note
that the equation Ph(x, f0(x), g0(x)) = 0 may contain some additional solutions that
are added through the algebraic manipulation, possibly also solutions that are not in
the domains of f (x) or g(x). The equation Ph(x, f0(x), g0(x)) = 0 is a polynomial
of degree at most 4h in x because f0(x) and g0(x) are linear.

For each i ∈ [h], because the polynomial Pi (X ,Yi , Zi ) has degree at most 4i ,
it is defined by 2O(i) coefficients, and each of its coefficients comes from making
2O(i) operations through the computation. We conclude that all the polynomials can
be computed in 2O(h) time. ��

6 Parametric Version

In this section wewill solve the initial optimisation problem Connectivity for uncer-
tainty regions given as line segments. Given a set S = {s1, s2, . . . , sk} of segments
and a set P = {pk+1, pk+2, . . . , pn} of points in the plane, find δ∗, which is the
smallest δ ≥ 0, such that the decision problem DConnectivity on inputs S, P and
δ has the answer TRUE. We can shortly write δ∗ = Connectivity(S,P) = min{δ |
DConnectivity(S,P, δ)}.

We will use parametric search. The idea is to simulate the decision algorithm
described in Sect. 4 for the unknown value δ∗. Through the algorithm we maintain
two values δm < δM such that the interval (δm, δM ] contains δ∗ and such that, for
any δ ∈ (δm, δM ), the algorithm branches in the same way, that is, the combinatorial
decisions of the algorithm are the same. Thus, the algorithm has the same outline as it
was used for describing the algorithm for the problem DConnectivity. This means
that it will be given in 4 parts: Step 1, Step 2, Loop and Step 3. These 4 parts will be
analogous to the parts with the corresponding names in the algorithm for the problem
DConnectivity.
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Throughout our algorithm, we will constantly update δm and δM such that the
value of δm will never decrease, the value of δM will never increase and δ∗ will be in
the interval (δm, δM ]. We will mostly update δm and δM by using parametric search
among some set of values 	 = {δ1, δ2, . . . , δN }. This means that we will discard the
values from 	 outside the interval (δm, δM ) and, for the sake of simpler description,
we will add the values δm and δM to 	. Then, we will sort the values in 	 and
we will do a binary search to determine two consecutive values δ′

1 < δ′
2, such that

DConnectivity(S,P, δ′
1) = FALSE and DConnectivity(S,P, δ′

2) = TRUE. We
will update the values δM = δ′

2 and δm = δ′
1. Clearly, it will hold δm < δ∗ ≤ δM and

none of the values that were initially in 	 will be in the interval (δm, δM ). For this
step in parametric search, we spend O(N log N ) time plus the time needed to solve
O(log N ) decision problems.

Weuse thepreprocessingofTheorem10: after a preprocessingofO(k2n log n) time,
we can solve each decision problem performing kO(k)n operations. The preprocessing
is performed only once. Afterwards, each parametric search among a set of N values
takes O(N log N ) + kO(k)n log N steps.

Step 1. To get an upper bound on δ∗, we first choose arbitrary points p1 ∈ s1, . . . , pk ∈
sk and compute aMST on points p1, p2, . . . , pn .We define δM as themaximum length
of an edge in thisMST.To set a proper lower boundon δ∗, we run the decision algorithm
for δ = 0 and, if it returns TRUE, we return δ∗ = 0. Otherwise we define δm = 0. We
see that δm < δ∗ ≤ δM .

To continue with Step 1, we compute a minimum spanning tree T for the
n − k points in P . Let e1, . . . , en−k−1 be the edges of T sorted by length such
that |e1| ≥ |e2| ≥ · · · ≥ |en−k−1|. We do a parametric search among the values
|e1|, |e2|, . . . , |emin{n−k−1,4k+1}| to update δm and δM .

Next, we remove all edges of T that are at least as long as δM . By Lemma 4, if there
are any remaining edges in T , δm is the length of the longest of the remaining edges.
Let the remaining connected components of the tree T be C = {C1,C2, . . . ,C�}. Note
that we removed exactly � − 1 edges. If � > 4k + 1, we return δ∗ = δM . This can be
done because of Lemma 4. The following lemma clearly holds.

Lemma 14 For each δ ∈ (δm, δM ), the algorithm for the problem DConnectivity
on input (S,P, δ) produces the same MST T and the set of components C in DStep 1
as were obtained after Step 1.

In Step 1we used the algorithm for the decision problemDConnectivityO(log k)
times. Hence, Step 1 runs in time O(n log n) + kO(k)n log k = kO(k)n log n.

Step 2. As in DStep 2, at the end of this step, we would like, for each component
Ci ∈ C and for each line segment s j ∈ S, to have the Voronoi diagram on s j of
the points in Ci . Note that this was already computed during the preprocessing of
Theorem 10, this means before Step 1. Hence, we do nothing on this “step”.

Loop. We treat each line segment from S and each component from C as an abstract
vertex and we iterate over all topology trees τ on these k + � vertices.

Step 3. We simulate DStep 3 while doing parametric search. Given a topology tree τ ,
we iterate over all of its significant topological subtrees. We restrict our attention to

123



Algorithmica (2024) 86:1512–1544 1537

one fixed significant topological subtree τ ′. Let the set of vertices of τ ′ be V ′ ⊆ S∪C.
We denote S ′ = S ∩ V ′ and C′ = C ∩ V ′. By definition of τ ′, we know that S ′ is not
empty. Let us choose a root sr ∈ S ′ of τ ′. For each node si ∈ S ′ of τ ′, let τ ′(si ) be
the subtree of τ ′ rooted at si , and let its height h(si ) ∈ N be the number of edges on
a longest path in τ ′ that begins in si and is contained in τ ′(si ). Note that each such a
longest path must end in a leaf of τ ′.

As inDStep 3,we use dynamic programming bottom-up along τ ′. For each segment
node si ∈ S ′ of τ ′, we compute Xi (δ), as defined inDStep 3, but taking δ as a parameter
that takes values inside the interval (δm, δM ). It will be convenient to use that Xi (δ)

increases with δ: whenever δ′ < δ, we have Xi (δ
′) ⊆ Xi (δ).

If we have a leaf si from S ′, then we have Xi (δ) = si . Consider now a segment
node si ∈ S ′ of τ ′. As in Lemma 8, we may reindex the nodes, if needed, and assume
that the children of si in τ ′ are s1, . . . , st and C1, . . . ,Cu . Then, by Lemma 8 we have

Xi (δ) =
t⋂

�=1

(
X�(δ) ⊕ D(0, δ)

) u⋂

�=1

(
C� ⊕ D(0, δ)

) ⋂
si .

We will use parametric search to determine the size of the segmentation Xi (δ) and we
will represent its components as at most h(si )-square root functions of δ, as defined
in Sect. 5. Because we process the tree τ ′ bottom-up, we can assume that the sizes of
segmentations X�(δ), for � ∈ [t], are already fixed in the interval δ ∈ (δm, δM ) and
that their components are at most (h(si ) − 1)-square root functions of δ.

Computing an intersection of a δ-neighborhood of a segmentation with a line
segment. Let us first describe how we can compute each of the t operations

Y�(δ) = (
X�(δ) ⊕ D(0, δ)

) ∩ si .

We will often leave out in the notation the dependency on � and i . We will closely
follow the algorithm VII) from Sect. 3.

Let the line segment si be si = (ps, es, as, bs). Let the segmentation X� be X�(δ) =
(pX , eX , a1(δ), b1(δ), . . . , aN (δ), bN (δ)), where a j (δ) and b j (δ), for j ∈ [N ] are
(h(si ) − 1)-square root functions of δ. For j ∈ [N ], let σ j (δ) be the segment σ j (δ) =
(pX , eX , a j (δ), b j (δ)), let γ j (δ) be the boundary of σ j (δ) ⊕ D(0, δ), and let η j (δ) be
the intersection of si with σ j (δ) ⊕ D(0, δ). Recall Fig. 6.

We first narrow the interval defined by δm < δM in such a way that, for each single
j ∈ [N ], the intersection η j (δ) is empty for all δ in the interval (δm, δM ) or nonempty
for all δ in the interval (δm, δM ). For each j ∈ [N ], we compute the value of δ j such
that η j (δ j ) is non-empty but η j (δ) is empty for all δ < δ j . Because X�(δ) increases
with δ, there is at most one single δ j that may satisfy this condition. It may be that
δ j does not exist because η j (δ) is always non-empty; in this case we set δ j = δm .
Each such value δ j is a solution to some equation involving the segment si and a circle
of radius δ centered at a j (δ) or b j (δ), or lines parallel to eX at distance δ from σ j .
Because of Lemmas 12 and 13, the value δ j is a root of a polynomial in δ of degree
at most 4h(si ) ≤ 4k . We then do a parametric search among the values {δ1, . . . , δN } to
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update δm and δM . We can then assume that, for each j ∈ [N ], the segment η j (δ) is
empty for all δ with δm < δ < δM or non-empty for all δ with δm < δ < δM .

For each j ∈ [N ], we have the (possibly empty) segment η j (δ) = (ps, es, a′
j (δ),

b′
j (δ)). All these segments have the same reference point ps and vector es . The func-

tions a′
j (δ) and b′

j (δ) are at most h(si )-square root functions because of Lemma 12.
To merge the non-empty segments that are overlapping, we have to sort the values
a′
j (δ), b

′
j (δ), a

′
j+1(δ), b

′
j+1(δ), for each single j ∈ [N − 1]. For this, we perform

a step of parametric search among the solutions of the equations a′
j (δ) = a′

j+1(δ),
a′
j (δ) = b′

j+1(δ), b
′
j (δ) = a′

j+1(δ) and b
′
j (δ) = b′

j+1(δ), for all j ∈ [N −1]. Because
of Lemma 13, these solutions are roots of polynomials of degree at most 4k .

To summarize, spending kO(k)N log N time to manipulate segments, polynomials
of degree at most 4k and their roots, and performing O(log N ) calls to the decision
problem, we have an interval (δm, δM ) where

(
X�(δ) ⊕ D(0, δ)

) ∩ si is described by
the same combinatorial structure. In particular, it is described by a segmentation

Y�(δ) = (ps, es, ã1(δ), b̃1(δ), . . . , ãN ′(δ), b̃N ′(δ)) for all δ ∈ (δm, δM ).

Note that N ′ depends on δ and �, but it is constant for all δ ∈ (δm, δM ).
We perform this procedure for each � ∈ [t], where t ≤ 5. If, for some δ ∈ (δm, δM )

and hence for all δ ∈ (δm, δM ), we get that
(
X�(δ) ⊕ D(0, δ)

) ∩ si is empty, then we
know that the topology tree τ under consideration is not δ-realizable for any δ < δM
and therefore we can move on to the next topology tree τ inside Loop.

Computing an intersection of a δ-neighborhood of a set of points with a line seg-
ment.Next, we describe each of the u operations Z�(δ) = (

C�⊕D(0, δ)
)∩si .Wewill

often leave out in the notation the dependency on � and i . Let (a1, J1), . . . , (aN , JN )

be a Voronoi diagram on si for points from C�. Then

Z�(δ) =
N⋃

j=1

(
D(a j , δ) ∩ J j

)
.

This implies that when δ goes from δm to δM , the set Z�(δ) goes through O(N )

combinatorial changes. This is because for each j ∈ [N ], D(a j , δ) ∩ J j goes through
at most 3 combinatorial changes: when D(a j , δ)∩ J j �= ∅ for the first time, when one
endpoint of J j is included in D(a j , δ) and when both endpoints of J j are included in
D(a j , δ). See Fig. 9.

We compute in time O(N ) all O(N ) values of δ for which these combinatorial
changes occur and we do a parametric search among them to update δm and δM . After
that, for any δ ∈ (δm, δM ), the segmentation Z�(δ) has fixed size and its components
are at most 1-square root functions of δ.

We perform this procedure for each � ∈ [u]. Using that |C�| ≤ n for all � ∈ [u]
and that u ≤ 5, we spend a total ofO(n log n) time plusO(log n) calls to the decision
problem. If, for some δ ∈ (δm, δM ) and hence for all δ ∈ (δm, δM ), we get that for
some � ∈ [u] the segmentation Z�(δ) is empty, then we know that the topology tree τ
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Fig. 9 Example showing for two different points the moments when D(a j , δ)∩ J j combinatorially change.
In one case (orange) there are two changes, in the other case (green) there are three changes. The value of
δ corresponds to the radius of the disk. The Voronoi diagram is from Fig. 4

under consideration is not δ-realizable for any δ < δM and therefore we can move on
to the next topology tree τ inside Loop.

Computing intersections of segmentations. Let us describe how we can compute
the intersections of segmentations needed to finish the computation of Xi (δ). As in
the statement of Lemma 8, let t and u denote the number of children of each type for
si in τ ′. At this point we have:

• two values δm < δM ;
• segmentations Y�(δ) = (

X�(δ) ⊕ D(0, δ)
) ∩ si , for all � ∈ [t]; and

• segmentations Z�(δ) = (
C� ⊕ D(0, δ)

) ∩ si , for all � ∈ [u];
such that for all δ ∈ (δm, δM ) each segmentation has immutable size (number of
segments) and each value describing any part of any segmentation is an h(si )-square
root function.

We have to compute the intersection of these u + t segmentations on si . Recall that
u + t is bounded by 5 because it is the degree of si in τ ′. We do this by pairs, which
means that we have to compute t + u − 1 ≤ 4 intersections of pairs of segmentations.
We describe how to perform the merge of two segmentations.

Consider two of the segmentations that may appear through the process:

X(δ) = (ps, es, a1(δ), b1(δ), . . . , aN (δ), bN (δ)) of size N

X ′(δ) = (ps, es, a
′
1(δ), b

′
1(δ), . . . , a

′
N ′(δ), b′

N ′(δ)) of size N ′

We want to compute X(δ) ∩ X ′(δ). For this, it suffices to sort the values

a1(δ) ≤ b1(δ) < a2(δ) ≤ b2(δ) < . . . < aN (δ) ≤ bN (δ), and

a′
1(δ) ≤ b′

1(δ) < a′
2(δ) ≤ b′

2(δ) < . . . < a′
N ′(δ) ≤ b′

N ′(δ)

for any δ ∈ (δm, δM ). After sorting the endpoints, we can easily compute the inter-
section X(δ) ∩ X ′(δ) in O(N + N ′) time. Since we are merging two lists that
are sorted, we can use Cole’s technique [10] for parametric search on networks
applied to the bitonic sorting network [15, Section 4.4]. This gives a running time
of O((N + N ′) log(N + N ′)) plus O(log(N + N ′)) calls to the decision problem.
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Using that N + N ′ = O(n), we get a running time of O(n log n) + kO(k)n log n for
the intersection of two segmentations.

SinceCole’s technique is complex,weprovide an alternative, simplerwayof achiev-
ing the same time bound to compute the intersection of two segmentations and that uses
properties of our setting. The key insight is that the segmentations we are considering
do not decrease with δ in the following sense: if 0 ≤ δ1 < δ2, then X(δ1) ⊆ X(δ2)

and X ′(δ1) ⊆ X ′(δ2). This follows from the definition of Xi (δ).
This implies that the functions a j (δ), for j ∈ [N ], and the functions a′

j (δ), for
j ∈ [N ′], are (not necessarily strictly) decreasing on the interval (δm, δM ), while the
functions b j (δ), for j ∈ [N ], and the functions b j (δ), for j ∈ [N ′] are (not necessarily
strictly) increasing on the interval (δm, δM ). Moreover, all these functions are h(si )-
square root functions, defined (at least) on the interval (δm, δM ). By continuity, they
are also defined on the interval (δm, δM ].

Lemma 15 There are at most 4k O(N + N ′) values of δ in the interval (δm, δM )

where the boundary of some segment in X(δ) may intersect with a boundary of some
segment in X ′(δ). We are only considering such pairs of boundaries, where not both
boundaries are constant on the interval (δm, δM ). These values can be computed in
2O(k)(N + N ′) + O((N + N ′) log(N + N ′)) time.

Proof Let σ1(δ), . . . , σN (δ) be the segments in X(δ); let σ ′
1(δ), . . . , σ

′
N ′(δ) be the

segments in X ′(δ). If for some δ the boundary of some segments σi (δ) and σ ′
j (δ)

intersect, then, because the segments are monotonely increasing, σi (δM ) and σ ′
j (δM )

intersect. Here we are only inserting δ = δM into the boundaries of segments σi and σ ′
j

andweare not considering a possible combinatorial change of X(δ)or X ′(δ) at δ = δM .
This is because we are only interested in limits when δ ∈ (δm, δM ) approaches δM .
Because σ1(δM ), . . . , σN (δM ) are pairwise interior disjoint, and σ ′

1(δM ), . . . , σ ′
N ′(δM )

are pairwise interior disjoint, there may be at most O(N + N ′) pairs of indices

� = {(i, j) ∈ [N ] × [N ′] | σi (δM ) and σ ′
j (δM ) intersect}.

Therefore, it suffices to compute those pairs � and, for each (i, j) ∈ � consider the
4 equations ci (δ) = c′

j (δ) with ci ∈ {ai , bi } and c′
j ∈ {a′

i , b
′
i }. The solutions to those

equations are roots of a polynomial of degree at most 4h(si ) because of Lemma 13.
The computation of � takes O((N + N ′) log(N + N ′)) time, and then we have to

compute the roots of the resulting O(N + N ′) polynomials of degree 4h(si ). ��

Using the lemma, we compute in 2O(k)(N + N ′) + O((N + N ′) log(N + N ′)) =
2O(k)n log n time the 4k O(N + N ′) = 2O(k)n values of δ where the boundaries of
the segments may intersect and do a parametric search among them to update δm
and δM . After that, for any δ ∈ (δm, δM ), the endpoints of the segments in X(δ) and
X ′(δ) are sorted in the same way, and we can easily compute X(δ) ∩ X ′(δ). Note that
the endpoints of the resulting segmentation X(δ) ∩ X ′(δ) keep being described by
h(si )-square root functions because for each endpoint there was an endpoint in X(δ)

or X ′(δ).
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We repeat t+u−1 ≤ 4 times the computation of intersection of two segmentations
on si , until we obtain

Xi (δ) =
t⋂

�=1

Y�(δ)

u⋂

�=1

Z�(δ) =
t⋂

�=1

(
X�(δ) ⊕ D(0, δ)

) u⋂

�=1

(
C� ⊕ D(0, δ)

) ⋂
si .

Altogether, we used kO(k)n log n steps.

Summary of Step 3. We perform the computation of Xi (δ) bottom-up along the
significant topology tree τ ′. For each node si ∈ S ′ of τ ′ we spend kO(k)n log n time.
At end of processing the significant topology tree τ ′, we have computed in kO(k)n log n
time values δm < δM such that the set Xr (δ) is either empty, for all δm < δ < δM , or
non-empty, for all δm < δ < δM . This is because there are no combinatorial changes
for δ ∈ (δm, δM ). After we compute the set Xr (δ) for each significant topology subtree
of τ , we know that at least one of these sets is empty. If all of the sets Xr were non-
empty, then δ∗ should be at most δm by continuity, which cannot be the case.

We repeat Step 3 for each topology tree τ . After Loop finishes, we return δ∗ = δM .
Since there are kO(k) different topology trees to consider, and for each topology tree
we spend kO(k)n log n time, the algorithm takes kO(k)kO(k)n log n = kO(k)n log n
time in total.

Theorem 16 The optimization problem Connectivity for k line segments and n − k
points can be solved performing kO(k)n log n operations. Here, an operation may
include a number that has a computation tree of depthO(k) whose internal nodes are
additions, subtractions, multiplications, divisions or square root computations and
whose leaves contain input numbers and a root of a polynomial of degree at most 4k

with coefficients that are obtained from the input numbers using 2O(k) multiplications,
additions and subtractions.

Proof The correctness of the algorithm was argued as the algorithm was described.
It remains to discuss the depth of computation tree of the numbers being computed
through the algorithm. The depths of the computation tree of numbers used in the
preprocessing, Step 1 and Step 2 are O(1). Numbers in each iteration of Loop are
computed independently of the numbers computed in another iteration. The depth of
computation trees of numbers used in Step 3 is O(k), but in the calls to the decision
problem we are using a root of a polynomial of degree 4k . Therefore, we are using
Theorem 10 with an input number that is a root of a polynomial of degree 4k that is
computed by using Lemma 13. The result follows. ��

Without diving into the time needed for the algebraic operations performed by the
algorithm and trying to optimize them, we obtain the following.

Corollary 17 The optimization problem Connectivity for k line segments and n − k
points can be solved in f (k)n log n time for some computable function f (·).
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7 Conclusions

We have shown that the Connectivity problem for k segments and n − k points in
the plane can be solved in f (k)n log n time, for some computable function f (·). The
precise function f depends on the time to manipulate algebraic numbers. The decision
problem is simpler, while the algorithm for the optimization problem uses parametric
search.

The algorithms canbe extended toRd , for anyfixeddimensiond, when the uncertain
regions are segments. The main observations are the following:

• AMST for a set of points inRd has maximum degree cd = 2O(d). Indeed, Claim 2
shows that any two edges incident to a point need to have angle at least π/3. This
implies that the maximum degree of the MST is bounded by the kissing number in
dimension d, which is known to be cd = 2O(d) using a simple volume argument.

• A MST for a set P of n points in R
d can be computed in O(dn2) time by con-

structing the complete graph KP explicitly and using a generic algorithm forMST
in dense graphs. The term O(d) is added because it is needed to compute each

distance. More efficient algorithms with a time complexity of O(n
2− 2

�d/2�+1+ε
),

for any ε > 0, are known [1] for any fixed dimension d. (The constant hidden in
the O-notation depends on ε.)

• In Lemma 4, we have to consider the components obtained by removing up to kcd
edges of the MST of P .

• The rest of the discussion follows as written. When constructing the Voronoi dia-
gram restricted to a segment si and all the other geometric constructions, the
dimension of the ambient space does not matter. In fact, when considering a seg-
ment si , we could just replace the input points by points that are coplanar with the
segment and have the same distances to the line supporting the segment.

All together, when d is constant, we get an algorithm for k uncertain line segments and

n−k points inRd that usesO(n
2− 2

�d/2�+1+ε
)+ f (k)n log n time, for some computable

function f (·). Interestingly, when k is constant, the bottleneck of the computation in
our algorithm is obtaining the MST; after that step, we need O( f (k)n log n) time.
When d is unbounded, we get an exponential dependency on d because the number
of components in the MST that have to be considered is O(kcd).
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