First publ.in: Algorithmica28(2000),1, pp.16-36

A Linear Time Algorithm for the Arc Disjoint Menger
Problem in Planar Directed Graphs!

U. Brande$ and D. Wagnér

Abstract. Given a graphG = (V, E) and two vertices, t € V, s # t, the Menger problem is to find a
maximum number of disjoint paths connectimgndt. Depending on whether the input graph is directed or
not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed
or undirected vertex, and the edge or arc disjoint Menger problem, respectively.

For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest
algorithm for the arc disjoint version is Weihe’s general maximum flow algorithm for planar networks [W1],
which has running timé&(|V | log|V|). Here we present a linear time, i.e., asymptotically optimal, algorithm
for the arc disjoint version in planar directed graphs.

Key Words. Graph algorithms, Disjoint paths, Planar graphs.

1. Introduction. Due to their importance, in their own right as well as in bottleneck
routines of other algorithms, disjoint path problems have been studied extensively. The
famous Menger theorems [M] are structural in nature. However, they have not only
been generalized to capacitated versions like the maxftomrcut theorem, but also
extended to algorithms actually constructing disjoint paths, separators, or cuts.

A generic formulation of Menger’s problem is the following: Given a gréph=
(V, E) and two distinct vertices, t € V, find a maximum cardinality set of disjoint
paths connecting andt. This leads to four concrete versions of the problem. The
instances are either directed or undirected, and4hg-paths have to be vertex or edge
(arc) disjoint.

For planar undirected graphs, linear time algorithms exist for both the vertex [RWW?2]
and edge disjoint case [W2]. However, there is no such algorithm for either case when the
planar input graphs are directed. In any graph the arc disjoint Menger problem obviously
corresponds to a maximum flow problem with unit capacities [AMO]. The first algorithm
tailored to solve the maximum flow problem with arbitrary capacities especially in planar
graphs was presented in [IS]. Faster algorithms have subsequently been developed, e.qg.,
[JV] and [KRR']. By now, the fastest algorithm is that of [W1] yielding a running time
of O(nlogn), wheren = |V|. Here we concentrate on the more special Menger problem

1 The authors acknowledge the Deutsche Forschungsgemeinschaft for partially supporting this research under
Grant Wa 654/10-1.

2 Department of Computer and Information Science, University of Konstanz, Box D 188, 78457 Kon-
stanz, Germany{UlIrik.Brandes, Dorothea.Wagri@uni-konstanz.de. http://www.informatik.uni-konstanz.
de/~{brandes,wagnér

ger.

Konstanze©nline-Publikations-Syste(fOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2009/72:
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-721&

http://www.springerlink.com/content/100117/
http://www.ub.uni-konstanz.de/kops/volltexte/2009/7215/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-72154

n 17

and present a linear time solution. Our algorithm is not only faster than the max-flow
algorithm, but also considerably simpler.

Our approach is based on right-first-search, which appears to be extremely suitable
for path problems in planar graphs (see [RWW1]). In particular, the optimal algorithms
for the Menger problem in undirected graphs [RWW?2], [W] are based on this variant
of depth-first-search. Given a fixed planar embedding of the input graph, a right-first-
search chooses arcs according taght-hand rule i.e., the continuation arc is the
counterclockwise next arc leaving the vertex that is entered by the current arc. One of
the main difficulties encountered by this strategy is the treatment of right cycles. Similar
to [W2], we therefore use an observation of [KNK] to restrict the set of input instances
to graphs without right cycles.

Roughly speaking, the algorithm successively occupies arcs in order to build a set of
(s, t)-paths. The paths in this set are frequently reorganized, such that the determination
of consecutive arcs on the same path becomes intricate. Another problem is the efficient
choice of an arc to backtrack with when the path that is currently built can no longer be
extended. Together, these problems make a linear time implementation rather difficult.
The obstacles are overcome by a careful analysis of partial solutions which leads to local
characterizations resolving both problems.

In Section 2 we introduce our basic terminology and show how to restrict the problem
to certain input instances. Section 3 gives a description of the algorithm on an abstract
level, providing a better understanding of the underlying ideas. Its correctness is proved
in Section 4. In Section 5 properties of partial solutions are examined. Based on these
properties, a linear time implementation of the algorithm is described in Section 6. We
conclude in Section 7 with a short discussion on the vertex disjoint Menger problem in
planar directed graphs.

2. Preliminaries. We first introduce our basic assumptions and terminology. We are
given an embedded planar graph= (V, A) with distinct vertices # t. Theadjacency

list of a vertexv € V is a cyclic list of all arcs incident to, arranged in the order in
which they appear aroundin the embedding. We often make use of this ordering, and
say that an ara is thefirst arc after bin (counter)clockwise order around if b is an
immediate successoraivhen the adjacency list ofis traversed in a (counter)clockwise
fashion.

With the assumption of a fixed embedding we can make heavy use of spatially de-
scriptive terms, like left and right, inside and outside, etc. For example, the right side of
a directed path is its right-hand side when following its arcs directions. A directed cycle
divides the plane into two disjoint regions, its left-hand region and its right-hand region.
The region containing the outer face is calledeitserior, the other is called itmterior.

A cycle is called deft (right) cycleif its interior equals its left-hand region (right-hand
region). Cycles witts in their interior are calledrbits.

Note that a maximum collection of arc disjoint directedt)-paths inG corresponds
to a maximum flow frons to t, if all arcs have unit capacity. Conversely, it is easy to
construct a maximum collection @§, t)-paths from an integral maximum flow. Also,
given a maximum integral flow, a partition of the vertices inducing a minimum cut can
always be found in linear time by a simple labeling algorithm.

18 r

Moreover, the maximum flow value does not change when a set of right cycles is
replaced by left cycles which are obtained by simply altering arc orientations. Therefore,
letC be a set of right cycles. TheB: = (V, A¢) is called theesidual graphwhereA¢
is the set of all arcév, w), with (v, w) € Aand(v, w) does not belong to a cycle (&
or (w,v) € Aand(w, v) does belong to a cycle if.. Note that reversion of arcs may
introduce multiple arcs, which makeg: a multiset. If fo: Ac — {0, 1} is a maximum
integral flow in the residual grapB8¢, then a maximum integral flowf: A — {0, 1}
in G is obtained by setting (v, w) = fe(v, w), if (v, w) € Aand(v, w) € Ac, and
f(v, w) =1— fe(w, v), if (w, v) isthe replacement @b, w) in Ac. From [KNK] it can
be seen that there exists a 8eidf right cycles such that the residual graph, contains
left cycles only? Moreover,C, can be found in linear time using a breadth-first-search
in the planar dual o, which can be obtained in linear time as well. This technique was
first applied in [W2]. Figure 1 gives an example. A linear time algorithm solving the arc
disjoint Menger problem i, is thus sufficient to provide a linear time solution for
the problem inG.

In the remainder we assume that we are given a planar directed GraphV, A)
that is embedded in the plane such thiaton the boundary of the outer (i.e., the infinite)

Fig. 1. Elimination of right cycles in a directed planar graph: Arcs between the same vertices are embedded
such that they form a counterclockwise cycle. For each primal arc (drawn solid), there is a dual arc of length
zero crossing from right to left (dotted), and an arc of length one crossing from left to right (dashed). Each
face is assigned a potential equal to its distance from the outer face (shown inside the dual vertices). A primal
arc belongs to the set of right cycles that are reversed, if its right face has higher potential than its left face
(thick arcs).

3 ¢ corresponds to thisottom elemenof the distributive lattice formed by all circulations 6f with appro-
priately defined operations faneetandjoin [KNK].

n 19

face' and contains no right cycle. We may further assume that there are no loops, no
arcs entering, and no arcs leaving since these obviously do not affect the maximum
number of arc disjoint directe, t)-paths.

3. The Algorithm. Inthis section we present an algorithm that determines a maximum
set of (possibly nonsimple) arc disjoifs t)-paths in a planar directed graph that contains
no right cycle, and is embedded (at least combinatorially) such tka&tn the boundary

of the outer face. We have outlined in the previous section that the arc disjoint Menger
problem can be solved for any planar directed graph with linear overhead, if it can be
solved for instances of this particular class of graphs.

For convenience, we here describe the algorithm on an abstract level, which both
facilitates understanding and displays the basic simplicity of our approach. Nonetheless,
it is not at all obvious how a linear worst case complexity can be obtained.

The algorithm applies a special variant of depth-first-search, right-first-search, which
is suitable for many problems involving paths in planar graphs [RWW1]. As a by-product,
the resulting solution is rightmost in the sense that no path can be routed further to the
right without changing others.

All paths and cycles in this section are directed. After each step, the partial so-
lution consists of asearch path which starts as and ends at some vertex # t,
and a set of(s, t)-paths and left cycles, such that every arc belongs to at most one
path or cycle. Given such a set of arc disjoint directed paths and cycles, each path
(cycle) induces a straightforward (cyclitaversal orderon its arcs. For a directed
(sub)path, itdirst andlast arc are well defined, then. We say that two arcs ame-
secutiveif they are immediate successors in the traversal order of a path or cycle,
respectively. The last arc of the search path is calledahding arg and its head is
called theleading vertexWe say that two pairs of consecutive arcs formrassing
if they share their middle vertex, and their arcs are encountered alternately when
traversing the cyclic order of arcs incidentioSee Figure 2(a). A set of arc disjoint
paths and cycles is said to bencrossingf no two pairs of consecutive arcs form a
crossing.

The algorithm uses only three basic operati@esirch stepdacktracking stepsand
realignments

Search Step An unsearched arc leaving the leading vertex is added to the search path.
Among all unsearched arcs, the counterclockwise first after the current leading arc in
the adjacency list of the leading vertex is chosen (right-hand rule).

Backtracking Step Some arc of the search path entering the leading vertex is removed

from the graph. In this general version of the algorithm, any such arc is suitable. In the

implementation presented in Section 6, our specific choice is subject to certain local
configurations and the stage of the algorithm. If a nonsimple search path has more
than one arc entering the leading vertex, the removal may split the search path into
the new search path startingssand ending at the removed arc’s tail, and a remaining

4 Such an embedding can always be obtained in linear time [HT].

20

X

(a) (b)

Fig. 2. (a) Crossing (left) and noncrossing (right) pairs of consecutive arcs. (b) After backtracking with the
second arc of the search path entering the leading vertex, there are two resulting left cycles (containing four
irrelevant arcs incident to the formerly leading vertex). The removed arc is indicated by the hashed line.

subpath starting and ending at the leading vertex,usaje then modify the traversal
order with respect to the arcs of the cut-off end of the search path that are incident
to v, such that the subpath is transformed into a set of left cycles that do not cross
at v. Each of these cycles is constrained to have exactly two arcs incidentSee
Figure 2(b) and note that there is a unique reassignment of consecutive arcs satisfying
these conditions.

We refer to the reassignment of consecutive arcs during a backtracking stepiag
left cycles, and to the arcs that are reassignédelevant. Every arc that belongs to a
path or cycle and is not irrelevant is calledevant®

In order to introduce the third operation, some more terminology is needed. For a
vertexv € V\{s, t}, we define gpassage through, or v-passagdor short, of a path
or cycle to be an (inclusion-)maximal subpath with the following properties: Its first
arc is a relevant arc enteringand its last arc is a relevant arc leavingMoreover,
if it is nonsimple, thers is in the exterior of every cycle formed by the subpath. Fig-
ure 3(a) gives an example. If existent, the lagtassage of the search path is called
the leading v-passage. An arcu, v) is said tohit somev-passagep from the right
(left), if it is on the v-passage’s right (left) side, arqgland (u, v) are on the same side
of every othern-passage. An artv, w) is said toleavea v-passage to the right (left)
in the analogous situation. Twepassagesouchat v, if they do not cross ab, and
each of them contains an arc hitting or leaving the other. Paths and cycles are hit, left,
or touched at a vertex if one of theirv-passages is. Figure 3(b) summarizes these
definitions.

Realignment. Leb be the leading vertex, and let sonmpassage be hit from the right
by the leading arc. Since there are no right cycles, there must be consecutiyug ajcs
and (v, w) of the v-passage hit, such that the leading arc appears between and

(v, w) inthe counterclockwise cyclic order of arcs incidenttd he search path is said to

5 Actually, arcs ought to be called relevant or irrelevaith respect tmne of their incident vertices. We omit
this distinction, because from the context it should always be clear with respect to which vertex an arc is
relevant or irrelevant, respectively.

(&)

Fig. 3. (a) Two (s, t)-paths forming three-passages. Note that one path has impassages, because it
surroundss. (b) Three passagegs, g, r and two arcsa, b incident to the same vertex. Passggéuches
passage| on the right, whiler touchesy on the left side. On the other hanglandr do not touch at all. Arc

a hits g from the right, ando from the left. However, it does not hit Arc b leavesp to the right, but neither

g norr. Since they do not lie on a common path or cye@ndb are not consecutive. (c) Realignment of a
passage that is hit from the right.

berealignedwith the corresponding path or cycle if the leading arc is made consecutive
with (v, w), so that(u, v) becomes the new leading arc. See Figure 3(c).

We are now ready to state our algorithm in simple terms. The bottom line is that
we always try to go as far to the right as possible. The contribution of realignments is
twofold: on one hand, they prevent crossings, and on the other hand, they ensure that the
search path is in some sense leftmost at the leading vertex when backtracking has to be
performed.

4. Correctness. In this section we prove that after termination of Algorithm 1 the set
of (s, t)-paths generated is maximum. A set of arcs whose removal discormaats

t is called a (directed)s, t)-cut By the appropriate version of the Menger theorems, a
set of (s, t)-paths is maximum if and only if its cardinality equals the cardinality of a
minimum (s, t)-cut. Such(s, t)-cuts are calledaturated There are two easy cases, for
which the following lemma yields correctness of Algorithm 1.

LEmMMA 1. If either all or none of the arcs leaving s have been removed by Algofithm
the arcs leaving s that have not been removed form a saturated dires;tigecut

22 r

Algorithm 1. Menger algorithm

for each outgoing arc a of slo
let the search path consist of arc a
while the leading vertex is neither s nodb
if the leading arc hits some passage from the ritpen
realign the search path with the corresponding path or cycle
else
if there is an unsearched arc leaving the leading vetten
perform a search step
else
perform a backtracking step

PrOOF If none of the arcs leaving has been removed, each of them is part of a
distinct (s, t)-path, because no arc is enteris@nd Algorithm 1 does only produce

(s, t)-paths and left cycles. For the other extreme, note that the numigestofpaths

found never decreases during execution of Algorithm 1. As long as,ro-path has

been found, every outgoing arc of a vertex on the search path is searched before the
incoming searched arc is removed in a backtracking step. Therefore, right-first-search
eventually finds a path to every vertex reachable foand there is nds, t)-path if

every arc leaving is removed. O

Three more observations are trivial and stated without proof:

LeEmMMA 2. During the execution of Algorithrh, the following statements hald

(a) Just before a search or backtracking stépe leading arc does not hit any passage
through the leading vertex from the right

(b) Just before a search stgthere is no irrelevant arc incident to the leading vertex and
no removed arc entering the leading vertex

(c) Just before a backtracking stepvery arc leaving the leading vertex has already
been searched

Correctness is based on the fact that the solution produced by Algorithm 1 is maximal
and rightmost, i.e., n@s, t)-path can be routed further to the right without changing
others, too. This notion of rightmost is characterized by the following four invariants:

LEmmA 3. During the execution of Algorithrt, the following properties remain in-
variant

(P1) All paths and left cycles are arc disjoint and noncrossing
(P2) No unsearched arc leaves a passage to the right

(P3) No removed arc hits a passage from the right

(P4) No two passages mutually touch their right sides

1 23

ProoF Initially, the set of paths and cycles is empty and every condition is met. It is
then sufficient to show that (P1)—(P4) are invariants ofwthée-loop, i.e., they remain
satisfied after a single realignment, or a single search or backtracking step.

By (P1) and the fact that the search path is realigned only when it hits a passage
through the leading vertex from the right, a realignment does not affect any of (P1)—
(P4).

(P1) Clearly, no arc is assigned to two different paths or cycles at the same time.
Searching does not cause a crossing because of Lemma 2(a) and (P2). By Lemma 2(a)
and the way we close left cycles, no crossing is produced when an arc of the search path
is removed.

(P2) By our choice of the new arc, (P2) remains valid after a search step. We need
not consider backtracking because of Lemma 2(c).

(P3) Lemma 2(b) shows that (P3) remains satisfied after a search step. According
to Lemma 2(a), backtracking does not violate (P3), since all reassigned arcs become
irrelevant arcs.

(P4) By Lemma 2(a), we can safely add a new arc to the search path. All changes
caused by backtracking involve only irrelevant arcs. O

Based on the above observations, Algorithm 2 determines a saturated disgetied
cut in the output of Algorithm 1. This is obviously sufficient to prove correctness. From
the discussion in Section 6, it is easy to see that Algorithm 2 can also be implemented
with linear running time. It is based on the analogous variant of depth-first-search, left-
first-search. Arcs removed or not searched by Algorithm 1 are searched in the forward
direction, while arcs belonging to paths or cycles are searched in the backward difection.
When Algorithm 2 backtracks, the backtrack arc is said tdibeardedirom the search
path. Algorithm 2 terminates when the search path hits itself from the left, such that the

Algorithm 2. Saturated cut algorithm

if all or none of the arcs leaving s are removiben
let the search path consist of s only
else
let the search path consist of a removed arc leaving s
repeat
if there is an unsearched candidate &hen
search the clockwise next candidate arc
else
discard the leading arc from the search path
until the search path consists of s only
and the clockwise next candidate arc has been searched
or the clockwise next candidate arc is part of the search path
and s does not lie in the exterior of the resulting cycle

6 Basically, the algorithm tries to find an augmenting path.

24

&

Fig. 4. Algorithm 1 has produced fivés, t)-paths and one left cycle, indicated by grey lines. In its output,
Algorithm 2 terminates after returning t@. The final search path is depicted by black lines, with the resulting
right cycle,C, drawn thicker. At vertexw, the search path of Algorithm 2 hit a search path from the right, but
did not enter it (see Lemma 6).

resulting cycle is a right cyclesurroundings. The arcs or(s, t)-paths having their tail
on this cycle and their head in the exterior then form the desired cut. Figure 4 may serve
to build an intuition.

To avoid confusion, an arc is denotigghoredif it was not searched by Algorithm 1.
An arc is called acandidate ardf it leaves the leading vertex and was either removed
or ignored, or if it enters the leading vertex and is part of(sirt)-path or left cycle
produced by Algorithm 1.

LEMMA 4. Algorithm?2 never discards an arc from the search path that belongs to an
(s, t)-path produced by Algorithr.

PrOOF If the leading arc of Algorithm 2 belongs to d@s t)-path produced by Algo-
rithm 1, there either is a preceding arc on this path, or the leading vedebithe latter
case, the clockwise next candidate arc is searched next, or the algorithm termidates.

LEMMA 5. If anignored arc is searched by Algorith®it lies in the interior of one of
the left cycles produced by Algorithin

PrOOF By Lemma 2(c), the head of a removed arc is never the tail of an ignored arc.
Hence, the immediate predecessor of an ignored arc on the search path of Algorithm 2
must be an ignored arc, or the arc of(ant)-path or left cycle produced by Algorithm 1.

7 Since some arcs are searched in the backward direction, right cycles are possible.

m 25

Since candidate arcs are searched in clockwise order, Lemma 4 and (P2) prove the
claim. O

LEMMA 6. The search path of Algorithia never enters ars, t)-path determined by
Algorithm1 from the right

PROOF Assume thatin the next step the search path entdss Bapath of Algorithm 1

from the right. Then the currentleading arc is either an ignored or removed arc hitting the
(s, t)-path, or a path or cycle arc leaving it. Because, by Lemma 4, afsstofpaths are

never discarded, (P1), (P4), and the clockwise selection of candidate arcs imply that the
leading arc does not belong to a passage through the leading vertex. From Lemma 2(a)
it follows that irrelevant arcs appear only on the left-hand side of passages through the
respective vertex, i.e., inside of a left cycle or to the left ofar)-path. The leading arc

is therefore neither a path nor a cycle arc because of (P1). Removed arcs are excluded
by (P3), and since Lemma 5 states that ignored arcs are searched inside of left cycles
only, (P1) and (P4) rule them out, too. O

After termination of Algorithm 2, the search path either consists afone, or it
hits itself from the left while surrounding In the second case, I€t = (v1, &, vy, &z,
..., vk = v1) be the sequence of vertices and arcs of the search path beginning with
the leading vertex and the clockwise next arc on the search path, and ending with the
leading arc and the leading vertex. See Figure 4. In the first casg, betthe trivial
cycles.

LEmmA 7. If C does not equal sit is a right cycle with s in its interior or on its
boundary

ProoFr Clearly,sdoes notlie in the exterior &. If only some of the arcs leavirgare
removed arcs, Algorithm 1 has found at least ¢g)¢)-path, because every arc that was
neither removed nor ignored lies on é)t)-path or a left cycle and no arc is entering
s. Thus, Lemma 6 and the clockwise selection of candidate arcs implZtbahnot be

a left cycle. O

LEMMA 8. The set of arcs ors, t)-paths produced by Algoriththhaving their tail on
C and their head in its exterior form a saturated directsdt)-cut

ProOFE If the precondition in the first line of Algorithm 2 is true, we may apply
Lemma 1. Therefore assume it is false.

Because no arc is leaving verteand no incoming arc dfis removed, Algorithm 2
can entet on ignored arcs only. Howeverlies on the outer face, and from Lemma 5
we can thus deduce that it is never reached. Using Lemma 7, we hav@ ithatright
cycle withs in its interior or on its boundary. To verify that the arcs leavgn (s, t)-
paths form a directed cut, consider an arbitrary simple pats v, a;, ...,y =t)
fromstot. Letv] = v be its last vertex on the boundary ©f and assume tha{
is a removed or ignored are; must have been the clockwise next candidate arc of

26

Algorithm 2 some time thab; was the leading vertex. Theaj was indeed searched

and later discarded by Algorithm 2. Also, every arc reachable Bowas searched and
discarded. By Lemma 4, n@, t)-path of Algorithm 1 was hit in the meantime. (Note
that it does not matter that left cycles produced by Algorithm 1 are searched the other
way round.) This is a contradiction, becaudseas not reached. Neither caphbelong

to a left cycle produced by Algorithm 1, because candidate arcs are chosen in clockwise
order. Henceg must be the arc of a(s, t)-path. Since by Lemma 6 Algorithm 2 does

not enter(s, t)-paths from the right, the clockwise choice of candidate arcs implies that
every(s, t)-path has exactly one arc leaving the right cycle forme€by O

The appropriate version of the Menger theorems now yields correctness of our
algorithm.

COROLLARY 1. The set of arc disjoint(s, t)-paths determined by Algorithrh is
maximum

5. Properties of Partial Solutions. In Section 3 an algorithm solving the arc disjoint
Menger problem in certain planar directed graphs was described. In this section we prove
a number of invariants that are used to implement this algorithm efficiently.

Since our goal is to achieve linear running time, the possibly more than linear number
of realignments cannot actually be performed. The subsequent analysis of the structure
of partial solutions leads to an implementation that does not need to represent consecu-
tiveness of arcs explicitly. Although the arc to be searched next is still computed easily,
it can be difficult to identify a backtracking arc without knowing which arcs are con-
secutive. Therefore, two arcs are stored at each vertex in order to identify a set of arcs
that is to the left of all passages through the vertex. Since Algorithm 1 realigns until the
search path ends up on this left side, the implementation skips realignments and simply
registers relevant changes to the left side.

A precursory structural insight is the relative orientation of passages. Two passages
p, g through the same vertex are said taiented likewisgif p is completely to the left
of g, while q is completely to the right op. In Figure 3(b), passages g are oriented
likewise, while passagep, r andq, r are oriented differently. The following lemma
shows that at most the lastpassage of the search path can be oriented differently from
otherv-passages.

LEMMA 9. During the execution of Algorithni, the following property remains
invariant

(P5) For all v € V\{s, t}, all v-passages are oriented likewjgmssibly except for the
leadingv-passage

ProOF Justlikeinthe proof of Lemma 3, we only have to consider a single realignment,
or a single search or backtracking step.

The search path is either realigned with(gst)-path, with a cycle, or with itself. First,
let the search path be realigned with(@nt)-path and assume that (P5) is not satisfied

5

outer face

Fig. 5. If the search path touches a differently orientect)-path from the left, it does not hit afs, t)-path
from the right, because of (P1).

afterward. By induction, there has to be a vertesuch that before the realignment the
leadingv-passage is oriented differently than anothgrassage it touches, while after

the realignment it belongs to th@, t)-path hit. By (P4) these two-passages touch

on their left sides, since differently oriented passages mutually touch on the same side.
Therefore, by (P1), the toucheepassage does not belong to a left cycle, but ttsat)-

path or orbit. However, then, again by (P1), the search path did not tst Bapath from

the right (recall that is on the outer face and note that there ig$1d)-path, if there is

an orbit). Figure 5 illustrates the situation of a touclkigd)-path.

If the search path is realigned with itself (because it surroghdbie considerations
are almost the same.

If the search path is realigned with a cycle, the cycle does not surreuind.,
it is not an orbit), because of (P1). Similar arguments thus show that any leading
passage oriented differently than anothgrassage still is a leadingpassage after the
realignment.

Obviously, search steps do not affect the invariant, since only leading passages are
changed. Note that the orientation of the new and augmented leading passage of the
leading arc is the same as before in case the search path is extended after hitting itself
from the left.

The only way a backtracking step can violate this invariant is by the creation of a
left cycle which has, for some € V\{s, t}, av-passage that is oriented differently than
anothen-passage. In this case, every arc of the search path that is incident to the leading
vertex either remains on the same passage or becomes irrelevant. Hengés thig
the leading vertex. Just like above, the search path then has to tauphssage of an
(s, t)-path or orbit on the left side. Because of (P1) aheing on the outer face, this is
impossible. O

If v € V\{s, t}isonthe search path, leistLeadingv) be the last arc of the search path
leavingv. By the above property, all but at most one specifftassage (which then is the
leadingu-passage) of a vertaxe V\{s, t} are oriented likewise. We define tleftmost
v-passage to be the unique leftmost of these. Furthermofsteefi(v) andlastLef(v)
be its first and last arc, respectively. CleatstLeadingv) equalslastLefiv), if and
only if the leadingv-passage is oriented like every othepassage.

28 T

§ s

Fig. 6. In the left situation there is arfs, t)-path touched on the left by the search path, such that
lastLef{v) # lastLeadingv) = last(v). In the right situation, the search path returnsvtand we have
last(v) = lastLeadingv) = lastLefv). Note that these situations cannot be distinguished solely based on the
arcs incident ta and the order in which they were searched.

As an immediate, yet crucial, consequence of (P5) the following corollary states
that knowledge ofastLefiv) is sufficient to identify an incoming arc that may be
used in a backtracking step (i.e., any arc of the search path entering the leading
vertex).

COROLLARY 2. During the execution of Algorithrh, the following property remains
invariant

(P6) If v € V\{s, t} is the leading vertex and the search path does not hi{passage
from the right then the counterclockwise next relevant arc after lasthbgfis an
incoming arc of the search path

Unfortunately, it is difficult to keep track déstLefi(v) efficiently (see Figure 6). We
therefore maintain an alast(v) that equals atleast onelastLefi(v) andlastLeadingv).

Until we need to backtrack from a vertexe V\{s, t} for the first time last(v) is
defined to be the arc incident tathat has most recently been added to the search path.
By definition, it was equal ttastLeadingv) when it was added. After backtracking from
v for the first time Jast(v) is defined to be the clockwise next relevant outgoing arc after
the backtracking arc enteringthat was most recently removed.

The next lemma states that these definitions ensure the desired proplass(of,
namely, that it is the last arc of one of the at most twpassages that are to the left of
all otherv-passages.

LEMMA 10. During the execution of Algorithmi, the following property remains
invariant

(P7) For everyv € V\{s, 1}, last(v) equals lastLef) or lastLeadingv). If last(v)
equals lastLeadin@), the leading-passage is to the left of every othepassage

m 29

PrROOF Again, we only consider a single step. et V\{s, t} be the leading vertex.

If the search path is realigned, we first consider those vertices V\{s, v, t},
for which last(u) = lastLeadingu). If the search path is realigned with &g, t)-
path, the leadingi-passage afterward belongs to the resultiag)-path. However,
since by induction the leading-passage is to the left of every othespassage, it
cannot be oriented differently because of (P1). Hetest(u) equalslastLefiu). In
case the search path is realigned with itself, similar arguments hold. If the leading
u-passage is to the left of every othempassage, a left cycle hit by the search path
does not have a-passage because of (P1) and (P4). Therefore, the leaeiagsage
remains leading when the search path is realigned with a left cycle. Now, consider
the leading vertex. If the search path is realigned, it is not to the left of every
otherv-passage. Thereforigst(v) = lastLef{v) by induction and neither of them is
altered.

For a search step that does not makihe new leading vertex, we only have to
consider the current leading vertexBy definition,last(v) becomedastLeadingv). By
Lemma 2(a), the new leadingpassage is to the left of every othepassage, and no
other vertex is affected. If, in turn, the new leading vertelx the situation compares to
a realignment with ags, t)-path. Then it follows just like above thist(u) also equals
lastLefiu) for every vertexu € V\{s, t} with last(u) = lastLeadingu).

In case of a backtracking step, we need to treat the leading westied those vertices
u on the search path that after the step lie on a closed left cycle. If the leading passage of
such a vertex is to the left of every othem-passage, the leading passage is not oriented
differently than the otheu-passages because of (P1) and (P4). Tlassl.eadingu)
equalslastLeftu) so thatlast(u) equalslastLef{u) by induction. Now consider the
leading vertex. By Lemma 2(a), the arc to be removed is to the left of evpassage.
Thus, (P1) and the absence of right cycles imply that the clockwise next relevant arc after
the removed arc is outgoing. It becomes the fest(v), which is thus also to the left of
everyv-passage. Moreover, it equdisstLefiv) or lastLeadingv), since the removed
arc is on the search path. In any case, a leadipgssage remains left of every other
v-passage. O

Finally, we give a sufficient condition fdast(v) to equallastLeftv). Depending on
the currentast(v) of v € V\{s, t}, definefirst(v) to be the counterclockwise first relevant
arc afterlast(v). Note thaffirst(v) equalsfirstLeft(v), if last(v) equaldastLeftv). In a
cyclic clockwise traversal of the adjacency listottheleft side ofv is defined to be the
set of arcs in the clockwise interval fraiinst(v) to last(v), exclusively. Complementary,
the right side ofv is the set of arcs in the counterclockwise interval fréirst(v) to
last(v), including both boundary arcs. See Figure 7.

LEMMA 11. Letwv € V\{s,t} be the leading vertex at some stage of Algorithm
Suppose thauntil now backtracking fromv has always been performed with the then
leading arc If the current leading arc is contained in the right sidevpthen lastv) =
lastLefi(v).

PrROOF Assume the preconditions are satisfied, last(v) # lastLef{v). Then (P5)
and (P7) imply that there is a leadingpassage that is to the left of every othgpassage

30

Fig. 7. The arcs contained in the left and right sides pfespectively. Note that the right side otontains
the arcs of the leftmost-passage and of two cycles that are to the passages left.

and oriented differently from every otherpassage. However, since the leading arc is
contained in the right side af, and since there are no right cycles, the search path also
hits somev-passage from the right. This contradicts (P1). O

6. Linear Time Implementation. In this section we show that Algorithm 1 can be
realized with linear running time. Since the number of changes caused by realignments
can be more than linear in the number of arcs, it is crucial to, at least in general, avoid an
explicit maintenance of consecutive arcs. Fortunately, due to the highly structured partial
solutions generated by the algorithm, realignments need not be performed explicitly. We
show that, in general, a potential search or backtracking arc Algorithm 1 chooses after
realigning can be determined solely from the leading fst(v), andlast(v).

In each iteration of the main loop, the search path is initialized with the particular arc
leavings, and the inner loop is executed. The implementation of the inner loop consists
of intended search and backtracking steps only. In a search step, the algorithm tries
to extend the search path by an unsearched arc leaving the leading vertex, while in a
backtracking step, it removes the current leading arcvldgnote the leading vertex in
a search step, and the tail of the leading vertex in a backtracking step, respectively. If
v € V\{s, t}, four situations are distinguished.

Forward Mode Vertexu is inforward modeif there are unsearched arcs leavinglo

matter whether the current step is a search backtracking step, we let the counterclockwise
next unsearched arc after the current leading arc be the new leading arc. By (P1) and
(P2), this arc is exactly the arc that Algorithm 1 chooses after all necessary realignments.

If there are no unsearched outgoing arcs remainiegters transition mode (see below),

and each outgoing arc ofis assigned its preceding incoming arc. This is easily done

| 31

according to (P1), (P5), and the fact that(v) is the last arc of some-passage. Finally,
another search step is initiated.

Transition Mode When all outgoing arcs are searched,lastLef(v) is not yet deter-
mined, vertex is in transition modelf the leading arc is contained in the right side of

v, last(v) equaldastLefiv) by Lemma 11, so that we letenter skip mode (see below).
Otherwise the leading arc is contained in the left side.dh a search step, the search
path cannot be extended. Hence a backtracking step removing the leading arc is invoked.
In a backtracking step, the temporarily stored preceding arc that was computed at the
end of the forward mode is used for backtracking in order to satisfy the precondition
in Lemma 11. Note that no reassignment of consecutive arcs is necessary for a vertex
in transition mode. Following their definitiofast(v) andfirst(v) are updated to be the
clockwise and counterclockwise next relevant arc, respectively, after the new leading
arc.

Skip Mode At the end of the transition modst(v) equaldastLef(v) by Lemma 11.

From that timeyp is in skip modeuntil its last outgoing arc is removed or the algorithm
terminates. When its last outgoing arc is removefihally enters done mode (described
below). Since there are no unsearched outgoing arcs left at vertices in skip mode, an arc
to backtrack within the next step must be determined, no matter whether the current step
is a search or backtracking step.

The arcs contained in the left side ofare never involved in a realignment of Al-
gorithm 1, since they are either unsearched and incoming, irrelevant, or belong to the
search path. We therefore maintain a fixed assignment of predecessors for the outgoing
arcs of the left side. If the leading arc is contained in the left side, dff is used for
backtracking when the current step is a search step. Its stored predecessor is used in case
the current step is a backtracking step.

If the leading arc is contained in the right sidevpthe realignments of Algorithm 1
cause some subpath of the leftmogiassage to become the new search path. Therefore,
first(v) is suitable for backtracking because of Corollary 2 and Lemma 11. According
to (P1), the closing of left cycles contained in the new left side is easily performed
in the following way: Starting right aftefirst(v), the adjacency list ob is traversed
counterclockwise. Every outgoing arc is placed on a stack, whereas every incoming
arc becomes the predecessor of the topmost outgoing arc, until an incoming arc is
encountered while the stack is empty. Findilgt(v) is updated to be this last incoming
arc, which must be relevant. In case of a backtracking step with leadingsifc), a
similar procedure is also used to updiast(v) and close left cycles in the resulting new
interval of the left side ob. Note that the case of no remaining relevant arc is easily
recognized.

Done Mode If v has no (remaining) outgoing arc at all, it is said to be@me mode
In a search step, backtracking with the leading arc is initiated. Note that there cannot be
a backtracking step with the tail of the leading arc.

Aformal description of the main loop is given in Algorithm 3. Variablebal _mode
determines whether the next intended step is a search or a backtracking step. Vari-
ableleading _arc stores the leading arc. Vertices and arcs are represented by records

32

Algorithm 3. Menger implementation

foreacha € Adoa.flow =0
for eachv € V\{s, t} do
if v has no outgoing arcthen
v.mode := DONE
else
v.mode = FORWARD

for eachoutgoing arca of s do
leading _arc :=a
leading _arc flow =1
global _mode:= SEARCH
while (global _mode = SEARCHand headéading _arc)#1t)or
(global _mode = BACKTRACHN tail(eading _arc) # s) do
caseglobal _mode of
SEARCH: search
BACKTRACK: backtrack
if global _mode = BACKTRACHKhen
removeeading _arc from graph

containing fields of data. Fieldlmode is used to store the mode of vertexEvery arc
a that is not removed from the graph has a figlftow containing eithed or 1. It has
valuel if and only if the arc is occupied and hence belongs to a path or cycle.
The search step is formally described in Algorithm 4. An additional fidkbst s
used to stordast(v) for every vertexv € V\{s, t}. Whenv enters transition mode, the
current pairs of consecutive arcs are computed by a subroutiteh _all computing
the predecessa.pred of every outgoing ara of v. According to (P1) and the fact
that last(v) is the last arc of some-passage, a simple stack algorithm is sufficient.
Fieldv.first is introduced to storérst(v). Whenv.first is used for backtracking
according to Corollary 2, the field must be updated. Every arc between the former and the
newv.first is irrelevant. Subroutinenatch _left realizes the update offirst
and matches outgoing arcs newly contained in the left sidenth their predecessors.
Algorithm 5 implements the backtracking step. If an arc removed in skip mode equals
lastLef{u), the arcs newly contained in the left side wfare matched in subroutine
match _right ,whichisanalogoustmatch _left .Observe thatthe arcthatisremoved
during a backtracking step hfisw 1 . Thus, its tailu cannot be in local modBONE

THEOREM1. Algorithm3determines a maximum set of arc disjgimbncrossing(s, t)-
paths of G in linear time

ProOOF Fromthe discussion above we see that Algorithm 3isindeed animplementation
of Algorithm 1 and therefore computes a maximum solution (Corollary 1).

For the linear running time, observe that every time an arc is used, its state is altered
from unsearchedflpw 0) to searchedflow 1), or from searched to removed (no
longer present). The predecessor of an arc is computed at most twice, and because of (P1)

Algorithm 4. Proceduresearch

v := headleading _arc)
if there is an outgoing arc of with flow 0 then
leading _arc :=first arc afterleading _arc
in counterclockwise order around
that is outgoing and haflow 0

leading _arc .flow =1
v.last :=leading _arc
else
casev.mode of
FORWARD:
match _all(v)
v.first :=first arc afterv.last

in counterclockwise order around

that is incoming wittflow 1

and does not equadading _arc
v.mode := TRANSITION

TRANSITION:
if leading _arc is to the right of{v.first,v.last } then
v.mode := SKIP
else
global _mode:= BACKTRACK
SKIP:
if leading _arc is to the right of{v.first,v.last } then

leading _arc :=v.first
match _left(v)
global _mode:= BACKTRACK
DONE:
global _mode:= BACKTRACK

a simple stack algorithm matches consecutive arcs in linear time. Thus it is sufficient
to show that, computation of consecutive arcs not accounted for, a single search or
backtracking step can be implemented with constant amortized running time. The only
critical operation of a search step is the determination of a counterclockwise next arc
after the current leading arc. It was shown in [WW] how Gabow and Tarjan’s technique
for the efficient implementation of certaimion-findstructures [GT] can be adapted

to determine this arc in constant amortized time. The corresponding operation needed
during a backtracking step can be performed on the same data structure. Verify that during
all updates of fields.first andv.last in modesFORWAREBNATRANSITION every
incident arc of a vertex needs to be traversed at most once. O

7. Discussion. The Menger problem has four basic variants: edge dis{giri)-paths
in undirected graphs, arc disjoi(s, t)-paths in directed graphs, vertex disjo{st t)-
paths in undirected graphs, and vertex disjéat)-paths in directed graph. For planar

34 er

Algorithm 5. Procedurebacktrack

u :=tail(leading _arc)
dummy:= leading _arc
if leading _arc is the only outgoing arc af then
leading _arc :=the incoming arc withlow 1
u.mode := DONE
else ifthere is an outgoing arc aof with flow 0 then
leading _arc := first arc afterleading _arc
in counterclockwise order around
that is outgoing and haflow 0

leading _arc .flow =1
u.last :=leading _arc
global _mode:= SEARCH
else
caseu.mode of
FORWARD:
match _all(u)
u.first :=first arc afteru.last

in counterclockwise order around
that is incoming witHlow 1
and does not equétading _arc
u.mode := TRANSITION
TRANSITION:
if leading _arc =u.last then
leading _arc :=leading _arc .pred
u.last :=firstarc afterleading _arc
in clockwise order around
that is outgoing and haffow 1
u.first .= first arc afterleading _arc
in counterclockwise order around
that is incoming and hafiow 1

else
u.mode := SKIP
SKIP:
if leading _arc is to the left of{u.first,u.last } then
leading _arc :=leading _arc .pred
else

if leading _arc =u.last then
match _right(u)
leading _arc := u.first
match _left(u)
removedummyfrom graph

m 35

graphs, three of these four cases have been solved to optimality by the algorithms in
[W2], [RWW?2], and in this paper.

The linear time algorithm for the edge disjoint Menger problem in planar undirected
graphs transforms an undirected input graph into a directed graph [W2]. Each undirected
edge is replaced by two arcs, one for either direction. Even though right cycles are
eliminated as described in Section 2, this results in a very special directed graph. A
right-first-search without backtracking is used to find a maximum numbés, ¢§-
paths. Backtracking is never needed, since every time a vertex is entered by the search
path, there must be an unsearched outgoing arc. It is precisely the potential need to
backtrack which makes the directed version much more difficult.

By now, in planar graphs no linear time solution is known only for the directed vertex
disjoint Menger problem. From the undirected versions of the problem one may draw
the conclusion that a linear algorithm for this problem might be more difficult to find
(assumingthereis one atall), since approaches using right-first-search run into difficulties
when right cycles are present in the graph. In [KNK] it was argued that in the case of
vertex capacities the set of maximum flows does not have a lattice structure. However,
it was precisely this structure that allowed an easy restriction to planar graphs without
right cycles. In other terms, it appears to be more difficult to resolve the problems caused
by right cycles in the case of vertex disjointness.

Acknowledgments. The authors would like to thank Annegret Liebers and Karsten
Weihe for their helpful comments and suggestions.

References

[AMO] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orhletwork Flows Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[GT] Harold N. Gabow and Robert E. Tarjan. A linear-time algorithm for a special case of disjoint set
union.J. Comput System Sgi30:209-221, 1985.

[HT] John E. Hopcroft and Robert E. Tarjan. Efficient planarity testihgAssoc Comput Mach,
21:549-568, 1974.

[IS] Alon Itai and Yossi Shiloach. Maximum flows in planar networ&AM J Comput, 8:135-150,

1979.

[JV] Donald B. Johnson and Shankar M. Venkatesan. Using divide and conquer to find flows in directed
planar networks i (n%2 logn) time. In Proceedings of thé0th Annual Allerton Conference on
CommunicationControl, and Computingpages 898—905, 1982.

[KNK] Samir Khuller, Joseph (Seffi) Naor, and Philip Klein. The lattice structure of flow in planar graphs.
SIAM J Discrete Math, 6(3):477-490, 1993.

[KRR*] Philip Klein, Satish B. Rao, Monika Rauch, and Sairam Subramanian. Faster shortest-path algo-
rithms for planar graphg. Comput System Sci55(1):3-23, 1997.

[M] Karl Menger. Zur allgemeinen Kurventheorieund Math., 10:95-115, 1927.

[RWW1] Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. Efficient algorithms for disjoint
paths in planar graphs. In William Cook, Laszlo la®z, and Paul Seymour, editoBmbinatorial
Optimization Papers from the DIMACS special yeddIMACS Series in Discrete Mathematics
and Theoretical Computer Science, volume 20, pages 295-354. American Mathematical Society,
Providence, RI, 1995.

[RWW2] Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. The vertex-disjoint Menger prob-
lem in planar graphsSIAM J Comput, 26:331-349, 1997.

36

Wwij

w2]

(ww]

Karsten Weihe. Maximungs, t)-flows in planar network inO(nlogn) time. In Proceedings of

the 35th Annual Symposium on Foundations of Computer ScjdfOE€S 94, pages 178-189,
1994.

Karsten Weihe. Edge-disjoiris, t)-paths in undirected planar graphs in linear tichélgorithms
23:121-138, 1997.

Dorothea Wagner and Karsten Weihe. A linear time algorithm for edge-disjoint paths in planar
graphsCombinatorica 15:135-150, 1995.

	Text9: First publ. in: Algorithmica 28 (2000), 1, pp. 16-36
	Text11:
	Text12: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2009/7215/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-72154
	Text13:
	Text14:
	Text15:
	Text17:
	Text18:
	Text19:
	Text20:
	Text21:
	Text22:
	Text23:
	Text24:
	Text25:
	Text26:
	Text27:
	Text28:
	Text29:
	Text30:
	Text31:
	Text32:

