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Improved Routing and Sorting on Multibutterflies 1

B. M. Maggs2 and B. Vöcking3

Abstract. This paper shows that anN-node AKS network (as described by Paterson) can be embedded
in a (3N/2)-node twinbutterfly network (i.e., a multibutterfly constructed by superimposing two butterfly
networks) with load 1, congestion 1, and dilation 2. The result has several implications, including the first
deterministic algorithms for sorting and finding the median ofn logn items on ann-input multibutterfly in
O(logn) time, a work-efficient deterministic algorithm for finding the median ofn log2 n log logn items on
ann-input multibutterfly inO(logn log logn) time, and a three-dimensional VLSI layout for then-input AKS
network with volumeO(n3/2). While these algorithms are not practical, they provide further evidence of the
robustness of multibutterfly networks. We also present a separate, and more practical, deterministic algorithm
for routing h-relations on ann-input multibutterfly in O(h + logn) time. Previously, only algorithms for
solvingh one-to-one routing problems were known. Finally, we show that a twinbutterfly, whose individual
splitters do not exhibit expansion, can emulate a bounded-degree multibutterfly with(α, β)-expansion, for any
α · β < 1

4 .
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1. Introduction. In 1983 Ajtai, Komlós, and Szemer´edi (AKS) devised a network for
sortingn items inO(logn) depth [1]. This result was surprising because no improvement
in the asymptotic depth of sorting networks had been made since Batcher’s invention of
theO(log2 n)-depth bitonic sorting network 15 years earlier [5]. Indeed, the difficulty of
improving on Batcher’s construction led Knuth to conjecture that there was no sorting
network with depthO(logn) [24, p. 243].

The AKS sorting network differed from previous constructions in one crucial respect:
it incorporatedexpansioninto its structure. Expansion is a graph-theoretic notion. An
l × r bipartite graph is said to have(α, β)-expansionif every set ofx nodes on the left
side has at leastβx neighbors on the right side, provided thatx ≤ αl , whereα andβ
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are constants,α < 1, andβ > 1. This property is most interesting whenr ≤ l , for when
r À l , it is easy to construct graphs with expansion. As it happens, a randomk-regular
l × l bipartite graph is likely to be an expander for anyk ≥ 3 [44]. Explicit constructions
were first discovered by Margulis [34], [35], and have since been greatly improved. So
far, however, the expansion achieved by the explicit constructions is still about a factor
of two smaller than the expected expansion of a random graph. A nice summary of the
state of the art in expander graphs can be found in [23].

One drawback to the AKS network is that the big-O notation hides large constant
factors. In contrast, the depth of the bitonic sorting network is(log2 n)/2+ (logn)/2
[14, p. 650]. Some progress has been made in simplifying the AKS network and in
improving the constant factors in its depth [42], but for practical values ofn, the depth
of bitonic sort is much smaller. To date, however, allO(logn)-depth sorting networks
are based on the AKS construction.

Two notable AKS-based sorting networks are Leighton’s sorting network [27] and
Ma’s fault-tolerant sorting network [32]. Leighton showed how to construct anN-node
degree-3 network capable of sortingN items inO(log N) steps. His network implements
the columnsortalgorithm, and uses a2(N/log N)-input AKS network in a pipelined
fashion. Ma showed how to construct ann-input sorting network withO(logn)depth that
can sustain constant-probabilitypassivefaults at its comparators, and still sort correctly
with high probability. In the passive fault model, a faulty-comparator can be viewed as
having been removed from the network.

Another network that incorporates expansion into its structure is themultibutter-
fly. The basic structure of this network was introduced by Bassalygo and Pinsker [4],
who showed that two back-to-back multibutterflies form anO(logn)-depth nonblock-
ing network. Heren is the number of input and output terminals of the network. A
network is callednonblockingif every unused input terminal can be connected by a
path through unused edges (or nodes) to any unused output terminal, regardless of
which inputs and outputs have already been connected. Bassalygo and Pinsker did not
use the term multibutterfly, and their network differed from the multibutterflies con-
sidered in the rest of this paper in one technical detail: although the out-degree of
each node in the network was bounded, the in-degree was not necessarily so. It is
not difficult, however, to modify their construction so that the degree of all nodes is
bounded.

The term “multibutterfly” was introduced by Upfal [51]. In his seminal paper, Upfal
proved that ann-input multibutterfly can route any permutation ofn packets from the
inputs to the outputs of a multibutterfly inO(logn) steps deterministically. (In fact, he
showed that even a collection of logn permutations can be routed inO(logn) time.)
Because it can sort, the AKS network can also solve these problems inO(logn) time. In
the AKS network, however, the running time of the algorithm cannot be separated from
the size and depth of the network. In the multibutterfly, on the other hand, although the
O(log N) bound on the running time hides some moderately large constants, the network
itself can be constructed by merging just two copies of the ordinary butterfly network
(hence the name multibutterfly). Furthermore, simulations show that the running time of
the routing algorithm is actually smaller than theO(log N) upper bound implies [29],
[31]. Hence, a case can be made for the practicality of multibutterflies, and several studies
have explored their implementation [12], [13], [16], [17].
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Although no deterministicO(logn)-step sorting algorithm for multibutterflies was
previously known, the network was known to have some capabilities that the AKS net-
work was not known to have. For example, Leighton and Maggs showed that multibut-
terflies are highly fault tolerant [29]. In particular, they showed that even if an adversary
is permitted to placef worst-casefail-stop faults in a multibutterfly, there is still some
set ofn−O( f ) inputs andn−O( f ) outputs between which any permutation of packets
can be routed inO(logn) steps. In the fail-stop fault model, a faulty node cannot com-
municate with its neighbors at all. As a consequence, fail-stop faults are more difficult to
tolerate than passive faults. Leighton and Maggs also showed that even if every node in
the network fails with some small, but constant, probability, with high probability there
is still some set of2(n) inputs and2(n) outputs between which any permutation can be
routed inO(logn) time. As Bassalygo and Pinsker showed, the multibutterfly can also
be used to construct a nonblocking network. Arora et al. termed two back-to-back multi-
butterflies a multi-Beneˇs network, and showed that not only is a multi-Beneˇs network
nonblocking, but any set of new paths can be established in this network inO(logn)
steps, even if many requests for new paths are made simultaneously [2]. The algorithms
for reconfiguring a multibutterfly with faults and for establishing disjoint paths were
later improved in [20] and [45], respectively.

1.1. Our Results. In this paper we show that multibutterfly networks are at least as
powerful as the AKS sorting network. In particular, we show that anN-node AKS net-
work can be embedded in a(3N/2)-node twinbutterfly (i.e., a multibutterfly constructed
by superimposing two butterfly networks) with load 1, congestion 1, and dilation 2.
As a consequence, anN-node twinbutterfly can emulate anN-node AKS network with
constant slowdown.

The embedding has several other immediate implications. The emulation of the AKS
network by the twinbutterfly, along with Leighton’s columnsort algorithm [27], yields
the first deterministicO(log N)-step algorithm for sortingN items on anN-node twin-
butterfly. The sorting algorithm can then be used to construct the first deterministic
O(log N)-step algorithms for finding the median ofN items and for routing with com-
bining on multibutterflies. It also yields a work-efficient deterministic algorithm for
finding the median ofN log N log logN items in O(log N log logN) time on anN-
node twinbutterfly. Because the embedding of the AKS network into the twinbutterfly
has constant load and congestion, bounds on the VLSI layout area and volume for
the multibutterfly translate to the AKS network as well. Ann-input multibutterfly net-
work can be laid out in two dimensions with areaO(n2), and in three dimensions
with volume O(n3/2), and these bounds are tight. The two-dimensional layout area
of the AKS network was known before [8], [9], but the three-dimensional layout is
new.

We also present a deterministic algorithm for solvingh-relation routing problems on
ann-input multibutterfly, augmented byh extra levels, inO(h + logn) time. Previous
routing algorithms could solveh one-to-one problems in a pipelined fashion [29], [51],
but assumed that each packet carried the label of the one-to-one problem to which it
belonged. In anh-relation, each source sends at mosth packets, and each destination
receives at mosth packets. One motivation for designing algorithms that routeh-relations
is that routing anh-relation is the primitive communication step in the BSP model of
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computation [52], for which there are growing libraries of parallel programs [11], [21],
[36], [41].

Finally, we show that a twinbutterfly whose individual splitters do not exhibit expan-
sion can emulate a bounded-degree multibutterfly with an(α, β)-expansion property, for
anyα · β < 1

4.
The fact that anN-node multibutterfly network contains anN-node AKS network

does not imply that the multibutterfly is an inherently impractical network. Although the
sorting algorithm implied by the embedding is not practical, there is no requirement that
the multibutterfly be used in this fashion. Indeed, independent of the sorting algorithm,
the multibutterfly is an efficient and highly fault-tolerant routing network.

1.2. Other Related Results. Prior to this work, the fastest deterministic algorithm for
sortingN items on anN-node multibutterfly was the Sharesort algorithm of Cypher and
Plaxton [15]. This algorithm was designed to run on the butterfly network, or on any other
hypercubic network (e.g., the shuffle-exchange network and the hypercube). Since the
multibutterfly network contains a butterfly network, it applies to multibutterflies as well
(but does not take advantage of the expansion in the multibutterfly). There are several
variants of this algorithm. The fastest uniform version runs inO(log N(log logN)2) time,
but there is a nonuniform version that runs inO(log N log logN) time. Our embedding
result yields anO(log N)-time algorithm for the multibutterfly. Note that the sorting
problem can also be solved on anN-node butterfly (or multibutterfly) inO(log N) time
using the randomized Flashsort algorithm of Reif and Valiant [30], [49].

Prior to this work, the fastest deterministic selection algorithm for multibutterflies
was the algorithm of Berthom´e et al. [6]. This algorithm selects thekth largest item
from amongN items on anN-node butterfly (or any other hypercubic network) in
O(log N log∗ N) time. Like the Sharesort algorithm, this algorithm does not make use
of expansion when run on a multibutterfly. Since the selection problem can be solved
in linear time sequentially [10], this algorithm, which performsN log N log∗ N work,
is not work efficient. Furthermore, Plaxton [46] showed that any deterministic algo-
rithm for solving the selection problem on anN-node hypercubic network requires
Ä((M/N) log logN + log N) time in the worst case, whereM is the number of in-
put items. This translates to a lower bound ofÄ(M log logN + N log N) on the work
required. Hence, there can be no deterministic work-efficient selection algorithm on a
hypercubic network. (This lower bound does not apply, however, to multibutterlies.) Re-
cently, Plaxton showed that forM/N = log N, any deterministic algorithm for selection
on a bounded-degreeN-node hypercubic network requiresÄ(log3/2 N) steps [47]. He
also presents an algorithm that runs inO(log3/2 N(log logN)2) time on anyN-node
hypercubic network.

For bounded-degree expander-based networks, two optimal deterministic algorithms
for selection are known. For the case of finding thekth largest out ofN items on anN-node
network, the AKS sorting network combined with columnsort can be used to sort the items
(and hence solve the selection problem) inO(log N) time [27]. This algorithm is optimal
because selection on any bounded-degreeN-node network requiresÄ(log N) time. The
kth largest ofM items,M ≥ N, can be found inO((M/N)+ log N log log(M/N)) time
on anN-node expander-based network using an implementation of a PRAM algorithm
due to Vishkin [53] that invokes the AKS sorting network and columnsort as subroutines
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[46]. This algorithm is work-optimal forM/N ≥ log N log log(M/N). Our embed-
ding result implies that a multibutterfly network can perform both of these algorithms.
Note that the latter algorithm beats Plaxton’s lower bound for hypercubic networks,
thus implying a separation in power between expander-based networks and hypercubic
networks. Rappoport [48] has recently proved an even larger separation, namely that
the largest butterfly that can efficiently emulate anN-node multibutterfly has fewer than
Nε nodes, for all constantsε > 0. Forω(1) ≤ M/N ≤ o(log N log log(M/N)) the
asymptotic complexity of selection on bounded-degree networks is currently not known.

Recently, Herley and Pietracaprina improved on our result on routingh-relations on
the multibutterfly network withn input nodes. Herley [22] shows how the dependence
of the network onh can be eliminated by using only logn instead ofh extra levels, at the
expense, however, of a rather involved protocol. Pietracaprina [43] presents an algorithm
that does not need any extra levels but requires2(min{h + logn,

√
n}) bits of storage

at each node.

1.3. Outline. The remainder of this paper is organized as follows. In Sections 2 and 3
we define the multibutterfly and AKS networks, respectively. Our embedding of an
AKS network into a twinbutterfly network is presented in Section 4. Algorithms for
routingh-relations on multibutterflies are described in Section 5. In Section 6 we show
that a twinbutterfly can emulate a multibutterfly with(α, β)-expansion. We conclude in
Section 7 with some open problems.

2. Multibutterfly Networks. A d-dimensional multibutterfly network(MBF) consists
of d + 1 levels, each consisting of 2d nodes. We view these levels as being stacked
vertically, with level 0 at the top, and leveld at the bottom. For 0≤ ` ≤ d and
0≤ j ≤ 2d−1, let(`, j ) be the label of thej th node on level̀ . Within a level, we view
the nodes as being arranged from left to right in order of increasing labels. The nodes on
level 0 of ad-dimensional multibutterfly are calledinput nodes, and the nodes on level
d are calledoutput nodes.

The nodes on each level` are partitioned into 2` setsA`,0, . . . , A`,2`−1, where

A`,i := {(`, j ) | b j/2d−`c = i }.
The nodes inA`,i are connected to the nodes inA`+1,2i and A`+1,2i+1. The subgraph
induced by the nodes in these three sets is called thesplitter of À ,i . It consists of two
concentrators, aleft one and aright one. The left concentrator is defined as the subgraph
induced by the nodes inA`,i and A`+1,2i , and the right concentrator is defined as the
subgraph induced by the nodes inA`,i andA`+1,2i+1. All edges of a multibutterfly network
are inside its concentrators, i.e., each concentrator is a bipartite graphG = (A∪ B, E)
whereA = A`,i , B = A`+1,2i or B = A`+1,2i+1, andE is the set of edges induced by
A ∪ B, and 0≤ ` ≤ d − 1. The edges in a concentrator can be chosen in an arbitrary
fashion, provided that each node inA has degreek, and each node inB has degree 2k,
for some constant integerk. This defines a multibutterfly of degree 4k.

The multibutterfly structure is very similar to that of the butterfly network. Thed-
dimensional butterflyconsists ofd+1 levels each of which includesn = 2d nodes. Each
node has a distinct label(`, w) where` is the level of the node (0≤ ` ≤ d) andw is a
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d-bit binary number that denotes thecolumnof the node. All nodes of the form(`, w),
0≤ ` ≤ d, are said to belong to columnw. Two nodes(`, w) and(`′, w′) are linked by
an edge if̀ ′ = `+ 1 and eitherw andw′ are identical orw andw′ differ only in the bit
in position`′, where the bit positions are numbered 1 throughd, the most significant bit
being numbered 1. The butterfly network is a special case of the multibutterfly, in which
the degree is 4.

The basic advantage of the multibutterfly compared with the butterfly is that the
multibutterfly may satisfy some expansion properties if the edges inside the concentrators
are chosen properly. Let0(X), for a subset of nodesX, denote the set of the neighbors of
the nodes inX. Then we say a concentratorG = (A∪ B, E) has(α, β)-expansionif, for
any setX ⊆ A with |X| ≤ α|A|, we have|0(X)| ≥ β|X|. A multibutterfly is said to have
(α, β)-expansion if all of its concentrators have(α, β)-expansion. Upfal [51] shows that,
for anyk,α, andβ with 2β < k−1, andα < (2β)−1(2βe1+2β)−1/(k−2β−1), there exists a
multibutterfly of degree 4k with (α, β)-expansion. Note that, for very smallα, the bound
implies thatβ approachesk − 1, which means that the expansion is nearly optimal (k
would be optimal), and that, for sufficiently largek, the productαβ approaches12, which
is the largest possible value, because otherwiseα|X| nodes would expand to more than
|X|/2 nodes.

Finally, we define a subclass of the multibutterfly networks that includes those multi-
butterflies that can be constructed by superimposing butterfly networks. Suppose the
edges of ad-dimensional multibutterfly of degree 4k can be colored byk colors such
that the network induced by the edges of each color are isomorphic to thed-dimensional
butterfly. Then this multibutterfly is called ak-folded butterflysince it can be constructed
by foldingk butterfly networks. By folding, we mean that the labels of the nodes within
eachA`,i set in each of these butterflies are permuted and then thek nodes with the
same label in distinct butterflies are merged together to form a multibutterfly node. The
k butterfly networks that define ak-folded butterfly are calledunderlying butterfliesand

Fig. 1.Example of a three-dimensional twinbutterfly.
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we denote them byBF1, . . . ,BFk. A 2-folded butterfly is also called atwinbutterfly.
Figure 1 gives an example of a three-dimensional twinbutterfly.

The twinbutterfly that we use for the embedding of the AKS network (Section 4)
and the multibutterfly that we use for the routing ofh-relations (Section 5) have a
special feature: all of the splitters on any particular level are identical. However, the
twinbutterfly in which we embed a multibutterfly with expansion (Section 6) does not
have this feature.

3. The AKS Network. Our description of the AKS network is based on Paterson’s
description [42]. Ours is a little more general than Paterson’s because we do not describe
the building blocks, i.e., the separators and sorters, in detail.

The AKS network is a sorting network that consists ofh · T rows that are partitioned
into T = O(logn) stages of widthn and of constant heighth. By width nwe mean that
each row containsn nodes, and byheight hwe mean that each stage consists ofh rows.
Let

Vt := {( j + t · h, i ) | 0≤ j ≤ h− 1,0≤ i ≤ n− 1}
be the set of nodes on staget , for 0≤ t ≤ T − 1. Then each node( j, i ) is connected via
a forward edgeto node( j +1, i ), for 0≤ j ≤ h ·T−2 and 0≤ i ≤ n−1. In addition to
the forward edges, the network containscompare-exchange edgeswhich connect nodes
in the same row, i.e., each compare-exchange edge connects a node( j, i ) with a node
( j, i ′), for 0≤ j ≤ h · T − 1 and 0≤ i < i ′ ≤ n− 1. Each node is incident to at most
one compare-exchange edge.

The AKS network sortsn items in 2· h · T − 1 = O(T) = O(logn) steps. Before
step 0, the items are located at the nodes in row 0. In each even step, the two items
located at the endpoints of each compare-exchange edge are compared, and the items
are exchanged if they are in the wrong order. In each odd step, the items are moved along
the forward edges to the next row. After step 2· h · T − 1, the items are located in sorted
order on the nodes in rowh · T − 1.

Each stage of the AKS network consists of several independentbuilding blocks. All
of the compare-exchange edges are inside these building blocks. We initially describe
the widths of these blocks as if they were real numbers. Ultimately, we will replace
theseideal values by appropriate integers. Most of the building blocks areseparators,
but some aresorters, and some areforward blocks. We give a brief overview of these
blocks without going into details. Each separator partitions its input items into four output
parts, FL (far-left), CL (center-left), CR (center-right), and FR (far-right), as described
in more detail later. The sorters return the input items in sorted order. It is convenient to
implement the sorters as Batcher’s bitonic sorting network [5]. All sorters have constant
width, so they can be implemented in constant heighth. The forward blocks include only
forward edges and no compare-exchange edges.

In the following we describe the widths of the building blocks and which output parts
of the blocks in staget are connected to which blocks in staget+1, for 0≤ t < T−1. Our
description is based on an oblivious sorting algorithm structured about a complete binary
treeB of depth logn which we imagine with the root at the top (on level 0) and leaves
below (on level logn). The algorithm proceeds inT = O(logn) stages of time. Each
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stage of the AKS network implements the operations specified for the corresponding
stage in the algorithm.

We first show how the items can be sorted in logn stages, each of which, however,
requires more than constant time. The underlying binary treeB has a “bag” at each
node. Initially, the set ofn items to be sorted is contained in the bag at the root. The
items migrate down the tree. In each stage, each node of the tree with a nonempty bag
partitions the items in its bag into halves, the smaller items and the larger items, and then
sends the smaller items to its left child and the larger items to its right child. The items
arrive in sorted order at the leaves of the tree after logn stages.

Unfortunately, it is not possible to split the items exactly into halves at each tree node
in constant time. The strategy of the AKS algorithm is to make an approximate partition
of items such that each stage takes only constant time. The items that are sent to the
wrong child in a stage are sent back to the parent in later stages.

In the following we are interested only in the flow of the items between the bags. The
proof that the algorithm sorts can be found in Paterson’s article [42]. We define thesize
of a bagto be the number of items stored in that bag, and thecapacity of a bagto be
the maximum number of items that can be stored in that bag. During most stages, a bag
is either empty or filled to its capacity, which is decreasing with time. In particular, the
capacity of each bag at level` is x · a`, for a value ofx that is decreasing with the stage
number (and will be specified later) and some constanta > 1, e.g.,a = 3.

Special situations occur at the highest and lowest nonempty levels of the tree, so we
start with a description of the sorting process at intermediate levels. The algorithm works
in T stages beginning with stage 0. In odd stages, some odd levels are full and all the
bags at the even levels are empty. The opposite holds in even stages. In each stage, the
items in any full bag are partitioned by a separator into the four parts FL, CL, CR, and
FR. The FL and the FR parts are sent back to the parent bag and the CL and CR parts
are transferred down to the left and right child bags, respectively. Suppose a bag is filled
up to its capacityb. Then the size of FL and FR isλ · b and the size of CL and CR is
(1− λ) · b, where, e.g,λ = 1

8.
Consider a bag with capacityb that is empty at the beginning of some stage and that

is filled to its new capacityνb at the end of the stage, as shown in Figure 2. Then

νb = 2λba+ (1− λ) · b
2a

,

Fig. 2.Reduction of bag capacities after each stage.
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which gives

ν = 2λa+ 1− λ
2a

.

We assume thatν < 1, e.g.,ν = 43
48. Thus, the capacities diminish in each stage and the

items are squeezed down the tree in the course of the algorithm. We define the capacity
of each bag at level̀ at the beginning of staget to be

c`(t) :=
(

1− 1

4a2

)
· n · ν t · a`.(1)

(Hence, thex that should be specified later is(1− (1/4a2)) · n · ν t .)
At the beginning of the algorithm all bags except for the root are empty. The root is

filled to its capacity, i.e., it contains(1− 1/(4a2)) · n items. Since we would like the
root to behave as if it were an ordinary node, we place above it a subset of the items of
size(1/4a2) · n. This subset we call thecold storage. The root exchanges items with the
cold storage as with a parent. Therefore, in odd stages, the capacity of the cold storage is
half the root’s parent’s capacity plus one-eighth the root’s grandgrandparent’s capacity,
and so on. In even stages, its capacity is one-quarter the root’s grandparent’s capacity,
plus one-sixteenth the root’s grandgrandgrandparent’s capacity, and so on. This means
the capacity of the cold storage in staget is

1
2 · c−1(t)+ 1

8 · c−3(t)+ · · · = n · ν t

2a

if t is odd, and

1
4 · c−2(t)+ 1

16 · c−4(t)+ · · · = n · ν t

4a2

if t is even.
During the course of the algorithm the items migrate down through the tree. We will

arrange that there is at most one partially full level. Above this, the levels are alternately
empty and full as already described; below, all the levels are empty. To achieve this, we
require that at thepartial leveleach bag should send up to its parent the normal number
of items (i.e.,λb with b denoting the bag’s capacity) if it has sufficiently many. After
this requirement is met, any remaining items can be sent down to its children in equal
numbers.

In the final stages, some of the separators are replaced by sorters and forward blocks.
In particular, if the capacity of the root bag is smaller thanr , for some constantr , e.g.,
r = 160, and the bag is nonempty, then the set of items in the root bag and the cold
storage is sorted and separated into a left and right half. From these halves the root and
the cold storage for each subtree can be immediately formed. This event is called asplit.
A split divides the problem into two independent subproblems, each of which has its
own root (the left child or right child of the old root) and its own cold storage.

After the first split, a new split will be required at regular intervals of a constant
number of stages, i.e., when the capacity of a bag becomes smaller thanr , the separator
is replaced by a sorter and the items are split into halves. The stage in which the bags on
the`th level of the tree are split is called the`th splitting stage. Note that the number
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of items split by a sorter is at mostr plus the number of items in the cold storage,
r/(4a2 · (1− 1/(4a2))), which sums tor/(1− (1/4a2)). Thus, the width of the sorter
doing the splitting isO(1), and its height isO(1), too, in particular the height is at most
h, e.g.,h = 36.

The algorithm finishes after stageT −1, in which the items of the bags on some level
are sorted and all bags below this level are empty. Staget of the algorithm is implemented
in staget of the AKS network. For each staget of the algorithm, each bag of the tree
corresponds to a separator or sorter in staget of the AKS network. The items in the cold
storage do not have to be separated or sorted (except during a splitting stage), so that
they can move from stage to stage through forward blocks. The widths of the building
blocks correspond to the sizes of the respective bags and cold storage sets, which can
be extracted from the above description. Paterson gives a simple recipe for replacing
the real numbers by integers without straying far from the ideal values. For each subtree
rooted at a nonempty node, if the ideal total size of the subtree isα, then the actual size
is 2dα/2e.

4. Embedding the AKS Network into a Multibutterfly. In this section we embed
an AKS network into a multibutterfly network. An embedding maps a guest graphG to
a host graphH . Nodes ofG are mapped to nodes ofH , and edges ofG are mapped to
paths inH . Theload of an embedding is the maximum number of nodes ofG mapped
to any node ofH . Thecongestionof an embedding is the maximum number of paths
that use any edge inG. Thedilation of an embedding is the length of the longest path. In
general, the smaller the load, congestion, and dilation, the better the embedding. It is not
difficult to show that if the load, congestion, and dilation of an embedding are constant,
then the hostH can emulate the guestG with constant slowdown. Many previous works
deal with graph embeddings and network simulations, e.g., [3], [7], [18], [19], [26], [30],
[37]–[40], [48], and [50]. Surveys on these topics can be found, e.g., in [25], [28], and
[33].

We denote the width of the AKS network byn, the number of stages byT , and the
height of each stage byh. We assume that the widths of the building blocks, which
are equivalent to the sizes of the bags, are defined by the parametersλ, a, ν, andr , as
described in Section 3.

THEOREM4.1. An AKS network of size N can be embedded into a twinbutterfly of size
M ≤ κ ·N+o(N)with load1,dilation 2,and congestion1,whereκ is a small constant
depending on the AKS parametersν, a, r , and h.

Suppose that the AKS parameters are chosen according to Paterson’s recommenda-
tion, which should minimize the size of the AKS network, i.e.,ν = 43

48, a = 3, r = 160,
andh ≥ 36. Thenκ is at most 1.352. In the following we describe the embedding and
prove the result on the relationship of the network sizes.

4.1. Rough Embedding. The description of the AKS network is structured about a
binary tree. The nodes of this tree represent bags whose sizes vary from stage to stage,
i.e., over time. Instead of looking at one binary treeB with growing and shrinking bag
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B2

B1

B0

stage 0

stage 1

stage 2

Fig. 3. Abstract view of the AKS network. Here each box represents a stage, which implements a set of
comparisons (corresponding to the different types of building blocks that we have defined) specified by the
algorithm that is described in terms of a binary tree.

sizes, however, we can imagine that we haveT treesB0, . . . , BT−1 of fixed sized bags,
such that the bags in thet th tree represent the building blocks of thet th AKS stage.
Figure 3 depicts this abstraction. The size and capacity of each nodeu in the treeBt are
equal to the size and capacity of the corresponding nodeu in the binary treeB at stage
t . (Recall that thesize of a bagis defined to be the number of items stored in that bag,
and that thecapacity of a bagis defined to be the maximum number of items that can be
stored in that bag.) Hence, each bag of treeBt with sizes is realized as a building block
of width s and heighth in staget .

A natural partition of the AKS building blocks is to divide the blocks according to
their stages. Then each partition corresponds to one of theT trees. In fact, this partition
is the one implemented in the AKS network. For the embedding into the MBF, however,
we partition the blocks of the AKS network into setsP0, . . . , Plogn, according to their
levels in the tree. This means that partitionP̀ includes all 2` · T building blocks that
are associated with some node on the`th tree-level in one of theT trees. Lets̀ denote
the`th splitting stage. For̀ ≥ 0, we add the building blocks of the cold storage in each
staget with s̀ ≤ t < s̀ +1 to partition P̀ . In addition, we add the cold storage in each
staget with 0 ≤ t < s0 to partition P0. Define thesize of a partition P̀ to be the sum
of the sizes of all bags on the respective tree level`. This size is denoted by|P̀ |. Note
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A
l+1, 2i+1
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l+1, 2i A
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P
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Fig. 4.Rough embedding of the AKS network into the multibutterfly.

that some bags in each partition have size 0, i.e., all bags below the partial level for any
staget , all bags of odd levels of the tree in even stages, and all bags of even levels of the
tree in odd stages.

The AKS building blocks associated with the bags of partitionP̀ are embedded in
the`th level of the MBF. Of course, we have to define more precisely which nodes in the
building blocks in partitionP̀ are mapped onto which nodes of the MBF in level`, and
how the two butterflies are folded. Divide each partitionP̀ into equal-sized subpartitions
P̀ ,0, . . . , P̀ ,2`−1 such that subpartitionP̀ ,i includes all blocks that correspond to thei th
node on level̀ of the AKS treeB. Then for 0≤ i ≤ 2` − 1 and for 0≤ ` ≤ logn− 1,
subpartitionP̀ ,i includes all parent bags of the bags in the subpartitionsP̀ +1,2i and
P̀ +1,2i+1.

We map the AKS nodes of partitionP̀ ,i onto the MBF nodes in setA`,i . This is
illustrated in Figure 4. (Recall that MBF level` is partitioned into 2` subsetsA`,0, . . . ,
A`,2`−1.) In order to get an embedding with load 1, it is required that|A`,i | ≥ h · |P̀ ,i |
which is the number of nodes represented by the partitionP̀ ,i . It will be seen later that
the size ofA`,i has to be a little bit larger than this value.

Suppose for the moment that we could add all AKS edges to the MBF regardless
of the multibutterfly structure, i.e., suppose we could connect each pair of MBF nodes
representing a pair of adjacent AKS nodes by an edge. Then each AKS edge that connects
a node of a parent bag in subpartitionP̀ ,i to a node of a child bag in subpartitionP̀ +1,2i or
P̀ +1,2i+1 would be represented by an edge inside the multibutterfly splitter containing the
setsA`,i , A`+1,2i , andA`+1,2i+1. In addition, the AKS edges inside the building blocks,
and thus inside the subpartitions, would be represented by edges inside theA`,i sets.
This means that any two MBF nodes that represent two adjacent AKS nodes are in the
same splitter. Therefore, we can restrict ourselves in the following to give a description
of the embedding inside the splitters.

4.2. Fine Embedding. Consider a splitter consisting of the setsA := A`,i , L :=
A`+1,2i , andR := A`+1,2i+1. Definek := |A|. Assume without loss of generality that
the nodes inA are labeled(`,0), (`,1), . . . , (`, k− 1), the nodes inL are labeled(`+
1,0), . . . , (`+1, k/2−1), and the nodes inRare labeled(`+1, k/2), . . . , (`+1, k−1).
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The edges leading fromA to L we call left edgesand the edges leading fromA to R we
call right edges. The edges betweenA, L, andR are defined by two butterfly networks
BF1 andBF2 that are folded together to form a multibutterfly such that each node inA
is incident to a left and a rightBF1 edge and a left and a rightBF2 edge. We assume that
the leftBF1 edge of a node(`, v) ∈ A connects(`, v) to node(`+ 1, vmod(k/2)) ∈ L,
and the rightBF1 edge connects it to node(`+ 1, k/2+ vmod(k/2)) ∈ R. (These are
the standard butterfly connections.) The edges ofBF2 will be defined later.

We assume inductively that the embedding is done for the levels logn through`+ 1,
and that the folding ofBF1 andBF2 is specified for these levels. We have to describe the
mapping of the AKS nodes in subpartitionP := P̀ ,i onto the MBF nodes inA, and we
have to determine theBF2 edges betweenA andL ∪ R such that each AKS edge can
be mapped to a path of length 1 or 2, with congestion 1. The embedding into the two
submultibutterflies belowL andRcan be assumed to be isomorphic since the two subtrees
below a node in the AKS tree are symmetric. DefineL ′ ⊂ L andR′ ⊂ R to be the set of
nodes that host nodes fromP̀ +1 that are adjacent to nodes inP, and defineA′ ⊂ A to be
the set of nodes above the nodes inL ′ andR′, i.e., A′ := {(`, v) | (`+ 1, v) ∈ L ′ ∪ R′}.

First, we describe how to map the AKS nodes inP to the nodes inA and how to
implement the compare-exchange edges within the AKS building blocks of partitionP.
Second, we show how to implement the forward edges within the AKS building blocks
of P. Third, we describe how to implement the forward edges between building blocks
of P and building blocks ofP̀ +1,2i or P̀ +1,2i+1. For the latter two topics, we make use
of the freedom to determine the folding of the two butterflies, i.e., we specify the edges
of BF2 in an appropriate fashion. Afterward we show that the specifiedBF2 edges are
admissible, i.e., consistent withBF2 being isomorphic to a butterfly network.

1. Each node inP is mapped onto a node inA\A′ such that the following condition is
met. Supposeu andv are two AKS nodes inP connected by a compare-exchange
edge. Let(`,u′) and(`, v′) denote the MBF nodes that hostu andv, respectively.
Then we require thatv′ − u′ = k/2. In this way, the AKS edge betweenu andv can
be embedded in a path of length two including only left edges ofBF1. The path is

(`,u′)
BF1−→ (`+ 1,u′)

BF1−→ (`,u′ + k/2) = (`, v′).
2. Now we implement the forward edges inside the building blocks. Consider an AKS

nodeu ∈ P. Supposeu is a node in rowr of the AKS network andu is connected
by a forward edge to a nodev in row r + 1. Letu be embedded in node(`,u′) andv
in node(`, v′) of A\A′. Then we map the forward edge connectingu andv to a path
of length two between(`,u′) and(`, v′). This path consists of a rightBF2 edge and
a rightBF1 edge. The path is

(`,u′)
BF2−→ (`+ 1, k/2+ v′mod(k/2))

BF1−→ (`, v′).

3. Finally, we implement the forward edges between distinct building blocks of level
` and level` + 1. Let u ∈ P̀ andv ∈ P̀ +1 denote two adjacent AKS nodes of
different building blocks. Let(`,u′) ∈ A\A′ denote the MBF node hostingu, and
(`+1, v′) ∈ L ′ ∪ R′ denote the MBF node hostingv. Then we map the forward edge
(u, v) to aBF2 edge that connects(`,u′) and(`+ 1, v′).



Improved Routing and Sorting on Multibutterflies 451

We have to show that the specifiedBF2 edges are admissible. Each of the nodes inA
is incident to at most one specifiedBF2 edge. A node inR, however, may be incident
to two BF2 edges specified in procedure 2. However, none of these edges is incident to
a node inR′ because the mapping of the nodes ensures that(`, v′) ∈ A\A′ and, hence,
(`+ 1, k/2+ v′mod(k/2)) 6∈ R′. (Recall that the embedding inL andR is assumed to
be isomorphic.) In procedure 3 we only have specified edges that are incident to nodes
in L ′ ∪R′. Each of these nodes is incident to at most one specifiedBF2 edge. Altogether,
for each pair of nodes(` + 1, v) ∈ L and(` + 1, v + k/2) ∈ R, we have specified at
most two edges that are incident to the nodes of the pair. This ensures that the set of the
specifiedBF2 edges can be completed in an admissible fashion.

Obviously, the embedding has load 1 and dilation 2. Further, only leftBF1 edges are
used for the embedding of the compare-exchange edges in procedure 1 whereas only right
BF1 edges are used for the embedding of the forward edges in procedure 2. Furthermore,
theBF2 edges specified for the embedding in procedures 2 and 3 are disjoint. Therefore,
the congestion of the embedding is 1.

In order to implement the embedding we have to show that the size ofA is not too
small, or the other way around, that the size of partitionP is not too large. In particular,
the equationh · |P| ≤ |A\A′| must be satisfied since we have to map theh · |P| nodes
associated with partitionP onto the nodes inA\A′. Each column (i.e., a sequence of
forward edges) of a building block has twoborder nodes, i.e., nodes that are connected
to nodes in the stages above or belowP. Each node inA′ hosts a border node. Since the
number of border nodes is at most 2·|P|, we have|A′| ≤ 2·|P|. (Note that possibly|A′| >
|P|.) Further,|P| = |P̀ |/2`, and|A| ≤ m/2`, with m denoting the number of nodes on
a multibutterfly level. Thus, the above embedding can be implemented if the equation

(h+ 2) · |P̀ | ≤ m(2)

holds for every tree level̀of the AKS network. This yields a constraint on the relationship
between the size of the AKS network and the multibutterfly.

4.3. Properties of the AKS Network. In order to determine the size of the largest
AKS network that can be embedded into a given multibutterfly, we first calculate some
properties of the AKS network, including the stage numbers at which the bags on level
` first become nonempty, first become full, and then split. We also calculate the total
number of stages, and the last level on which to perform a perfect split.

Define the capacityC`(t) of a level` in the AKS tree to be the sum of the capacities
of all bags on this tree level during staget . Then

C`(t) = 2` · c`(t) (1)= (1− (2a)−2) · n · ν t · (2a)`.(3)

Note that the cold storage simulates a bag half the size of the root’s parent, one-quarter
the size of the root’s grandparent, and so on. Thus, we can imagine the cold storage as
partitioned into an infinite number of virtual levels−1,−2,−3, and so on, such that the
above equation forC`(t) holds for any integer−∞ ≤ ` ≤ logn, andt ≥ 0.

In the following, we say two tree levels̀and`′ arecongruentif ` ∼= `′ (mod 2).
Analogously, we say a tree level` and a staget arecongruentif ` ∼= t (mod 2). For
short we writè ∼= `′ or ` ∼= t , respectively. In each staget , each tree level̀ above the
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partial level is filled to its capacity if̀ ∼= t , and is empty if̀ 6∼= t . All tree levels below
the partial level are empty.

For a staget , defineC̄`(t) to be the sum of the capacities of all tree levels above level
` and congruent tot . Then

C̄`(t) = C`−2(t)+ C`−4(t)+ C`−6(t)+ · · ·(4)

= (1− (2a)−2) · n · ν t · (2a)(`−2) ·
∞∑

i=0

(2a)−2i

= n · ν t · (2a)`−2

if ` ∼= t , and

C̄`(t) = C`−1(t)+ C`−3(t)+ C`−5(t)+ · · ·(5)

= (1− (2a)−2) · n · ν t ·
∞∑

i=0

(2a)(`−1)−2i

= n · ν t · (2a)`−1

if ` 6∼= t .
For` ≥ 0, definet`0 to be the first stage in which tree level` is the partial level, i.e.,t`0

is the first stage in which the size of the bags on tree level` is larger than 0. All of the bags
in congruent levels abovèare filled to their capacity in this stage. As a consequence,
C̄`(t`0) < n. Further, for every staget in which` is below the partial level, i.e., for every
staget < t`0, C̄`(t) ≥ n because all items are stored in levels above`. Thus,t`0 is the
smallest integer congruent tòsatisfying

n > C̄`(t
`
0)

(4)= n · ν t`0 · (2a)`−2.

This gives

t`0 = (`− 2) · log(1/ν)(2a)+ x,(6)

for somex ∈ [0,2].
Definet`1 to be the first congruent stage in which tree level` is filled to its capacity.

Thent`1 is the first staget in which the number of items stored in bags on tree level` or
above this level isC`(t) + C̄`(t). Hence,C`(t`1) + C̄`(t`1) ≤ n. Further, for each stage
t < t`1 congruent tò it holds thatC`(t) + C̄`(t) > n. Thus,t`1 is the smallest integer
congruent tò satisfying

n ≥ C`(t
`
1)+ C̄`(t

`
1)

(3)+(4)= (1− (2a)−2) · n · ν t`1 · (2a)` + n · ν t`1 · (2a)`−2

= n · ν t`1 · (2a)`.

Therefore,

t`1 = ` · log(1/ν)(2a)+ x,(7)

for somex ∈ [0,2].
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Definet`2 to be the splitting stage of level`. Thent`2 is the smallest integer congruent
to ` satisfying

r ≥ c`(t
`
2)

(1)= (1− (2a)−2) · n · ν t`2 · a`.

This is because a bag is split in the first congruent stage in which its capacity is not larger
thanr . Therefore,

t`2 = ` · log(1/ν) a+ log(1/ν)((1− (2a)−2) · n/r )+ x,(8)

for somex ∈ [0,2].
The AKS algorithm finishes as soon as the bags on some tree level are split, i.e., are

sorted, and all levels below this level are empty. We denote the tree level split in the last
stage bỳ ∗. The splitting stage of̀∗ is t`

∗
2 = T − 1. Level`∗ is the first stage fulfilling

C`∗(t`
∗

2 )+ C̄`∗(t`
∗

2 ) ≥ n, because the splitting stage of this level is the first splitting stage
in which alln items are stored in bags of the split tree level or above this level. Therefore,
`∗ is the smallest integer satisfying

n ≤ C`∗(t
`∗
2 )+ C̄`∗(t

`∗
2 )

= n · ν t`
∗

2 · (2a)`
∗ = r · νx · 2`∗

1− (2a)−2
,

for somex ∈ [0,2]. This gives

`∗ = dlog2((1− (2a)−2) · n/r )+ 2 · log2(1/ν)e(9)

= log2 n−2(1).

Consequently,

T = t`
∗

2 + 1(10)
(8)= `∗ · log(1/ν) a+ log(1/ν) n−2(1)
(9)= log2 n · log(1/ν)(2a)−2(1).

4.4. The Size of the AKS Network. In this section we calculate a lower bound on the
size of the AKS network that can be embedded into a multibutterfly withm nodes on
each level according to the above description. This means we are looking for the largest
AKS network that fulfills (2), i.e.,(h+ 2) · |P̀ | ≤ m, for every level̀ of the AKS tree.
Thus, we have to bound the size of each partitionP̀ . We first assume ideal bag sizes and
show later that the results for these values are close to the results for the correct integer
values.

A special situation occurs for partitionP0 as this partition includes the root bag that
is filled to its capacity from the beginning. The size of the root bag in an even staget
is C0(t), and in odd stages the size is 0. In addition,P0 includes the cold storage from
stage 0 to the stage before the splitting stage of level 1. The size of the cold storage in a
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staget is C̄0(t). Hence, we have

|P0| ≤
∞∑

t=0

C0(2t)+
∞∑

t=0

C̄0(t)

(3)+(4)+(5)=
((

1− 1

4a2

)
+ 1

4a2
+ ν

2a

)
· n ·

∞∑
t=0

ν2t

= n ·
(
1+ ν

2a

)( 1

1− ν2

)
︸ ︷︷ ︸

=:κ1(ν,a)

.

Now we bound the size of partitionP̀ , for 1≤ ` ≤ `∗. We first ignore the effects of
the splitting, i.e., we assume thatr = 0. Define

t`∗ := t`0 + dlog(1/ν)(2a)e · 2≈ t`1.(11)

Then the size ofP̀ can be bound as follows:

• In each staget ∼= `with t`0 ≤ t ≤ t`∗ −2, the size of the tree level is at mostn− C̄`(t).
• In each staget ∼= ` with t ≥ t`∗ , the size of the tree level is at mostC`(t).
• In all other stages the size is 0.

Note that the first and the second bounds,n − C̄`(t) andC`(t), actually hold for all
stages. We have chosen to use one for the first set of time stages and the other for the
second. For 1≤ ` ≤ `∗, we have

|P̀ | ≤
(t`∗−t`0)/2−1∑

t=0

(n− C̄`(t
`
0 + 2t))+

∞∑
t=0

C`(t
`
∗ + 2t)

(3)+(4)≤ n · t
`
∗ − t`0

2
− n · ν t`0 · (2a)`−2 ·

(t`∗−t`0)/2−1∑
t=0

ν2t + n · ν t`∗ · (2a)` ·
∞∑

t=0

ν2t

(11)≤ n · t
`
∗ − t`0

2
+ n · ν t`0 · (2a)`−2 ·

 ∞∑
t=0

ν2t −
(t`∗−t`0)/2−1∑

t=0

ν2t


(6)+(11)≤ n · (log(1/ν)(2a)+ 1)+ n ·

 ∞∑
t=0

ν2t −
log(1/ν)(2a)−1∑

t=0

ν2t


= n ·

(
log(1/ν)(2a)+ 1+ 1

4a2 · (1− ν2)

)
︸ ︷︷ ︸

=:κ2(ν,a)

under the assumption thatr = 0. Now we assumer > 0. This means that the size of
partition P̀ is increased by the size of the cold storage in each stage from the splitting
stage of level̀ , which ist`2, to the stage before the splitting stage of level`+ 1, which
is t`+1

2 − 1. The size of the cold storage in staget is C̄`(t). Therefore, the above bound
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on |P̀ | is increased by an additive amount of

t`+1
2 −1∑
t=t`2

C̄`(t)
(4)+(5)≤

t`+1
2 −1∑

t=t`
2

t∼=t`
2

n · ν t · (2a)`−2+
t`+1
2 −1∑

t=t`
2

t 6∼=t`
2

n · ν t · (2a)`−1

≤
⌈

t`+1
2 − t`2

2

⌉
· n · ν t`2 · (2a)`−2+

⌊
t`+1
2 − t`2

2

⌋
· n · ν t`2+1 · (2a)`−1

2aν≥1≤ (t`+1
2 − t`2) · n · ν t`2 · (2a)`−2 · 1+ 2aν

2
(8)≤ (log(1/ν) a+ 2) · r · 2`−2

a2 · (1− (2a)−2)
· 1+ 2aν

2

`≤`∗≤ (log(1/ν) a+ 2) · r · 2`∗−1 · (1+ 2aν)

4a2 · (1− (2a)−2)

(9)≤ n · (log(1/ν) a+ 2) · (1+ 2aν)

4a2ν2︸ ︷︷ ︸
=:κ3(ν,a)

.

Up to now we have assumed that all bags have ideal sizes as real numbers. However,
the integer sizes can be larger than the ideal ones. In particular, we choose the integer
sizes according to the following rule given by Paterson [42]: if the ideal total size of a
subtree of the binary tree isα, then the actual size is 2dα/2e. As a consequence, each
bag of ideal sizeb has integer size at mostb + 2 [42]. Furthermore, the size of the
partition representing the highest nonempty tree level including the cold storage is not
increased by the integer rounding, because the total number of items is bounded byn
and the total size of the subtrees below this level is not decreased. Hence, the upper
bound on the size ofP0 is not affected by the rounding, and forP̀ with ` ≥ 1, we
only have to account for the error due to rounding in those stages in which` is not the
highest nonempty tree level. Therefore, we only consider the stagest`0 to t`2 − 1, for
` ≥ 1.

We first bound the error due to integer rounding in the stages fromt`0 to t`1 − 1 and
then the error in the stages fromt`1 to t`2 −1. The number of congruent stages from stage
t`0 to t`1−1 is(t`1− t`0)/2≤ log(1/ν)(2a)+1, and the number of bags on level` in a stage
is at most 2` ≤ 2`

∗
. For each of these bags in each of these stages we have to add at most

two items to the ideal size in order to get an upper bound for the integer size. Thus, the
integer size of a tree level deviates by an additive amount of at most

2 · (log(1/ν)(2a)+ 1) · 2`∗ (9)≤ n ·
(

4 · (log(1/ν)(2a)+ 1) · (1− (2a)−2)

r · ν2

)
︸ ︷︷ ︸

=:κ4(ν,a,r )

from its ideal size during the stages fromt`0 to t`1 − 1. In the stages fromt`1 to t`2 − 1, all
bag sizes are not smaller thanr . Thus, the relative error in these stages is at most 2/r .
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Putting it all together, for 0≤ ` ≤ `∗, we have

|P̀ | ≤ max{n · κ1, (n · κ2+ n · κ3) · (1+ 2/r )+ n · κ4}
≤ n ·max{κ1, (κ2+ κ3) · (1+ 2/r )+ κ4}︸ ︷︷ ︸

=:κ̄(ν,a,r )

.

As shown in Section 4.2 an AKS network can be embedded into a multibutterfly network
with m nodes per level if (2) holds, i.e.,(h+ 2) · |P̀ | ≤ m is satisfied for every level̀.
Thus, the embedding is possible if we choose

n :=
⌊

m

(h+ 2) · κ̄
⌋
.

The size of the multibutterfly isM = (log2 m+ 1) ·m, and the size of the AKS network
is N = h · T · n. Thus,m= M/(log2 m+ 1) andn = N/(h · T). In addition, log2 m=
log2 n+2(1) andT ≥ log2 n · log1/ν(2a)−2(1). Thus, we have

N ≥ M · h · T
(h+ 2) · κ̄ · (log2 m+ 1)

≥ M · h · (log2 n · log1/ν(2a)−2(1))
(h+ 2) · κ̄ · (log2 n+2(1))

= M

κ − o(M)

for κ(ν,a, r, h) := (1+ 2/h) · κ̄/ log1/ν(2a), which is at most 1.351. . . , for ν = 43
48,

a = 3, r = 160, andh ≥ 36 as suggested in [42]. This completes the proof of
Theorem 4.1.

5. Routing h-Relations on Multibutterflies. In this section we give a deterministic
algorithm for routingh-relations on a multibutterfly with (α, β)-expansion. Given ad-
dimensional multibutterfly, defineV` to be the set of then = 2d nodes on level̀ , for
0≤ ` ≤ d. The nodes inV0 are calledinput nodes, and the nodes inVd are calledoutput
nodes. Then anh-relation is a set of pairs of input and outputs nodesR⊆ V0× Vd such
that each nodev0 ∈ V0 and each node ofvd ∈ Vd appears in at mosth of the pairs
in R. Each pair(v0, vd) ∈ R represents a packet that should be routed from an input
nodev0 on level 0 to an output nodevd on leveld. In one unit of time, each edge of the
multibutterfly can transmit one packet in each direction.

We assume each multibutterfly node can store only a constant number of packets,
and the multibutterfly hash − 1 additional levels−(h − 1), . . . ,−1 which serve as
the initial storage for the at mosth · n packets. LetV` denote the set of nodes on level
`, for −(h − 1) ≤ ` ≤ −1. Each level̀ with −(h − 1) ≤ ` ≤ −1 is connected to
level ` + 1 by an (α, β)-expander, i.e., for anyX ⊆ V` with |X| ≤ αn it holds that
0(X) ∩ V`+1 ≥ β|X|, e.g., these expanders are copies of the splitter connecting level 0
with level 1. In the following, these expanders are viewed as splitters.
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Each node on a level̀with −(h− 1) ≤ ` ≤ 0 holds a packet that should be routed
to a node on leveld. The packets starting in the column of an input nodev of level 0 are
viewed as the packets ofv. (Note that, starting from a configuration in whichv initially
holds all of itsh packets in a local buffer rather than storing these packets in the column
abovev, the packets can be distributed inh− 1 steps among the nodes of the column.)
Each node of leveld is the destination of at mosth packets.

Upfal [51] presents a deterministic algorithm for routing a permutation, or 1-relation,
in O(logn) steps on ann-input multibutterfly. By addingh − 1 additional levels,
Upfal’s algorithm is able to route anh-relation in O(h + logn) steps provided that
the packets are partitioned into appropriate batches of size2(n) such that no more
than αm packets from each batch are routed through any splitter of sizem. These
batches, however, are difficult to identify if the destinations of the packets starting at
the same level of the initial storage do not form a permutation. Our algorithm uses
Upfal’s algorithm as a subroutine, and we show how the batches can be identified
efficiently.

Upfal’s Algorithm. The algorithm routes a set of packets from the input nodes to the
output nodes of a multibutterfly with (α, β)-expansion for any constantsα > 0 and
β > 1.

The rough routing paths can be explained as follows: a packet stored in a splitter aims
to move along an edge of the left concentrator if its destination is in the submultibutterfly
below the left half of the splitter, and it aims to move along an edge of the right con-
centrator if its destination is in the submultibutterfly below the right half of the splitter.
Within the splitters of the initial storage, a packet may use an arbitrary edge leading to
the next level.

Upfal’s algorithm requires that the packets are partitioned intoL batchesB(0), . . . ,
B(L − 1). The indices of the batches are used as priority keys. A packet in batchB(i )
has higher priority than packets in

⋃
j>i B( j ). The edges of each splitter are colored

with 2k colors so that no two edges of the same color are incident to one node. (Re-
call that the node degree in each splitter is 2k.) The algorithm works in iterations. In
each iteration, each node holds at most one packet. In odd iterations, the edges con-
necting odd levels to even levels are activated. In even iterations, the edges connecting
even levels to odd levels are activated. Edges are activated one after the other according
to the color order. Thus, in each step, only one edge incident to each node is acti-
vated. When an edge from node(`,u) to node(` + 1, v) is activated, if node(`,u)
holds in its buffer a packet with a higher priority than the packet stored in the buffer
of (` + 1, v), the two nodes exchange packets. (An empty buffer is considered to be a
packet with the lowest priority.) We extract the following lemma from Upfal’s analy-
sis [51].

LEMMA 5.1. Suppose the batches are chosen so that no more thanαm packets from each
batch are routed through any splitter of size m. Then each packet reaches its destination
in time O(logn+ L).

For permutations, it is easy to decompose the packets intoO(1) batches that ful-
fill the above condition. As a consequence, several permutations can be pipelined so
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Μ2 /κd1ΜΜ0
Level d

Level ρ
κ

. . .

Level 0

Fig. 5.The submultibutterflies of sizeκ on the levelsρ to d.

that Upfal’s algorithm takes timeO(logn + h) for routing h permutations. Note that
any h-relation can be decomposed intoh disjoint permutations, but it is not clear
how to decompose anh-relation into h disjoint permutations on the multibutterfly.
Thus, the main problem of routingh-relations is to split the packets into appropriate
batches.

The New Algorithm. Defineκ to be the smallest power of 2 withκ ≥ h/α, and define
ρ := d − logκ. For 0 ≤ i ≤ 2d/κ − 1, defineMi to be the(logκ)-dimensional
submultibutterfly with node set{(`, j ) | ρ ≤ ` ≤ d, b j/κc = i }. EachMi hasκ inputs
on levelρ andκ outputs on leveld. Aρ,i is the set of inputs ofMi . Figure 5 illustrates
these definitions. Our algorithm works in three phases:

• Phase1: Partition the packets intoL := 2κ batchesB(0), . . . , B(L − 1) such that
B(i ) contains the packets with destination nodes in the set{(d, v) | vmodL = i }.

Route the packets with Upfal’s algorithm into the “correct” submultibutterfly whose
inputs lie on levelρ, i.e., route each packet with destination(d, v) to an arbitrary node
in Aρ,bv/κc.

For each node(ρ, v) on levelρ, store all arriving packets in thecolumnof (ρ, v),
i.e., at a node(`, v) with −(h − 1) ≤ ` ≤ ρ, such that each node has to store at
most a constant number of packets. (The nodes in the same column are assumed to be
connected by a linear array.)
• Phase2: Give each of the packets with the same destination a uniquerank, i.e., for

each submultibutterflyMi and each output node(d, v) of Mi , number the packets with
destination(d, v) from 0 toh− 1. This is done byκ prefix computations onMi , one
for each output node. (The overall time taken for these computations isO(κ) if they
are done in a pipelined fashion.)
• Phase3: Partition the packets intoL ′ := h · d2/αe batchesB(i + j · h) := B(i, j )

with 0 ≤ i ≤ h− 1 and 0≤ j ≤ L ′ − 1. B(i, j ) contains each packetp with rank i
and a destination in{(d, v) | vmodL ′ = j }.

Finally, complete the routing with Upfal’s protocol according to the new batches.

Intuitively, we have decomposed theh-relation in Phase 2 intoh disjoint rela-
tions R0, . . . , Rh−1 according to their ranks so that all packets inRi have distinct
destinations.
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THEOREM5.2. The above algorithm routes an arbitrary h-relation in time O(logn+h).

PROOF. We have to prove that none of the splitters of sizem is traversed by more than
αm packets in any batch of Phase 1 or Phase 3. In Phase 1 the number of packets from
a batchB( j ) passing through thei th splitter of sizem on level` is at most

h ·
∣∣∣{v ∣∣∣vmodL = j,

⌊ v
m

⌋
= i

}∣∣∣ ≤ hm

L
+ h ≤ αm

2
+ h.

Since the packets route only through the levels 0 toρ − 1= d − logκ − 1, we have to
consider only splitters of sizem≥ 2κ. Hence,h ≤ ακ ≤ αm/2, and thus the number of
packets passing through a splitter of sizem is at mostαm/2+h ≤ αm. As a consequence,
Phase 1 can be done in timeO(logn+ L) = O(logn+ h). Note that this bound on the
routing time for Phase 1 also guarantees that all packets received by a node on levelρ

can be stored in the respective column such that each node has to store a constant number
of packets. This is because each column consists of logn+ h nodes, and each node on
levelρ can receive at most one packet per time step.

Now we consider the number of packets from a batch passing through a splitter in
Phase 3. After Phase 2, we have assigned ranks to the packets so that there is at most
one packet with each rank bound for each destination. The number of packets of each of
these batches passing through a splitter of sizem is at most

m

d2/αe + 1≤ αm,

for m ≥ 1/α. (Splitters of sizem < 1/α are assumed to be completely connected
bipartite graphs.) Hence, Phase 3 takes timeO(logn+ L ′) = O(logn+ h).

Finally, we have to show how the ranks in Phase 2 can be computed efficiently. Each
packet crosses one of the nodes in levelρ in Phase 1. Thus, these nodes can count the
number of packets destined for each of theκ destinations in the respective submultibut-
terfly, which can be done with constant memory size at each node by distributing theκ

values among the at leastκ/2 nodes in the column of the counting node. In Phase 2 the
unique ranks of the packets directed to output node(d,u) are calculated by a prefix com-
putation in the submultibutterfly including(d,u). Theκ prefix computations are done in
a pipelined fashion in each of the submultibutterflies. This takes timeκ+ logκ = O(h).
Thus, the ranks can be computed and distributed among the at mostO(h+ logn) packets
stored in a column in timeO(h+ logn).

A More Practical Solution. If h = O(logn), another practical solution is to replace
theκ-input submultibutterflies withκ × κ meshes of trees.

A κ × κ mesh of trees consists of an array of nodes withκ rows andκ columns. The
nodes in each row serve as the leaves of a complete binary tree called arow tree, and
the nodes in each column serve as the leaves in acolumn tree. Hence, node(i, j ) in the
array serves as both thei th leaf in the j th column tree, and thej th leaf in thei th row
tree. Anh-relation can be routed between the roots of the column trees and the roots of
the row trees inO(h+ logκ) steps by simply routing each packet down its column tree
to the appropriate row, and then up through the row tree to its root.
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In our application, the roots of the column trees in a mesh of trees replace the inputs
of aκ-input submultibutterfly, and the roots of the row trees replace its outputs. Aκ × κ
mesh of trees has 3κ2 − 2κ = 2(κ2) nodes. Since there aren/κ meshes of trees, they
contain a total of2(n·κ) nodes. Forh = O(logn) (and henceκ = O(logn)), this total is
O(n logn), the same as the number of nodes in ann-input multibutterfly. Thus, replacing
the submultibutterflies by the meshes of trees does not increase the asymptotic number
of nodes. Also, the VLSI layout area of aκ × κ mesh of trees is2(κ2 log2 κ). Since
there aren/κ of them, their total VLSI layout area is2(n · κ log2 κ). Since the layout
area of the multibutterfly is2(n2), replacing the submultibutterflies with the meshes of
trees does not increase the asymptotic VLSI layout area.

Networks besides the mesh of trees could be plugged in as well, e.g., aκ × κ mesh
would work, but its routing algorithm would be slightly more complicated.

6. Simulating Expansion on a Twinbutterfly. The concentrators of a twinbutter-
fly have poor expansion. This can be shown as follows. Consider a concentratorG =
(A∪ B, E) of a twinbutterfly with input setA of sizem and output setB of sizem/2. G
can be constructed from a bipartitem×mgraphG′ = (A∪B′, E′)of degree 2 by merging
together two nodes fromB′ to form each node inB. In G′, for anyi ≤ |A|, there exists a
subsetX ⊆ A where|X| = i such that|0(X)| ≤ i+1, because a degree-2 graph consists
only of node disjoint cycles. The same bound on the expansion holds for the concentrator
G because merging nodes inB′ can only reduce the expansion. Upfal’s algorithm requires
(α, β)-expansion for some constantβ > 1, which is not present if there are sets of sizei
with only i+1 neighbors for alli . However, the following theorem shows that the effective
expansion of a twinbutterfly can be improved by embedding multibutterflies of higher
degree.

THEOREM6.1. For any α and β with αβ < 1
4, there exists a twinbutterfly TBF in

which an equal-sized multibutterflyMBF having (α, β)-expansion can be embedded
with constant congestion and dilation.

PROOF. We describe ad-dimensional twinbutterfly TBF and an equal-sized multibut-
terfly MBF of degree 4k, for constantk, such that MBF can be embedded into TBF
with constant load, dilation, and congestion. TBF and MBF will be constructed ran-
domly, and we will prove that the probability that MBF has(α, β)-expansion is larger
than 0.

Consider the firstk levels of the twinbutterfly TBF. We define these levels by de-
scribing the underlying butterfly networksBF1 andBF2, i.e., the two butterflies from
which TBF is constructed. We assume thatBF1 has the “usual” butterfly node la-
bels, i.e., the edges ofBF1 connect a node(`, v0 · · · vd−1) on level ` to the nodes
(`+ 1, v0 · · · v` · · · vd−1) and(`+ 1, v0 · · · v̄` · · · vd−1) on level`+ 1.

BF2 is defined randomly. For any 1≤ ` ≤ k andw ∈ {0,1}k, supposeϕ`,w is a
permutation chosen randomly and uniformly from the set of permutations on{0,1}d−k.
Then each node(` − 1, v) with v = v0 · · · vd−1 ∈ {0,1}d is connected by aBF2-edge
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to node

(`, v0 · · · vk−1 ϕ`,v0···vk−1(vk · · · vd−1)),

for 1 ≤ ` ≤ k. (The secondBF2-edge on the same level can be chosen arbitrarily.)
Intuitively, traversing one of these edges randomly modifies the lastd − k bits of the
node labels.

Next we define the firstk levels of the degree-4k multibutterfly MBF. Consider
level ` of MBF with 0 ≤ ` ≤ k − 1. Supposeπi,w is a permutation chosen randomly
and uniformly from the set of permutations on{0,1}k−`, for 1 ≤ i ≤ k andw ∈
{0,1}d−(k−`). Let (`, v) be a node on level̀ with v = v0 · · · vd−1 ∈ {0,1}d. Define
x := v0 · · · v`−1, y := v`+1 · · · vk, andz := vk+1 · · · vd−1. Further, definey′i := πi,x0z(y)
andz′i := ϕ−1

i,x0y′i
(z), for 1≤ i ≤ k, whereϕ−1 denotes the inverse ofϕ. Intuitively, the

π -permutations randomly switch they-bits, and theϕ−1-permutations randomly switch
thez-bits. We connect(`, v) = (`, x {0,1} y z) with 2k nodes on level̀ + 1, i.e., with
the nodes

(`+ 1, x 0 y′i z′i ) and (`+ 1, x 1 y′i z′i ),

for 1 ≤ i ≤ k. Note that all edges are inside the splitters and that each node on level
`+ 1 is the endpoint of 2k edges.

The embedding has constant congestion and dilation because there is a path in TBF
of length at most 2k + 1 from (`, v) to any node adjacent in MBF on level` + 1. For
1≤ i ≤ k andb,b′ ∈ {0,1}, this path can be constructed as follows:

(`, v) = (`, xbyz)
BF1→ · · · → (k, xb′y′i z)
BF1→ · · · → (i, xb′y′i z)
BF2→ (i − 1, xb′y′i z

′
i )

BF1→ · · · → (`+ 1, xb′y′i z
′
i ),

where
BF1→ · · · → denotes a path usingBF1 edges, and

BF2→ denotes a singleBF2 edge.
We now investigate the expansion of MBF. Consider one of the concentrators in

the firstk levels. It consists of a node setA = A`,i and a node setB = A`+1,2i or
B = A`+1,2i+1 with 0 ≤ ` ≤ k− 1 and 0≤ i ≤ 2` − 1. Definem := |A|. Suppose that
πi andϕi , for 1 ≤ i ≤ k, are random functions such that each node inA is connected
with k nodes chosen independently and randomly fromB. Then the probability that all
edges that are incident to nodes in a subsetX ⊆ A have their endpoints in a subset
Y ⊆ B is ( |Y|

|B|
)k·|X|

=
(

2|Y|
m

)k·|X|
.

Actually,πi andϕi , for 1≤ i ≤ k, are independent random permutations instead of ran-
dom functions. However, this does not increase the above probability. As a consequence,
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the probability that the concentrator has no (α, β)-expansion is at most

bα·mc∑
µ=1

∑
X⊆A
|X|=µ

∑
Y⊆B

|Y|=bβ·µc

(
2 · β · µ

m

)k·µ

≤
bα·mc∑
µ=1

(
m

µ

)
·
(

m/2

bβ · µc
)
·
(

2 · β · µ
m

)k·µ

≤
bα·mc∑
µ=1

(αk−1−β · e1+β · (2β)k−β)µ.

We choosek > (β · log(e/(2αβ)) + log(4e/α))/log(1/(4αβ)). Then the above term
bounding the probability of a lack of expansion in one concentrator is smaller than
2−(k+1). Thus, the probability that all 2k+1 concentrators of the firstk levels have (α, β)-
expansion is greater than 0. Consequently, we can choose the edges of the twinbutterfly
TBF so that the firstk levels of a multibutterfly with (α, β)-expansion can be embedded
with constant congestion and dilation. The levelsk to d− 1 of TBF can be viewed as 2k

independent twinbutterflies of dimensiond− k. Applying the above scheme recursively
to these butterflies completes our proof.

7. Open Problems. We conclude with a few open problems.

1. Can anN-node multibutterfly whose splitters have the(α, β)-expansion property
be embedded with constant load, congestion, and dilation, in anO(N)-node AKS
network whose building blocks have(α, β) (or better) expansion?

2. What is the complexity of selecting thekth largest item from amongM items on an
N-node bounded-degree network forω(1) ≤ M/N ≤ o(log N log log(M/N))?
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