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Improved Routing and Sorting on Multibutterflies *
B. M. Magg¢ and B. \Wicking®

Abstract.  This paper shows that aN-node AKS network (as described by Paterson) can be embedded
in a (3N/2)-node twinbutterfly network (i.e., a multibutterfly constructed by superimposing two butterfly
networks) with load 1, congestion 1, and dilation 2. The result has several implications, including the first
deterministic algorithms for sorting and finding the mediam&dgn items on am-input multibutterfly in
O(logn) time, a work-efficient deterministic algorithm for finding the mediamddg? nlog logn items on
ann-input multibutterfly inO(lognlog logn) time, and a three-dimensional VLSI layout for thénput AKS
network with volumeO(n®2). While these algorithms are not practical, they provide further evidence of the
robustness of multibutterfly networks. We also present a separate, and more practical, deterministic algorithm
for routing h-relations on am-input multibutterfly inO(h + logn) time. Previously, only algorithms for
solving h one-to-one routing problems were known. Finally, we show that a twinbutterfly, whose individual
splittersldo not exhibit expansion, can emulate a bounded-degree multibutterflgwiexpansion, for any

a-p <3

Key Words. AKS network, Multibutterfly network, Network embedding.

1. Introduction. In 1983 Ajtai, KomBs, and Szemedi (AKS) devised a network for
sortingn items inO(log n) depth [1]. This result was surprising because no improvement
in the asymptotic depth of sorting networks had been made since Batcher’s invention of
the O (log? n)-depth bitonic sorting network 15 years earlier [5]. Indeed, the difficulty of
improving on Batcher’s construction led Knuth to conjecture that there was no sorting
network with depthO(logn) [24, p. 243].

The AKS sorting network differed from previous constructions in one crucial respect:
it incorporatedexpansioninto its structure. Expansion is a graph-theoretic notion. An
| x r bipartite graph is said to have, 8)-expansiorif every set ofx nodes on the left
side has at leagix neighbors on the right side, provided that «l, wherea and g
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are constants; < 1, andg > 1. This property is most interesting whers |, for when

r > |, itis easy to construct graphs with expansion. As it happens, a rakdegular

| x | bipartite graph is likely to be an expander for &y 3 [44]. Explicit constructions

were first discovered by Margulis [34], [35], and have since been greatly improved. So
far, however, the expansion achieved by the explicit constructions is still about a factor
of two smaller than the expected expansion of a random graph. A nice summary of the
state of the art in expander graphs can be found in [23].

One drawback to the AKS network is that the big-O notation hides large constant
factors. In contrast, the depth of the bitonic sorting networkidg? n)/2 + (logn)/2
[14, p. 650]. Some progress has been made in simplifying the AKS network and in
improving the constant factors in its depth [42], but for practical values tie depth
of bitonic sort is much smaller. To date, however, @lllog n)-depth sorting networks
are based on the AKS construction.

Two notable AKS-based sorting networks are Leighton’s sorting network [27] and
Ma’s fault-tolerant sorting network [32]. Leighton showed how to construdtiamode
degree-3 network capable of sortiNgtems inO (log N) steps. His network implements
the columnsortalgorithm, and uses @(N/log N)-input AKS network in a pipelined
fashion. Ma showed how to constructramput sorting network wittO (log n) depth that
can sustain constant-probabiliassivefaults at its comparators, and still sort correctly
with high probability. In the passive fault model, a faulty-comparator can be viewed as
having been removed from the network.

Another network that incorporates expansion into its structure isrthiéibutter-
fly. The basic structure of this network was introduced by Bassalygo and Pinsker [4],
who showed that two back-to-back multibutterflies form@fogn)-depth nonblock-
ing network. Heren is the number of input and output terminals of the network. A
network is callednonblockingif every unused input terminal can be connected by a
path through unused edges (or nodes) to any unused output terminal, regardless of
which inputs and outputs have already been connected. Bassalygo and Pinsker did not
use the term multibutterfly, and their network differed from the multibutterflies con-
sidered in the rest of this paper in one technical detail: although the out-degree of
each node in the network was bounded, the in-degree was not necessarily so. It is
not difficult, however, to modify their construction so that the degree of all nodes is
bounded.

The term “multibutterfly” was introduced by Upfal [51]. In his seminal paper, Upfal
proved that am-input multibutterfly can route any permutationmfpackets from the
inputs to the outputs of a multibutterfly @(logn) steps deterministically. (In fact, he
showed that even a collection of lagpermutations can be routed @(logn) time.)
Because it can sort, the AKS network can also solve these proble@@adg n) time. In
the AKS network, however, the running time of the algorithm cannot be separated from
the size and depth of the network. In the multibutterfly, on the other hand, although the
O(log N) bound on the running time hides some moderately large constants, the network
itself can be constructed by merging just two copies of the ordinary butterfly network
(hence the name multibutterfly). Furthermore, simulations show that the running time of
the routing algorithm is actually smaller than t@&log N) upper bound implies [29],

[31]. Hence, a case can be made for the practicality of multibutterflies, and several studies
have explored their implementation [12], [13], [16], [17].
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Although no deterministi@© (log n)-step sorting algorithm for multibutterflies was
previously known, the network was known to have some capabilities that the AKS net-
work was not known to have. For example, Leighton and Maggs showed that multibut-
terflies are highly fault tolerant [29]. In particular, they showed that even if an adversary
is permitted to placd worst-casdail-stopfaults in a multibutterfly, there is still some
setofn— O(f) inputs anch — O( f) outputs between which any permutation of packets
can be routed i (logn) steps. In the fail-stop fault model, a faulty node cannot com-
municate with its neighbors at all. As a consequence, fail-stop faults are more difficult to
tolerate than passive faults. Leighton and Maggs also showed that even if every node in
the network fails with some small, but constant, probability, with high probability there
is still some set 0O (n) inputs andd (n) outputs between which any permutation can be
routed inO(logn) time. As Bassalygo and Pinsker showed, the multibutterfly can also
be used to construct a nonblocking network. Arora et al. termed two back-to-back multi-
butterflies a multi-Benghetwork, and showed that not only is a multi-Bemetwork
nonblocking, but any set of new paths can be established in this netw@klag n)
steps, even if many requests for new paths are made simultaneously [2]. The algorithms
for reconfiguring a multibutterfly with faults and for establishing disjoint paths were
later improved in [20] and [45], respectively.

1.1. Our Results In this paper we show that multibutterfly networks are at least as
powerful as the AKS sorting network. In particular, we show thaNanode AKS net-
work can be embedded i8N /2)-node twinbutterfly (i.e., a multibutterfly constructed
by superimposing two butterfly networks) with load 1, congestion 1, and dilation 2.
As a consequence, af-node twinbutterfly can emulate &rnode AKS network with
constant slowdown.

The embedding has several other immediate implications. The emulation of the AKS
network by the twinbutterfly, along with Leighton’s columnsort algorithm [27], yields
the first deterministi® (log N)-step algorithm for sorting\ items on arN-node twin-
butterfly. The sorting algorithm can then be used to construct the first deterministic
O(log N)-step algorithms for finding the median Wfitems and for routing with com-
bining on multibutterflies. It also yields a work-efficient deterministic algorithm for
finding the median oN log N loglogN items in O(log N loglogN) time on anN-
node twinbutterfly. Because the embedding of the AKS network into the twinbutterfly
has constant load and congestion, bounds on the VLSI layout area and volume for
the multibutterfly translate to the AKS network as well. Asinput multibutterfly net-
work can be laid out in two dimensions with ar€(n?), and in three dimensions
with volume O(n*?), and these bounds are tight. The two-dimensional layout area
of the AKS network was known before [8], [9], but the three-dimensional layout is
new.

We also present a deterministic algorithm for solvimgelation routing problems on
an n-input multibutterfly, augmented Ry extra levels, inO(h + logn) time. Previous
routing algorithms could solvie one-to-one problems in a pipelined fashion [29], [51],
but assumed that each packet carried the label of the one-to-one problem to which it
belonged. In arh-relation, each source sends at miogiackets, and each destination
receives at most packets. One motivation for designing algorithms that rbutelations
is that routing arh-relation is the primitive communication step in the BSP model of
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computation [52], for which there are growing libraries of parallel programs [11], [21],
[36], [41].

Finally, we show that a twinbutterfly whose individual splitters do not exhibit expan-
sion can emulate a bounded-degree multibutterfly wittea)-expansion property, for
anyo - B < 5.

The fact that arN-node multibutterfly network contains aw-node AKS network
does not imply that the multibutterfly is an inherently impractical network. Although the
sorting algorithm implied by the embedding is not practical, there is no requirement that
the multibutterfly be used in this fashion. Indeed, independent of the sorting algorithm,
the multibutterfly is an efficient and highly fault-tolerant routing network.

1.2. Other Related Results Prior to this work, the fastest deterministic algorithm for
sortingN items on arN-node multibutterfly was the Sharesort algorithm of Cypher and
Plaxton [15]. This algorithm was designed to run on the butterfly network, or on any other
hypercubic network (e.g., the shuffle-exchange network and the hypercube). Since the
multibutterfly network contains a butterfly network, it applies to multibutterflies as well
(but does not take advantage of the expansion in the multibutterfly). There are several
variants of this algorithm. The fastest uniform version rur@itog N (log log N)?) time,

but there is a nonuniform version that runsGrilog N log log N) time. Our embedding
result yields anO(log N)-time algorithm for the multibutterfly. Note that the sorting
problem can also be solved on Bianode butterfly (or multibutterfly) i© (log N) time

using the randomized Flashsort algorithm of Reif and Valiant [30], [49].

Prior to this work, the fastest deterministic selection algorithm for multibutterflies
was the algorithm of Berthoenét al. [6]. This algorithm selects thieh largest item
from amongN items on anN-node butterfly (or any other hypercubic network) in
O(log N log* N) time. Like the Sharesort algorithm, this algorithm does not make use
of expansion when run on a multibutterfly. Since the selection problem can be solved
in linear time sequentially [10], this algorithm, which perforiidog N log* N work,
is not work efficient. Furthermore, Plaxton [46] showed that any deterministic algo-
rithm for solving the selection problem on af-node hypercubic network requires
Q((M/N)loglogN + logN) time in the worst case, wherd is the number of in-
put items. This translates to a lower bound®»fM loglogN + N log N) on the work
required. Hence, there can be no deterministic work-efficient selection algorithm on a
hypercubic network. (This lower bound does not apply, however, to multibutterlies.) Re-
cently, Plaxton showed that fé /N = log N, any deterministic algorithm for selection
on a bounded-degre¥-node hypercubic network requirés(log®? N) steps [47]. He
also presents an algorithm that runsQrlog®? N(loglogN)?) time on anyN-node
hypercubic network.

For bounded-degree expander-based networks, two optimal deterministic algorithms
for selection are known. For the case of findingkttelargest out oN items onarN-node
network, the AKS sorting network combined with columnsort can be used to sortthe items
(and hence solve the selection problemPifiog N) time [27]. This algorithm is optimal
because selection on any bounded-defitegode network requireQ (log N) time. The
kth largest oM items,M > N, can be found if©0((M/N) +log N log log(M/N)) time
on anN-node expander-based network using an implementation of a PRAM algorithm
due to Vishkin [53] that invokes the AKS sorting network and columnsort as subroutines
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[46]. This algorithm is work-optimal foM/N > log N loglog(M/N). Our embed-

ding result implies that a multibutterfly network can perform both of these algorithms.

Note that the latter algorithm beats Plaxton’s lower bound for hypercubic networks,

thus implying a separation in power between expander-based networks and hypercubic

networks. Rappoport [48] has recently proved an even larger separation, namely that

the largest butterfly that can efficiently emulateNwmode multibutterfly has fewer than

N¢ nodes, for all constants > 0. Forw(1) < M/N < o(logN loglog(M/N)) the

asymptotic complexity of selection on bounded-degree networks is currently not known.
Recently, Herley and Pietracaprina improved on our result on rottirggations on

the multibutterfly network witm input nodes. Herley [22] shows how the dependence

of the network orh can be eliminated by using only lognstead oh extra levels, at the

expense, however, of a rather involved protocol. Pietracaprina [43] presents an algorithm

that does not need any extra levels but requidésiin{h + logn, ,/n}) bits of storage

at each node.

1.3. Outline  The remainder of this paper is organized as follows. In Sections 2 and 3
we define the multibutterfly and AKS networks, respectively. Our embedding of an
AKS network into a twinbutterfly network is presented in Section 4. Algorithms for
routingh-relations on multibutterflies are described in Section 5. In Section 6 we show
that a twinbutterfly can emulate a multibutterfly wiia, 8)-expansion. We conclude in
Section 7 with some open problems.

2. Multibutterfly Networks. A d-dimensional multibutterfly netwo(MBF) consists
of d + 1 levels each consisting of2nodes. We view these levels as being stacked
vertically, with level O at the top, and level at the bottom. For O0< ¢ < d and
0<j<29—1,let, j) bethe label of thgth node on levet. Within a level, we view
the nodes as being arranged from left to right in order of increasing labels. The nodes on
level 0 of ad-dimensional multibutterfly are calledput nodesand the nodes on level
d are callecbutput nodes

The nodes on each levehre partitioned into 2setsA, o, . .., Ay 2_1, Where

A =1, )1 /2% =i}

The nodes inA;; are connected to the nodesAq. 12 and A.112+1. The subgraph
induced by the nodes in these three sets is calledpliger of A ;. It consists of two
concentratorsaleft one and aight one. The left concentrator is defined as the subgraph
induced by the nodes i, ; and A,.1.2, and the right concentrator is defined as the
subgraphinduced by the node#in; andA,.;1 2 +1. Alledges of a multibutterfly network
are inside its concentrators, i.e., each concentrator is a bipartite GrapltA U B, E)
whereA = Agi, B = Air12i of B = Agia2i+1, andE is the set of edges induced by
AU B, and 0< ¢ < d — 1. The edges in a concentrator can be chosen in an arbitrary
fashion, provided that each nodeAnhas degreé&, and each node iB has degreek?
for some constant integér This defines a multibutterfly of degre&.4

The multibutterfly structure is very similar to that of the butterfly network. @he
dimensional butterflgonsists ofl - 1 levels each of which includes= 29 nodes. Each
node has a distinct labét, w) wheret is the level of the node (& ¢ < d) andw is a
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d-bit binary number that denotes thelumnof the node. All nodes of the forrit, w),

0 < ¢ < d, are said to belong to column. Two nodeg¢, w) and(¢’, w’) are linked by

an edge i’ = ¢ 4+ 1 and eithefw andw’ are identical ow andw’ differ only in the bit

in position?’, where the bit positions are numbered 1 throdgthe most significant bit
being numbered 1. The butterfly network is a special case of the multibutterfly, in which
the degree is 4.

The basic advantage of the multibutterfly compared with the butterfly is that the
multibutterfly may satisfy some expansion properties if the edges inside the concentrators
are chosen properly. L&t(X), for a subset of nodes, denote the set of the neighbors of
the nodes irK. Then we say a concentrat@r= (AU B, E) has(«x, 8)-expansionif, for
any setX C Awith | X| < a|A|, we havgdI'(X)| > B]X|. A multibutterfly is said to have
(a, B)-expansion if all of its concentrators haieg 8)-expansion. Upfal [51] shows that,
for anyk, «, andg with 28 < k—1, andx < (28)1(28ett2#) -1/ k=21 there exists a
multibutterfly of degree Kwith («, 8)-expansion. Note that, for very smallthe bound
implies thatg approache& — 1, which means that the expansion is nearly optirkal (
would be optimal), and that, for sufficiently largethe productes approacheé, which
is the largest possible value, because otherwj2g@ nodes would expand to more than
| X|/2 nodes.

Finally, we define a subclass of the multibutterfly networks that includes those multi-
butterflies that can be constructed by superimposing butterfly networks. Suppose the
edges of al-dimensional multibutterfly of degreek4an be colored bk colors such
that the network induced by the edges of each color are isomorphicdedimensional
butterfly. Then this multibutterfly is calledafolded butterflgince it can be constructed
by folding k butterfly networks. By folding, we mean that the labels of the nodes within
eachA,; set in each of these butterflies are permuted and theR tiedes with the
same label in distinct butterflies are merged together to form a multibutterfly node. The
k butterfly networks that definelafolded butterfly are callednderlying butterflieand
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Fig. 1. Example of a three-dimensional twinbutterfly.
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we denote them bBF,, ..., BF«. A 2-folded butterfly is also called @vinbutterfly
Figure 1 gives an example of a three-dimensional twinbutterfly.

The twinbutterfly that we use for the embedding of the AKS network (Section 4)
and the multibutterfly that we use for the routing lofelations (Section 5) have a
special feature: all of the splitters on any particular level are identical. However, the
twinbutterfly in which we embed a multibutterfly with expansion (Section 6) does not
have this feature.

3. The AKS Network. Our description of the AKS network is based on Paterson’s
description [42]. Ours is a little more general than Paterson’s because we do not describe
the building blocks, i.e., the separators and sorters, in detail.

The AKS network is a sorting network that consist$1efT rows that are partitioned
into T = O(logn) stages of widtin and of constant heighit By width nwe mean that
each row containg nodes, and bjeight hwe mean that each stage consisth odws.
Let

Vii={(j+t-h,)|0<j=<h-10<i=<n-1}

be the set of nodes on stagdor0 <t < T — 1. Then each nodg, i) is connected via
aforward edgeo node(j +1,i),forO0< j <h.T—-2and0<i < n—1.Inadditionto
the forward edges, the network contagmnpare-exchange edgesich connect nodes
in the same row, i.e., each compare-exchange edge connects &jnodeith a node
(j,i),for0O<j<h-T—-1and0<i <i’ <n- 1. Each node is incident to at most
one compare-exchange edge.

The AKS network sorts itemsin2-h- T —1 = O(T) = O(logn) steps. Before
step 0O, the items are located at the nodes in row 0. In each even step, the two items
located at the endpoints of each compare-exchange edge are compared, and the items
are exchanged if they are in the wrong order. In each odd step, the items are moved along
the forward edges to the next row. After stegh2 T — 1, the items are located in sorted
order on the nodes inrotv- T — 1.

Each stage of the AKS network consists of several indeperimgiding blocks All
of the compare-exchange edges are inside these building blocks. We initially describe
the widths of these blocks as if they were real numbers. Ultimately, we will replace
theseideal values by appropriate integers. Most of the building blocksseparators
but some aresorters and some aréorward blocks We give a brief overview of these
blocks without going into details. Each separator partitions its input items into four output
parts, FL (far-left), CL (center-left), CR (center-right), and FR (far-right), as described
in more detail later. The sorters return the input items in sorted order. It is convenient to
implement the sorters as Batcher’s bitonic sorting network [5]. All sorters have constant
width, so they can be implemented in constant heligfithe forward blocks include only
forward edges and no compare-exchange edges.

In the following we describe the widths of the building blocks and which output parts
ofthe blocks in stageare connected to which blocks in stagel, forO<t < T—1.Our
description is based on an oblivious sorting algorithm structured about a complete binary
tree B of depth logn which we imagine with the root at the top (on level 0) and leaves
below (on level log). The algorithm proceeds i = O(logn) stages of time. Each
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stage of the AKS network implements the operations specified for the corresponding
stage in the algorithm.

We first show how the items can be sorted inhogtages, each of which, however,
requires more than constant time. The underlying binary Bdwas a “bag” at each
node. Initially, the set oh items to be sorted is contained in the bag at the root. The
items migrate down the tree. In each stage, each node of the tree with a nonempty bag
partitions the items in its bag into halves, the smaller items and the larger items, and then
sends the smaller items to its left child and the larger items to its right child. The items
arrive in sorted order at the leaves of the tree aftenlstages.

Unfortunately, it is not possible to split the items exactly into halves at each tree node
in constant time. The strategy of the AKS algorithm is to make an approximate patrtition
of items such that each stage takes only constant time. The items that are sent to the
wrong child in a stage are sent back to the parent in later stages.

In the following we are interested only in the flow of the items between the bags. The
proof that the algorithm sorts can be found in Paterson’s article [42]. We defisizthe
of a bagto be the number of items stored in that bag, andctygacity of a bago be
the maximum number of items that can be stored in that bag. During most stages, a bag
is either empty or filled to its capacity, which is decreasing with time. In particular, the
capacity of each bag at leveis x - a¢, for a value ofx that is decreasing with the stage
number (and will be specified later) and some constantl, e.g.,a = 3.

Special situations occur at the highest and lowest nonempty levels of the tree, so we
start with a description of the sorting process at intermediate levels. The algorithm works
in T stages beginning with stage 0. In odd stages, some odd levels are full and all the
bags at the even levels are empty. The opposite holds in even stages. In each stage, the
items in any full bag are partitioned by a separator into the four parts FL, CL, CR, and
FR. The FL and the FR parts are sent back to the parent bag and the CL and CR parts
are transferred down to the left and right child bags, respectively. Suppose a bag is filled
up to its capacityp. Then the size of FL and FR bs- b and the size of CL and CR is
(1—21) - b, where, e.gr = 3.

Consider a bag with capacibythat is empty at the beginning of some stage and that
is filled to its new capacityb at the end of the stage, as shown in Figure 2. Then

1-2)-b

vb = 2xba+ ,
2a

Fig. 2. Reduction of bag capacities after each stage.
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which gives
1-A
=2a+—.
v + oa
We assume that < 1, e.g.,v = j—g. Thus, the capacities diminish in each stage and the
items are squeezed down the tree in the course of the algorithm. We define the capacity
of each bag at leved at the beginning of stageto be

(1) Co(t) == (1—%) n-vt.al.
(Hence, thex that should be specified later(s — (1/4a?)) - n - vt.)

At the beginning of the algorithm all bags except for the root are empty. The root is
filled to its capacity, i.e., it contain€l — 1/(4a?)) - n items. Since we would like the
root to behave as if it were an ordinary node, we place above it a subset of the items of
size(1/4a?) - n. This subset we call theold storage The root exchanges items with the
cold storage as with a parent. Therefore, in odd stages, the capacity of the cold storage is
half the root’s parent’s capacity plus one-eighth the root’s grandgrandparent’s capacity,
and so on. In even stages, its capacity is one-quarter the root’s grandparent’s capacity,
plus one-sixteenth the root’s grandgrandgrandparent’s capacity, and so on. This means
the capacity of the cold storage in stdge

t

1 1 n-v

5-Ci)+5-cat)+--- = -
if t is odd, and

1 1 n- vt

7 Co)+45-Ca®)+---= i
if tis even.

During the course of the algorithm the items migrate down through the tree. We will
arrange that there is at most one partially full level. Above this, the levels are alternately
empty and full as already described; below, all the levels are empty. To achieve this, we
require that at thpartial leveleach bag should send up to its parent the normal number
of items (i.e.,Ab with b denoting the bag’s capacity) if it has sufficiently many. After
this requirement is met, any remaining items can be sent down to its children in equal
numbers.

In the final stages, some of the separators are replaced by sorters and forward blocks.
In particular, if the capacity of the root bag is smaller thafor some constant, e.g.,

r = 160, and the bag is nhonempty, then the set of items in the root bag and the cold
storage is sorted and separated into a left and right half. From these halves the root and
the cold storage for each subtree can be immediately formed. This event is cgiléd a

A split divides the problem into two independent subproblems, each of which has its
own root (the left child or right child of the old root) and its own cold storage.

After the first split, a new split will be required at regular intervals of a constant
number of stages, i.e., when the capacity of a bag becomes smaller tharseparator
is replaced by a sorter and the items are split into halves. The stage in which the bags on
the £th level of the tree are split is called tlieh splitting stage Note that the number
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of items split by a sorter is at mostplus the number of items in the cold storage,
r/(4a? - (1 — 1/(4a?))), which sums ta /(1 — (1/4a?)). Thus, the width of the sorter
doing the splitting i90 (1), and its height i$D(1), too, in particular the height is at most
h, e.g.,h = 36.

The algorithm finishes after stage— 1, in which the items of the bags on some level
are sorted and all bags below this level are empty. Stafjgne algorithm is implemented
in staget of the AKS network. For each stageof the algorithm, each bag of the tree
corresponds to a separator or sorter in stagfehe AKS network. The items in the cold
storage do not have to be separated or sorted (except during a splitting stage), so that
they can move from stage to stage through forward blocks. The widths of the building
blocks correspond to the sizes of the respective bags and cold storage sets, which can
be extracted from the above description. Paterson gives a simple recipe for replacing
the real numbers by integers without straying far from the ideal values. For each subtree
rooted at a nonempty node, if the ideal total size of the subtregtigen the actual size
is 2[a/2].

4. Embedding the AKS Network into a Multibutterfly.  In this section we embed

an AKS network into a multibutterfly network. An embedding maps a guest ¢gajoh

a host grapiH. Nodes ofG are mapped to nodes éf, and edges o5 are mapped to
paths inH. Theload of an embedding is the maximum number of node§&ahapped

to any node ofH. The congestiorof an embedding is the maximum number of paths
that use any edge iB. Thedilation of an embedding is the length of the longest path. In
general, the smaller the load, congestion, and dilation, the better the embedding. Itis not
difficult to show that if the load, congestion, and dilation of an embedding are constant,
then the hosH can emulate the gueStwith constant slowdown. Many previous works
deal with graph embeddings and network simulations, e.g., [3], [7], [18], [19], [26], [30],
[37]-[40], [48], and [50]. Surveys on these topics can be found, e.g., in [25], [28], and
[33].

We denote the width of the AKS network loy the number of stages by, and the
height of each stage by. We assume that the widths of the building blocks, which
are equivalent to the sizes of the bags, are defined by the pararhesens andr, as
described in Section 3.

THEOREM4.1. An AKS network of size N can be embedded into a twinbutterfly of size
M < «-N+o0o(N) with load1, dilation 2, and congestiod, wherex is a small constant
depending on the AKS parameters, r, and h

Suppose that the AKS parameters are chosen according to Paterson’s recommenda-
tion, which should minimize the size of the AKS network, ihe= j—g, a=3,r =160,
andh > 36. Thenk is at most 1352 In the following we describe the embedding and

prove the result on the relationship of the network sizes.

4.1. Rough Embedding The description of the AKS network is structured about a
binary tree. The nodes of this tree represent bags whose sizes vary from stage to stage,
i.e., over time. Instead of looking at one binary t®evith growing and shrinking bag
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Fig. 3. Abstract view of the AKS network. Here each box represents a stage, which implements a set of
comparisons (corresponding to the different types of building blocks that we have defined) specified by the
algorithm that is described in terms of a binary tree.

sizes, however, we can imagine that we hévieeesBy, . .., By_; of fixed sized bags,
such that the bags in th¢h tree represent the building blocks of ttth AKS stage.
Figure 3 depicts this abstraction. The size and capacity of eachuniodbe treeB; are
equal to the size and capacity of the corresponding mddehe binary treeB at stage
t. (Recall that thesize of a bagds defined to be the number of items stored in that bag,
and that theapacity of a bags defined to be the maximum number of items that can be
stored in that bag.) Hence, each bag of tBeavith sizes is realized as a building block
of width s and height in staget.

A natural partition of the AKS building blocks is to divide the blocks according to
their stages. Then each partition corresponds to one of thees. In fact, this partition
is the one implemented in the AKS network. For the embedding into the MBF, however,
we partition the blocks of the AKS network into sés, . . ., Pogn, according to their
levels in the tree. This means that partitiBpincludes all 2 - T building blocks that
are associated with some node on {ttetree-level in one of th& trees. Lets, denote
the ¢th splitting stage. Fot > 0, we add the building blocks of the cold storage in each
staget with s, <t < 5,41 to partition P,. In addition, we add the cold storage in each
staget with 0 <t < s to partition Py. Define thesize of a partition Pto be the sum
of the sizes of all bags on the respective tree lévdlhis size is denoted bj?,|. Note
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Fig. 4. Rough embedding of the AKS network into the multibutterfly.

that some bags in each partition have size 0, i.e., all bags below the partial level for any
stage, all bags of odd levels of the tree in even stages, and all bags of even levels of the
tree in odd stages.

The AKS building blocks associated with the bags of partitiyrare embedded in
thetth level of the MBF. Of course, we have to define more precisely which nodes in the
building blocks in partitiorP, are mapped onto which nodes of the MBF in let/ghnd
how the two butterflies are folded. Divide each partitigrinto equal-sized subpartitions
Peo, ..., Pp2c_1 such that subpartitioR, ; includes all blocks that correspond to itile
node on level of the AKS treeB. Then for 0<i < 2 — 1 and for 0< ¢ < logn — 1,
subpartitionP;; includes all parent bags of the bags in the subpartitigns » and
Pey1,2i+1-

We map the AKS nodes of partitioR,; onto the MBF nodes in sel ;. This is
illustrated in Figure 4. (Recall that MBF levélis partitioned into 2 subsetsA, o, . . .,

Ay 2_1.) In order to get an embedding with load 1, it is required fiag| > h - |P;|
which is the number of nodes represented by the partign It will be seen later that
the size ofA,; has to be a little bit larger than this value.

Suppose for the moment that we could add all AKS edges to the MBF regardless
of the multibutterfly structure, i.e., suppose we could connect each pair of MBF nodes
representing a pair of adjacent AKS nodes by an edge. Then each AKS edge that connects
anode of a parent bag in subpartitiByy to a node of a child bag in subpartitiéia,. 1 5 or
Pe+1.2i+1 would be represented by an edge inside the multibutterfly splitter containing the
setsAci, Acr12i, andAgtq2i41. In addition, the AKS edges inside the building blocks,
and thus inside the subpartitions, would be represented by edges inside;tets.

This means that any two MBF nodes that represent two adjacent AKS nodes are in the
same splitter. Therefore, we can restrict ourselves in the following to give a description
of the embedding inside the splitters.

4.2. Fine Embedding Consider a splitter consisting of the seis:= A;;, L =
Avt12, andR = Ayi12+1. Definek := |Al. Assume without loss of generality that
the nodes inA are labeled?, 0), (¢, 1), ..., (¢, k — 1), the nodes irL are labeled? +
1,0),...,(+1 k/2—1),andthe nodes iRare labeled¢+1, k/2), ..., (£+1, k—1).
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The edges leading frorA to L we callleft edgesand the edges leading fromto R we
call right edges The edges betweef, L, andR are defined by two butterfly networks
BF; andBF; that are folded together to form a multibutterfly such that each node in
isincident to a left and a righieF; edge and a left and a rigBF, edge. We assume that
the leftBF; edge of a nodéZ, v) € A connectg?, v) to node(? + 1, v modk/2)) € L,
and the righBF; edge connects it to nodé + 1, k/2 + vmodk/2)) € R. (These are
the standard butterfly connections.) The edgeBFefwill be defined later.

We assume inductively that the embedding is done for the levelstlogugh? + 1,
and that the folding oBF; andBF; is specified for these levels. We have to describe the
mapping of the AKS nodes in subpartitiéh:= P, ; onto the MBF nodes i\, and we
have to determine thBF, edges betweeA andL U R such that each AKS edge can
be mapped to a path of length 1 or 2, with congestion 1. The embedding into the two
submultibutterflies below andR can be assumed to be isomorphic since the two subtrees
below a node in the AKS tree are symmetric. Defife- L andR’ ¢ Rto be the set of
nodes that host nodes froRp, ; that are adjacent to nodesi) and define\' ¢ Ato be
the set of nodes above the nodesirandR’,i.e., A :={(¢,v) | ¢+ 1,v) €e L' UR'}.

First, we describe how to map the AKS nodesHrto the nodes inA and how to
implement the compare-exchange edges within the AKS building blocks of paiffition
Second, we show how to implement the forward edges within the AKS building blocks
of P. Third, we describe how to implement the forward edges between building blocks
of P and building blocks oP,1 2 or Py11.2i+1. For the latter two topics, we make use
of the freedom to determine the folding of the two butterflies, i.e., we specify the edges
of BF; in an appropriate fashion. Afterward we show that the specBiegledges are
admissiblei.e., consistent witlBF, being isomorphic to a butterfly network.

1. Each node irP is mapped onto a node i\ A’ such that the following condition is
met. Suppose andv are two AKS nodes irP connected by a compare-exchange
edge. Let(¢, u’) and (¢, v') denote the MBF nodes that hastand v, respectively.
Then we require that' — U’ = k/2. In this way, the AKS edge betweerandv can
be embedded in a path of length two including only left edgeBFaf The path is

)2 er1u) 2 @ u+k/2) = @),

2. Now we implement the forward edges inside the building blocks. Consider an AKS
nodeu € P. Supposal is a node in row of the AKS network andi is connected
by a forward edge to a nodein rowr + 1. Letu be embedded in nodé, u’) andv
in node(¢, v') of A\ A". Then we map the forward edge connectingndv to a path
of length two betweeii¢, u’) and(¢, v’). This path consists of a rigf&F, edge and
arightBF; edge. The path is

0, 0) 22 0+ 1 k/2+ v modk/2) =% (¢, 0).

3. Finally, we implement the forward edges between distinct building blocks of level
¢ and level? + 1. Letu € P, andv € P, ; denote two adjacent AKS nodes of
different building blocks. Let¢, u’) € A\ A’ denote the MBF node hosting and
(£+1,v") € L’UR denote the MBF node hosting Then we map the forward edge
(u, v) to aBF;, edge that connectg, u’) and(¢ + 1, v').
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We have to show that the specifiB&, edges are admissible. Each of the node& in
is incident to at most one specifi@F, edge. A node iR, however, may be incident
to two BF, edges specified in procedure 2. However, none of these edges is incident to
a node inR’' because the mapping of the nodes ensuregqthat) € A\ A’ and, hence,
€ +1,k/2+ v modk/2)) ¢ R. (Recall that the embedding InandR is assumed to
be isomorphic.) In procedure 3 we only have specified edges that are incident to nodes
in L’UR'. Each of these nodes is incident to at most one sped@fieddge. Altogether,
for each pair of node& + 1,v) € L and(¢ + 1, v + k/2) € R, we have specified at
most two edges that are incident to the nodes of the pair. This ensures that the set of the
specifiedBF; edges can be completed in an admissible fashion.

Obviously, the embedding has load 1 and dilation 2. Further, onlBleftedges are
used for the embedding of the compare-exchange edges in procedure 1 whereas only right
BF; edges are used for the embedding of the forward edges in procedure 2. Furthermore,
theBF; edges specified for the embedding in procedures 2 and 3 are disjoint. Therefore,
the congestion of the embedding is 1.

In order to implement the embedding we have to show that the siZei®hot too
small, or the other way around, that the size of partifois not too large. In particular,
the equatiorh - |P| < | A\ A’| must be satisfied since we have to maphheP| nodes
associated with partitio® onto the nodes ifA\ A’. Each column (i.e., a sequence of
forward edges) of a building block has tworder nodesi.e., nodes that are connected
to nodes in the stages above or belBwEach node irA’ hosts a border node. Since the
number of border nodes is at mostR|, we have A’| < 2-|P|. (Note that possiblyA’| >
|P|.) Further,|P| = |P;|/2, and|A] < m/2¢, with m denoting the number of nodes on
a multibutterfly level. Thus, the above embedding can be implemented if the equation

2 (h+2)-|P|<m

holds for every tree levélof the AKS network. This yields a constraint on the relationship
between the size of the AKS network and the multibutterfly.

4.3. Properties of the AKS Netwark In order to determine the size of the largest
AKS network that can be embedded into a given multibutterfly, we first calculate some
properties of the AKS network, including the stage numbers at which the bags on level
¢ first become nonempty, first become full, and then split. We also calculate the total
number of stages, and the last level on which to perform a perfect spilit.

Define the capacitZ, (t) of a level? in the AKS tree to be the sum of the capacities
of all bags on this tree level during stagelhen

3) Cty=2"-c,) 21— @a)y?) -n-v'-(2a).

Note that the cold storage simulates a bag half the size of the root’s parent, one-quarter
the size of the root’s grandparent, and so on. Thus, we can imagine the cold storage as
partitioned into an infinite number of virtual levelsl, —2, —3, and so on, such that the
above equation fo€,(t) holds for any integeroco < ¢ < logn, andt > 0.

In the following, we say two tree levelsand ¢’ arecongruentif ¢ = ¢/ (mod 2.
Analogously, we say a tree levéland a stage arecongruentif £ = t (mod 2. For
short we write? = ¢’ or £ = t, respectively. In each stageeach tree level above the
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partial level is filled to its capacity if = t, and is empty it 2 t. All tree levels below
the partial level are empty.

For a stage, defineC,(t) to be the sum of the capacities of all tree levels above level
¢ and congruent tb. Then

(4) Ce(t) = Cy_a(t) + Co_a(t) + Crgp(t) + - -
= (1-2a 3 n . at?. Z(za)*‘
i=0

=n-v'-(2a)¢2

if £=t, and

() Ce(t) = Cp1(t) + Co_3(t) + Coos(t) + - -
=1A-@a) % -n-t. i(za)(f—l)—Zi
— n-vt.(2a)t? -

if ¢t

For¢ > 0, definet{ to be the first stage in which tree levek the partial level, i.et§
is the first stage in which the size of the bags on tree leisdarger than 0. All of the bags
in congruent levels aboveare filled to their capacity in this stage. As a consequence,
Ci(t§) < n. Further, for every stagein which ¢ is below the partial level, i.e., for every
staget < t§, C,(t) > n because all items are stored in levels abév&hus,t{ is the
smallest integer congruent fcsatisfying

n>Cutd) En-vh. 2a)2

This gives
(6) to = (€ = 2) - logy,, (28) + X,
for somex € [0, 2].

Definet{ to be the first congruent stage in which tree let/é filled to its capacity.
Thent; is the first stage in which the number of items stored in bags on tree léw
above this level i, (t) + C,(t). Hence C,(t;) + C,(t{) < n. Further, for each stage

t < tf congruent te? it holds thatC,(t) + C,(t) > n. Thus,tf is the smallest integer
congruent t satisfying

n > Cuty) + Ce(t])
LY 1— @) -n-vi- @) 0.t 2a) 2
= noti.(2a).
Therefore,
(7) tf =/- |Og(1/v) (2a) + x,

for somex € [0, 2].
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Definet; to be the splitting stage of levél Thent; is the smallest integer congruent
to ¢ satisfying

r>cth2a— a2 n-vtk-a.

This is because a bag is split in the first congruent stage in which its capacity is not larger
thanr. Therefore,

8 t; = €109, @+ 109/, (L — 2a)7%) - n/r) + X,

for somex € [0, 2].

The AKS algorithm finishes as soon as the bags on some tree level are split, i.e., are
sorted, and all levels below this level are empty. We denote the tree level split in the last
stage bye*. The splitting stage of* ist{” = T — 1. Level¢* is the first stage fulfilling
Ce-(t5) +Ce(tf) > n, because the splitting stage of this level is the first splitting stage
in which alln items are stored in bags of the split tree level or above this level. Therefore,
£* is the smallest integer satisfying

n < Cp(ty) 4+ Cpe(ty)
r.px.2¢

= Nn- tk*. 2a_€*:47
ve @) = T oy

for somex € [0, 2]. This gives

9) € = Tlogy((1— (2a)7?) - n/r) + 2 log,(1/v)]
= log,n — ©(1).

Consequently,

(10) T =1t +1

® s
= (" -logy,,a+logq,,n—6(1)

@ log, n - Iog(l/v) (2a) — O().

4.4. The Size of the AKS Networkln this section we calculate a lower bound on the
size of the AKS network that can be embedded into a multibutterfly mithodes on
each level according to the above description. This means we are looking for the largest
AKS network that fulfills (2), i.e.(h + 2) - |[P,| < m, for every level of the AKS tree.
Thus, we have to bound the size of each partitferiVe first assume ideal bag sizes and
show later that the results for these values are close to the results for the correct integer
values.

A special situation occurs for partitidy as this partition includes the root bag that
is filled to its capacity from the beginning. The size of the root bag in an even stage
is Co(t), and in odd stages the size is 0. In additi®,includes the cold storage from
stage 0 to the stage before the splitting stage of level 1. The size of the cold storage in a
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staget is Co(t). Hence, we have

IPol < ) Co@)+ ) Colt)
t=0 t=0

@+@+6) 1 1 v =
— —_— —_— —_— . . 2t
= ((1 4a2> + 22 + 2a) n Zv

_ n.(1+%)(1__1vz).

=i1(v,a)

Now we bound the size of partitioR,, for 1 < ¢ < ¢*. We first ignore the effects of
the splitting, i.e., we assume thrat= 0. Define

(11) te i=1t5 + 109, (2a)] - 2~ t;.

Then the size oP, can be bound as follows:

e Ineachstage= ¢ witht§ <t <t’—2, the size of the tree level is at mast- Cy(t).
e In each stagé = ¢ with t > t¢, the size of the tree level is at mds(t).
e In all other stages the size is 0.

Note that the first and the second boundls; C,(t) and C,(t), actually hold for all
stages. We have chosen to use one for the first set of time stages and the other for the
second. For k ¢ < ¢*, we have

(t—th)/2-1 i~
Pl = Y. (n=Cutg+20))+ ) Cultf +2)
t=0 t=0
(ti—t5)/2-1 0
3+ tf—t§ J
< n- A0 _pnayk. a2, Yo v nat @)ty v
2 t=0 t=0
(ti—tH/2—1
abn t—1g ¢ 2 [v 2 % 2
< n 5 +n-vo.(2a)<- ;y - ; v
log1,,, (2a)—1
(6)+(11) ad .
< n-(ogy,(2a) +1) +n- Z p2— Z p2
t=0 t=0

1
= n <|°9<1/v> (28) +1+ m>

=k2(v,Q)

under the assumption that= 0. Now we assume > 0. This means that the size of
partition P, is increased by the size of the cold storage in each stage from the splitting
stage of leve, which ist}, to the stage before the splitting stage of letet 1, which

is tf“ — 1. The size of the cold storage in stags C,(t). Therefore, the above bound
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on|P| is increased by an additive amount of

t/‘+1 1 /Z+ tl+l 1
@16
Z Ci(t) Z n-vt. a2+ Z n-vt.(a)'!
t=t! = 1; t= Ié
t;!é tgtg
i — ¢ ¢ s | BT (1 o t-1
< < 2 [.n-v2.(2a) + | =—=1-Nn-: vl - (2a)
2 2
2av>1 ¢ 1+2a
af S —th) -n-ve . (2a) 2. %
® r.2t=2 1+ 2av

IN®

(log(l/v) a+2)-

az.(1— (2a)2) 2
et (logy),ya+2) -r-2°71. (14 2av)

- 4a2 . (1 — (2a)~2)

©) (Iog(l/v) a+2- -1+ 2av)

< n-

- 4a2y?

=3(v,a)

Up to now we have assumed that all bags have ideal sizes as real numbers. However,
the integer sizes can be larger than the ideal ones. In particular, we choose the integer
sizes according to the following rule given by Paterson [42]: if the ideal total size of a
subtree of the binary tree is, then the actual size isf2/2]. As a consequence, each
bag of ideal sizeb has integer size at mobt+ 2 [42]. Furthermore, the size of the
partition representing the highest nonempty tree level including the cold storage is not
increased by the integer rounding, because the total number of items is bounded by
and the total size of the subtrees below this level is not decreased. Hence, the upper
bound on the size oP, is not affected by the rounding, and f& with ¢ > 1, we
only have to account for the error due to rounding in those stages in Whéchot the
highest nonempty tree level. Therefore, we only consider the stggest; — 1, for
{>1.

We first bound the error due to integer rounding in the stages ffdmt{ — 1 and
then the error in the stages fragntot; — 1. The number of congruent stages from stage
tgtoty —1is(t{ —tg)/2 < log,,,(2a) + 1, and the number of bags on levéh a stage
is at most 2 < 2¢". For each of these bags in each of these stages we have to add at most
two items to the ideal size in order to get an upper bound for the integer size. Thus, the
integer size of a tree level deviates by an additive amount of at most

. ©
2. (logy,,,(2a) +1)- 2" 2n (

4. (logy,,,(2a) + 1) - (1 — (2a)2)
r.v2

=lg(v,a,r)

from its ideal size during the stages frafrtot; — 1. In the stages frortf tot; — 1, all
bag sizes are not smaller thanThus, the relative error in these stages is at mgst 2
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Putting it all together, for G< ¢ < ¢*, we have

[Pl < max{n-«1, (N-k2+N-k3)- (L+2/r)+n- K4}
< n-maxki, (k2 +«3) - (14 2/r) + ka} .

=ic(v,a,r)

As shown in Section 4.2 an AKS network can be embedded into a multibutterfly network
with m nodes per level if (2) holds, i.eth + 2) - |P¢| < mis satisfied for every level.
Thus, the embedding is possible if we choose

n:= m
)

The size of the multibutterfly iM = (log, m+ 1) - m, and the size of the AKS network
iISN=h-T-n.Thusm = M/(log, m+ 1) andn = N/(h - T). In addition, logm =
log,n + ®©(1) andT > log,n - Iogl/U(Za) — ©(1). Thus, we have

M-h-T
(h+2)-k-(logym+1)
- M -h-(og,n- Iogl/v(Za) - 01)
- (h+2) -k - (log,n+ ©(1)
M
Kk —0o(M)

N

fork(v,a,r, h) := (1+2/h) - k/log,,(2a), which is at most B51..., forv = j—g,
a = 3,r = 160, andh > 36 as suggested in [42]. This completes the proof of

Theorem 4.1.

5. Routing h-Relations on Multibutterflies. In this section we give a deterministic
algorithm for routingh-relations on a multibutterfly witho(, 8)-expansion. Given d-
dimensional multibutterfly, defin¥, to be the set of the = 2¢ nodes on levet, for
0 < ¢ < d. The nodes iV are callednput nodesand the nodes iNy are callecbutput
nodes Then arh-relation is a set of pairs of input and outputs noBes Vg x Vg4 such
that each nodey € Vp and each node afy € V4 appears in at mogt of the pairs
in R. Each pair(vg, vg) € R represents a packet that should be routed from an input
nodevg on level 0 to an output nodeg on leveld. In one unit of time, each edge of the
multibutterfly can transmit one packet in each direction.

We assume each multibutterfly node can store only a constant number of packets,
and the multibutterfly hak — 1 additional levels—(h — 1), ..., —1 which serve as
the initial storage for the at mokt- n packets. LeV, denote the set of nodes on level
£, for —(h—1) < ¢ < —1. Each levelt with —(h — 1) < ¢ < —1 is connected to
level £ + 1 by an g, B)-expander, i.e., for an)X < V, with |X| < an it holds that
I'(X) NVei1 > Bl X|, e.g., these expanders are copies of the splitter connecting level 0
with level 1. In the following, these expanders are viewed as splitters.
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Each node on a levélwith —(h — 1) < ¢ < 0 holds a packet that should be routed
to a node on levad. The packets starting in the column of an input nodd level O are
viewed as the packets of (Note that, starting from a configuration in whighnitially
holds all of itsh packets in a local buffer rather than storing these packets in the column
abovev, the packets can be distributedrin- 1 steps among the nodes of the column.)
Each node of level is the destination of at moktpackets.

Upfal [51] presents a deterministic algorithm for routing a permutation, or 1-relation,
in O(logn) steps on am-input multibutterfly. By addingh — 1 additional levels,
Upfal’s algorithm is able to route ah-relation in O(h + logn) steps provided that
the packets are partitioned into appropriate batches of @izg such that no more
than am packets from each batch are routed through any splitter of reiz&€hese
batches, however, are difficult to identify if the destinations of the packets starting at
the same level of the initial storage do not form a permutation. Our algorithm uses
Upfal's algorithm as a subroutine, and we show how the batches can be identified
efficiently.

Upfal's Algorithm  The algorithm routes a set of packets from the input nodes to the
output nodes of a multibutterfly withx( 8)-expansion for any constanés > 0 and
B >1.

The rough routing paths can be explained as follows: a packet stored in a splitter aims
to move along an edge of the left concentrator if its destination is in the submultibutterfly
below the left half of the splitter, and it aims to move along an edge of the right con-
centrator if its destination is in the submultibutterfly below the right half of the splitter.
Within the splitters of the initial storage, a packet may use an arbitrary edge leading to
the next level.

Upfal’s algorithm requires that the packets are partitioned intmatchesB(0), . ..,

B(L — 1). The indices of the batches are used as priority keys. A packet in B&igh

has higher priority than packets [rjj>i B(j). The edges of each splitter are colored
with 2k colors so that no two edges of the same color are incident to one node. (Re-
call that the node degree in each splitter ks)Z'he algorithm works in iterations. In

each iteration, each node holds at most one packet. In odd iterations, the edges con-
necting odd levels to even levels are activated. In even iterations, the edges connecting
even levels to odd levels are activated. Edges are activated one after the other according
to the color order. Thus, in each step, only one edge incident to each node is acti-
vated. When an edge from nodé u) to node(¢ + 1, v) is activated, if nodgZ, u)

holds in its buffer a packet with a higher priority than the packet stored in the buffer
of (¢ + 1, v), the two nodes exchange packets. (An empty buffer is considered to be a
packet with the lowest priority.) We extract the following lemma from Upfal’s analy-

sis [51].

LEMMA 5.1. Suppose the batches are chosen so that no morextingoackets from each
batch are routed through any splitter of size Tihen each packet reaches its destination
in time O(logn + L).

For permutations, it is easy to decompose the packetsOxifip batches that ful-
fill the above condition. As a consequence, several permutations can be pipelined so
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Level O
K
”’””:””\”””””””””””’T ”””” La/dp
Mg + Mg Mg
Level d

Fig. 5. The submultibutterflies of size on the levels to d.

that Upfal's algorithm takes tim@®(logn + h) for routing h permutations. Note that
any h-relation can be decomposed inodisjoint permutations, but it is not clear
how to decompose ah-relation intoh disjoint permutations on the multibutterfly.
Thus, the main problem of routinig-relations is to split the packets into appropriate
batches.

The New Algorithm Definek to be the smallest power of 2 with> h/«, and define
p :=d—logk. For 0 < i < 29/k — 1, defineM; to be the(log«)-dimensional
submultibutterfly with node sdt?, j) | p < ¢ <d, |j/x] = i}. EachM; hask inputs
on levelp and« outputs on levedl. A, ; is the set of inputs oM;. Figure 5 illustrates
these definitions. Our algorithm works in three phases:

e Phasel: Partition the packets intb := 2« batchesB(0), ..., B(L — 1) such that
B(i) contains the packets with destination nodes in thé(set) | vmodL =i}.

Route the packets with Upfal’s algorithm into the “correct” submultibutterfly whose
inputs lie on levep, i.e., route each packet with destinati@) v) to an arbitrary node
in Ay Lo

For each nodé¢p, v) on levelp, store all arriving packets in th@lumnof (p, v),
i.e., at a nodd¢, v) with —(h — 1) < £ < p, such that each node has to store at
most a constant number of packets. (The nodes in the same column are assumed to be
connected by a linear array.)

e Phase2: Give each of the packets with the same destination a umanle i.e., for
each submultibutterfli¥l; and each output nodd, v) of M;, number the packets with
destination(d, v) from O toh — 1. This is done by prefix computations oi;, one
for each output node. (The overall time taken for these computatidbgdy if they
are done in a pipelined fashion.)

e Phase3: Partition the packets intb’ := h - [2/a] batchesB(i + j - h) := B(i, j)
withO<i <h—-1and0< j < L’'—1.B(, j) contains each packegtwith ranki
and a destination if(d, v) | vmodL’ = j}.

Finally, complete the routing with Upfal's protocol according to the new batches.

Intuitively, we have decomposed therelation in Phase 2 intd disjoint rela-
tions Ry, ..., Ry_1 according to their ranks so that all packetsRn have distinct
destinations.
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THEOREMb5.2. The above algorithm routes an arbitrary h-relation in timel@y n+-h).

PROOF We have to prove that none of the splitters of sizis traversed by more than
am packets in any batch of Phase 1 or Phase 3. In Phase 1 the number of packets from
a batchB(j) passing through thigh splitter of sizem on level? is at most

ho[{ofomodL = j,| 2] =i}| < UL LY

m L 2

Since the packets route only through the levelspte1 = d — logx — 1, we have to
consider only splitters of siz@ > 2«. Henceh < ax < am/2, and thus the number of
packets passing through a splitter of sizis at mostrm/2+-h < am. As a consequence,

Phase 1 can be done in tiflglogn + L) = O(logn + h). Note that this bound on the
routing time for Phase 1 also guarantees that all packets received by a node gn level
can be stored in the respective column such that each node has to store a constant number
of packets. This is because each column consists af fodp nodes, and each node on

level p can receive at most one packet per time step.

Now we consider the number of packets from a batch passing through a splitter in
Phase 3. After Phase 2, we have assigned ranks to the packets so that there is at most
one packet with each rank bound for each destination. The number of packets of each of
these batches passing through a splitter of gize at most

m 1<
12/a] +1<am,

for m > 1/«. (Splitters of sizem < 1/« are assumed to be completely connected
bipartite graphs.) Hence, Phase 3 takes triogn + L’) = O(logn + h).

Finally, we have to show how the ranks in Phase 2 can be computed efficiently. Each
packet crosses one of the nodes in lewéh Phase 1. Thus, these nodes can count the
number of packets destined for each of théestinations in the respective submultibut-
terfly, which can be done with constant memory size at each node by distributirg the
values among the at least2 nodes in the column of the counting node. In Phase 2 the
unique ranks of the packets directed to output n@de) are calculated by a prefix com-
putation in the submultibutterfly includingl, u). Thex prefix computations are done in
a pipelined fashion in each of the submultibutterflies. This takesgimégx = O(h).

Thus, the ranks can be computed and distributed among the aGlosgtlog n) packets
stored in a column in tim® (h + logn). O

A More Practical Solution If h = O(logn), another practical solution is to replace
thex-input submultibutterflies witk x « meshes of trees

A k x k mesh of trees consists of an array of nodes witbws andc columns. The
nodes in each row serve as the leaves of a complete binary tree catledtie and
the nodes in each column serve as the leavesoliamn treeHence, nodéi, j) in the
array serves as both thth leaf in thejth column tree, and th¢th leaf in theith row
tree. Anh-relation can be routed between the roots of the column trees and the roots of
the row trees irO(h + log«) steps by simply routing each packet down its column tree
to the appropriate row, and then up through the row tree to its root.
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In our application, the roots of the column trees in a mesh of trees replace the inputs
of ak-input submultibutterfly, and the roots of the row trees replace its outputs< A
mesh of trees hasc3 — 2« = ©(x?) nodes. Since there argx meshes of trees, they
contain atotal 0® (n-«) nodes. Foh = O(logn) (and hence = O(logn)), thistotal is
O(nlogn), the same as the number of nodes imanput multibutterfly. Thus, replacing
the submultibutterflies by the meshes of trees does not increase the asymptotic number
of nodes. Also, the VLSI layout area ofkax « mesh of trees i® («2log? k). Since
there aren/«k of them, their total VLSI layout area ®(n - « log? k). Since the layout
area of the multibutterfly i® (n?), replacing the submultibutterflies with the meshes of
trees does not increase the asymptotic VLSI layout area.

Networks besides the mesh of trees could be plugged in as well, &.x,.amesh
would work, but its routing algorithm would be slightly more complicated.

6. Simulating Expansion on a Twinbutterfly. The concentrators of a twinbutter-

fly have poor expansion. This can be shown as follows. Consider a concef@rator
(AU B, E) of a twinbutterfly with input sef of sizem and output seB of sizem/2. G

can be constructed from a bipartite« mgraphG’ = (AUB’, E’) of degree 2 by merging
together two nodes frorB’ to form each node iB. In G’, for anyi < |A|, there exists a
subseiX € Awhere|X| =i suchthatl'(X)| < i+1, because a degree-2 graph consists
only of node disjoint cycles. The same bound on the expansion holds for the concentrator
G because merging nodesican only reduce the expansion. Upfal’s algorithm requires
(a, B)-expansion for some constght> 1, which is not present if there are sets of size
with onlyi 41 neighbors for all. However, the following theorem shows that the effective
expansion of a twinbutterfly can be improved by embedding multibutterflies of higher
degree.

THEOREMG6.1. For any @ and 8 with o < %, there exists a twinbutterfly TBF in
which an equal-sized multibutterfMBF having («, 8)-expansion can be embedded
with constant congestion and dilation

PrROOF We describe a-dimensional twinbutterfly TBF and an equal-sized multibut-
terfly MBF of degree K, for constant, such that MBF can be embedded into TBF
with constant load, dilation, and congestion. TBF and MBF will be constructed ran-
domly, and we will prove that the probability that MBF has 8)-expansion is larger
than O.

Consider the firsk levels of the twinbutterfly TBF. We define these levels by de-
scribing the underlying butterfly networlgF; andBF,, i.e., the two butterflies from
which TBF is constructed. We assume tl&f; has the “usual” butterfly node la-
bels, i.e., the edges d@F; connect a nodé&?, vy - --vg_1) on level ¢ to the nodes
€+1vg---vp---vg_q)and(® + 1, vg--- v ---vg_1) ONlevelt + 1.

BF, is defined randomly. For any ¥ ¢ < k andw e {0, 1}, sSupposey, ,, Iis a
permutation chosen randomly and uniformly from the set of permutatiof, dsd—X.
Then each nodé€ — 1, v) with v = vg- - - vg_1 € {0, 1}% is connected by 8F,-edge



Improved Routing and Sorting on Multibutterflies 461

to node

(£, vo -+ - Vk—1 92, vg 1 (Vk * * * Vd—1)),

for 1 < ¢ < k. (The secondF,-edge on the same level can be chosen arbitrarily.)
Intuitively, traversing one of these edges randomly modifies thedlask bits of the
node labels.

Next we define the firsk levels of the degreekdmultibutterfly MBF. Consider
level ¢ of MBF with 0 < ¢ < k — 1. Supposer; ,, is a permutation chosen randomly
and uniformly from the set of permutations ¢@, 1}, for 1 < i < kandw ¢
{0, 1}9-k=0 et (¢, v) be a node on level with v = vg---vg_1 € {0, 1}9. Define
X I=vg--- V1, Y i= Vgq1- - - Uk, QNAZ 1= viyq - - - vg—1. Further, defing; := mj xo,(y)
andz = wif)(low(z), for 1 <i < k, wherep~! denotes the inverse of. Intuitively, the
m-permutations randomly switch thebits, and thep~1-permutations randomly switch
the z-bits. We connect?, v) = (¢, x {0, 1} y 2) with 2k nodes on level + 1, i.e., with
the nodes

+1,x0y/z) and (£+1,x1y Z),

for 1 < i < k. Note that all edges are inside the splitters and that each node on level
¢ + 1is the endpoint of Redges.

The embedding has constant congestion and dilation because there is a path in TBF
of length at most R + 1 from (¢, v) to any node adjacent in MBF on leveh- 1. For
1<i <kandb,b € {0, 1}, this path can be constructed as follows:

«,v) = (£, xby2

NN k, xb'y/2)

SN (i, xb'y/2)
BF2 (i —1,xby/z)
B

NG BN (€ +1,xbyz),

where— -:* _ denotes a path usirgf; edges, and> denotes a singIBF, edge.

We now investigate the expansion of MBF. Consider one of the concentrators in
the firstk levels. It consists of a node sé&t = A,; and a node seB = A,y Of
B= A 1241 With0<¢ <k-—1and0<i <2’ — 1. Definem := |A|. Suppose that
i andg;, for 1 < i < k, are random functions such that each nod@iis connected
with k nodes chosen independently and randomly fi&nThen the probability that all
edges that are incident to nodes in a subséet A have their endpoints in a subset

Y CBis
Y| k-1X] 2lY| k-1X]
() -Co)

Actually, i andg;, for 1 < i <k, are independent random permutations instead of ran-
dom functions. However, this does not increase the above probability. As a consequence,
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the probability that the concentrator has oo f)-expansion is at most

-] 2. B\ <"

IDIDIESY

—]1 XCA  YCB
Xl=p Y|=1-n

la-m] (m)< m/2 )(Z,B/Jl«)ku
7\ B - ul m

IA
Eilyg

(ak—l—ﬁ . el+/3 A (Zﬁ)k_ﬂ)u.

IA

b
L

We choosek > (B - log(e/(2aB)) + log(4e/a))/log(1/(4apB)). Then the above term
bounding the probability of a lack of expansion in one concentrator is smaller than
2-(+D Thus, the probability that allk2* concentrators of the firtlevels haved, B)-
expansion is greater than 0. Consequently, we can choose the edges of the twinbutterfly
TBF so that the firsk levels of a multibutterfly with¢, 8)-expansion can be embedded

with constant congestion and dilation. The levets d — 1 of TBF can be viewed ag2
independent twinbutterflies of dimensidr- k. Applying the above scheme recursively

to these butterflies completes our proof. O

7. Open Problems. We conclude with a few open problems.

1. Can anN-node multibutterfly whose splitters have the B)-expansion property
be embedded with constant load, congestion, and dilation, i@ @h)-node AKS
network whose building blocks have, 8) (or better) expansion?

2. What is the complexity of selecting thkéh largest item from amoniyl items on an
N-node bounded-degree network to¢l) < M/N < o(log N loglog(M/N))?

Acknowledgments. The authors thank Friedhelm Meyer auf der Heide and Christian
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