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A Simultaneous Search Problerh
E.-C. Chang? and C. Yap

Abstract. We introduce a new search problem motivated by computational metrology. The problem is as
follows: we would like to locate two unknown numbexsy € [0, 1] with as little uncertainty as possible,
using some given numbé&rof probes. Each probe is specified by a real numbeif0, 1]. After a probe at,

we are told whethex < r orx > r, and whethey < r ory > r. We derive the optimal strategy and prove
that the asymptotic behavior of the total uncertainty atprobes ist¥2-+1/2 for oddk and £32-+/2 for

evenk.
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1. Introduction. The following search problem was introduced by [4] in the context
of geometric tolerancing and metrology [2], [1], [3]. Given a closed inteBraf R,
our task is to estimate its length = |B|. In practice,B is a rod or some body whose
length we wish to estimate. Toward this end, we ar@rabe Busing agrid which,
after a scaling factor, may be identified with Theinitial probe amounts to placing
arbitrarily on the real line—if placements specified by a real numbsy € R, then the
positionof B in placemeng, corresponds to the intervBl+ 55 = {X 4+ S: X € B}. See
Figure 1 for an illustration.

Theresultof the initial probe is the discrete set

S:=B+x9NZ.
In Figure 1, has five points. It is immediate thatrif = ||, then
(Np—1) <L <(no+1).

So the uncertainty abolt is 2 after the initial probe.

In subsequent probes, we are allowedlhift B by any desired amount. If the first
probe after the initial probe is obtained by shiftiBgby s;, thenB is next placed in
positionB + s + 51, and the result of this probe is the set

S =B+s+s)NZ.
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Fig. 1. Arod B at positionsy on a grid.

To ensure tha§, is nonempty, we assunie > 1. In general, if theth shift iss, then
the result of the corresponding probe is the set

k
S = <B+ s)ﬂZ.
i=0

For any giverk > 0, our goal is to devise a strategy of choodirghifts so that the worst
case uncertainty concernitgis minimized. It is not hard to see that we may restsict
sothatO< 5 < 1.

2. The Abstract Problem. We reformulate the above problem in an abstract setting.
To establish the context, recall the classic problem of searching for an unknown real
numberx, known to lie in some intervdl C R. We are allowed to comparewith any
chosen real number e R. Such acomparisondenotedx : r, has one of two possible
outcomes X < r” or “x > r.” The classic binary search algorithm, after making
comparisons, determines a subintedyat 1o of size|l,| = 27%|1o]. Interpreting I, | as
theuncertaintyof x afterk comparisons, itis well known that the binary search algorithm
is optimal, that is, it achieves the minimax uncertainty afteomparisons.

Now consider a generalization calledienultaneous searching probleme are given
two intervalsl, J € R and a numbek > 0. Our goal is to locate two unknown numbers
x € | andy € J as accurately as possible usikgrobes Each probe is specified by
a real number € R called thediscriminant and it corresponds to making a pair of
simultaneous comparisons,: r andy : r. If the outcome isx > r, then| is next
reducedtol’ = I N{e € R: « >r} and otherwisd’ = | N{o¢ € R: o < r}. The
outcome of the comparison gnis similarly treated, and lel be updated td’. Notice
that if | N J = ¢, then a probe amounts to a choice of one of the two intedvalsJ
upon which to perform an ordinary comparison.

Theuncertaintyof |, J is given by|l | + |J|. After a probe, uncertainty is reduced to
[1"] +|J']. LetUk(l, J) denote the minimax uncertainty afteprobes. Lety(l, J) be
the discriminant of the first probe in an optimd-probe strategy. We are interested in
two special cases:

DISJOINTCASE. Thisiswhen NJ = @. Clearly,Ux(l, J) depends only on the lengths
a=|llandB = |J|. If « + B8 = 1, we writeVi(«) for Uc(l, J).

JOINT CASE. Thisiswhenl = J. If | = J = [0, 1], we write Uy andoy instead of
Uk (I, J) andok(l, J), respectively. Hencly = 2 and, by definitiongg = 0.
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In our metrology problem to estimate the lengitbf a rodB, we began with an initial
probe (Figure 1). Lek (respectivelyy) be the distance of the rod’s left (respectively
right) end to the nearest grid point on the left. Cleaxlyy € [0, 1]. Thusx andy
correspond to the unknown numbers of the abstract problem lwith J = [0, 1].

In general, after théth probe { = 0,1, ..., k), the left and right endpoints d@ can
be located within two interval$;, J which can be specified as follows. L& =
(B + Z}‘:os) N Z be the result of théth probe as in the Introduction. § comprises
the integersn;, m +1, ..., n, — 1, n;, then it is sufficient to specify the intervalisand
Ji which relate td; andJ; via the equationy =m; —1+ lfandd =n + J. Initially,
lo = Jo =0, 1]. Fori > 1,

[ {(S + 12 N[0, 1] it =mi_g,
I (s -1+l NJO0,1] if m=m_1+1,

and similarly forJd. Itis easy to see that € |; — (Z}zlsj) — (mp — 1), andy €
J - (Z}zlsj) — no, so thatl;| + |J | is the uncertainty about the numbexsy after
theith probe. Thath probe corresponds to the comparisansr; andy : rj, where

r=(— Z}zlsj) mod 1.
Itis not hard to see thdal; = 1. Next we claim that

2
U2= 3-

To see that), < % let the discriminant of the first probe l# There are basically
two cases of the resultant intervals, J’) to consider:(1, J') = ([%, 1], [%, 1)) or
(', 3y = ([0, %], [%, 1]). In either case, the discriminant of the next probe (second
probe) can be chosen @s We see that the uncertainty is at mésafter this probe.
To see that), > 3, suppose the first probe discriminantris# %. If r > 2, then
Uz > U([0, 1], [r, 1]) > Z; otherwiser < % and we havéJ, > Uy ([r, 1], [r, 1]) > 2.

We have the following bound for any| = |J| = 1:

(1) 21K < U1, J) < 24

The lower bound o)y comes from the fact that each probe reduces the uncertainty by a
factor of at mos%. The upper bound o, comes from the fact that we can reduce the
uncertainty by a factor of at Iea§twith every two probes.

The main result of this paper determines the behavitlafsk — oo. To understand
this behavior, we first normalizdy by defining

Uk = Ukz“‘/m.

Table 1 lists the initial values dfx andoy, separated into two parts depending on the
parity ofk. These values are computed by a procedure described in Section 4. It turns out
that the sequendeic o, does not converge but has two limits, depending on whéther

is even or odd:

13 13
U2k = 15 Ux-1— <.

0’

This can be seen in Table 1 as well.
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Table 1.0k andUy.

k ok Uk
1 1=05 1=2"12
5 8 —
3 & =02941... £ =2721.8823..))
5 S = 0.2872... 2% =273(1.8618.. )
1261 512 —
7 3284 = 0.2860. .. 22 = 274(1.8580...)
00 2 =028571..  Bok+D/2 = p-(kD/2(1 8571, )
2 1 =03333.. 2 =21(13333..)
4 32 = 0.3061... 3 =272(1.3061...)
237 128 —
6 27 =0.3011... 228 =2-%1.3011..)
3783 1024 —
3 135—k —k
00 2 =03 Bo-k/z2 = 27k/2(1.3)

3. The Disjoint Case. Assumel = [0, «] andJ = [«, 1]. Let Vk(«) := Ui(l, J) be
the minimax uncertainty for this particular setup. Observe thapifobes are performed
on the interval , then the amount of uncertainty remainingliis 2 "«. Thus,

Vi(@) = min | % 4 1=
KO = ek | 2h ™ 2kh [
NormalizeVy («) by considering the function

(@) 1= 22V ().

For example, withw = % it is easy to see that’k(%) = 27%2 whenk is even and
Vk(3) = 32-0+D/2 whenk is odd. Hencex(3) = 1 or 15, depending on whethéris
even or odd. This behavior is seen generally in the next lemma.

LEMMA 1. Fix0 < a < % As k goes to infinitythe sequencéuvk (o)}, does not
converge but has two limit pointBor even k it converges t@.er(«), Wwhereas for odd k
it converges togq(r), Wwhere

Veverl®) = 20 +27'(1—a) (where i= [logy(1 — &) — log e + 1])

; 1 1
_ <a<?
a+1—« if i <0 =3,
R ; 1 1
20 + = if g <e<xg.
2 1w ; 1 1
= 2o+ if w3 <o<zg
i - ; 1 1
2a+ o if 21 = O = mneagge

and
Vogd(@) = 2a+27(1—a) (where i= [log,(1— &) — log, )
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H 1 1

2()[+1—Ol if ZZ_HS(XSE’

l1-« H 1 1
da + it g =e<zg

l1-o H 1 1
= |8+ 2 if F1=9S A

i 1l H 1

2o + -1 if 2% o= 22-247

PrROOF  First assumé is even and sufficiently large so th@** + 1)~ < a. Let| =
[0, @] and J = [a, 1]. For any positive integefr < k/2, letE,(a) = a2¢ + (1 — a)27¢.
If we perform (k/2) — ¢ comparisons il and the remainingk/2) + ¢ comparisons
in J, then the remaining uncertainty is'?2E, (o). Observe that,(«) = min, Eq(c).
Writing o := (22+1 4+ 1)~1, we may verify

Ei(ai) = Eip1(a).

We also note that
o< qj <— E () > E1(o).

Thusa = «; is the cross-over point between optimally assigring — i versusk/2 —
i + 1 comparisons to the first interval,[@]. This proves that

vk (o) = Vever(r) = Ej (@)

for o € [aj, oj_1], as desired.
We can similarly calculate the cross-over point wikaga odd to verify the other half
of the lemma. O

Note that the proof actually shows a stronger result, namely, for fixeg («) is
equal tovever(r) OF vogq(r) for k large enough.

In the next section we need the following more precise statement of the lemma when
a e[} i forallk > 2,

13 if k is even
— 2 !
@ (@) = {1+a if k is odd.

The following properties are easy to verify.

LEMMA 2. Letk> 1 be fixed

1. For « in the rang€|0, %], the functionsuy (), vever(@), andvegqg(er) are continuous
increasing and piecewise linear

2. v (0) = 27 %21 Henceveyern(0) = vo4g(0) = O.

3. Vodd(@) > vever(er) With equality if and only itxr = 0.

4. The Joint Case. Now consider the joint case whete= J = [0, 1], soUx(l, J)
andoy(1, J) are simply writterl, andoy. If the resulting intervals after the first probe
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arel’ andJ’, there are only two cases to consider: eitHemdJ’ are disjoint (for which
we can use the analysis of the previous section) or they are equal (which is a recursive
situation). This observation implies that, for kI 1, Uy satisfies the recurrence

O<a<1

Uk = min/z{max{vk_l(a), (1—a)Ux_1}},

with Ug = 2. By the definition ofoy, the right-hand side is minimized by the choice
o = ox. Multiplying the equation by /2!, we obtain the normalized form.

©)) Ug = 0<TLT/2 {max{exvk-1(@), ex(1 — a)uk_1}},
whereg, = 2 if k is odd, otherwisey, = 1.

Consider, withk fixed, the graphs ofx_1(«) and(1 — o)ux_1. AS « increases from
0to % both graphs intersect at most once since the latter decreasesyrertby (1),
Ux_1 > 2-L&=D/2ly while the former, by Lemma 2, increases from®-1/2 Recall
that, by definition,vk_l(%) is the normalized uncertainty in the case of two disjoint
intervals of equal size; thuxﬁ_l(%) > %uk_l. Therefore, the two graphs intersect exactly
once. The intersection is the poift, uy/cx). Thus we can rewrite (3) as

4) Uk = &xvk—1(0k) = k(1 — ox)Uk—1 (k>1),

where the base caseus = 2 ando; = % The values in Table 1 were computed by
iterating this recurrence. Figure 2 illustrates this process.

The question naturally arises whether this process “converges” in a suitable sense,
and, specifically, doei} converge? The answer is given in the next result.

THEOREM3. The sequencoy, Uk)}zo, converges td6odg, Uodd) = (%, 173) fork odd

and t0(Geven Ueven = (55, ) for k even

PrOOF  We first define a sequené®;, Uk }k>2 and then relate it to our original sequence
{0k, Uhe1. Let f(X) := 14 x andg(x) := (14 3x)/2. Lets, := 3,53 = =, and, for
j > 1, the following equations hold:

) Upj = f(62j) = (1 —G2j)lzj-1, and
U2j+1 = 20(02j+1) = 2(1 — 62j11)Uzj.

We now solve forox anduy: by the substitutionsiz;_y — 29(62j—1) andly; —
f(2)), we have

f(02)) = 2(1 - 62j)9(62j-1), and

9(02j+1) = (1 —62j41) F(G2)).
Expanding the function$ andg and simplifying, we get

36251
2+ 35’2j_1

1+ 265

72 = 5+ 267

and 5‘2j+1 =
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Uncertainty

uk ) (

Uk lfg-mmmmmm oo

uki?
(1 - a)uk_H

AT

Ok+2 Ok+1

Fig. 2. Iterative process to findys1 andugk,2 from ug (k odd).

or

3+ 60y;
02j4+2 =

13+ 105‘2]'

and 67511 = 2+ 9021

2+ = 10+ 215'2j,1.

These could be written as two independent iterative equations,
O2j+1 = F(025) and 62511 = G(62j-1),

whereF(x) := (3 + 6x)/(13+ 10x) andG(x) := (2 + 9x)/(10 + 21x). Note that
F(3) = 2 andG() = 2. SinceF is continuous and & F'(x) < 1forallx € [, 1],
it easily follows that the sequeng¢é,; };2, converges monotonically decreasing to the

fixed point3 since we started with, = 3. Similarly, with starting poinés = 2, the
sequencgsyj1}2, converges monotonically decreasing%td:igure 3illustrates these
two fixed points.

It remains to prove thatx = 6 for all k > 2. Note that, fokk > 2, g(X) = vk(X) if
x € [3, 3] andk is even (see (2)). Similarly (x) = v(x) if x € [, 3] andk is odd.
Therefore, (5) is equivalent to our original recurrence (4) provigjed [%, %] whenever
j = 2,02 = 07, andaoz = o3. However, we established this provision in the previous

paragraph. O



262 E.-C. Chang and C. Yap

&
I
[~43

(=3

=N

o

—
oo

,_.
(=
|
I3
®
<
@
=

o
oo

-
N

Fig. 3. The fixed point solution.

5. Remark. ltis interesting to study the general casdipfl, J) wherel andJ are
arbitrary closed intervals iR. For instance, ifl | = |J| = 1, itis not hard to verify that

1<Uy(l,J) < 15.

More precisely, ifl NJ| < %,thenul(l, J) = 1.5andotherwisd),(l, J) = 2—[INJ]|.
Similarly, we have

f=Ww0, =1

Furthermore, there is an obvious generalizationitatervals(l4, ..., In) where each;
contains an unknowx . Another generalizationis to define the uncertaintyi of. . ., 1))
to be)"; willi|, wherew; > 0 are specified weights.
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